
Managing the transition from OBO to OWL:
 The COBrA-CT Bio-Ontology Tools

Stuart Aitken, Yin Chen, Bonnie Webber, Wenfei Fan and Jonathan Bard

School of Informatics, The University of Edinburgh,
Edinburgh EH8 9LE, United Kingdom

Abstract

This paper presents the COBrA-CT ontology tools, which include an ontology server database and
version manager client tool for collaborative ontology development, and an editor for bio-
ontologies that are represented in the Web Ontology Language (OWL) format. The ontology server
uses OGSA-DAI Grid technology to provide access to the ontology server database. These tools
implement the agreed standard for representing Open Biomedical Ontologies (OBO) in OWL and
interoperate with other tools developed for this standard. Such tools are essential for the uptake of
OWL in the biomedical ontology community.

1. Introduction
Biomedical ontologies, which include the Gene
Ontology and the anatomies of model organisms
such as mouse and drosophila, are growing in
size and their encoding languages are becoming
more sophisticated. As a consequence, tools for
verification, version control, meta-data
attribution, provenance and archival are needed,
in addition to the ontology editing tools that
users are familiar with. This wider curation
aspect has been recognised as a priority for e-
Science, and is an important concern for many
communities and in standards initiatives (Lord,
2003, 2004).

Ontologies are of central importance in data
curation, as only by defining the meaning of the
terms used to describe data points or fields can
the (possibly implicit) content be clarified and
its interpretation agreed upon among the
research community, and thereby used
consistently. For example, there are efforts to
standardise the names used for tissue samples
assayed by microarray (Parkinson, 2005), as
well as the metadata that describes the
experimental results (e.g. MGED/MIAME).

More generally, use of a consistent, shared
ontology is of critical importance to the sharing
of knowledge, and has long-term benefits. For
example, the Gene Ontology is in widespread
use for data mining and data visualisation, and
has great potential for further integration of data
across the different levels of biological
granularity that must be accounted for in a
systems level view of biology. Ontologies have
also been identified as key resources in
numerous e-Science projects, including
AstroGrid, MyGrid and the Advanced
Knowledge Technologies IRC.

However, ontologies are not static: they must
change to reflect changes in science, to adapt to
new uses, to broaden their community or to
remedy flaws. And, as we now discuss,
biomedical ontologies, which are often defined
rather informally, must be translated into the
more formal languages of the Semantic Web
(e.g. OWL) in order to take advantage of the
range of tools and services being developed for
the Semantic Web and computational Grid. This
requires the meaning of terms and relationships
to be clarified and the development of
supporting tools. We present an ontology editor
for biomedical ontologies that have been
translated into OWL, and an ontology
management system that supports the
distributed, cooperative development of
ontologies, which, in combination, can be used
to transition Open Biological Ontologies to the
Web Ontology Language and address the
version management tasks that arise in the
process. These tools interoperate with tools
developed by others that perform the OBO
format to OWL format translation according to
an agreed standard. We now discuss the
languages and tools used to develop bio-
ontologies, then consider the Grid as a platform
for such tools.

1.1 Bio-ontology Languages and Tools

Biomedical ontologies play a crucial role in
the indexing of experimental data - providing
both unique IDs for aspects of anatomy,
phenotype, process, cellular structure and
molecular function, and conceptual abstractions
for aggregating results (Bard and Rhee, 2004).

Bio-ontology tools typically provide a
graphical interface to a (largely) fixed set of
ontology language constructs that specify the

term name, textual definition, synonyms etc,
plus search functions to help the user find terms
within the ontology. Tools are typically used
outwith a methodological framework, i.e. users
are not following a modelling process or
paradigm of any kind. A gap between the
theoretical understanding of the formal issues of
ontology development and the modelling
approaches apparent in many of the Open
Biomedical Ontologies has previously been
noted (Smith, 2003, 2005). Initiatives such as
the Common Anatomy Reference Ontology1
have the potential to make modelling practice
more uniform across different user groups, and
may be the most practical solution to clarifying
the conceptual basis of bio-ontologies.
However, to-date, many of the modelling
decisions captured in biomedical ontologies
have been guided by the immediate use of the
ontologies for indexing gene expression data,
and the net result is a diversity of approaches
and of interpretations for the basic elements in
the ontologies, including the interpretation of
the part-of relation (but note that these
comments do not apply to the Gene Ontology
which has specified principles for curation).

Use of the OWL language brings with it the
need to clarify the meaning of relations other
than the is-a (or subClassOf) relationship: The
OWL ontology developer is immediately
exposed to the Description Logic oriented view
of a concept definition. This logic-based view of
concept definitions has implications for
ontology editor design as a user who is a
biologist will expect to see a graph that mixes
is-a and part-of, rather than a pure is-a
hierarchy that corresponds to the logical
definitions. The logic-based view of concept
definitions is most at odds with current anatomy
ontologies where (in many cases) the more
pragmatic view of the ontology as a labelled
graph holds sway over the logic-oriented view
that all concepts require subClassOf
relationship.

Recent developments in the translation of
OBO to OWL are bringing this issue to the fore:
In OWL ontologies, the part-of relation cannot
be used to link between two concepts in the
ontology graph. Rather, it is used to specify the
set of parts of the parent entity, e.g. the parts of
some Heart. The child entity, e.g. the Aortic
Valve will be a subclass of this set. Presenting
such a definition to a user in an intuitive way is
a significant challenge for new tools that are
based on OWL.

1 http://www.bioontology.org/wiki/index.php/
CARO:Main_Page

1.2 Platforms and Infrastructure: The Grid

Ontologies are recognised as having a key role
in data integration on the computational Grid.
Metadata standards can themselves be
considered to be a kind of ontology, and may
characterise resources in terms of domain
ontology concepts for the purposes of
integration, service discovery, provenance, and
long-term preservation. Conversely, the Grid
provides an ideal platform for new ontology
tools and databases as it aims for seamless
resource sharing and global collaborations. The
Grid has attracted enormous attention and
gained popularity by supporting distributed
resource sharing and aggregation across
multiple administrative virtual organisations. It
offers upgraded performance in terms of
reliability, scalability and availability.

In the COBrA-CT project, we have developed
Grid services to provide data storage and access
so that users can share their ontologies in a
secure, and dependable way. By enabling
COBrA-CT to operate through the Grid, the
software capabilities have been enhanced by
taking advantage of Grid infrastructure. The
following sections describe our solution to the
curation and archiving problems that arise when
individuals and communities develop
ontologies, then introduce the ontology editor
and its functions.

2. Ontology Curation and the COBrA
Curation Tools
In common with experimental data, ontologies
are created, published, and revised. Tracking
and managing such changes requires new
curation tools. In addition to version
management, and archiving, curation also
includes the review of the content of the
ontology, and assessment of quality (Missier,
2005). As the use of ontologies widens, the
problems of tracking versions, and the changes
between versions, identifying flaws and of
reconciling differences in conceptual modelling
arise. Addressing the first of these issues is our
main goal in the design of the curation tools.

Supporting the ontology development and
curation effort in a distributed setting, providing
access to current and past versions of ontologies
and allowing collaboration among users
requires an ontology management server. As we
are making use of the Web Ontology Language
(with its XML syntax) as the means of data
exchange, we shall be able to take advantage of
both ontology-based and XML-based
techniques for capturing changes. The use of an

XML database will also support querying across
ontologies, for example, for concepts and
synonyms. A simple CVS or Wiki solution
would not provide such functionality. The
further potential for XML-based methods is
discussed under future work.

We next present the Ontology Management
Server and the Version Manager, then describe
the Protégé plug-in for editing OWL bio-
ontologies: the OBO Explorer. These tools can
be downloaded from the project website:
http://www.aiai.ed.ac.uk/project/cobra-ct/

2.1 The COBrA-CT Ontology Management
Server

The Ontology Management Server is built on
OGSA-DAI. The OGSA-DAI project2 aims to
ease access to, and ease the integration of
distributed data resources via the Grid. It
provides various interfaces supporting data
transformation and delivery, and is compatible
with many popular (relational or XML)
databases, such as Oracle, DB2, SQL Server,
MySQL, Xindice, and eXist, and file systems,
such as CSV, BinX, EMBL, OMIM. This
middleware is compliant with two popular web
services specifications, WS-I and WSRF, and is
distributed with both the Globus Toolkit and the
OMII-UK middleware distribution. The
COBrA-CT installation currently employs the
recently-released WS-RF distribution of OGSA-
DAI (OGSA-DAI WSRF 2.2), which has been
designed to work with the Globus Toolkit 4
implementation of WS-RF.

We use eXist3, an Open Source native XML
database, to store ontology data. Native XML
databases provide powerful tools for XML
processing, and so are suitable for keeping
ontology and metadata information. For
example, eXist supports XPath, XQuery,
XUpdate, XInclude, XPointer and XSL/SXLT
XML standards, and provides XML:DB API,

2 http://www.ogsadai.org.uk
3 http://exist.sourceforge.net

and both DOM and SAX parsers. We also
choose the eXist database because it is able to
deal with large XML documents. In COBrA-
CT, the ontology files sizes range from 78KB to
10,000KB. Other XML databases, e.g. Apache
Xindice4 could only handle documents less than
5MB, and so did not satisfy our requirements.

As indicated in Fig. 1, the client triggers
OGSA-DAI methods (Activities) for uploading
and downloading both ontologies and metadata.
Both are passed as XML documents. XPath and
XUpdate have been applied to query and
modify XML database objects. XUpdate
supports node-level updating in a DOM tree,
which gives much more flexibility and
efficiency.

The client submits its working plan in a so-
called OGSA-DAI Perform Document, which is
a XML document consisting of a sequence of
requests. The request is sent as encrypted SOAP
message to the Grid services which will invoke
Data Resource Accessors (DRA) methods to
connect with specific data resources. The return
datasets or response messages are also
encrypted in a SOAP message and sent back to
the client.

Ontology files are stored in hierarchical
collections based on user unique identifiers,
ontology identifiers and ontology version
numbers in the eXist database. This means the
physical location of an ontology OWL file is
determined by these IDs. To accelerate data
searching, we have implemented a registry to
record the ontology and metadata information,
and the mapping to the physical location.
Current metadata information includes but not
limited to:

• Ontology ownership: owner's name, ID
and database user roll;

• Ontology descriptions: ontology name, a
text description of the version;

• Ontology file location: including the
XML resource name and subcollection.
A trace of ontology version changes,
including version numbers, upload dates,
and a set of previous ontologies that an
ontology has been derived from. In the

4 http://xml.apache.org/xindice/

Fig. 1. The Client/Server Grid Architecture

typical case, an ontology will simply
have one previous version, but we allow
for ontology merging from diverse
sources, and for the concurrent editing
and subsequent merging of ontology
versions.

• Ontology sharing information: COBrA-
CT allows a registered user to share
his/her ontologies with a group of users.
This is supported by associating a set of
sharing users with the ontology - these
users are able to download the ontology
for inspection (and subsequently they
may upload a modified version under
their own user name).

A simple Java tool has also been developed to
help the database administrator manage user
accounts.
Security: Several options for maintaining
security were explored. The simplest is for users
to log in using their account name and
password, and for these to be verified against
the database records. This approach is currently
used in version 1.0 of the Version Manager
client. We have also explored a public/private
key system which eases the user’s account
management problems by replacing passwords

with key files, and allows authentication checks
for the client. The Certification Authority (CA)
method was also examined, however, we
concluded that this is overly complicated and
inefficient for our needs, and that it is
unreasonable to ask all our users go to the
relevant certifying organisations to obtain their
CAs. In a small to middle scale Grid system,
like COBrA-CT, it seems more applicable to
self-issue CAs, and we shall explore this in
future work.

2.2 The COBrA-CT Ontology Version
Manager

The motivation for the design of the Version
Manager came from observing the development
of the cell type ontology (Bard et al, 2005)
where ontology versions were created by a
small, geographically-dispersed and informally
organised group who might meet at a
conference to create and review content or
exchange views and ontology files by email. We
concluded that supporting this process would be
best achieved by lightweight, easy-to-use client
tools. In contrast, supporting a fully-fledged
standards initiative (e.g. where there is a
committee structure and members have roles

Fig. 2. The Ontology Version Manager Client

and rights etc5) might require designated
persons such as the chair, and an explicit
representation of the process.

The Ontology Version Manager is a client tool
that allows users to access ontologies that have
been published to the community and stored on
the ontology server, and to store, manage and
share their own ontologies. The management
system implements a simple model for
assigning rights to users to allow them to
download, upload, and publish ontologies.
Guest users can access all public ontologies,
while registered users have rights to upload and
share their own ontologies.

The client component of the ontology
management system aims to provide an intuitive
interface to the ontology repository. As shown
in Figure 2, the tool shows the ontologies the
user has access to, and their versions, allows
download and upload, and manages version
numbers. In this instance, the user (j.bard) has
created a private version of the CARO ontology
which is shared with stuart.aitken (CARO
version 0.1 private) as indicated by the
Ontology sharing panel. For simplicity, users
are not organised into explicitly-named groups.

5 http://www.w3.org/Consortium/Process-
20010719/

Instead, users give access to others on an
individual basis. This user is in the process of
uploading version 0.2 of their private version of
CARO as indicated by the Ontology upload
panel. In addition to being shared with specific
users, an ontology can be Published, in which
case it will be accessible to guest users of
COBrA-CT as well as to registered users.

Having described the archival and sharing of
ontologies, we now describe the editing tools
that allow the user to create and modify OBO
ontologies in OWL (thereby creating new
versions).

2.3 The OBO Explorer

A representation for OBO ontologies in OWL
has been agreed6 and tools for automatically
converting ontologies from OBO to OWL, and
for reading OBO ontologies into the Protégé 3
ontology editor7 have recently been developed.
The OWL representation of OBO, which we
helped establish, is referred to as OBO-in-OWL.

OBO-in-OWL succeeds in capturing all of the
content of OBO ontologies, both the logical
structure and the informal annotations, e.g.
synonyms and database cross-references

6 http://www.bioontology.org/wiki/index.php/
OboInOwl:Main_Page
7 http://www.bioontology.org/tools/oboinowl/
obo_converter.html

Fig 3. OBO Explorer Protégé tab

(DbXRefs). Naturally, we want users to be able
to edit all aspects of a term's definition.

However, Protégé 3 is unable to display the
annotations associated with OBO terms using
the default interface configuration, and therefore
the user cannot edit this information. Hence we
implemented the OBO Explorer. This tool is
distributed as a Protégé tab, compatible with
other Protégé components, and contributing to
the large user community that supports Protégé
development8.

The OBO Explorer interface is implemented
as a tab that presents the class hierarchy on the
left hand panel, and term annotations on the
right. Where possible, the user interface
components are present on the main panel, and
immediately update the underlying OWL
model. The synonym, subset and DbXRef
information is displayed in list form in a concise
manner to enable users to see all this
information in one place. These data are edited
by calling up dialogs that allow new items to be
added and existing items to be deleted from the
lists. Figure 3 shows the OBO Explorer tab.

When an OWL ontology is being created from
scratch, it will lack the agreed OBO-in-OWL
classes and relationships needed to represent
OBO terms. In this case, the tool creates the
appropriate definitions for these elements.
These features hide the underlying details of the
OWL representation from the user – a
contrasting feature with the built-in editor.

In on-going work, we are developing a
browser component that, for a selected term,
shows the entities that the term is necessarily
part of, and the parts that the term necessarily
has. These two types of assertions are
conjunctions in the definition of the selected
term (and are shown in the built-in class editor
in Protégé). This browser also shows references
to the selected class from other classes. That is,
the tool searches the definitions of other classes
to find entities that are, by definition,
necessarily part of the selected class, or have the
selected class as a part. The existing interfaces
to not provide this functionality, which we have
already found useful - uncovering errors in the
conversion of the Foundational Model of
Anatomy ontology to OWL, and making
explicit the differing approaches formalising the
part-whole relation.

2.4 Evaluation

A simple task-based evaluation of the OBO
Explorer is underway. Users are asked to install

8 http://protege.stanford.edu

the tool and perform a number of searching and
editing operations. The trial addresses the
installation and configuration tasks as these
involve navigating the numerous dialogs that
Protégé users must complete when opening an
ontology and adding tabs to the interface. The
results will indicate whether the OBO Explorer
should be packaged such that these steps are
avoided.

It is also important to investigate whether the
translation from OBO to OWL causes confusion
to users, for example, between OBO term
names/IDs and OWL URIRefs. On translation
to OWL, the unique term ID (for example,
GO:0000920) becomes the local name in the
URI, and will be used as the label for the
concept in Protégé's display (in the default
configuration). However, the user will expect to
see the term name ‘cell separation during
cytokinesis’. The OBO Explorer has a feature to
cause the name to be displayed with the term ID
as a postfix (shown in Figure 3), and we are
interested to investigate any problems in the use
of URIs and the usability of the features
provided.

A potentially more significant change that the
user will observe is the displacement of all
terms that have no is-a definition (in the original
OBO) to the top level of the OWL ontology. For
ontologies that are is-a complete such as the
Gene Ontology, which completed the process of
assigning is-a parents to all terms in January
2007, there will be no change in the taxonomic
structure. But for other ontologies (and for the
OBO anatomies in particular), the user will see
that the taxonomy is deficient. The tool allows
this problem to be solved, but, in certain cases,
significant effort will be required to complete
the transition of an ontology from OBO to the
more formal OWL representation.

Initial results from the trial suggest that the
Protégé configuration task is time consuming
for users (and barrier for some). The OBO
Explorer tab follows the Protégé interface style
where changes to text fields are confirmed by
typing return, however, this was noted as being
inconvenient. The procedure for generating new
term IDs was not sufficiently clear. Overall,
users completed the tasks successfully.

3. Related Work
In KAON, a comprehensive infrastructure for
ontology management9, ontology edits are
stored in an ‘evolution log’ that also records
metadata about the author’s identity and a

9 http://kaon.semanticweb.org/documentation

description of the change. This level of tool
integration (not easily achived in Protégé’s
plug-in architecture) allows changes to be
reversed. The semVersion approach to ontology
versioning (Völkel, 2005) is based on the RDF
representation that OWL is layered on. The
RDF layer can be analysed for structural
changes in the graph - a task that is complicated
by the existence of ‘blank nodes’ (unnamed
nodes which may have no semantic type).
Semantic diffs (i.e. comparisons between two
versions of the same ontology) are computed
accounting for the semantics of the ontology
language. This approach has been implemented
as a Protégé tab (Groza, 2006). Structural diffs
between versions of ontologies can also made in
Protégé using the Prompt tools (Noy, 2004).
The latter approaches stress the importance of
visualising changes between versions. In
addition, Prompt supports the process of
accepting and rejecting individual changes to
class definitions. Protégé also has plug-ins for
project management and database connectivity.
OBOEdit10, an ontology editor supported by the
Gene Ontology consortium, now has an OWL
import/export facility that is based on the same
code as the OBO Converter Protégé tab7 and so
has comparable functionality. The adoption of a
client server model, and the improved treatment
of annotations in Protégé 4 also has parallels
with our design.

4. Conclusions and Future Work
The COBrA-CT version manager tools allow
any ontology that can be saved in an XML
syntax, including all RDF and OWL ontologies,
to be stored centrally, shared among developers
via internet connection to the database, and
managed throughout its development lifecycle.
The editor tool provides specific support for
bio-ontologies in the OWL format. The
translation of bio-ontologies to OWL requires
such tools, both for making the modifications
required in the formal OWL-DL language, and
for organising the development effort among
multiple users.

In future work, we shall re-examine efficiency
issues in storing the OWL ontologies. Viewing
the ontologies as XML data allows a range of
XML techniques to be applied. It has been
noted that changes to scientific data archives are
accretive - most changes are additive - although
deletion and modification also occur (Buneman,
2002). Scientific data is typically structured
hierarchically, allowing a hierarchical key

10 http://oboedit.org/

structure to be exploited in archiving changes to
the data. The central notions of hierarchical
organisation, objects and timestamps described
in (Buneman, 2001) also apply to ontologies
and ontology management and can be expected
to improve efficiency. The specification of an
XML schema for OWL 1.1 widens the potential
for applying these methods to ontologies.

Explicitly modelling the ontology
development and publication lifecycle, and
deriving measures of ontology quality (in
analogy to Misser (2005)) are the next
methodological steps that our tools should
support.
Acknowledgements This work is supported by
BBSRC grant BB/D006473/1

References
Bard, J.B.L. and Rhee, S.Y. (2004) Ontologies

in biology: design, applications and future
challenges. Nature Review Genetics 5(3) :213-
222.

Bard, J.B.L., Rhee, S.Y. and Ashburner, M.
(2005) An ontology for cell types. Genome
Biology 6:R21 doi:10.1186/gb-2005-6-2-r21

Buneman, P., Davidson, S., Fan, W., Hara, C.
and Tan, W. (2001) Keys for XML. Proc.
WWW 10 :201-210.

Buneman, P., Khanna, S., Tajima, K. and Tan,
W.J.S. (2002) Archiving scientific data. Proc.
ACM SIGMOD

Gene Ontology Consortium (2000) Gene
Ontology: tool for the unification of biology.
Nature Genetics 25(1) :25-29.

Groza, T., Völkel, M. and Handschuh, S. (2006)
Semantic Versioning Manager: Integrating
SemVersion in Protégé. Proc 9th International
Protege Conference Stanford, California.

Lord, P. and MacDonald, A. (2003) Data
curation for e-Science in the UK: an audit to
establish requirements for future curation and
provision. JISC Report.

Lord, P. and MacDonald, A., Lyon, L. and
Giaretta, D. (2004) From data deluge to data
curation. Proc 3rd e-Science All Hands
Meeting :371-375.

Missier, P., Embury, S., Greenwood, M.,
Preece, A. and Jin, B. (2005) An Ontology-
Based Approach to Handling Information
Quality in e-Science, Proc 4th e-Science All
Hands Meeting.

Noy, N. F., Kunnatur, S., Klein, M. and Musen,
M.A. (2004) Tracking Changes During
Ontology Evolution Proc Third International
Conference on the Semantic Web (ISWC-
2004), Hisroshima, Japan :259-273.

Open Biomedical Ontologies
http://obo.sourceforge.net

Parkinson, H., Aitken, S., Baldock, R.A, Bard,
J.B.L., Burger, A., Hayamizu, T.F., Rector,
A., Ringwald, M., Rogers, J., Rosse, C.,
Stoeckert Jr, C.J. and Davidson, D. (2004)
The SOFG anatomy entry list (SAEL): an
annotation tool for functional genomics data.
Comparative and Functional Genomics 5,(6-
7) :521-527.

Smith, B. Williams, J. and S. Schulze-Kremer,
S. (2003) The Ontology of the Gene Ontology
Proc. AMIA 2003

Smith, B., Ceusters, W., Klagges, B., Köhler, J.,
Kumar, A. Lomax, J., Mungall, C., Neuhaus,
F., Rector, A.L. and Rosse, C. (2005)
Relations in biomedical ontologies. Genome
Biology 6:R46.

Völkel, M., Winkler, W., Sure, Y., Kruk, S.R.
and Synak, M. (2005) SemVersion: A
Versioning System for RDF and Ontologies
Proc. 2nd European Semantic Web
Conference ESWC’05.

