
Producing BT's Yellow Pages with Formation

Gail Anderson, Andrew Casson-du Mont, Ann Macintosh and Robert Rae
AIAI, University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN, Scotland UK

email:aiai@aiai.ed.ac.uk
tel: +44 31 650 2732 fax: +44 31 650 6513

Barry Gleeson
Pindar Set Ltd.

Newlands Park Drive
Scarborough, North Yorkshire YO12 6DT

email:barry@pindar.com
tel: +44 1723 500455 fax: +44 1723 367852

Abstract

This case study illustrates how the adoption of AI
technology can bene�t smaller companies as well as
major corporations.

Pindar Set is a small UK company which has origi-
nated the Yellow Pages directories for British Telecom-
munications plc since 1979. AIAI is a technology
transfer organisation which has delivered innovative
solutions to industrial clients since 1984. Together,
AIAI and Pindar have developed a next-generation
layout system, Formation.

Formation is fast, easy to use and 
exible, and had al-
ready delivered bene�ts through marketing trials be-
fore being successfully deployed in production of the
Yellow Pages in December 1997.

The heart of Formation is a 2D layout engine which for-
mats input data according to styles written in LSSL,
a domain-speci�c language developed at AIAI.

Through representing the layout knowledge in Forma-

tion explicitly in LSSL styles, and ensuring that it can
easily be modi�ed, Pindar has enabled itself to re-
spond far better to its customer's present and future
needs.

Background

Pindar's print works in Scarborough, NE England,
were founded in 1836. In the 1960s, Pindar introduced
photo typesetting to widen its market, and in the
1970s it became an early investor in computer technol-
ogy. Pindar won the contract to originate the British
Telecommunications Yellow Pages (BTYP) directories

Copyright c
 1998, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

in 1979. Although a small company employing only
200 people, Pindar Set, the company within the Pindar
group of companies which services BTYP, has invested
in new technology which can provide faster, better ser-
vices for its client.

AIAI at Edinburgh University was established in
1984 to promote the application of AI techniques.
Since then, it has delivered solutions to many industrial
and commercial clients. With its record of producing
innovative solutions for industry { and, importantly,
carrying out technology transfer to ensure that they
work { AIAI was a natural choice to partner Pindar in
producing a next-generation layout solution for BTYP,
Formation.

Task Description

BTYP publishes 74 di�erent regionally-based classi�ed
directories annually. Print runs vary from about 25,000
copies for the Isle of Man to over half a million for Glas-
gow South. A typical 1,500 page directory may contain
30,000 businesses under 3,000 classi�cation headings,
and 5,000 display advertisements. Pindar has used
computers to lay out BTYP from the beginning, and
today's tight timescales and large directory sizes make
computer-based layout essential. However, Pindar had
found the layout programs di�cult to maintain in the
face of changing requirements.

By the beginning of the 1990's, advertisers were be-
coming more demanding, and BTYP wanted to in-
troduce new features which required extensive mar-
ket testing. Pindar needed to be able to respond to
changes such as the introduction of new advertisement

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



types, and be able to try out di�erent layout scenarios
quickly and reliably.

Pindar's increasing presence in worldwide classi�ed
telephone directory (CTD) production, and Pindar's
future requirement to be able to use the new system
to lay out other types of publication (such as newspa-
pers or catalogues) meant that the system had to be

exible and con�gurable enough to produce publica-
tions with many di�erent layout requirements. Layout
requirements for CTDs are usually expressed in terms
of page appearance, usability, and aesthetics. Increas-
ingly, publishers also need to able to provide more spe-
cialised and customised services for their advertisers,
who may want their entries to appear in particular po-
sitions on the page, and so on.

Pindar needed a knowledge-based system which al-
lowed publishers to specify their requirements both
naturally and precisely. The layout knowledge used by
the system needed to be explicit rather than implicit,
so that it could easily be modi�ed. For commercial
reasons, it was important that the system could run
on standard PC hardware. Although knowledge-based
layout systems did exist (Camara, Martins, & J�acome
1990; Chew & Liang 1994; Graf 1995), none of them
met all Pindar's requirements for 
exibility, speed, pre-
dictability, maintainability and price, so work began on
Formation in 1994. Formation went into full production
use at Pindar in December 1997; the �rst directory pro-
duced by the new system was for the Shrewsbury area
{ the same directory �rst produced by Pindar in 1980.

Application Description

Each BTYP directory covers a single geographical
area. Sales representatives visit businesses through-
out the area selling display advertising, and telephone
sales representatives sell smaller, cheaper advertise-
ments. Most display advertisements are produced by
Pindar's and BTYP's graphics studios: once each has
been approved by the advertiser, it is sent to Pindar's
production site in Scarborough.

When the directory is \closed" (that is, when no
more orders will be accepted from advertisers), BTYP
produces compiled data containing classi�cation head-
ings, display and semi-display advertisements, and list-
ings. This data is presented in sequence, with adver-
tisers appearing alphabetically within their class. The
task of the layout system is to place all the entries
within the directory in as close a sequence as possible
to the original alphabetical sequence, while minimis-
ing the number of pages used and hence the amount of
\�ller" material generated. Maintaining a good visual
balance is also increasingly important.

Formation lays out input data according to particu-

lar layout styles, and a BTYP style has been imple-
mented. This speci�es things like where particular
types of item can be placed on the page, and what
changes to the input sequence are allowed. Layout
styles are implemented in the Layout Style Speci�-
cation Language (LSSL), an object-oriented domain-
speci�c language designed by AIAI. It is intended to
enable the LSSL programmer to describe the layout
process in a natural manner, while remaining precise.
Once layout is complete, Pindar carries out post-

processing of the data, and combines the layout pro-
duced using Formation with the graphics produced by
the studio to produce �lm ready for printing.

Formation Overview

The diagram in �gure 1 shows how the Formation sys-
tem can be delivered to a particular publisher. At its
core is the general 2D layout engine, the LSSL inter-
preter. In addition to this, there is a library of generic
style elements, implemented in LSSL.

2D layout engine

core functionality

generic style elements
style library

publisher-specific style

Figure 1: Formation design

At present, the style library contains elements which
deal with layout in general and elements which are use-
ful speci�cally for layout of classi�ed telephone direc-
tories. As our experience with using Formation to lay
out di�erent documents grows, we are adding to the
style library.
Using these generic elements and LSSL primitives, a

style is implemented to specify the publisher's in-house
requirements. Usually, the style will provide parame-
ters through which the user can control the �nished
layout. For example, one of the parameters in the
BTYP style speci�es how groups of line entries can be
split, and the CTD style described in an earlier paper
(Anderson et al. 1996), which was produced for use
in production of certain US telephone directories, has



a parameter which speci�es whether or not a display
advertisement has to appear amongst the line entries
of its own classi�cation.
The publisher can use the Formation graphical user

interface to con�gure the house style, setting the
parameters to specify exactly how each publication
should be laid out, with no programming required.
Once the publisher is happy, the same interface can

be used in production to control and monitor layout.
Figure 2 shows the Formation user interface laying out
some pages from a BTYP directory.

Figure 2: The Formation GUI under Windows95

Through the judicious provision of style parameters,
the publisher can therefore be o�ered a great deal of

exibility in choosing the layout of his documents. At
Pindar, the Formation user interface also provides a
natural and accessible way of demonstrating the power
of the layout engine to Pindar's clients.
However, should the customer want greater 
exibil-

ity than is o�ered through con�guring an existing style,
he can have it, because the full power of LSSL is avail-
able to the style programmer.
There are inevitably practical di�culties in fully and

unambiguously describing how to handle every inter-
action that can result from every possible combination
of input data, so very occasionally the operators need
to make manual changes to the �nished layout. More
commonly, the publisher has to make late changes {
such as the inclusion of new advertisers, or corrections

to the text of line entries { so support for human inter-
vention is a continuing requirement. When it is used
to produce the BTYP directories at Pindar, the LSSL
interpreter is harnessed to a page editor developed by
Pindar.

LSSL and the Layout Engine

The 2D layout engine is a LSSL interpreter. It is im-
plemented in Allegro Common Lisp, and runs on a
Pentium-based Windows PC in production at Pindar.
Because it is in Common Lisp, it is portable, and it also
runs under Macintosh and UNIX operating systems.
LSSL is a small, object-oriented language for de-

scribing general 2D layout requirements. It has dy-
namic typing, simple object semantics, and provides
mechanisms for event-driven programming which sup-
port precise speci�cation of the layout process.
The representation of a LSSL document is based on

the concepts of block and grid. A block is a rectangle;
blocks are sub-typed into regions, which are rectangles
which can be �lled by the layout process, and items,
which represent the data to be laid out. Regions can be
divided into smaller regions by divider grids, enabling
the style programmer to specify di�erent logical parts
of the page, while page grids are used to specify the
positions in which items can be placed.
Using these concepts, then, the geometry of the page

is described. The document is represented as a queue
of spread regions. A spread is usually { but not neces-
sarily { two facing pages (see �gure 3).
LSSL provides primitives for de�ning styles and doc-

uments, and for controlling pagination. Layout is usu-
ally carried out through calling the built-in paginate

procedure, as follows. First, there is some pre-layout
preparation: input and output �les are opened, and
various objects needed for layout are initialised. Then
the document is laid out in a well-de�ned process. At
the end, things are tidied up, and paginate compiles
and writes out a layout report.

The Style Library

The style library provides generic and reusable style
elements, implemented in LSSL, which can be cus-
tomised by a style programmer. Through the use
of the inheritance mechanisms provided by LSSL the
style programmer can de�ne ever more speci�c require-
ments. At present, the style library contains com-
pletely generic elements for 2D layout, plus elements
which are of use within the more specialised domain of
CTD layout.
For example, we said that a spread is usually but not

necessarily two facing pages. The concept of a spread
is built in to the style library, and by default, a spread
will contain a 2 by 1 divider grid. This type of grid is



bottom margin
divider grid divider grid alley

(= spread gutter)
page grid

alley

divider grid

spread with 2 by 1

layout grid
with 3 by 40

right page regionleft page

left margin

divider grid

region divider grid
top margin

Figure 3: Spread structure with regions and grids

the norm for CTDs in general, and BTYP directories
are no exception. However, if we wanted to write a
style for laying out a single-page 
ier, we could do so
by de�ning a single-spread page, overriding the default.
Figure 4 shows how the style library is developing.

The Formation User Interface and the Page
Editor

The Formation user interface (see �gure 2) is written
using the Allegro Common Lisp GUI Builder, and runs
only on a PC under Windows. The Page Editor, how-
ever, is implemented in C++ using Microsoft Founda-
tion Classes. This gives Pindar portability across the
PC, Apple and Sun platforms, as well as allowing easy
access to PC dependent facilities such as OLE.

As well as allowing the user to con�gure a style
through changing and specifying its parameters (and
in particular, changing the parameters of the strategy
and methods), the user interface provides facilities for
describing the page geometry and the types of item
which can appear in the book.

BTYP

YM

2D layout engine

generic style library CTD
catalogue

brochure
newspaper

Figure 4: Development of the style library

The Contents of a Style

A layout style comprises: the page geometry (regions
and grids); the di�erent types of item which can ap-
pear on a page (a hierarchy of types, usually speci�ying
sizes, and required spacing); a speci�cation of the re-
quired layout process, or strategy (e.g. lay out a spread
at a time, or consider a whole classi�cation at once);
and detailed knowledge about how to position items
on a page, in the form of layout methods and rules.
Note that in LSSL a layout method is simply an

object which encapsulates knowledge about a particu-
lar aspect of page layout. For example, in the BTYP
style, there is a particular method which speci�es how
to keep entries in sequence, and another which speci�es
how to position multi-column display advertisements.
Each layout method is implemented as a package of
event-driven layout rules; a rule de�nes a set of ac-
tions which is to be carried out when a particular event
happens.

Layout Rules

LSSL provides the programmer with the ability to con-
trol the layout of a page through rules which are de-
�ned for certain objects and are executed when partic-
ular events occur. LSSL layout rules are therefore not
production rules. While production rules encode their
conditions explicitly, LSSL layout rules do not. In-
stead, the conditions under which LSSL rules are �red
are de�ned in terms of LSSL events. Built-in LSSL
procedures { such as get-space, which �nds a space
in which an item can �t, and align, which tests to see
whether the item can be positioned in that space given



the layout requirements { signal events, but the LSSL
programmer can also signal his own events.
Since every rule de�ned for an item at a particular

event is executed when that event occurs, it is impor-
tant that rules do not con
ict. Some care is necessary
to package rules together in discrete methods which
can be enabled or disabled on demand.
For example, the method for keeping entries in se-

quence in BTYP contains a rule to check that an entry
is aligned following the last one already placed on a
page:

;;; Keep entries in sequence

(a method eis "Entries in sequence"

("Sequenced entry type" entry))

;;; Align a sequenced entry following the

;;; last one on the page

(a rule eis.follows-last? (for eis.entry)

(at align)

:(it gd _ _) ->

(or (not gd.last-entry)

(eis.follows? it gd.last-entry)))

The rule is part of the eis method, and is stored in
a slot in that method. Note that the type of item
for which it is de�ned can be con�gured through the
method parameter eis.entry. eis.follows-last?

will be executed when any item of this type is aligned.
It carries out a simple test to see whether there are any
entries on gd, the page grid on which this item is being
aligned, and, if there are, it runs a method-speci�c
procedure eis.follows? to check whether this entry
is aligned following the last. Of course, the de�nition
of eis.follows? could be changed to accommodate
the requirements of a di�erent publisher.
Through encapsulating the knowledge about the

look of a �nished page in methods and rules, then,
we are able build up a library of con�gurable, reusable
components.

Design Criteria

Formation was designed to satisfy two important re-
quirements: 
exibility in describing or modifying the
details of a particular style of layout, and high through-
put. It was required to produce CTDs for BTYP,
but was always intended to be more general. It
therefore has a modular design, and is based on the
general-purpose framework provided by LSSL. Un-
like other systems (Camara, Martins, & J�acome 1990;
Graf 1995), the emphasis was on carrying out correctly

and predictably what has been speci�ed, rather than
selecting an optimal solution from several candidates.

Uses of AI Technology

Since Pindar required a system which would run re-
liably in production, AIAI chose to use mature tech-
nology. Common Lisp was chosen as the development
language because it is particularly well-suited for ma-
nipulating symbolic data, and because features such as
automatic storage management improve programmer
productivity. AIAI sta� already had Lisp expertise.
Franz Inc's Allegro Common Lisp was used because
it provides a high-quality, well-supported development
environment.

In developing Formation, AIAI's skills and experi-
ence in knowledge acquisition, knowledge representa-
tion and symbolic computation were particularly use-
ful. A disciplined knowledge-engineering approach was
taken from the beginning, and in the early stages of de-
velopment AIAI carried out structured interviews with
Pindar sta�. Through these we were able to capture:
BTYP's current requirements; expertise resulting from
the continuing need to edit pages after layout is com-
plete; and previous experience of laying out CTDs by
hand before computerised layout was possible. The
results were used to produce a layout ontology from
which LSSL and the style library have developed.

It was important to Pindar that the delivered sys-
tem be maintainable by Pindar sta�, so modularity
has been important to the design and development of
Formation. We decided early on that given Pindar's re-
quirements, including tight timescales and the require-
ment for mature technology, the available constraint-
based technologies would not suit. However, we orig-
inally expected to use a very simple representation of
layout constraints in the layout engine.

Early experiments with these proved that in order
to meet BTYP's requirement to be able to specify
(and monitor) layout very precisely, we needed a much
more deterministic approach. The event-driven rules
in LSSL were the result, and we found it easy to incor-
porate them into the general and modular framework
we had developed. Should there be a requirement for
a more constraint-based alternative approach in the
future, Formation's design, and the object-oriented na-
ture of LSSL, will accommodate this.

Pindar chose to implement the page editor in C++
for business reasons, including the ability to take ad-
vantage of in-house skills in C++. The choice of Mi-
crosoft Foundation Classes provided portability, and
delivery on a PC made it easy and cheap to deliver
hardware for production as well as permitting o�-site
demonstration on laptop computers.



Application Use and Payo�

Formation is used in production at Pindar in batch
mode. The text listings to be included in a book {
such as the classi�cation headers and plain text list-
ings { are typeset; when typesetting is complete, the
space needed on the printed page for each text entry
is known. LSSL object de�nitions for these entries are
then combined with de�nitions for the graphical en-
tries { such as the display advertisements { to produce
a single input stream. Pindar production sta� then
run Formation in batch mode. When layout is com-
plete, the output stream of LSSL object de�nitions is
combined with the typesetting information and graph-
ics to produce printed pages for proof-reading. On the
occasions when editing is necessary, perhaps because
of last-minute changes from the publisher, these are
made using the page editor developed by Pindar. The
whole process, from the point when the compiled data
arrives at Pindar till the �nished �lm is sent to the
printers, typically takes only 3 days.

Long before Formation went into full production use
for laying out BTYP at Pindar in December 1997,
its high throughput and great 
exibility had already
brought Pindar clear business bene�ts.

The ability to describe layout knowledge in a con-
cise and modular way has enabled us to make changes
requested by BTYP very quickly, and Pindar has been
very pleased with the speed at which styles can be up-
dated. Changes can be made to the layout produced
by Formation in hours or days; with previous systems,
even apparently minor changes might take weeks. The
introduction of new advertisement types has proved
painless.

Using Formation, Pindar has been able to produce
special sections such as Eating-Out Guides which were
previously compiled manually by the operators. The
ability to trial di�erent layouts has helped Pindar to
produce samples which BTYP have used for market
research, with the con�dence that should BTYP decide
to produce directories with these new features, Pindar
can deliver quickly and easily.

The ability to collect statistics such as the total per-
centage of �ller space in the book, or the number of full-
page display advertisements, and to control through
LSSL styles which of these are reported to the op-
erator or user, is an additional bene�t. It provides
Pindar with a mechanism for measuring the impact
of changes to layout quantitatively, and for identifying
those which will have a direct impact on costs.

Although the ability to program styles in LSSL
makes Formation extremely 
exible, the provision of
the Formation GUI makes the system very easy for a
non-programmer to use and understand. Apart from

reducing training costs, this ease of use means that
Pindar can readily demonstrate Formation to existing
and prospective customers. Furthermore, since Pindar
has the ability to recon�gure a style's parameters and
lay its example document out again and again in front
of a customer, it is easy for the customer to see and
to understand the impact of changes and the potential
bene�ts they will bring him.

As the detailed knowledge which controls the `look
and feel' of the �nished document is readily identi�-
able, it can also be used to inform advertisers about
the rules that are applied to determine the positioning
of their advertisements. This is important to BTYP,
as their sta� have to be in a position to explain to ad-
vertisers why their entries appear where they do; the
ability to give precise answers could eventually reduce
costs incurred by BTYP through customer complaints.

Speed of layout is an important aspect of the system
due to both the number of directories that have to be
processed and the relatively short timescales involved
in their production and printing. Formation can lay out
a typical directory of 1500 pages at a speed of well over
1,000 pages per hour on a 100 MHz Pentium-based PC.

Although Formation was intended speci�cally to pro-
duce classi�ed telephone directories, it is a much more
general system and can be used for the two-dimensional
layout of general shapes based on rectangles. Because
of this general framework, Pindar can see enormous
potential for marketing Formation in Europe, the USA
and the Far East.

Application Development and

Deployment

Formation was developed at AIAI by a project team
of �ve. The skills of the individuals in the team com-
plemented each other, and covered requirements cap-
ture, knowledge elicitation and modelling, AI software
design and implementation, and project management.
The initial development of the LSSL interpreter and
the BTYP style took approximately 1 man year, and
was carried out over a period of 10 months, during
which regular review meetings were held with Pindar
sta�. The system was delivered on time and to speci-
�cation.

In order to ensure that the system met operational
requirements, Pindar's Production Operations Man-
ager was involved, from specifying the requirements
through to accepting the delivered system. His in-
put was essential, as he has overall responsibility for
the typesetting and formatting process by which the
BTYP directories are produced.

Throughout its development, a high priority has
been to ensure that Pindar is able to maintain and



modify Formation in the future. As a technology trans-
fer organisation, AIAI aimed not to deliver a `black
box' product, but to provide its client with a long-term
solution. Pindar's technical sta� visited AIAI regularly
to work with the project team, and they were involved
in discussion and comment at all stages of design and
implementation. Following project delivery, members
of Pindar's support sta� spent further time at AIAI
learning about the system.

Since January 1996 Formation has been used by Pin-
dar in development and for market research, and it
has proved very 
exible. During this time it was also
used in production trials, and we gained a great deal
of expertise about layout speci�cation. It became clear
early on that page layout systems are very liable to in-
complete and inaccurate speci�cation. Some of AIAI's
e�orts in technology transfer, therefore, have centred
on providing tutorial material which will help Pindar
to write clear and concise style speci�cations. A great
deal of e�ort has gone into ensuring that the BTYP
style is very well documented and that Pindar techni-
cal sta� can modify it.

By contrast, since Formation is used in production
in batch mode, very little training in its use has been
necessary for production sta�.

Formation successfully replaced the previous system
in production use in December 1997, together with the
Page Editor. The �rst book produced with it was the
1998 directory for the Shrewsbury area.

Maintenance

It is very important to Pindar that maintenance of
the layout system is not dependent on the develop-
ers; AIAI delivers tutorials to ensure that Pindar sta�
understand new developments, as well as producing
reference and tutorial documentation.

The strategic partnership between AIAI and Pin-
dar enables continuing development, and current ef-
forts are concentrated on further development of the
style library.

The provision of style parameters which can be mod-
i�ed though the user interface has enabled even begin-
ners to change Formation's behaviour. The additional
facilities in the interface for specifying page geometry
and item types allow the user to make changes to the
declarative knowledge de�ned by the style without ever
needing to program.

These facilities, together with the growing style li-
brary and the ability to program entirely new features
in a modular and natural fashion, are particularly use-
ful in this time of rapid change in publishing and ad-
vertising. BTYP's layout requirements have changed
several times since work on Formation began in 1994,

but it has proved easy to accommodate those changes.
Pindar expects to make even greater use of Formation's

exibility in future, as new features currently under
discussion start to appear in BTYP directories.

Conclusion

The successful development and deployment of Forma-

tion illustrates how a relatively small, privately owned
company can bene�t from using applied AI technology.
Through working with AIAI to ensure that its layout
knowledge is understandable and easily modi�ed, Pin-
dar Set has enabled itself to respond far better to its
customer's needs, both present and future.

References

Anderson, G.; Casson, A.; Macintosh, A.; Rae,
R.; Gleeson, B.; and Carter, S. 1996. Formation:
Knowledge-based layout of classi�ed telephone direc-
tories. In Applications and Innovations in Expert Sys-

tems IV: Proceedings of Expert Systems 96. British
Computer Society.

Camara, J. A.; Martins, J. F.; and J�acome, M. S.
1990. ATENA: A knowledge based system for auto-
matic pagination of Yellow Directories. In Research

and development in expert systems VII: Expert Sys-

tems 90, Proceedings of the Tenth Annual Technical

Conference of the British Computer Society specialist

group on Expert Systems.

Chew, H.-G., and Liang, M. 1994. ALEXIS: An In-
telligent Layout Tool for Publishing. In Proceedings

of the 6th Innovative Applications of Arti�cial Intel-

ligence Conference. Seattle, Washington: AAAI.

Graf, W. H. 1995. The Constraint-Based Layout
Framework LayLab and its Applications. In Pro-

ceedings of the Workshop on E�ective Abstractions in

Multimedia Layout, Presentations, and Interaction.
San Francisco: ACM.


