
Machine intelligibility and the duality principleStephen MuggletonOxford University Computing LaboratoryParks RoadOxford, OX1 3QD,United Kingdom.Donald MichieProfessor EmeritusUniversity of EdinburghUnited Kingdom.AbstractThe scale and diversity of networked sources of data and computerprograms is rapidly swamping human abilities to digest and even locaterelevant information. The high speed of computing has compounded thisproblem by the generation of even larger amounts of data, derived in waysthat are generally opaque to human users. The result is an increasing gulfbetween human and computer abilities. Society's ever wider-scale depen-dence on rapidly growing networked sources of software threatens severebreakdowns if machine intelligibility issues are not given high priority.In this paper we argue that lack of machine intelligibility in human-computer interactions can be traced directly to present approaches tosoftware design. According to the duality principle in this paper, soft-ware involved in human-computer interaction should contain two distinctlayers: a declarative knowledge-level layer and a lower-level functionalor procedural-knowledge layer. This extends the formal methods separa-tion of speci�cation and implementation by requiring that the declarativelayer be capable of extensive human interrogation at runtime. The declar-ative layer should support simple deductive and inductive inference. Theease with which declarative knowledge can be translated to natural lan-guage could be used to provide a human-comprehensible \window" intothe properties of the underlying functional layer. Adaptation of the declar-ative knowledge in response to human interaction could be supported bymodern machine learning mechanisms. In addition, declarative knowl-edge could be used to facilitate human-comprehensible communicationbetween programs. Existing well-developed technologies can be used toimplement the declarative layer. The obvious language of choice is pure1



Prolog, augmented with machine learning mechanisms based on InductiveLogic Programming. The underlying functional layer would be composedof normal procedurally encoded computer programs. It is argued thatthe duality principle in software design is a necessity for dealing with thedemands of wide-scale computer usage in the information age and shouldbe an urgent goal for computer science research at the start of the 21stcentury.1 IntroductionIn 1964 Gordon Moore, then president of Fairchild, stated that the componentdensity of integrated circuits would continue doubling every year (presently ev-ery two years). Such exponential change in both memory cost and computerspeed has held true consistently over the last 40 years of computing. Thisdramatic increase in computing power has led to the widely heralded \infor-mation revolution", the social implications of which are rivaled only by theindustrial revolution of the 18th and 19th centuries. Knock-on e�ects includea shift within the industrialised world from manufacturing-based economies toinformation-based ones.The consequences of low cost memory and computer speed have not all beenpositive. The scale and diversity of data sources is rapidly swamping humanabilities to digest and even locate relevant information. The high speed ofcomputing has compounded this problem by generation of even larger amountsof data, derived in ways that are generally opaque to human users. The resultis an ever widening gulf between human and computer abilities.Thus although the parameters of computer hardware abilities are increas-ing exponentially, those of their human users remain constant and are alreadydwarfed in all respects. Figure 1 (borrowed from [22]) tabulates some of theinformation parameters of the human brain.It is really human comprehension which is the key bottleneck in a numberof the related problems of human-computer incompatibility. What is required isboth increased intelligence on the part of machines and increased compatibilityin human-computer interaction.The need to increase the compatibility between computers and their humanusers necessitates the practical application, integration and extension of existingtechnologies.This paper is structured as follows. The motivations for BT's Machine Intel-ligence initiative are introduced in Section 2. As a response to the urgent needfor increased machine intelligibility we introduce the principle of software dual-ity in Section 3. In Section 4 previous large-scale Arti�cial Intelligence projectsare reviewed in the light of the duality principle and lessons are drawn for BT'songoing Machine Intelligence initiative [34]. Sections 5 and 6 review the relevantongoing research in autonomous agents and machine learning. It is argued that2



1 Rate of information transmission 30 bits per secondalong any input or output channel2 Maximum amount of information 1010 bitsexplicitly storable by the age of 503 Number of mental discriminations per 18second during intellectual work4 Number of addresses which can be 7held in short-term memory5 Time to access an addressable 2 seconds`chunk' in long-term memory6 Rate of transfer from long-term toshort-term memory of successive 3 elements per secondelements of one `chunk'Figure 1: Some information parameters of the human brain. Estimation errorscan be taken to be around 30 per cent. (Main sources: Miller (1956) PsychologyReview, 63, pp. 81{97, Stroud (1966) Ann N.Y. Academy, and sources cited byChase and Simon (1974) Cognitive Pyschology, 4 pp. 55-81.)present research falls far short of addressing the challenges raised by the prob-lems in human-computer incompatibility we have described above. A radicallynew approach allowing the development of adaptive collaborative software1 iscalled for. This approach should both build on and transform existing softwaretechnologies. Section 7 summarises and concludes the paper.2 BT's Machine Intelligence initiativeMachine Intelligence is the software technology of user friendliness at the levelof concepts, rather than the level of keystrokes and error message. The fol-lowing quote from [34] provides the central motivation behind BT's MachineIntelligence initiative.Man-to-machine communications is a major business opportunity.The rapid growth in the use (and processing power) of computersboth in the home and in the workplace is leading to the situationwhere the market for \man-to-machine tra�c" is growing fast.The development of high-speed communications and cheap high powered PCsis rapidly steering the dominant use of information technology into the hands ofusers who are not computer professionals. Despite the wide-scale use of windowand mouse interfaces, the level of machine intelligibility is extremely low. Thefollowing is a short list of interaction issues familiar to any computer user.1This terminology is derived from Hyacinth Nwana's classi�cation [31] of intelligent agents.Nwana also notes that no existing agents are both collaborative and adaptive.3



Program purpose. It is generally not possible to query the purpose of a com-puter program's actions.Human intentions. Computer programs generally have no model of their hu-man user's aims and motivations, and thus lack the ability to make helpfulsuggestions.Failure diagnosis. Execution failures are generally hard to track down.Correction. Erroneous software behaviour will be repeated inde�nitely, sincepresent-day software has no way to incorporate corrective feedback.Brittleness. Computer programs are unable to make intelligent conjectures inthe face of slightly incomplete or incorrect data.Hidden interactions. The communication between programs are opaque tothe human user.Many of these features have for some time acted as nagging irritants to computerusers. However, with the wider-scale use of computers such problems start toimpinge not only on business pro�tability, but also in some situations on humansafety.In the next section we urge the need for software involved in human-computerinteraction to have an extra declarative layer de�ning program speci�cations,reaction speeds of sub-modules, goals, intentions as well as models of othercomputer programs and human users.3 Machine intelligibility and the duality prin-cipleWe view machine intelligibility as a state of human-computer interaction. Itcan be de�ned as follows.A two-way interaction with a machine is intelligible to a human userif the (growing) set of the machine's concept descriptions used in theinteraction maintain logical equivalence with a (growing) subset ofthe human's concepts.We see the duality principle of software design as a necessary requisite for ma-chine intelligibility. The software duality principle can be stated as follows.Software involved in human-computer interaction should be designedat two interconnected levels: a) a declarative, or self-aware level,supporting ease of adaptation and human interaction and b) a pro-cedural, or skill level, supporting e�cient and accurate computation.4



3.1 Diary exampleAs an example of software designed without the duality principle, consider thehumble electronic diary, available on most PCs and workstations. New entriesare put in such diaries by pointing with a mouse at a representation of an openpage, clicking and typing text. However, suppose one has a regular meeting ev-ery Thursday at 4pm for a period of 8 weeks. Rather than forcing the user to putin each entry separately some advanced models of electronic diary will providea simple mechanism for specifying repetitive entries of this kind. However, youcannot specify that these meetings must avoid public holidays, or ask for it to betaken into account that one mightwant to miss meetings that fall on one's child'sbirthday. Nor will they take into account the simplest of temporo-spatial rules,such as the fact that a participant of an event cannot be in two distant placesat the same time. Present electronic diaries have no facilities to build up suchhuman-oriented concepts, nor to make intelligent human-checkable conjecturesin terms of already de�ned concepts. This is no doubt due to the di�culties ofprogramming such abilities in a procedural programming language.However, imagine the situation if the duality principle had been applied inthe design of an electronic diary. Events with their associated participants andspatial designations are easy and e�cient to represent within a declarative lan-guage such as the datalog subset of Prolog. Such events could be asserted into adeductive database as a side-e�ect of mouse clicking. Integrity constraints suchas the requirement for a person to be at only one place at any time are againstraightforward to encode in datalog. Interaction in a commonly de�ned declar-ative representation with other declaratively encoded diary programs/birthdayplanners/travel planners would allow integrity checking to extend beyond the lo-cal knowledge-base. One would certainly not want to burden a user by requiringthat they learn mathematical logic before they can operate their electronic di-ary! However, rules that state that a series of meetings happens every Thursdayexcept during public holidays and your children birthday's could be conjecturedand re�ned by an Inductive Logic Programming (ILP) [30] system from a hand-ful of examples and counter-examples entered by mouse-clicking. Such rulescould be easily translated into natural language for user certi�cation. Withinsuch a diary procedural encoding would still be vital for numerical calculationsinvolving time and space, graphical display and mouse input.3.2 Declarative and procedural knowledgeThe divisions between declarative and procedural knowledge has its counter-parts not only throughout the behavioural and brain sciences but also through-out computer science. Thus, for instance, Hoare [14] distinguishes betweenspeci�cations and program as follows.Given speci�cation S, the task is to �nd a program P which satis-�es it in the sense that every possible observation of every possible5



behaviour of the program P will be among the behaviours describedby (and therefore permitted by) the speci�cation S.Note that, unlike programs, speci�cations are both declarative and human-oriented. This is typically achieved by making use of variants of �rst-orderpredicate calculus such as Z [35]. However, the purpose of speci�cations islargely ful�lled once the program has been correctly implemented. Speci�cationsare not intended to be used for runtime interrogation and they do not includeknowledge about the program's use and environment beyond its input-outputbehaviour.Within the �eld of AI, the knowledge representation debate has polarizedbetween advocates of purely declarative representations (such as McCarthy) andthose supporting purely reactive representations (such as Brooks). This splitand its potential resolution via the duality principle will be explored in moredetail in Section 5.Intelligent interaction has been a central theme within Arti�cial Intelligence.For this reason we review some of the large-scale AI projects and relevant sub-disciplines of AI in the next section.4 Review of relevant AI research4.1 Review of previous large-scale Arti�cial IntelligenceprojectsBT's Machine Intelligence initiative is both timely and important in attemptingto address the needs for intelligent software in the 21st Century. We believe thatsuch a project could substantially alter the landscape of computing. However,to do so it will be necessary to take account of the advances and mistakes ofprevious large-scale Arti�cial Intelligence projects. For these purposes we reviewthe Japanese Fifth Generation project and the US CYC project.4.1.1 Japanese Fifth Generation ProjectThe Japanese Fifth Generation Computing Systems (FGCS) project [6] was oneof a number of large-scale computing projects of the 1980s aimed at the con-struction of intelligent machinery. Intensive planning and research led to theidenti�cation of Horn clause logic as the best candidate for a single softwarerepresentation for all parts of the project. Since this representation was aimedat underpinning a whole new generation of machines, the vision acted as a spurto the Logic Programming community to remodel all the major constituents ofcomputer science within a logic programming framework. The FGCS projectaimed at using logic programming for implementing man-machine communica-tion aids, visual and speech input-output, sensory robot interfaces, and nat-ural language database interfaces. E�ciency was to be achieved by massive6



parallelism, based on Personal Inference Machines (PIMs) whose assembly lan-guage was an augmented version of Prolog. Cognitive compatibility betweenthe new ultra-powerful machines and their users would be ensured by the useof knowledge-based programming techniques. The result would be intelligentmachines which made the fruits of large-scale knowledge bases available to theirusers via interactive natural language interfaces. What went right and whatwent wrong?The project met many of its technical aims. At the end of the project large-scale parallelism based on a Guarded Horn Clause (GHC) language was demon-strated on a number of impressive applications, including a theorem proverwhich proved an open result in number theory. Despite this success large-scaleknowledge bases were not built and the vision of intelligent natural languageoriented machines was never realised. In addition, the hardware and softwarewere not taken up by Japanese industry due partly to their incompatibility withexisting software.The lasting value of the FGCS project can be largely attributed to its choiceof a single declarative knowledge representation, which connected a large num-ber of disparate problems into a coherent whole2. As a side-e�ect intense in-ternational research in the 1980s enabled Logic Programming to encompassthe disparate computer science topics of knowledge representation, semantics,databases, program termination, formal methods, program synthesis, debug-ging, modularity, constraint solving, induction and natural language processing(see Ten Year Review Special Issue of the Journal of Logic Programming, Vol-umes 19/20, 1994). On the other hand, the failure of FGCS to construct large-scale knowledge-bases and natural language capabilities has been attributed[23] to the failure of the planners to recognise the central role that should havebeen played by machine learning. Prof. K. Furukawa, Research Director ofthe Japanese Fifth Generation project, has admitted privately that a centralerror of theirs was the initial omission of computer induction when planning theproject. Since 1992, Prof. Furukawa [10] has focussed his main research area onthe application of \Inductive Logic Programming systems to various problemsincluding natural language processing, skill acquisition and economics".4.1.2 US CYC ProjectIn response to the Japanese FGCS project, the US started its own privatelyfunded Arti�cial Intelligence project called CYC at MCC in Austin Texas. CYCwas under the technical directorship of Doug Lenat, who strongly advocated theneed to build up a massive, diverse knowledge source. Unlike FGCS Lenat be-lieved that it was not important to choose a particular knowledge representationfrom the start, but rather to let one evolve.2This was a lesson lost on the so-called Japanese Sixth Generation (or real-world comput-ing) project, which after 4 years has yet to make a signi�cant impact outside Japan.7



The �rst author of this paper visited MCC in 1984 while carrying out a con-sultancy at Radian Corporation, also in Austin Texas. Radian's approach tobuilding knowledge bases, much more pedestrian than CYC's, involved the useof \structured" rule induction. During the 1980s Radian's RuleMaster prod-uct was used to build a number of expert systems including an autolanderfor the Space Shuttle and what is still one of the world's largest expert sys-tems, BMT. 30,000 rules were developed in 9 man years of development time.The BMT system was installed at Siemens and is still in full-time use. Simple\�rst-generation" machine learning techniques have achieved many other similarsuccesses in application [18].By comparison, after 10 years e�ort and 100s of million of dollars of fund-ing the CYC [19] system failed to �nd large-scale industrial application. LikeFGCS, the self-imposed requirement to enter all knowledge by hand provedoverwhelming. Unlike FGCS, the failure to choose a su�ciently expressive com-mon representation language was discovered as an oversight, near the end of theproject. The following is a quote from Lenat [19] on this topic.Another point is that a standard sort of frame-and-slot languageproved to be awkward in various contexts: ... Such experiencescaused us to move toward a more expressive language, namely �rstorder predicate calculus with a series of second-order extensions ...Thus the CYC project eventually concurred with the original design choice ofFGCS, to use �rst order predicate calculus as the central declarative knowledgerepresentation.4.1.3 Lessons for BT's Machine Intelligence initiativeCan BT's Machine Intelligence project succeed where projects like FGCS andCYC have failed to meet expectations? We would argue that the answer is yes,but only if su�cient note is taken of the lessons to be learned from FGCS andCYC. From the above discussion we take the following to be necessary, thoughnot su�cient design choices for the project.� Declarative representation. Choose �rst order predicate calculus asthe central declarative knowledge representation, as FGCS did and CYCeventually had to do. In practice this implies coding knowledge-bases inProlog-like programming languages. This representation is both 
exibleand supports comprehensibility due to its close relationship with naturallanguage.� Learning. Do not rely on hand-coding of knowledge. Machine Learning,when properly applied can generate hundreds of lines of validated codeper day. The advent of ILP [4] ties this point to that of representation,since e�cient systems now exist [32, 28] which use logic programming as8



their sole representation for example databases, background knowledgeand constructed theories.� Duality. Build links to existing e�cient procedural computer software toavoid recoding and enhance take-up in existing user communities. This ap-proach is exempli�ed to a limited degree by constraint logic programming[15], in which logical theorem proving interacts with e�cient procedurallyencoded constraint solving.An alternative to CYC's approach for obtaining large-scale knowledge struc-tures might be imagined by analogy with the World-Wide-Web. By this analogywe might expect an interconnected network of interacting simple programs, suchas the declarative diary program in Section 3.1, to build up a massive executablenetwork of personal and social knowledge by continuous interaction with a pop-ulation of human users. The inferential power of such a \knowledge network"would be substantially beyond the hopes or aspirations of either FGCS or CYC.Two of the most pertinent topics in present Machine Intelligence researchrelevant to increased intelligibility in human computer interaction are IntelligentAgents and Machine Learning. Issues related to both topics are thrown up bythe declarative diary example of Section 3.1. These topics will be reviewed inthe following two sections.5 Review of AgentsA rift has opened up in Arti�cial Intelligence circles between the advocates of,on the one hand, declarative knowledge-based systems and, on the other hand,reactive knowledge-free systems. These two approaches can be exempli�ed bythe views expressed by John McCarthy (Stanford) and Rodney Brooks (MIT).The distinction between these disparate approaches explains some of the diver-sity in the usage of the term \agents" in the recent Arti�cial Intelligence (AI)literature.5.1 The declarative schoolOn the declarative side John McCarthy [21] claims that nothing short of second-order predicate calculus will do for implementing \robot consciousness". He un-derlines the necessity of agents being able to reason about other agents' beliefs,including their own. Despite its declarative elegance this approach runs intoproblems with tractability and completeness of inference. Genesereth [11] hasfollowed McCarthy's lead and produced speci�c plans for agent-oriented soft-ware based on the logical communication languages KQML and KIF [9]. Theselanguages, which are extensions of �rst-order Horn clause logic (in a LISP-likesyntax) allow declarative de�nition and communication of agent knowledge.Genesereth advocates the idea of \software wrappers" which allow existing9



legacy software to be converted to agent-oriented form by embedding withina KQML/KIF exterior. For this aspiration to be met on a large-scale wouldrequire converting software vendors across the board to the new KQML/KIFstandards. This approach is related to the duality principle, though it lays nostress on the importance of machine learning or human-computer communi-cation. Also the KQML/KIF attempts to standardise predicate usage in inter-agent communication have been contended even within the limits of the AI com-munity [12]. It is our belief that, in contrast to Genesereth's top-down approach,large-scale usage of agent software|like large-scale usage of the WWW|ismorelikely to be achieved bottom-up, by way of adaptive personalised agent inter-faces.The one limited form of adaptive personalised agent interface that alreadyexists is the Softbot framework developed by Etzioni and Weld [8]. Softbotsemploy a �rst-order predicate calculus representation and are primarily plan-ners. Given an imprecisely speci�ed goal, such as \set up a meeting on agentswith Mitchell at CMU", the Softbot plans a precise set of commands to executethis goal. For example this might include determining the email address of TomMitchell at CMU. Although Softbots use an expressive representation they donot communicate with one another. They perform learning, but only by rotememorisation of plans that succeeded or details that proved useful in the past.5.2 The reactive schoolAt MIT Rodney Brooks is advocating and leading a programme for buildingreactive insect-like robots [5]. High-level cognitive compatibility with humans isabandoned in favour of stimulus-response architectures, which lend themselvesto straightforward robot implementations imported from mechanical engineer-ing. Some work in Pattie Maes' group at MIT appears to be exploiting someof Brooks' ideas where it is applied to software agents [20, 3]. This approach issometimes referred to as arti�cial life and is summarised in the following quotefrom Maes [20].The goal of building an autonomous agent is as old as the �eld of AIitself. The arti�cial life community has initiated a radically di�er-ent approach to this goal, which focuses on fast, reactive behaviour,rather than on knowledge and reasoning, as well as on adaptationand learning. Its approach is largely inspired by biology, and morespeci�cally the �eld of ethology, which attempts to understand themechanisms animals use to demonstrate adaptive and successful be-haviour.Maes and her colleagues have demonstrated an arti�cial dog as well as variousreactive agent utilities which learn within a non-declarative representation fortasks such as email �lters. 10



At CMUMitchell and colleagues have developed a reactive agent calledWeb-Watcher [2] that learns about user interests on the World-Wide-Web. Like otherreactive agents, although it adapts it cannot communicate learned knowledgeto other agents or to users. WebWatcher has the merit of being freely availableover the Web from the following site.http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-6/web-agent/www/project-home.htmlAnother class of agents that best �ts within this category is that of Knowbots[7]. Knowbots perform a task similar to that of Softbots (Section 5.1) exceptthat rather than employing planning, they carry out hard-wired commandswhich are encoded procedurally. Communication between Knowbots is opaqueto human users and Knowbots do not learn from experience.Genesereth's approach lends itself to high-level knowledge communication,inter-robot modelling and collaboration. However, due to the nature of thelanguages used no learning has been attempted within this framework. On theother hand, Maes' approach does not support high-level communication but hasstrengths in the ease of incorporation of low-level learning. However, despitethe incorporation of learning within a number of the Maes' agent projects, theassumptions made and learned are opaque to human users.5.3 Bridging the gap using the duality principleThe second author [24, 25] has proposed a pragmatic position on consciousagents which bridges McCarthy's and Brooks' programmes. In settings in whichagents need to interact with human users there is a need to integrate both Brook-sian subcognitive software with McCarthyite self-articulate `conscious' abilities.This approach supports the duality principle of Section 3. We see a clear needfor adaptive learning at both cognitive and subcognitive levels. Followers ofMcCarthy's programme have achieved agents which communicate and are au-tonomous but do not learn. Followers of Brooks have constructed agents whichare autonomous and learn but do not communicate with each other. Neitherof these approaches can be seen to follow the duality principle of Section 3.The papers [33, 26] appear to be the only ones in the literature to have demon-strated autonomous agents which communicate with one another and learn.These agents each control an independent control surface of a simulated Cessnaaircraft. Inter-agent communication is achieved via a common `blackboard'which describes the current state of the aircraft. The control strategy of indi-vidual agents is de�ned by situation/action mappings represented as decisiontrees. These trees are learned independently from observations of human pilottraces. Since the low-level of decision tree representation impedes communica-bility of the learned knowledge, [25] suggests the future use of �rst-order predi-cate calculus and Inductive Logic Programming for the construction of humancomprehensible rules. 11



This paper further endorses the bridge-building approaches previously pro-posed by the second author. We accept the necessity within agents for e�-cient and reactive low-level functionality, communication and learning. How-ever, adaptive collaborative agents which interact with human users need acorresponding layer of declarative social and self-knowledge which can be au-tonomously learned and succinctly and exactly communicated to humans andother agents.6 Review of LearningUnlike the topic of software agents, Machine Learning (ML) is a well estab-lished �eld of AI with many international conferences and its own reputablejournal. Topics covered range from the highly theoretical to the technical intri-cacies of implementation design and comparative testing. ML largely involveshighly reactive representations for the learned knowledge, ranging from statis-tical regression equations to neural networks, decision trees, boolean functionsand �nite state automata. The 1990s have seen the rapid development of In-ductive Logic Programming (ILP) [30], the only subarea of ML directed at thedeclarative representations favoured by McCarthy and Genesereth (Section 5.1).6.1 Surveys of applied MLFor the purposes of this paper we will narrow the �eld to that of real-worldapplications of ML. Despite the fact that ML is one of the largest and fastestgrowing areas of AI, until recently relatively few of the numerous industrialapplications of ML had been detailed in the computer science literature. Thereare several reasons for this.1. Con�dentiality. Successful ML applications often involve commerciallysensitive data (eg. personal credit limit information) and often give theusers a substantial edge which would be lost on communication of theresulting knowledge to competitors.2. Trade publication. Unlike academia, there is little advantage to com-pany employees who publish in learned journals. ML applications areoften published in the relevant trade journals, or described in advertisingmaterial.However, two recent issues of the Communications of the ACM (March 1994and November 1995) provide in-depth surveys of real-world applications of ML.These surveys cover case-based learning [1], neural networks [36], genetic algo-rithms [13], rule induction [18] and ILP [4]. As a prime example Langley andSimon describe a chemical process control application of rule induction whichsaved Westinghouse ten million dollars per year.12



All the surveyed ML techniques except ILP are highly e�cient and reactive,use relatively simple feature-based representations, employ search techniqueswith implicit biases which are usually not understood by the user and generallyproduce results which are relatively opaque. These techniques are ideal for\black-box" reactive agents. By contrast, ILP is relatively slow in generationof hypotheses, but allows a rich relational representation, has an explicit searchbias (background knowledge) and is the only one to have produced discoverieswhich are not only comprehensible to human experts but also represent newknowledge publishable on its own account in top scienti�c journals [29, 16, 17].6.2 The Statlog projectWhereas the quality of new declarative knowledge can be established by its pub-lishability in refereed journals, the contending claims of \black-box" reactivelearning mechanisms can best be judged by head-to-head performance compar-isons on extensive datasets. Statlog [27], the largest such comparative machinelearning study to date, was an ESPRIT project that ran from 1990 to 1993and involved 6 academic and 6 industrial laboratories. Around 20 reactive ruleinduction, neural and statistical classi�cation algorithms were each tested andcompared on around 20 large-scale industrial datasets to produce 20�20 = 400large scale experiments. The results were compared and analysed by academicstatisticians. Reactive rule induction algorithms were found to have the best av-erage performance, though they could be outstripped on particular datasets bystatistical algorithms which made assumptions appropriate to the dataset. Un-fortunately, no attempt was made to assess quantitatively the comprehensibilityof the learned information.The general lesson seems to be that `black box' learning should be carriedout with whatever algorithm, or combination of algorithms (as long as they arereasonably e�cient), give highest predictive accuracy (or minimum cost givena cost/bene�t matrix). However, when learned knowledge must be intelligibleto the user, a concise, exact and declarative representation, such as that usedby ILP, is ideally suited. It should also be noted that Statlog exclusively in-vestigated unstructured learning. Meanwhile, as is the case with good softwareengineering practice, the interesting machine learning technologies for large-scale knowledge development will be incremental and develop highly structuredrepresentations by hierarchical decomposition.7 ConclusionIn this paper we have investigated some of the general issues related to computerscience research at the end of the 20th century, and tried to indicate some of thecentral issues for the next century. In particular we have stressed the humanoverload dangers inherent in computing technology. These stem from the mass13



availability of high information capacity, transmission rates and computationrates. Without su�cient intelligent support, human users will be increasinglyoverpowered by computer power. This is a central motivation for BT's MachineIntelligence initiative. However, we note that similar 1980s projects, namelyFGCS and CYC, failed to deliver their promise. We trace this failure largelyto the absence of declarative machine learning techniques within these projects.The renaissance of Arti�cial Intelligence techniques under the guise of the Intel-ligent Agent's movement, is in danger of repeating the same mistake as FGCSand CYC. Thus most agent technology has no learning capacity, and those agenttechniques that do incorporate learning, do not allow for the communication oflearned knowledge to human beings.Our suggestion is that a new approach be taken to designing software whichinteracts with human beings. We believe such software should incorporatedeclarative machine learning at its core. According to our "duality principle"machine intelligibility can only be obtained by clearly separating the declara-tive and procedural knowledge components of a program. While the proceduralpart of the program should carry out low-level communication inaccessible tasks,this should be directed by high-level, declarative knowledge. This declarativeknowledge should be encoded in a logic language, thus making it easily trans-latable to natural language. This would not only actively support high levelinteraction with human beings, but also make inter-program communicationtransparent to inspection. Using today's machine learning technology, learningat the declarative level would necessarily be carried out using Inductive LogicProgramming.We urge the need for software involved in human-computer interaction tohave an extra declarative layer de�ning program speci�cations, reaction speedsof sub-modules, goals, intentions as well as models of other computer programsand human users.We believe that if BT were to take this route with the Machine Intelligenceinitiative, they would not only be carrying out developments at the forefrontof emerging computer science technologies, but also might help transform thecommunication and computing industries of the 21st Century.AcknowledgementsThe authors would like to thank Nader Azarmi, Robin Smith, Hyacinth Nwana,Ben Azvine and Brian Tester for enlightening discussions on agents and otherrelated topics at British Telecom Research Labs at Martlesham Heath. Thanksare also due for discussions on the topics in this paper with John McCarthy,David Page and Lincoln Wallen. Stephen Muggleton and David Page's work onthis topic was supported by a period of consultancy at British Telecom during1995-1996, as well as by the Esprit Long Term Research Action ILP II (project20237), EPSRC grant GR/J46623 on Experimental Application and Develop-ment of ILP, EPSRC grant GR/K57985 on Experiments with Distribution-14
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