A set is a collection of objects, both individuals and sets of various sorts. It is a KIF primitive.Notes:
- Source: KIF Version 3.0 Specification
(=> (Union @Sets ?Set) (Set ?Set))
(=> (Intersection @Sets ?Set) (Set ?Set))
(=> (= (Union @Sets) ?Set)
(=> (Item@Ol-User%Kif-Lists ?S (Listof @Sets)) (Set ?S)))
(=> (= (Intersection @Sets) ?Set)
(=> (Item@Ol-User%Kif-Lists ?S (Listof @Sets)) (Set ?S)))
(=> (= (Difference ?Set @Sets) ?Diff-Set)
(=> (Item@Ol-User%Kif-Lists ?S (Listof @Sets)) (Set ?S)))
(<=> (Individual ?X) (Not (Set ?X)))
(<=> (Simple-Set ?X) (And (Set ?X) (Bounded ?X)))
(<=> (Subset ?S1 ?S2)
(And (Set ?S1)
(Set ?S2)
(Forall (?X) (=> (Member ?X ?S1) (Member ?X ?S2)))))
(<=> (Cardinality@Ol-User%Kif-Extensions ?Set)
(And (Set ?Set)
(Exists (@Elements)
(And (= ?Set (Setof @Elements))
(= ?Integer
(Length@Ol-User%Kif-Lists (Listof @Elements)))))))
(<=> (Finite-Set@Ol-User%Kif-Extensions ?F-Set)
(And (Set ?F-Set)
(Exists (@Elements) (= ?F-Set (Setof @Elements)))))
(Nth-Domain@Frame-Ontology Difference 3 Set)
(Nth-Domain@Frame-Ontology Difference 1 Set)
(Exists (?S)
(And (Set ?S)
(Forall (?X)
(=> (Member ?X ?S)
(Double@Ol-User%Kif-Lists ?X)))
(Forall (?X ?Y ?Z)
(=> (And (Member (Listof ?X ?Y) ?S)
(Member (Listof ?X ?Z) ?S))
(= ?Y ?Z)))
(Forall (?U)
(=> (And (Bounded ?U) (Not (Empty ?U)))
(Exists (?V)
(And (Member ?V ?U)
(Member (Listof ?U ?V) ?S)))))))
(Nth-Domain@Frame-Ontology Has-Values@Ol-User%Slot-Constraint-Sugar
3
Set)