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Abstract

We present a compilation�based approach to reducing
the representational distance between application do�
main experts and AI planning technology� The ap�
proach combines a representation designed to match
the structure of human expertise in the construction
industry with an established planning technique� The
design of this representation is derived from a study
carried out with experts in the industry� This study
shows that expertise in the industry is centred on the
components of a building and organised into a subcom�
ponent structure� We demonstrate by encoding the re�
sults of this study into a HTN formalism that such for�
malisms fragment expert knowledge� This fragmenta�
tion leads to a large representational distance between
expert and formalism� making the task of encoding and
maintaining a planner knowledge base a complex one�
Our solution is to provide a representation designed
around the modelling requirements of the construction
industry and then to compile HTN schemata from that
representation� We argue that this union reduces the
representational distance between expert and formal�
ism� thus lowering the complexity of the knowledge
encoding and maintenance tasks� whilst still exploit�
ing powerful AI planning techniques� We conclude
by proposing further investigations of this type with
the aim of providing a library of domain�oriented for�
malisms from which a knowledge engineer may choose
an appropriate representation for a given domain�

Introduction

Knowledge engineering issues must be addressed if AI
planning technologies are to move successfully from the
laboratory to the �real world� �Chien ������ Signi	�
cant progress has been made in this area over recent
years� Planning methods� for example� have been cat�
egorised within a framework appropriate for guiding
knowledge engineers �Valente ����� de Barros et al �����
Benjamins et al� ����� Kingston et al� ����� and tool
support for verifying and debugging planner knowledge
bases is emerging �Chien ������
In this paper� we address the issue of the representa�

tional distance between the application domain knowl�
edge and planner formalism� Our approach is centred
upon the compilation of a Hierarchical Task Network

�HTN� planner �Tate ����� formalism from a represen�
tation designed to match the structure of human ex�
pertise in the construction industry� We argue that
current HTN formalisms� like previous planner method
characterisations �e�g� �Kambhampati ������� are more
oriented to the needs of the technology than the knowl�
edge engineer� By providing a representation designed
around the structure of human expertise� the represen�
tational distance that must be negotiated by the knowl�
edge engineer is reduced�
Our motivation and approach are described in a num�

ber of stages� First� the results of a study that exam�
ined the structure of expertise in the construction in�
dustry are presented� The di�culties encountered when
mapping the results of this study to HTN formalisms
are then described� Second� we outline our Dynam�
ically Assessed and Reasoned Task �DART� Network
approach to the compilation of HTN schemata from a
formalism designed around the expertise structure iden�
ti	ed in the study� Finally� we discuss the contribution
of our approach and suggest how it may be combined
with related work to form a promising research direc�
tion for addressing knowledge engineering issues in AI
planning�

Modelling Requirements of the

Construction Industry
The modelling requirements presented in this section
were derived from a knowledge elicitation and mod�
elling process performed in the construction industry
over twelve months� This process included meetings
with experts and observations at construction sites�
It was driven and conceptualised with the support of
the KADS methodology �Schreiber et al� ������ We
also drew on previous case studies carried out at The
University of Brighton� UK and the Center for Inte�
grated Facility Engineering �CIFE� at Stanford Univer�
sity� USA� These studies examined the human expertise
applied during the planning of �ight simulator construc�
tion �Marshall ����� Winstanley et al� ���
� and the
organisation of construction plans around work areas
�Winstanley and Hoshi ������
The modelling requirements derived from this work

are presented below in the stages� action modelling� and
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dependency modelling� These requirements are then
placed into the context of the construction planning
process through a KADS application model�

Action Modelling

In the construction industry� expert knowledge about
actions is organised around the components of build�
ings� Actions are de	ned by their relationship with
these components� It is from this observation that we
de	ne an activity as the union of an object and an ac�
tion� Consider the example in Figure �� The activ�
ity Set Out Position �of a� Beam is the union of the
classes BEAM and SET�OUT�POSITION� where class
BEAM is a subclass �triangle notation� of the class OB�
JECT� and class SET�OUT�POSITION is a subclass of
the class ACTION�

Figure �� An Activity De	ned as the Union of an Object
and an Action

Experts use two types of relationship to associate ac�
tions with an object� The Must association means that
an action must always exist as a result of its related
object�s presence� An Infer association means that in�
ference is required to determine if an action is required�
Figure � includes a graphical representation of the Infer
relationship� The criteria for determining if a particu�
lar action should be associated with an object is repre�
sented by an Inference Package� The package evaluates
to either yes �the action should be associated� or no
�the action should not be associated��
To support reasoning at di�erent levels of abstrac�

tion� experts organise objects into a structure of com�
ponents and subcomponents� An example of this or�
ganisation is shown in Figure �� In this 	gure� the
class BUILDING has the subcomponents �diamond no�
tation� class FOUNDATIONS through to class PLANT�
Class FOUNDATIONS is further decomposed into the
class BEAM� An expert reasoning at the level of the
FOUNDATIONS would expect decisions made at this
level to also a�ect all the subcomponents of the FOUN�
DATIONS�
The subcomponent relationship between objects in�

troduces two types of relationship between actions and
objects� Every component always has an Abstract Ac�
tion associated with it �i�e� abstract actions always of
the association type must�� Abstract actions map to
the di�erent levels at which experts reason� When con�
sidering a building at the foundations level� an expert

Figure �� Subcomponent Structure with Abstract and
Primitive Actions

may place the constraint that the foundations must be
laid before the drains� This constraint is placed on the
abstract LAY action of class FOUNDATIONS� but it is
to be followed by all the actions of the FOUNDATIONS
subcomponents� Primitive Actions are only associated
with components that do not have subcomponents and
they correspond to the actions that will appear in the
	nal construction plan for a building� Primitive actions
may be related to components through both the Must
and Infer relationship types�

Dependency Modelling

Like action knowledge� expert knowledge about depen�
dency is organised around components� Figure � shows
the relationship Under existing between the classes
BEAM and DRAIN� The semantics are that an in�
stance of class DRAIN will pass under an instance
of class BEAM� Thus� the actions that lay the drain
must be completed before work commences on the
beam� This relationship can be expressed by placing
the temporal ordering constraint Drain�abstract�action
� Beam�abstract�action� where ��� means before�

Figure �� Temporal Dependency Causing Relationship
Between Components

Dependency relationships are typed as either
Dependency�Must or Dependency�Infer� The semantics
are similar to the Must and Infer directives that occur
between objects and actions� In the Dependency�Must
case� an ordering constraint must always be placed be�
tween the abstract actions of the components joined
by this directive� In the Dependency�Infer case� infer�
ence is required to determine if a constraint is required�
There are� for example� occasions when a beam must
be laid before a drain� This occurs when the equip�
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ment used to lay a beam will damage the drain if it
is already in place� The inference attached to this re�
lationship is responsible for determining if an ordering
constraint is required�

Application Context

Figure  uses a KADS application model �Schreiber
et al� ����� to show the context of the construction
planning process� The Component Knowledge input
describes the set of components that may exist in a
building together with their action and dependency as�
sessment knowledge� This is the knowledge described in
sections ��� and ���� Component knowledge is presently
located within engineers� experiences� component man�
uals� and regulation documents�
The Building Design input is the design of a speci	c

building� A design is a combination of components�
It speci	es the components in a speci	c building� their
relationships� and the values of their properties� The
building design input is currently represented in the
form of design diagrams�

Figure � KADS Application Model of the Construction
Planning Process

The Construction Planning process maps the build�
ing design to the component knowledge to generate the
actual actions and dependency constraints required in
a plan� The result of this reasoning is output as a Con�
struction Plan�

Previous Applications of HTN

Techniques in the Construction Industry

This section determines the extent to which past appli�
cations of HTN techniques in the construction industry
have addressed the requirements established in Section
��
The construction industry has been used in the form

of Tate�s House Building Domain �Tate ����� to demon�
stration the capabilities of HTN planning systems since
the technique�s inception� e�g� �Tate ����� and �Kartam
et al� ������ A portion of the domain speci	cation pro�
duced for the O�Plan system �Currie and Tate ����� in
the system�s Task Formalism �Tate et al� ���� is shown
in Figure ��
In Tate�s House Building domain� planning is initi�

ated by the user specifying that the task build house
is to be planned� The planner searches its library of
possible activities �listed in part in Figure �� to 	nd a
method for achieving this initial task� Figure � con�
tains only one suitable method� schema build� With a
method identi	ed� the planner follows the constraints

encoded in that method by constructing a plan con�
taining four actions� one for each of the nodes in schema
build� These actions are constrained in accordance with
the orderings and conditions statements in the schema�

The actions inserted into the plan from schema build
are all non�primitives� That is� each is at a higher level
of abstraction than the planner is required to reach�
The planner therefore searches for methods that achieve
each of these non�primitive actions� In the case of the
action lay brickwork� the schema brickwork will be se�
lected� This process continues until the plan contains
only primitive actions� For a complete description of
HTN planning� see �Erol ����� or �Jarvis ������

Planning problems in the construction industry re�
quire the capability to reason at di�erent levels of
abstraction� The encoding of Tate�s House Building
demonstrates that HTN planners have this capability�
This observation con	rms Drummond�s ����� thesis
that it is this capability that has enabled the indus�
trial success of HTN technology� Knoblock ������ also
notes that HTN techniques underpin almost all indus�
trial applications of planning technology�

Figure �� Task Formalism Representation of Tate�s
House Building Domain

The representation of Tate�s House Building Do�
main does not meet the application requirements of
the construction industry speci	ed in Section ���� To
support construction planning� a representation must
distinguish between the generic component knowledge
and a speci	c design� The planner�s task is to apply
the generic component knowledge to a speci	c design�
Tate�s House Building Domain does not make this dis�
tinction� Instead� it encodes a speci	c design inter�
twined with the knowledge relevant to the components
in that design� Such a representation would be of lim�
ited commercial utility in the construction industry� In
order to plan a di�erent design� a new encoding would
have to be produced�

The following sections consider the issues encoun�
tered when attempting to provide an encoding of the
construction industry that meets the application and
representational requirements de	ned in Section ��
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Mapping the Modelling Requirements

of the Construction Industry to HTN

Representational Devices

The section provides a HTN encoding designed to meet
the modelling requirements of the construction indus�
try and draws conclusions about the suitability of the
technique in this domain� It is the conclusions drawn
from this analysis that motivate our DART�Network
approach de	ned in Section ��

Encoding Action Knowledge

This section outlines an encoding of the action knowl�
edge identi	ed in Section ��� in two stages� The 	rst
considers the issues surrounding objects� the subcom�
ponent relationship� and abstract actions� The second
considers primitive actions�
Figure � shows a HTN encoding of the building de�

sign and component knowledge inputs to the construc�
tion planning process� The building design input� at the
top of the 	gure� states the components in a building�
how they are related� and the values of their attributes�
When writing the component knowledge input shown in
the second part of the 	gure� the 	rst issue is the provi�
sion of schema that will re	ne the top�level task of any
design� Within the construction domain� all top�level
task speci	cations will be of the form build �Building�
Class BUILDING is the highest level component in the
sense that all other components are subcomponents of
it� and it is not the subcomponent of any other compo�
nent� We term the highest level component in a design
as being the Project component� Schema build in Fig�
ure � will re	ne the initial task� build �Building� The
schema contains a node corresponding to the object �
action pairing of all possible subcomponents of class
BUILDING� From the building design speci	cation in
the example� class FOUNDATIONS is the only possi�
ble subcomponent of a building� Hence� schema build
contains one node�
The second issue to consider is the provision of a

schema that re	nes the action lay �FOUNDATIONS
that will be generated by schema build to include the
subcomponents of class FOUNDATIONS� The only
subcomponent of this class in Figure � is the class
BEAM� Looking back at Figure �� the subcomponent
relationship between the classes BEAM and FOUNDA�
TIONS is not as simple as that between the classes
BUILDING and FOUNDATIONS� In this case� the re�
lationship contains a multiplicity ball �black circle no�
tation� at the beam end of the relationship� The ball
notation indicates that any number of instances of class
BEAM may be associated with a single instance of class
FOUNDATIONS� The encoding of this second transfor�
mation is shown in the lay foundations schema within
Figure �� To account for the multiplicity of the re�
lationship� the Task Formalism�s foreach construct is
used� This construct will generate a lay �BEAM ac�
tion for each instance of class BEAM associated with
an instance of class FOUNDATIONS�

Figure �� Encoding of the Component Knowledge and
Building Design Inputs to the Planning Process in a
HTN Formalism

The encoding scheme described above is formalised
into a set of guidelines in Figure ��

Figure �� Guidelines for Translating a Subcomponent
Hierarchy into a HTN Formalism

The second stage of the encoding process must ad�
dress the primitive actions that are associated with
components at the bottom of the subcomponent hier�
archy� accounting for the infer and must relationship
types� We de	ne the components at the bottom of the
hierarchy as primitive components because they do not
have subcomponents�
Each combination of primitive actions that can be

used to construct a primitive component can be viewed
as a possible construction method for that component�
With this de	nition� each construction method can be
mapped to a HTN formalism as a schema� and the con�
ditions under which each method should be applied ex�
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pressed as only use if 	lter conditions� The top part of
Figure � sketches the semantics of this encoding for the
methods that may be used to accomplish the task of
laying a beam� Each of the methods contains a number
of primitive actions� If condition is equal to v	� then the
actions in method�a should be used to accomplish the
task of laying the beam� Otherwise� method�b should
be used�

Figure �� Semantics and Template for the Translation
from Construction Methods to HTN Schemata

When encoding if�then�else structures� HTN 	lter
conditions require the redundant speci	cation of the
condition under which the else branch should be ex�
ercised� In a HTN system� if the constraint condition

 v	 is placed on method�a� then that method cannot
be used if this constraint does not hold� However� be�
cause of the way HTN planners operate� method�b may
also be selected if condition 
 v	� For the semantics
of the if�then�else structure to correctly hold� the do�
main writer must add the negation of the if condition
into method�b� The lower part of Figure � provides a
template for encoding of if�then�else structures into an
HTN formalism�

Encoding Dependency Knowledge

Figure � shows two classes related through the Support
relationship� The implication of this relationship is that
the actions relating to class PILE must be performed
before those of class BEAM� as the PILE supports the
BEAM� Following the encoding guidelines in Section ��
will produce a schema lay�foundations that will include
the nodes lay �beam and drive �pile� The Support de�
pendency constraint may be expressed as an ordering
constraint between these two nodes� This encoding is
also shown in Figure ��
The translation of the component structure shown in

Figure � to the schema in that 	gure was possible be�
cause both components are subcomponents of the same
component� class FOUNDATIONS� We term this situa�
tion as two classes sharing the same immediate parent�
Figure �
 presents a case where two related components
do not share the same immediate parent� When compo�

Figure �� Dependency Encoding Example� Same
Parentage Case

nents share the same immediate parent� actions relating
to those components will be reside in the same schema�
Hence� it is possible to place an ordering condition be�
tween them� In the example in Figure �� however� the
actions for class BEAM will reside in the schema lay�
foundations and the actions for class DRAINAGE in
the schema lay�drainage� The encapsulation unit of the
schema in HTN planning prohibits the placement of
constraints directly between schemata� To specify an
ordering constraint outside the encapsulation unit of a
schema� the domain writer may specify a condition for
the planning system to achieve� This encoding is shown
in the bottom part of Figure �
�

Figure �
� Dependency Encoding Example� Di�erent
Parentage Case

The encoding in Figure �
 distributes the dependency



Workshop on Knowledge Engineering and Acquisition for Planning� AIPS���� Pittsburgh� USA� �

knowledge between the schemata and requires the plan�
ning system to establish a condition that can be com�
pletely speci	ed by the domain knowledge available�

HTN Encoding Conclusion

Encoding the construction domain within a HTN for�
malism is a non�trivial task� A critical contribution
to this complexity is that HTN formalisms force the
knowledge engineer to think in terms of the planning
technology rather than the application domain� For ex�
ample� the engineer must identify schema re	nement
as the appropriate HTN mapping of the domain�s sub�
component relationship� When encoding dependency
knowledge� the engineer must identify the relationship
between the HTN schema unit of encapsulation� the
mapping of the subcomponent relationship to schemata�
and the resulting immediate parentage issue as the fac�
tors that determine how dependency is encoded�
An important secondary e�ect of this translation is

the masking of a schema�s rationale� Providing knowl�
edge engineers with the rationale behind an encoding
is essential to the e�cient maintenance of a knowledge
base� Without this information� it is di�cult for the
knowledge engineer to identify how the elements in a
knowledge base are related� and therefore which aspects
need to be updated to re�ect changes in the application
domain�

DART�Network Approach

The architecture of our Dynamically Assessed and Rea�
soned Task �DART��Network approach is shown in Fig�
ure ��� In existing systems� the domain writer must
encode a domain within the Library of Possible Ac�
tivities using a formalism akin to the Task Formalism
�Tate et al� ����� Section  identi	ed the di�culties
involved in mapping the construction domain to for�
malisms of this type� The DART�Network approach
regards the Library of Possible Activities as the result
of a compilation process� The innovation is that the
compilation process takes as its input a representation
that maps closely to the domain under consideration�
Using a domain�oriented formalism simpli	es both the
encoding and maintenance tasks� By then compiling a
domain representation in a Library of Possible Activi�
ties� the powerful techniques developed by AI planning
research may be deployed�

Figure ��� DART�Network Architecture

The following sections outline the DART representa�

tional devices and the stages in the compilation process�
For a description of the standard HTN planning com�
ponent of the architecture� see �Kingston et al� ������

DART� Network Representational Devices

The DART�Network representational devices are cen�
tred on the pattern derived from the modelling require�
ments of the construction industry that is shown in Fig�
ure ��� The domain writers task is to specialise this pat�
tern to capture knowledge in an application domain� As
the template is designed to matches the structure hu�
man expertise� this encoding process is simpli	ed�

Figure ��� DART�Network Representational Pattern

ClassMODEL is abstract and will therefore never be
instantiated� The class assigns all other classes that are
used to model a domain as being of type MODEL� Its
purpose is to permit operators to be written that work
over an entire model�
The abstract class OBJECT de	nes the relationship

abstract action that is common to all classes that may
be used to model the objects within a domain� Ob�
jects may be related to other objects through a set of
relationships that determine the temporal ordering con�
straints between actions� The pattern includes a set of
prede	ned relationships that the modeller may extend
when tailoring the pattern to an application domain�
The pattern accounts for the di�erent types of ob�

ject that were identi	ed in the construction domain�
Classes PROJECT� COMPOSITE�OBJECT� PRIMI�
TIVE OBJECT� and ACTION may be re	ned by the
domain writer� Class PROJECT makes explicit a spe�
cial type of class within a DART�Network domain rep�
resentation� This class may not be the subcomponent
of any other class� and is used to represent the overall
problem� It the construction domain examples earlier�
class BUILDING is of this type� Class COMPOSITE�
OBJECT may be decomposed into other instances of
class COMPOSITE�OBJECT and class PRIMITIVE�
OBJECT through the subcomponent relationship� In�
stances of class PRIMITIVE�OBJECT can not have
subcomponents but unlike the classes PROJECT and
COMPOSITE�OBJECT� they must be associated with
primitive actions�
The representation of action and dependency knowl�

edge is described within the action synthesis and de�
pendency synthesis stages in the following sections�
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Action Synthesis

The stages within DART�Network Compilation process
are shown in Figure ���The action synthesis stage de�
scribed in this section takes a DART problem speci	�
cation� reasons with that speci	cation� and returns the
original speci	cation augmented with actions� This sec�
tion describes the speci	cation of actions and the action
synthesis process�

Figure ��� DART�Network Compilation Process

In the case of abstract�actions� the domain writer
must specify the name of the action class to be asso�
ciated with each re	nement of the class OBJECT� The
action synthesis algorithm generates a new instance of
this action and adds it in the source object�s abstract�
action attribute� For the primitive�actions� the domain
writer must specify the action class and the directive
that is to be is used to determine when each action
should be associated with each primitive object�

Figure �� Encoding of class BEAM�s Actions

The encoding of class BEAM is shown in Figure ��
In the case of the action set�out�position� inference is
required to determine if the action should be associ�
ated� The infer directive includes the name of the
inference package that must be invoked to perform
this evaluation� An outline of the inference package
DETERMINE�SET�OUT�POSITION is shown in Fig�
ure ��� The package will return true if the action should
be associated� and false otherwise� This modelling ap�
proach meets the requirements of the construction do�
main set out in Figure ��
The task of the action synthesis algorithm de	ned

in Figure �� is to visit each instance of a class derived
from class OBJECT and instantiate the actions de	ned
by the domain writer�

Dependency Synthesis

The dependency synthesis process� shown in context in
Figure ��� takes the problem speci	cation augmented

Figure ��� Example Inference Package

Figure ��� Action Synthesis Algorithm

with actions and adds the dependency constraints be�
tween them�
The domain writer must provide a determine depen�

dency method for each re	nement
of the classes PROJECT� COMPOSITE�OBJECT� and
PRIMITIVE�OBJECT� Figure �� shows the determine
dependency method for the class BEAM� A set of di�
rectives are supplied akin to those for action synthesis�
The infer�abstract�action directive will cause the ab�
stract actions of all the instances related to an instance
of class BEAM through a support relationship to be con�
strained as occurring before the class� abstract action�
This constraint will only be placed if the DETERMINE�
SUPPORT�DEPENDENCY directive returns true�

Figure ��� Class BEAM�s Determine Dependency
Method

The dependency synthesis algorithm visits each in�
stance that is re	nement of class OBJECT in a model�
and invokes their determine dependency methods� This
algorithm is outlined in Figure ���
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Figure ��� Dependency Synthesis Algorithm

Schema Compilation

The schema compilation process� shown in context in
Figure ��� takes the problem speci	cation augmented
with actions and dependency constraints and compiles
the Library of Possible Activities input to the HTN
planning process�
Figure �� shows an example input to the compilation

process� Dependency constraints are ignored for the
moment for clarity� The compilation process navigates
the instantiated model� generating the HTN schemata
that are required to describe the construction of each
component� The algorithm works in three stages� task
de	nition� project and composite component de	nition�
and primitive component de	nition� Each stage is out�
lined before the overall algorithm is presented�

Figure ��� Instance Model with Action Synthesis Com�
pleted

The de	nition of the task the HTN planner is
to achieve is derived from the union of a model�s
PROJECT class and that class� abstract action� Fig�
ure �
 shows the install task de	nition that will be com�
piled from the example in Figure ���
With the HTN task compilation completed� the

compilation process generates the schemata that de�
scribe the construction of each instance of the class
COMPOSITE�OBJECT� The process starts with the
single instance of class PROJECT in a model and then
generates a schema that re	nes the initial task de	ni�
tion� The schema is generated by including the union
of each subcomponent of the project instance and the
abstract actions associated with them� In the case of
the Supermarket component� the schema generated will
include the union of each subcomponent and the ab�
stract actions associated with those components� The
completed build supermarket schema is shown in Fig�
ure �
� The results produced when the same process is

Figure �
� Compiled Task De	nition and Schemata

applied to the component the�foundations� is also show
in Figure �
�
With in�

stances of the class PRIMITIVE�COMPONENT� the
compilation process generates a schema with a node for
each of the primitive actions attached these instances�
The schema generated for the instance Beam	 is shown
in Figure �
�
The complete compilation algorithm is shown in Fig�

ure ���

Figure ��� DART�Network Compilation Algorithm

Dependency constraints are handled in one of two
ways� Ordering constraints between two components
that share the same immediate parents are speci	ed in
the schema compiled for their parent as an ordering
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constraint� This encoding matches that shown in Fig�
ure �� The handling of constraints between components
that do not share the same parent requires a modi	ca�
tion to the HTN planning process in order to relax the
encapsulation unit of a schema� Ordering constraints
of this type are recorded in the schemata generated
for each of the participating components� In the de�
pendent schema� a known�dependent �node constraint
is placed� where the �node parameter is instantiated to
the name of the action object pair on which the action
is dependent� In the producing schema� the constraint
provides�condition�for �node is placed� where the �node
parameter is instantiated to the name of the action ob�
ject pair which is dependent upon this action� Figure ��
shows an example of these constraints� In the example�
drain	 passes under beam�� hence the drain must be
laid before the beam�

Figure ��� Example known�dependent and provides�
condition Pair

The HTN planning process is modi	ed so that when
it encounters a node with a provides�condition�for or
a known�dependent constraint it 	rst examines its plan
to see if the other side of the pair is present� If it is�
the planner adds an ordering constraint between the
two nodes and proceeds as normal� If the other side
of the pair is not present� it suspends the processing of
the node until the other half is inserted into the plan�
When the other half of the pair is included in the plan�
the planner adds an ordering constraint between the
two nodes and marks the suspended pair as ready for
further re	nement�

Implementation Status

The DART�Network approach has been implemented in
Intellicorp�s KAPPA�PC and applied to construction
problems containing in the order of �

 components�
The knowledge representation and the plans produced
have been evaluated and veri	ed by domain experts
�Jarvis ������

Discussion

We have presented a compilation�based approach that
combines a formalism designed to match the structure
of human expertise in the construction industry with
an established planning technique� This union reduces

the representational distance between a knowledge en�
gineer or domain expert and the planning formalism�
thus lowering the complexity of the knowledge encoding
and maintenance tasks� whilst still exploiting powerful
AI planning techniques�
Other approaches to the knowledge engineering issue

centre upon the development of a framework for de�
scribing planning methods in a format that accounts
for the requirements of a knowledge engineer� When
viewed in isolation� the contribution of this character�
isation framework is a clear understanding of planning
methods in terms of the types of knowledge about a
problem they must be provided with� Whilst this un�
derstanding will assist in the mapping of expert knowl�
edge to planning methods� the knowledge engineer must
still encode domain knowledge within representations
that� as is demonstrated in this paper� fragment do�
main knowledge� When viewed in partnership with
the DART�Network approach� a potentially more prof�
itable research direction emerges� We view the DART�
Network architecture as a demonstration of concept
that is intended to motivate further research� By ex�
amining other domains� a library of representations de�
signed to match the modelling requirements of knowl�
edge engineers could be constructed� From such a li�
brary� it will be possible to identify emergent represen�
tations that are applicable to a number of domains� If
these domain oriented representations are then mapped
to the planning methods through a compilation ap�
proach� the resultant architecture would provide a gen�
eral approach to reducing the representational distance
between domain expert and planner formalisms� Thus�
reducing the complexity of the knowledge encoding and
maintenance tasks�
This paper re	nes our initial ideas published in

�Jarvis and Winstanley ����a� ����b�� Complete de�
tails of the case study� encoding issues with HTN for�
malisms� and the compilation process are available over
the web in �Jarvis ������ Our experiences with the
Task Formalism Method obtained whilst encoding con�
struction problems in the Task Formalism are reported
�Jarvis and Winstanley ������ whilst the impact of these
conclusions on the development of the Task Formalism
Method are reported in �Tate et al� ������
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