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Abstract

Proteomics is a field dedicated to the analysis and identification of proteins within an organism. Within proteomics, two-dimensional

electrophoresis (2-DE) is currently unrivalled as a technique to separate and analyse proteins from tissue samples. The analysis of post-

experimental data produced from this technique has been identified as an important step within this overall process. Some of the long-term aims of

this analysis are to identify targets for drug discovery and proteins associated with specific organism states. The large quantities of high-

dimensional data produced from such experimentation requires expertise to analyse, which results in a processing bottleneck, limiting the

potential of this approach. We present an intelligent data mining architecture that incorporates both data-driven and goal-driven strategies and is

able to accommodate the spatial and temporal elements of the dataset under analysis. The architecture is able to automatically classify interesting

proteins with a low number of false positives and false negatives. Using a data mining technique to detect variance within the data before

classification offers performance advantages over other statistical variance techniques in the order of between 16 and 46%.
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1. Introduction

Following the explosive growth in research into the

genome, the study of the proteome has become fundamental

to biochemical research (Righetti, Stoyanov and Zhukov,

2001). Proteomics is defined as the large-scale identification

and characterisation of the proteins encoded in an organism’s

genome (Alberts, Bray, Lewis, Raff, Roberts and Watson,

2002) and is often described in literature as the next step to

dramatically advance drug discovery (Whittaker, 2003). More

specifically, proteomics is concerned with the analysis of the

structure and function of proteins as well as of protein-protein

interactions.

Within proteomics, a particular area of interest is the

mapping of protein posttranslation modifications (Liebler,

2002). RNA, which is initially transcribed from the genetic

details stored in DNA, is translated to protein. Following this

translation, the state of a protein can alter during its lifetime,

such as from the introduction of a disease (Crenshaw and Cory,

2002). The protein’s state within a particular tissue can alter as

conditions change and, hence, is indicative of the current
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physiological state. These posttranslational modifications have

a direct effect on the structure, function and turnover of

proteins, hence, analysis of these trends of variation may lead

to novel avenues to determine how chemical modifications to

the proteome affect living systems (Liebler, 2002). Conse-

quently, the analysis of the posttranslational modifications of

proteins is particularly important for the study of conditions

such as cancer, neurodegenerative diseases, heart disease and

diabetes.

In order to perform this analysis, a method of measuring the

expression of proteins is required. The most popular, and

currently unrivalled, technique to perform protein expression

analysis is that of two-dimensional electrophoresis (2-DE)

(Jenkins and Pennington, 2001; Pennington, Wilkins, Hoch-

strasser and Dunn, 1997). This technique uses two successive

electrophoresis runs to separate the proteins from a tissue

sample with regards to their isoelectric point and molecular

weight. The first run separates the proteins in one dimension

and the gel is then rotated 908 and the second run is performed

to separate into the second dimension. Each protein expressed

using this method appears as a dark spot on these gels (see

Fig. 1), following the use of staining techniques, and are then

individually analysed for features such as relative abundance,

shape and appearance and disappearance across an experimen-

tal series (such as over time or between different control

groups). Such analysis is often assisted with the use of image
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Fig. 1. (a) A single 2-DE Gel image. Each protein is described by a black spot following staining. (b) Individual spots visualised in 3-D using image analysis

software. This image produced by Nonlinear’s Progenesis software (Marengo et al., 2005)
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analysis software which can automatically detect spot

correspondence from one gel to the next (Pederson and

Ersboll, 2001; Pleissner, Oswald and Wegner, 2001).

Following this process, these images can be converted into

data which describes each protein, such as volume, area, height

and x and y coordinates on a gel. These attributes can be

representative of changes to the function of the protein;

changes to these attributes can be indicative of an intrinsic link

to a particular condition. For example, a protein which has

physically altered under a diseased state compared with that of

a healthy state may well be intrinsically linked to the

physiological state of the organism and, hence, worthy of

further investigation.

The analysis of this protein data, however, is not a trivial

task (Marengo, Leardi, Robotti, Righetti, Antonucci and

Cecconi, 2003). Disadvantages of 2-DE include that it is

inherently labour-intensive and requires a skill-level such that

only trained experts can perform the analysis, often manually.

The potentially useful trends are encapsulated within large

volumes of multi-dimensional, spatio-temporal post-exper-

imental data, making this manual interpretation of results

impractical (Fenyo and Beavis, 2002). Without the availability

of reliable tools for post-experimental data analysis, the

technique is essentially a descriptive one, limiting the potential

for fully automated analysis (Griffin and Aebersold, 2001). The

full value of this technique can not then, be realised until this

processing bottleneck is resolved; fully automatic approaches

for identifying intrinsic trends in gels will go some way

towards this goal (Dowsey, Dunn and Yang, 2003).

In this paper, we present an intelligent data mining

architecture that is able to analyse post-experimental, 2-DE

gel data and identify interesting proteins automatically. This

approach uses a combination of a data-driven, data mining

technique and a goal-driven, machine learning technique which

incorporates expert heuristics, such as those used in manual

analysis. Data mining is the process of finding trends and

patterns in large data sets (Toroslu and Yetisgen-Yildiz, 2005).
The data-mining element employed here is that of differential

ratio (dFr) data mining, a technique which measures variance

of a given object in terms of the log of pair-wise ratios of the

elements describing the data over time (or within any given

linear series). The machine-learning element concerns the use

of a BackPropagation, Multi-Layer Perceptron (MLP) neural

network in order to classify the results of the data mining into

discrete classes of interesting behaviour. Such classes are

defined using expert heuristics, optimised through the use of an

Adaptive Nero-Fuzzy Inference System (ANFIS) as described

by Malone et al. (2004b). A comparison is drawn to MLPs

trained using Principal Component Analysis (PCA) and

Covariance as variance measures. Finally, a comparison to a

MLP trained on normalised data alone is conducted to quantify

any relative benefits of using a variance analysis measure step

before classification of the dataset.

The remainder of this paper is organised as follows. Section

2 discusses current strategies used in the analysis of 2-DE gel

data. Section 3 describes the proposed intelligent data mining

architecture. Section 4 presents the results of experimentation

and discusses these findings. Section 5 outlines the

conclusions.
2. Analysis of 2-DE gel data

Studies performing trend analysis have employed tech-

niques including Principal Component Analysis (PCA)

(Marengo, Robotti, Righetti, Campostrini, Pascali and Pon-

zoni, 2004; Picard, Bourgoin-Greneche and Zivy, 1997;

Sekiguchi et al., 2002) and Correspondence Analysis (CA)

(Krah, Wessel and Pleißner, 2004; Pleissner, Regitz-Zagrosek,

Krudewagen, Trenkner, Hocher and Fleck, 1998; Rooney-

Varga, Giewat, Savin, Sood, Legresley and Martin, 2005;).

PCA is a technique used to reduce the dimensionality of data to

summarise the most important (i.e. defining) parts whilst

simultaneously reducing noise. Although widely used within

2-DE gel analysis, the technique has the disadvantage of
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assuming that data objects are linearly (or at least mono-

tonically) related to each other, and to gradients, which may or

may not be true in experiments. CA is related to PCA and is a

descriptive technique which analyses two-way and multi-way

tables for some measure of correspondence between the rows

and columns and can analyse nonlinear data.

The use of three-way PCA has also been applied to

proteomic pattern identification. Three-way PCA is a multi-

variate technique that takes into account the three-way

structure of the dataset and is based on the premise that the

observed modes can be reduced to more fundamental modes.

Marengo et al. (2003) successfully used this method to identify

regions within a 2-DE gel that were responsible for differences

occurring between sample groups. In this instance, two datasets

were tested; control rat serum group and nicotine treated rat

serum group; healthy human lymph-nodes group and human

lymph-nodes affected by a non-Hodgskin’s lymphoma group.

Since this approach identified clusters of difference between

sample groups using this dimensionality reduction technique, a

disadvantage of this approach might be that possibly important

individual protein spots which are geographically isolated from

the clusters may not be identified as salient to the disease state.

Arguably, a better technique would analyse each protein

individually without any reduction of specific variable values

and, whilst considering geographical elements, would not

discriminate against proteins, which are isolated from clusters.

Vohradsky’s study (1997) looked into the use of artificial

neural networks (ANN) to classify spot profiles. In this work,

the author discovers that ANNs outperform both cluster

analysis and PCA following comparative analysis. Whilst

PCA and clustering could not correctly identify both the

up regulation (TC) and down regulation (TK) of proteins,

the neural network solution was able to identify almost
Fig. 2. The proposed 3-stage intell
all correctly. Furthermore, the architecture consisted of

a relatively small number of units; 16 input units, 30 units in

the first hidden layer, 3 in the second hidden layer and 1 output

unit. Experiments contaminated with Gaussian noise still

performed well, illustrating a level of tolerance to noise by the

neural network. The possibility of implementing a combina-

torial approach is also suggested in order to increase accuracy

and reliability of results. Such hybrid approaches are usually

implemented when the advantages of several techniques are

required to fully solve a problem. Since the analysis of 2-DE

gel data is such a complex and non-trivial task, the use of a

hybrid data mining architecture would appear to be an

appropriate choice to tackle this important procedure.

Furthermore, the use of neural networks within biomedical

data mining has seen a great deal of interest (Chou et al., 2004;

Delen, Walker, and Kadam, 2005; Mendyk and Jachowicz,

2005; Wiemer and Prokudin, 2004).

3. An intelligent proteomics data mining architecture

Since analysis is usually performed manually by trained

specialists, our proposed system incorporates expert judge-

ment, whilst offering a level of automation, also important to

decrease the amount of time spent during this analysis phase.

The architecture suggested in this paper, therefore, uses a

combination of goal-driven (expert heuristics) and data-driven

(data mining) elements to perform the proteomics data analysis

and is illustrated in Fig. 2.

In the first stage (the first box), the post-experimental, 2-DE

gel data is collected from image analysis software and is

normalised. In the second stage, spatio-temporal data mining is

performed on the normalised proteomics data. This entirely

data driven element of the knowledge discovery process
igent data mining architecture.
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automatically analyses the data for trends of variance.

The result of this process provides the training data for the

third stage which employs a BackPropagation, Multi-Layer

Perceptron (MLP) neural network as a classifier. The outputs

from this classifying stage are classes of ‘interesting’ protein

behaviour, derived from expert’s opinions.
3.1. Differential ratio data mining

The technique we propose to perform the spatio-temporal

analysis is that of differential ratio (dFr) data mining (Malone,

McGarry and Bowerman, 2004a). This technique draws on

elements of covariance measures and ratio rules (Korn et al.,

2000). Covariance measures the linear dependencies between

variables within a given series (Hand, Mannila and Smyth,

2001) and has previously been used within biomedical data

analysis (Damcott et al., 2004). Given two variables, X and Y

and n observations; X taking values x(1), ., x(n) and Y taking

values y(1),., y(n) the sample covariance between X and Y is

defined as;

sXY Z CovðX;YÞ Z
1

n

Xn

iZ1

ðxðiÞK �xÞðyðiÞK �yÞ (1)

Where:

�x sample mean of X values

�y sample mean of Y values

Data mining using ratio rules is a technique that employs

eigensystem analysis to calculate correlations between values

of attributes. Ratio rules can tackle the issue of reconstructing

missing/hidden values and can be used to perform ‘what-if’

type scenarios given an antecedent(s) or consequent(s).

Although this technique is useful for predicting attribute trends

within empirical data, the process does not incorporate either

spatial or temporal elements and would therefore have limited

applicability to the analysis of datasets such as those created

from 2-DE gel experiments.

Differential ratio data mining is used to measure the

variance of a given object in terms of the log of pair-wise

ratios of the elements describing the data over time (or within

any given linear series consisting of two or more elements).

Consider two variables x and y as elements of a given object.

The calculation of a single differential ratio (herein, differential

ratio, or dFr, will be referred to as the measure of difference

calculated by this process) between two time points, t and tC1

is given by;

dFrt Z log

xt

yt

� �

xtC1

ytC1

� �
8>><
>>:

9>>=
>>;

(2)

Where: x%y

When this is not the case, that is y!x, the variables are

inverted to ensure the measures remain consistent. Since our

interest is in the magnitude of difference in ratios, that is how
they increase or decrease together, we are not concerned with

maintaining the two variable’s juxtaposition as numerator and

denominator. When considering the instance of y!x, then the

following is used;

dFrt Z log

y
t

xt

� �

ytC1

xtC1

� �
8>><
>>:

9>>=
>>;

(3)

Such a calculation would be performed for a time series (or

any given linear series) (tZ1), ., (tZn) and for all pairs of

variables that of the dataset. For a single pair of variables, this

describes the variance that occurs over time for a given object.

For a series of differential ratios (dFr), for variables x and y in

a given series, the knowledge extracted can be represented

in the form;

Object : x; y½dFrt; dFrtC1;.; dFrtCn� (4)

An actual example of this is given in Eq. (5). This describes

the variance for the protein spot numbered 364 (following gel

image software labelling) from our proteomics data. The vol

(spot volume) and circ (the equivalent spot circularity) are two

variables of the dataset, which form part of the description of

each spot. The variance is shown over time within the square

brackets. It can be noted that there is a peak of variance at time

point 6, shown as a relative increase in dFr value. Such a peak

may be representative of an ‘interesting’ spot, i.e. displaying a

particular type of behaviour within the series. In this instance,

the growth curve alters within the experiment on which this

data mining was performed, between time points 6 and 7, hence

proteins (such as this one) altering state at this stage may well

be of interest to an expert.

ProtSpot 364

: vol; circ½0:5; 1:9; 0:2; 1:9; 1:3; 4:6; 2:2; 1:0� (5)

Crucially, the variables analysed by this technique can

include spatial elements. This is achieved by normalising the

datasets and then placing values for absolute vectors. In this

way, the technique can incorporate spatio-temporal data

mining; however, it can also be used with temporal data (or

data in any given linear series), without a spatial element.

A further advantageous feature of this technique is that it is

also possible to know the total number of differential ratios that

can be calculated before data mining is undertaken. For v

number of variables, over time series (tZ1), ., (tZn) this is

given by;

XtZn

tZ1

vtðvt K1Þ

2

� �
(6)

With such knowledge to hand, a prediction of the length of

the data mining process can be estimated, although impacts of

CPU speed, etc. would of course also need to be considered, as

in all data mining algorithms. Differential ratio data mining

also has the feature of requiring only a single sweep of the

dataset which can greatly increase the speed of the process (i.e.
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Fig. 4. (a) Visualisation of variance over time following differential ratio data

mining. (b) how the protein spot in the centre has physically changed between

time points 9 and 10, corresponding to the detected variance shown in the

graph.

CreateDRR{
r[1] = GenerateRatios(D[1])
for i = 2 to number of datasets in D{

r[i] = GenerateRatios(D[i])
for each row in D[i-1]{

where row index of D[i-1] = row index of D[i]{
for j = 1 to column size D[i-1]{

dFr[i].j = log(D[i-1].j / D[i].j)
}

}
}

}
}

with function;
ratios GenerateRatios(DataSet d){ 

for each row in d{
for all pairs (d.a, d.b)in D such that a   b{

r = d.a / d.b
}

}
return r

}

where;
D[n] is the dataset at time point n
dFr[n] is differential ratio at time point n
r is ratios

Fig. 3. Algorithm describing the differential ratio data mining process.
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decrease the total time taken to perform the data mining).

This is unlike other techniques such as association rule data

mining (Agrawal and Srikant, 1994), which requires multiple

sweeps over the dataset. A single sweep over each dataset is all

that is required since the variance at each time point is

calculated only once. Furthermore, this has an additional

beneficial impact on memory usage. The technique only

requires that, at any one time, the ratios for two datasets are

held in memory. Once the differential ratios have been

calculated for those two particular time points, the earliest of

the two ratios in the series can be removed from memory. Such

features increase the efficiency of the data mining process, an

important consideration when performing data mining on large

datasets.

The algorithm describing the full data mining process is

given in Fig. 3.

3.1.1. Interpreting the data mining results

To interpret the algorithm’s results, we will define what the

measure represents. For each dFrt extracted the following can

be said about the ratio between variables x and y over time

point t and tC1;

dFrt!0 Ratio of difference has decreased over time

dFrtw0 Ratio has remained constant

dFrtO0 Ratio of difference has increased over time

A positive dFr value indicates that the two variable’s values

are growing further apart in terms of the two ratios over time.

A negative value is the opposite of this, that is, the two

variable’s values are becoming closer together in terms of the

two ratios over time. A value of around 0 indicates that the

ratios between the variables has barely altered over time;

exactly 0 meaning no difference at all. The magnitude of the

measure also has a proportional meaning since the greater the
value the more change has occurred. For instance, a larger

positive dFrt value means a larger difference in ratios over time

compared with a smaller value.

Results from the data mining process technique can also be

visualised using a simple line graph plot, which also aids our

interpretation. Fig. 4 (a) shows a plot of the various differential

ratios produced for a single experiment. Each line within the

graph represents a single differential ratio for a pair of variables

over time. There are several smaller peaks at which variance is

occurring, however at time point 9 there is a clearly a large

peak of variance. This may indicate some interesting trend

which would be flagged for further analysis. In this instance,

the peak represented a large movement and increase in volume

by the protein spot under analysis in a time series of gels, which

can be seen in the image of the actual protein spot in Fig. 4 (b).
3.2. Classifying with a neural network

Following the data mining stage, the results of this process

are then used to train and test a neural network classifier. This

offers the advantage of being able to classify new, previously

unseen data following successful training and hence introduce

a level of automation to the process. The technique selected is

that of the BackPropagation, Multi-Layer Perceptron (MLP)

neural network. This neural network is a supervised learning

approach which involves training the network using both the

inputs and the required outputs.

A MLP (McClelland and Rumelhart, 1986) organises

computational neurons into at least three layers, the input

layer, the middle hidden layer and output layer. The learning

rule typically used for the multi-layer neural network is the

back-propagation rule that allows the network to learn to

classify. This rule creates the output of the network, compares

this with the required output and, by propagating the error back



Fig. 5. A 5-layer ANFIS structure (Jang, 1993).
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through the network, alters the weights to reduce the error.

This supervised neural network was selected, as it is able to

learn the salient features produced from the data mining in the

first stage and produce output as pre-defined classes corre-

sponding to particular protein behaviour.

These classes are normally an intrinsic part of the data under

scrutiny, however in the case of the 2-DE gel data, they are not

easily identifiable and can not be intuitively extracted by a non-

expert. For this reason, knowledge acquisition sessions were

conducted with 20 international experts and an optimisation of

these fuzzy expert opinions was conducted in order to provide

these output classes.
3.3. An adaptive neuro-fuzzy inference system

The creation of appropriate classes of protein behaviour is

an important task, which has been previously tackled by

Malone et al. (2004b). This approach uses an Adaptive Neuro-

Fuzzy Inference System (ANFIS) to optimise knowledge

discovery of expert opinions and extract usable and transparent

rules. Such rules form the basis for producing the neural

network’s output classes.

ANFIS is a fuzzy inference system implemented within the

architecture and learning procedure of adaptive networks

(Jang, Sun and Mizutani, 1996; Jang, 1993). ANFIS can be

used to optimise membership functions to generate stipulated

input-output pairs and has the advantage of being able to

subsequently construct fuzzy ‘if-then’ type rules representing

these optimised membership functions (Malone, McGarry and

Bowerman, 2004b).

The ANFIS structure used in this paper consisted of a

5-layer Sugeno type architecture, a typical example of which is

seen in Fig. 5. In this example, two inputs are used (x,y) and one

output (f) (which is a limitation of Sugeno-type systems, i.e.

that there is only a single output, obtained using weighted

average defuzzification (linear or constant output membership

functions)).
Table 1

Inputs used in ANFIS structure

Input Description

Absence/Presence The absence and presence of protein spots from

Budding The joining or separation of protein spots from

Percentage Variation Percentage change in terms of spot abundance f

Shape Change Morphological changes in shape, such as height

Volume Change Increase or decrease in the volume of a protein

X/Y Movement Geographical movement of a protein spot in x a
Following knowledge acquisition sessions with experts

from within the field of proteomics, heuristic knowledge is

acquired and represented in the form of fuzzy rules. Such rules

have the advantage of being able to represent intuitive terms in

a form close to natural language and do not have exact

thresholds, reducing the likelihood of brittleness. These expert

opinions represent the inputs used to train the ANFIS model

which proceeds to create optimised membership functions,

which will be used to create the output classes of the MLP used

in the overall data mining architecture.

The structure used in this paper for experimentation consists

of 6 inputs, described in Table 1. These inputs form the basis of

the expert opinions and are used in various rules to describe

whether or not a particular protein spot is ‘interesting’ or not

and hence worthy of further laboratory analysis. Single or

combinatorial rules consisting of these input parameters will

form the basis of the output classes for the neural network.

The training dataset consisted of 75% of the total exacted

fuzzy expert opinions with the test dataset consisting of the

remaining 25%. Table 2 shows the classification accuracy of

the ANFIS, with the accuracy for ‘interesting’ proteins of 96%.

That is to say, the network is able to correctly identify 96% of

the proteins corresponding to interesting behaviour, character-

ised by the optimised expert rules.

Following the training and testing, the optimised fuzzy

expert rules were extracted, a sample of which is shown in

Fig. 6. The membership functions of each input are described

in fuzzy terms, such as high and low for all but %_Change

which also has a medium membership.

Following this optimisation stage, the proteins correspond-

ing to each of the 14 ‘interesting’ rules were identified from the

expert’s analysis, previously conducted, and training and

testing datasets were created. The results of experiments

using the full architecture are discussed in Section 4.
4. Results and discussion

Four strategies were employed to test the effectiveness of

the proposed architecture and provide comparative analysis

with other variance analysing techniques; (i) using the

intelligent data mining architecture, using differential ratios,

described in this paper; (ii) using PCA as a variance analysis

method to provide data for the neural network; (iii) using

covariance as a variance analysis method to provide data for

the neural network; (iv) finally, using normalised data only,

without any form of variance analysis, to train and test the

neural network.
No. Membership Functions

gel to gel 2

gel to gel 2

rom gel to gel 3

from gel to gel 2

spot from gel to gel 2

nd y dimensions from gel to gel 2



Table 2

Test results on ANFIS

Class Classification

Accuracy

Total No. Optimised

Fuzzy Rules

Interesting proteins 96% 14
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Experiments were conducted using two post-experimental

2-DE gel datasets with the aim of correctly identifying

the ‘interesting’ proteins, i.e. those corresponding to the 14

classes of interesting behaviour as specified from the ANFIS

optimisation process. The first dataset, the ‘Biswarup’ concerns

the analysis of the proteome of Methanococcus jannaschii

(Mukhopadhyay, Johnson and Wolfe, 2000), the first of its

kind of microorganism to have its genome sequenced. The

experiment was performed to identify any changes occurring as

it moved through different phases of growth. It was designed to

produce a large dataset representing sampling points spanning

the entire growth curve; samples were removed at 10 intervals

throughout growth. The second, named ‘Argonne’, was

designed to produce sample variation for replicate groups of

bacteria growing under controlled growth conditions, such as

variation in the Nitrogen and Hydrogen content and tempera-

ture change. Table 3 provides a summary of the two datasets

used.

Some basic assumptions have been made concerning the

collection of the data described above. It is assumed that the

findings are statistically significant, i.e. that P!0.05 within

experiments resulting in data collection and that warping and

noise reduction are performed before analysis commences.

The results obtained from experiments using the Biswarup

dataset are described in Table 4. The hidden units used in each

experiment were selected because they were found to be the

optimum level in terms ofperformance for that particular strategy.

It is worth noting that false positives, that is, proteins

classified in an ‘interesting’ class, are more acceptable than

false negatives, that is, proteins not classified as interesting

although they may well be (Vohradsky, 1997). Taking this into

consideration, a boundary threshold to indicate the margin by

which an output was considered belonging to a class was

introduced. For example, for a given class, x, the expected

output of that unit should be w1; an output of R0.7 would be

classified as class x if the boundary threshold was 0.3. In this

way, we can classify those examples which are not very strong

members of the class (within 0.1 of output for that unit)

although they may end up being identified as a false positive—
If (Absence/Presence is high) and (X/Y_Movement is lo
low) and (Shape_Change is high) and (%_Change is low
If (Absence/Presenceis high) and (X/Y_Movement is hi
is high) and (Shape_Change is low) and (%_Change is l
If (Absence/Presence is high) and (X/Y_Movement is h
is high) and (Shape_Change is high) and (%_Change is
If (Absence/Presence is high) and (X/Y_Movement is h
is low) and (Shape_Change is low) and (%_Change is lo
If (Absence/Presence is high) and (X/Y_Movement is lo
low) and (Shape_Change is low) and (%_Change is hig

Fig. 6. Optimised fuz
however, as noted, this is more acceptable than the converse

being true.

Experiments using the Biswarup dataset showed reasonable

performance for most strategies when the boundary threshold

was wider, decreasing, fairly predictably, for all strategies

when the margin of acceptance is decreased. The PCA-neural

network and the covariance-neural network architectures faired

reasonably well, with very similar performances. The

classification rates for the normalised data-neural network

architecture, where no variance analysis was conducted,

performed worst for all thresholds. The results for the

differential ratio data mining trained-neural network architec-

ture clearly showed a performance advantage over all other

classifiers, regardless of boundary threshold. The comparative

classification gains ranged from a 46.4% increase on

normalised data-neural network architecture to a 16.7%

increase on PCA-neural network architecture.

The results of experiments with the Argonne dataset are

shown in Table 5. Performance of the four strategies used show

a similar pattern of results for this dataset. Again, the

differential ratio data mining trained-neural network architec-

ture clearly showed a performance advantage over the other

techniques tried, with the neural network trained on normalised

data only performing worst.

On comparison of results obtained, it is clearly shown that

the use of a variance analysis before training of the neural

network classifier provides performance benefits. Furthermore,

in every instance of comparable boundary thresholds, the three

architectures using variance analysis before training, per-

formed better than the neural network trained on normalised

data only, without exception. This indicates that the neural

network is not fully able to encapsulate and identify within its

structure the salient features within the proteomics data.

Therefore, any strategy employing the use of a neural network

for datasets of this type, would benefit from the use of a

variance analysis to increase accuracy and hence reliability.

This is especially true of the differential ratio data mining. One

possible explanation for the significant performance benefits of

using differential ratio data mining over other variance analysis

techniques is the method’s ability to fully incorporate spatial

and temporal elements of the data. Important trends may well

be contained within these elements, which are not fully

incorporated in the other variance analysis representations.

One important consideration, as previously discussed, is

producing a low number of false negatives, although false

positives are more acceptable. Table 6 presents a summary of
w) and (Volume_Change is high) and (Budding is  
) then (output is class1)

gh) and (Volume_Change is high) and (Budding  
ow) then (output is class2)
igh) and (Volume_Change is high) and (Budding 
 low) then (output is class3)
igh) and (Volume_Change is high) and (Budding 
w) then (output is class4)
w) and (Volume_Change is high) and (Budding is 

h) then (output is class5)

zy expert rules.



Table 3

Proteomics datasets used. No. of objects represents the number of training and

test examples combined

Dataset No. of objects No. of variables Temporal points

Biswarup 897 16 10

Argonne 607 14 9

Table 4

Results from experimentation using the Biswarup dataset

Experimental

strategy used to

train/test neural

network

Hidden

units

Boundary

threshold

% Correct

classification

Mean

squared

error

Covariance 40 0.1 63.5 0.17

40 0.2 65.7 0.17

40 0.3 71.7 0.17

Differential ratio

data mining

45 0.1 82.3 0.10

45 0.2 89.6 0.10

45 0.3 92.2 0.10

Normalised data 35 0.1 35.9 0.30

35 0.2 49.3 0.30

35 0.3 59.8 0.30

PCA 12 0.1 61.1 0.18

12 0.2 67.1 0.18

12 0.3 75.5 0.18

Table 6

False positive and false negative classifications

Dataset Experimental strategy No. false

positives

No. false

negatives

Biswarup Covariance 8 10

Differential ratio data mining 5 0

Normalised data 7 15

PCA 11 7

Argonne Covariance 10 5

Differential ratio data mining 4 2

Normalised data 7 14

PCA 9 7
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the number of false positives and false negatives classified for

the two datasets compared to the results of an expert’s findings

on the dataset. The assumption made within this baseline

comparison is that the expert’s analysis is fully correct and

therefore has 100% accuracy with those identified as

interesting. This comparison shows us that there were a

number of the more acceptable false positives in all

experiments, although, again, a lower number in the

differential ratio data mining strategy, as would be expected

by high levels of classification accuracy previously discussed.

The less acceptable false negatives were also present in most

techniques, especially the neural network trained only on
Table 5

Results from experimentation using the Argonne dataset

Experimental

strategy used to

train/test neural

network

Hidden

units

Boundary

threshold

% Correct

classification

Mean

squared

error

Covariance 35 0.1 61.5 0.19

35 0.2 68.5 0.19

35 0.3 70.2 0.19

Differential ratio

data mining

40 0.1 79.6 0.07

40 0.2 80.3 0.07

40 0.3 88.7 0.07

Normalised data 30 0.1 42.3 0.28

30 0.2 47.3 0.28

30 0.3 56.1 0.28

PCA 12 0.1 59.5 0.21

12 0.2 61.9 0.21

12 0.3 65.2 0.21
normalised data. However, the data mining trained neural

network performed best of all with only two false negatives

across experiments on both datasets. For reasons previously

discussed, this is an important feature since false negatives are

in effect determining possibly interesting proteins to be of no

importance and, therefore, would be overlooked for further

laboratory analysis.

The major contribution of this work is to enable the post-

experimental data analysis to be performed automatically,

thereby greatly decreasing the amount of time spent during this

important step. Furthermore, the technique will help to identify

potentially interesting proteins, which may well have been

otherwise missed through manual analysis. Although time is

taken to perform the data mining and train and test the neural

network, this took under 15 min for each network, and less

again for the neural network trained on normalised data only.

The ANFIS stage is seen as a once only procedure for the

experiments since the output classes remain the same once the

network is trained. The obvious advantage from this type of

architecture is that once the network is trained and optimised, it

can then be used at a later time to classify previously unseen

data.
5. Conclusion

In this paper we presented an intelligent data mining

architecture and performed experiments using two post-

experimental, 2-DE gel datasets. Three variance analysis

methods were applied to the datasets to use as training and

testing data for a BackPropagation, Multi-Layer Perceptron

(MLP) neural network in order to classify the results of the data

mining into discrete classes of interesting behaviour. The

neural network was also trained and tested using normalised

data only to assess the benefits of using a variance analysis step

before machine learning. Of the three variance analysis

methods employed and tested, the differential ratio data mining

proved to be the most successful in identifying and

representing the salient trends within the data. The intelligent

data mining architecture also provided the lowest number of

false negatives and false positives of all strategies, an important

consideration when attempting a comprehensive and accurate

analysis of the data.
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The architecture also allows the encapsulation of expert

opinions through the use of an adaptive fuzzy logic system

(ANFIS). This offers the advantage of optimising initially

approximate data in an effective manner whilst, following

training, allowing fuzzy rules to be extracted which

represent the optimised fuzzy membership functions. Such

membership functions form the basis of our output classes,

which correspond to interesting features of protein

behaviour.

This research goes some way to addressing the processing

bottleneck that exists within post-experimental 2-DE gel data

analysis by providing a technique that automatically extracts

potentially interesting proteins from within the datasets. Since

the technique involves the use of a supervised neural network,

normal considerations of suitability apply, i.e. that empirical

data must be available in order to train and test the network’s

ability to learn and classify correctly.

Future work will concentrate on expanding the technique to

further proteomics data sets. We also aim to show that this

approach is suitable more generally as a spatio-temporal data

mining technique by expanding to other spatio-temporal

datasets such as robotics and meteorological data.
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