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Abstract 

This paper presents the COBrA-CT ontology tools, which include an ontology server database and 
version manager client tool for collaborative ontology development, and an editor for bio-
ontologies that are represented in the Web Ontology Language (OWL) format. The ontology server 
uses OGSA-DAI Grid technology to provide access to the ontology server database. These tools 
implement the agreed standard for representing Open Biomedical Ontologies (OBO) in OWL and 
interoperate with other tools developed for this standard. Such tools are essential for the uptake of 
OWL in the biomedical ontology community. 

  

1. Introduction 
Biomedical ontologies, which include the Gene 
Ontology and the anatomies of model organisms 
such as mouse and drosophila, are growing in 
size and their encoding languages are becoming 
more sophisticated. As a consequence, tools for 
verification, version control, meta-data 
attribution, provenance and archival are needed, 
in addition to the ontology editing tools that 
users are familiar with. This wider curation 
aspect has been recognised as a priority for e-
Science, and is an important concern for many 
communities and in standards initiatives (Lord, 
2003, 2004).  

Ontologies are of central importance in data 
curation, as only by defining the meaning of the 
terms used to describe data points or fields can 
the (possibly implicit) content be clarified and 
its interpretation agreed upon among the 
research community, and thereby used 
consistently. For example, there are efforts to 
standardise the names used for tissue samples 
assayed by microarray (Parkinson, 2005), as 
well as the metadata that describes the 
experimental results (e.g. MGED/MIAME). 

More generally, use of a consistent, shared 
ontology is of critical importance to the sharing 
of knowledge, and has long-term benefits. For 
example, the Gene Ontology is in widespread 
use for data mining and data visualisation, and 
has great potential for further integration of data 
across the different levels of biological 
granularity that must be accounted for in a 
systems level view of biology. Ontologies have 
also been identified as key resources in 
numerous e-Science projects, including 
AstroGrid, MyGrid and the Advanced 
Knowledge Technologies IRC. 

However, ontologies are not static: they must 
change to reflect changes in science, to adapt to 
new uses, to broaden their community or to 
remedy flaws. And, as we now discuss, 
biomedical ontologies, which are often defined 
rather informally, must be translated into the 
more formal languages of the Semantic Web 
(e.g. OWL) in order to take advantage of the 
range of  tools and services being developed for 
the Semantic Web and computational Grid. This 
requires the meaning of terms and relationships 
to be clarified and the development of 
supporting tools. We present an ontology editor 
for biomedical ontologies that have been 
translated into OWL, and an ontology 
management system that supports the 
distributed, cooperative development of 
ontologies, which, in combination, can be used 
to transition Open Biological Ontologies to the 
Web Ontology Language and address the 
version management tasks that arise in the 
process. These tools interoperate with tools 
developed by others that perform the OBO 
format to OWL format translation according to 
an agreed standard. We now discuss the 
languages and tools used to develop bio-
ontologies, then consider the Grid as a platform 
for such tools. 

1.1 Bio-ontology Languages and Tools 

Biomedical ontologies play a crucial role in 
the indexing of experimental data - providing 
both unique IDs for aspects of anatomy, 
phenotype, process, cellular structure and 
molecular function, and conceptual abstractions 
for aggregating results (Bard and Rhee, 2004).  

Bio-ontology tools typically provide a 
graphical interface to a (largely) fixed set of 
ontology language constructs that specify the 



term name, textual definition, synonyms etc, 
plus search functions to help the user find terms 
within the ontology. Tools are typically used 
outwith a methodological framework, i.e. users 
are not following a modelling process or 
paradigm of any kind. A gap between the 
theoretical understanding of the formal issues of 
ontology development and the modelling 
approaches apparent in many of the Open 
Biomedical Ontologies has previously been 
noted (Smith, 2003, 2005). Initiatives such as 
the Common Anatomy Reference Ontology1 
have the potential to make modelling practice 
more uniform across different user groups, and 
may be the most practical solution to clarifying 
the conceptual basis of bio-ontologies. 
However, to-date, many of the modelling 
decisions captured in biomedical ontologies 
have been guided by the immediate use of the 
ontologies for indexing gene expression data, 
and the net result is a diversity of approaches 
and of interpretations for the basic elements in 
the ontologies, including the interpretation of 
the part-of relation (but note that these 
comments do not apply to the Gene Ontology 
which has specified principles for curation).  

Use of the OWL language brings with it the 
need to clarify the meaning of relations other 
than the is-a (or subClassOf) relationship: The 
OWL ontology developer is immediately 
exposed to the Description Logic oriented view 
of a concept definition. This logic-based view of 
concept definitions has implications for 
ontology editor design as a user who is a 
biologist will expect to see a graph that mixes 
is-a and part-of, rather than a pure is-a 
hierarchy that corresponds to the logical 
definitions. The logic-based view of concept 
definitions is most at odds with current anatomy 
ontologies where (in many cases) the more 
pragmatic view of the ontology as a labelled 
graph holds sway over the logic-oriented view 
that all concepts require subClassOf 
relationship.  

Recent developments in the translation of 
OBO to OWL are bringing this issue to the fore: 
In OWL ontologies, the part-of relation cannot 
be used to link between two concepts in the 
ontology graph. Rather, it is used to specify the 
set of parts of the parent entity, e.g. the parts of 
some Heart. The child entity, e.g. the Aortic 
Valve will be a subclass of this set. Presenting 
such a definition to a user in an intuitive way is 
a significant challenge for new tools that are 
based on OWL.  
                                                             
1 http://www.bioontology.org/wiki/index.php/ 
CARO:Main_Page 

1.2 Platforms and Infrastructure: The Grid 

Ontologies are recognised as having a key role 
in data integration on the computational Grid. 
Metadata standards can themselves be 
considered to be a kind of ontology, and may 
characterise resources in terms of domain 
ontology concepts for the purposes of 
integration, service discovery, provenance, and 
long-term preservation. Conversely, the Grid 
provides an ideal platform for new ontology 
tools and databases as it aims for seamless 
resource sharing and global collaborations. The 
Grid has attracted enormous attention and 
gained popularity by supporting distributed 
resource sharing and aggregation across 
multiple administrative virtual organisations. It 
offers upgraded performance in terms of 
reliability, scalability and availability.  

In the COBrA-CT project, we have developed 
Grid services to provide data storage and access 
so that users can share their ontologies in a 
secure, and dependable way. By enabling 
COBrA-CT to operate through the Grid, the 
software capabilities have been enhanced by 
taking advantage of Grid infrastructure. The 
following sections describe our solution to the 
curation and archiving problems that arise when 
individuals and communities develop 
ontologies, then introduce the ontology editor 
and its functions. 

2. Ontology Curation and the COBrA 
Curation Tools 
In common with experimental data, ontologies 
are created, published, and revised. Tracking 
and managing such changes requires new 
curation tools. In addition to version 
management, and archiving, curation also 
includes the review of the content of the 
ontology, and assessment of quality (Missier, 
2005). As the use of ontologies widens, the 
problems of tracking versions, and the changes 
between versions, identifying flaws and of 
reconciling differences in conceptual modelling 
arise. Addressing the first of these issues is our 
main goal in the design of the curation tools.  

Supporting the ontology development and 
curation effort in a distributed setting, providing 
access to current and past versions of ontologies 
and allowing collaboration among users 
requires an ontology management server. As we 
are making use of the Web Ontology Language 
(with its XML syntax) as the means of data 
exchange, we shall be able to take advantage of 
both ontology-based and XML-based 
techniques for capturing changes. The use of an 



XML database will also support querying across 
ontologies, for example, for concepts and 
synonyms. A simple CVS or Wiki solution 
would not provide such functionality. The 
further potential for XML-based methods is 
discussed under future work.  

We next present the Ontology Management 
Server and the Version Manager, then describe 
the Protégé plug-in for editing OWL bio-
ontologies: the OBO Explorer. These tools can 
be downloaded from the project website:  
http://www.aiai.ed.ac.uk/project/cobra-ct/ 

 

2.1 The COBrA-CT Ontology Management 
Server 

The Ontology Management Server is built on 
OGSA-DAI. The OGSA-DAI project2 aims to 
ease access to, and ease the integration of 
distributed data resources via the Grid. It 
provides various interfaces supporting data 
transformation and delivery, and is compatible 
with many popular (relational or XML) 
databases, such as Oracle, DB2, SQL Server, 
MySQL, Xindice, and eXist, and file systems, 
such as CSV, BinX, EMBL, OMIM. This 
middleware is compliant with two popular web 
services specifications, WS-I and WSRF, and is 
distributed with both the Globus Toolkit and the 
OMII-UK middleware distribution. The 
COBrA-CT installation currently employs the 
recently-released WS-RF distribution of OGSA-
DAI (OGSA-DAI WSRF 2.2), which has been 
designed to work with the Globus Toolkit 4 
implementation of WS-RF.  

We use eXist3, an Open Source native XML 
database, to store ontology data. Native XML 
databases provide powerful tools for XML 
processing, and so are suitable for keeping 
ontology and metadata information. For 
example, eXist supports XPath, XQuery, 
XUpdate, XInclude, XPointer and XSL/SXLT 
XML standards, and provides XML:DB API, 
                                                             
2 http://www.ogsadai.org.uk 
3 http://exist.sourceforge.net 

and both DOM and SAX parsers. We also 
choose the eXist database because it is able to 
deal with large XML documents. In COBrA-
CT, the ontology files sizes range from 78KB to 
10,000KB. Other XML databases, e.g. Apache 
Xindice4 could only handle documents less than 
5MB, and so did not satisfy our requirements.  

As indicated in Fig. 1, the client triggers 
OGSA-DAI methods (Activities) for uploading 
and downloading both ontologies and metadata. 
Both are passed as XML documents. XPath and 
XUpdate have been applied to query and 
modify XML database objects. XUpdate 
supports node-level updating in a DOM tree, 
which gives much more flexibility and 
efficiency.  

The client submits its working plan in a so-
called OGSA-DAI Perform Document, which is 
a XML document consisting of a sequence of 
requests. The request is sent as encrypted SOAP 
message to the Grid services which will invoke 
Data Resource Accessors (DRA) methods to 
connect with specific data resources. The return 
datasets or response messages are also 
encrypted in a SOAP message and sent back to 
the client. 

Ontology files are stored in hierarchical 
collections based on user unique identifiers, 
ontology identifiers and ontology version 
numbers in the eXist database. This means the 
physical location of an ontology OWL file is 
determined by these IDs. To accelerate data 
searching, we have implemented a registry to 
record the ontology and metadata information, 
and the mapping to the physical location. 
Current metadata information includes but not 
limited to:  

• Ontology ownership: owner's name, ID 
and database user roll;  

• Ontology descriptions: ontology name, a 
text description of the version;  

• Ontology file location: including the 
XML resource name and subcollection. 
A trace of ontology version changes, 
including version numbers, upload dates, 
and a set of previous ontologies that an 
ontology has been derived from. In the 

                                                             
4 http://xml.apache.org/xindice/ 

Fig. 1. The Client/Server Grid Architecture 



typical case, an ontology will simply 
have one previous version, but we allow 
for ontology merging from diverse 
sources, and for the concurrent editing 
and subsequent merging of ontology 
versions.  

• Ontology sharing information: COBrA-
CT allows a registered user to share 
his/her ontologies with a group of users. 
This is supported by associating a set of 
sharing users with the ontology - these 
users are able to download the ontology 
for inspection (and subsequently they 
may upload a modified version under 
their own user name).  

A simple Java tool has also been developed to 
help the database administrator manage user 
accounts. 
Security: Several options for maintaining 
security were explored. The simplest is for users 
to log in using their account name and 
password, and for these to be verified against 
the database records. This approach is currently 
used in version 1.0 of the Version Manager 
client. We have also explored a public/private 
key system which eases the user’s account 
management problems by replacing passwords 

with key files, and allows authentication checks 
for the client. The Certification Authority (CA) 
method was also examined, however, we 
concluded that this is overly complicated and 
inefficient for our needs, and that it is 
unreasonable to ask all our users go to the 
relevant certifying organisations to obtain their 
CAs. In a small to middle scale Grid system, 
like COBrA-CT, it seems more applicable to 
self-issue CAs, and we shall explore this in 
future work.  

2.2 The COBrA-CT Ontology Version 
Manager 

The motivation for the design of the Version 
Manager came from observing the development 
of the cell type ontology (Bard et al, 2005) 
where ontology versions were created by a 
small, geographically-dispersed and informally 
organised group who might meet at a 
conference to create and review content or 
exchange views and ontology files by email. We 
concluded that supporting this process would be 
best achieved by lightweight, easy-to-use client 
tools. In contrast, supporting a fully-fledged 
standards initiative (e.g. where there is a 
committee structure and members have roles 

Fig. 2. The Ontology Version Manager Client 



and rights etc5) might require designated 
persons such as the chair, and an explicit 
representation of the process.  

The Ontology Version Manager is a client tool 
that allows users to access ontologies that have 
been published to the community and stored on 
the ontology server, and to store, manage and 
share their own ontologies. The management 
system implements a simple model for 
assigning rights to users to allow them to 
download, upload, and publish ontologies. 
Guest users can access all public ontologies, 
while registered users have rights to upload and 
share their own ontologies.  

The client component of the ontology 
management system aims to provide an intuitive 
interface to the ontology repository. As shown 
in Figure 2, the tool shows the ontologies the 
user has access to, and their versions, allows 
download and upload, and manages version 
numbers. In this instance, the user (j.bard) has 
created a private version of the CARO ontology 
which is shared with stuart.aitken (CARO 
version 0.1 private) as indicated by the 
Ontology sharing panel. For simplicity, users 
are not organised into explicitly-named groups. 

                                                             
5 http://www.w3.org/Consortium/Process-
20010719/ 

Instead, users give access to others on an 
individual basis. This user is in the process of 
uploading version 0.2 of their private version of 
CARO as indicated by the Ontology upload 
panel. In addition to being shared with specific 
users, an ontology can be Published, in which 
case it will be accessible to guest users of 
COBrA-CT as well as to registered users.  

Having described the archival and sharing of 
ontologies, we now describe the editing tools 
that allow the user to create and modify OBO 
ontologies in OWL (thereby creating new 
versions).  

2.3 The OBO Explorer 

A representation for OBO ontologies in OWL 
has been agreed6 and tools for automatically 
converting ontologies from OBO to OWL, and 
for reading OBO ontologies into the Protégé 3 
ontology editor7 have recently been developed. 
The OWL representation of OBO, which we 
helped establish, is referred to as OBO-in-OWL.  

OBO-in-OWL succeeds in capturing all of the 
content of OBO ontologies, both the logical 
structure and the informal annotations, e.g. 
synonyms and database cross-references 

                                                             
6 http://www.bioontology.org/wiki/index.php/ 
OboInOwl:Main_Page 
7 http://www.bioontology.org/tools/oboinowl/ 
obo_converter.html 

Fig 3. OBO Explorer Protégé tab 
 



(DbXRefs). Naturally, we want users to be able 
to edit all aspects of a term's definition.  

However, Protégé 3 is unable to display the 
annotations associated with OBO terms using 
the default interface configuration, and therefore 
the user cannot edit this information. Hence we 
implemented the OBO Explorer. This tool is 
distributed as a Protégé tab, compatible with 
other Protégé components, and contributing to 
the large user community that supports Protégé 
development8.  

The OBO Explorer interface is implemented 
as a tab that presents the class hierarchy on the 
left hand panel, and term annotations on the 
right. Where possible, the user interface 
components are present on the main panel, and 
immediately update the underlying OWL 
model. The synonym, subset and DbXRef 
information is displayed in list form in a concise 
manner to enable users to see all this 
information in one place. These data are edited 
by calling up dialogs that allow new items to be 
added and existing items to be deleted from the 
lists. Figure 3 shows the OBO Explorer tab. 

When an OWL ontology is being created from 
scratch, it will lack the agreed OBO-in-OWL 
classes and relationships needed to represent 
OBO terms. In this case, the tool creates the 
appropriate definitions for these elements. 
These features hide the underlying details of the 
OWL representation from the user – a 
contrasting feature with the built-in editor.  

In on-going work, we are developing a 
browser component that, for a selected term, 
shows the entities that the term is necessarily 
part of, and the parts that the term necessarily 
has. These two types of assertions are 
conjunctions in the definition of the selected 
term (and are shown in the built-in class editor 
in Protégé). This browser also shows references 
to the selected class from other classes. That is, 
the tool searches the definitions of other classes 
to find entities that are, by definition, 
necessarily part of the selected class, or have the 
selected class as a part. The existing interfaces 
to not provide this functionality, which we have 
already found useful - uncovering errors in the 
conversion of the Foundational Model of 
Anatomy ontology to OWL, and making 
explicit the differing approaches formalising the 
part-whole relation.  

2.4 Evaluation 

A simple task-based evaluation of the OBO 
Explorer is underway. Users are asked to install 

                                                             
8 http://protege.stanford.edu 

the tool and perform a number of searching and 
editing operations. The trial addresses the 
installation and configuration tasks as these 
involve navigating the numerous dialogs that 
Protégé users must complete when opening an 
ontology and adding tabs to the interface. The 
results will indicate whether the OBO Explorer 
should be packaged such that these steps are 
avoided.  

It is also important to investigate whether the 
translation from OBO to OWL causes confusion 
to users, for example, between OBO term 
names/IDs and OWL URIRefs. On translation 
to OWL, the unique term ID (for example, 
GO:0000920) becomes the local name in the 
URI, and will be used as the label for the 
concept in Protégé's display (in the default 
configuration). However, the user will expect to 
see the term name ‘cell separation during 
cytokinesis’. The OBO Explorer has a feature to 
cause the name to be displayed with the term ID 
as a postfix (shown in Figure 3), and we are 
interested to investigate any problems in the use 
of URIs and the usability of the features 
provided.  

A potentially more significant change that the 
user will observe is the displacement of all 
terms that have no is-a definition (in the original 
OBO) to the top level of the OWL ontology. For 
ontologies that are is-a complete such as the 
Gene Ontology, which completed the process of 
assigning is-a parents to all terms in January 
2007, there will be no change in the taxonomic 
structure. But for other ontologies (and for the 
OBO anatomies in particular), the user will see 
that the taxonomy is deficient. The tool allows 
this problem to be solved, but, in certain cases, 
significant effort will be required to complete 
the transition of an ontology from OBO to the 
more formal OWL representation. 

Initial results from the trial suggest that the 
Protégé configuration task is time consuming 
for users (and barrier for some). The OBO 
Explorer tab follows the Protégé interface style 
where changes to text fields are confirmed by 
typing return, however, this was noted as being 
inconvenient. The procedure for generating new 
term IDs was not sufficiently clear. Overall, 
users completed the tasks successfully. 

3. Related Work 
In KAON, a comprehensive infrastructure for 
ontology management9, ontology edits are 
stored in an ‘evolution log’ that also records 
metadata about the author’s identity and a 

                                                             
9 http://kaon.semanticweb.org/documentation 



description of the change. This level of tool 
integration (not easily achived in Protégé’s 
plug-in architecture) allows changes to be 
reversed. The semVersion approach to ontology 
versioning (Völkel, 2005) is based on the RDF 
representation that OWL is layered on. The 
RDF layer can be analysed for structural 
changes in the graph  - a task that is complicated 
by the existence of ‘blank nodes’ (unnamed 
nodes which may have no semantic type). 
Semantic diffs (i.e. comparisons between two 
versions of the same ontology) are computed 
accounting for the semantics of the ontology 
language. This approach has been implemented 
as a Protégé tab (Groza, 2006). Structural diffs 
between versions of ontologies can also made in 
Protégé using the Prompt tools (Noy, 2004). 
The latter approaches stress the importance of 
visualising changes between versions. In 
addition, Prompt supports the process of 
accepting and rejecting individual changes to 
class definitions. Protégé also has plug-ins for 
project management and database connectivity. 
OBOEdit10, an ontology editor supported by the 
Gene Ontology consortium, now has an OWL 
import/export facility that is based on the same 
code as the OBO Converter Protégé tab7 and so 
has comparable functionality. The adoption of a 
client server model, and the improved treatment 
of annotations in Protégé 4 also has parallels 
with our design. 

4. Conclusions and Future Work  
The COBrA-CT version manager tools allow 
any ontology that can be saved in an XML 
syntax, including all RDF and OWL ontologies, 
to be stored centrally, shared among developers 
via internet connection to the database, and 
managed throughout its development lifecycle. 
The editor tool provides specific support for 
bio-ontologies in the OWL format. The 
translation of bio-ontologies to OWL requires 
such tools, both for making the modifications 
required in the formal OWL-DL language, and 
for organising the development effort among 
multiple users. 

In future work, we shall re-examine efficiency 
issues in storing the OWL ontologies. Viewing 
the ontologies as XML data allows a range of 
XML techniques to be applied. It has been 
noted that changes to scientific data archives are 
accretive - most changes are additive - although 
deletion and modification also occur (Buneman, 
2002). Scientific data is typically structured 
hierarchically, allowing a hierarchical key 

                                                             
10 http://oboedit.org/ 

structure to be exploited in archiving changes to 
the data. The central notions of hierarchical 
organisation, objects and timestamps described 
in (Buneman, 2001) also apply to ontologies 
and ontology management and can be expected 
to improve efficiency. The specification of an 
XML schema for OWL 1.1 widens the potential 
for applying these methods to ontologies.  

Explicitly modelling the ontology 
development and publication lifecycle, and 
deriving measures of ontology quality (in 
analogy to Misser (2005)) are the next 
methodological steps that our tools should 
support.   
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