
Selecting a KBS tool using a knowledge based system

Stefan Robertson� Midland Treasury Support Services� London� England
John K�C� Kingston� AIAI� University of Edinburgh� Scotland

AIAI�TR����

February ���	

This paper is an extended version of a paper which was presented at the Joint
Paci
c Asian Conference on Expert Systems � Singapore International Conference

on Intelligent Systems� Orchard Hotel� Singapore� ����	 February ���	�

Arti
cial Intelligence Applications Institute
University of Edinburgh

�
 South Bridge
Edinburgh EH� �HN

United Kingdom

c� The University of Edinburgh� ���	�



Abstract

When an organisation embarks onto a project or strategy which will bring

knowledge based systems into their business processes� one of the most fre�

quently asked questions is� �Which software tool should be used�� The task

of selecting the best tool requires both an understanding of the relevant

characteristics of a project and a considerable knowledge of the competing

alternatives� from which it was deduced that this selection task could usefully

be implemented using a knowledge based system�

The purpose of this paper is to describe the nature of the task of tool

selection� and to describe how the relevant aspects of this task were repre�

sented using the CommonKADS methodology in order to encode them in a

knowledge based system� The �nished system was tested by applying it to

the task of selecting the best tool for implementing itself� The paper con�

cludes with a discussion of the important factors in selecting a KBS tool� and

the appropriateness of CommonKADS for this project�

� Introduction

When an organisation embarks onto a project or strategy which will bring knowl�
edge based systems into their business processes� one of the most frequently asked
questions is� �Which software tool should be used�� There are many sofware toolk�
its available for programming knowledge based systems� o�ering a wide variety of
programming techniques� and selling for an equally wide range of prices� The task
of selecting the best tool requires both an understanding of the relevant charac�
teristics of a project and a considerable knowledge of the competing alternatives�
from which it was deduced that this selection task could usefully be implemented
using a knowledge based system� This task was duly undertaken in the summer of
����� using knowledge elicited from experienced KBS programmers on the sta� of
the University of Edinburgh�

The purpose of this paper is to describe the nature of the task of tool selec�
tion� and to describe how the relevant aspects of this task were represented in
order to encode them in a knowledge based system� This project was carried out
using part of the CommonKADS methodology for developing knowledge based
systems �Tansley � Hayball� ����� �Schreiber et al� ����� �Kingston� ������ which
helped to identify certain important aspects of the task� the key models from the
CommonKADS analysis are therefore also described� It is hoped that this paper
will serve as a guiding document for anyone who is trying to decide which tool
to purchase� as well as describing the implementation of a functioning knowledge
based system� A fuller description of the project can be found in �Robertson� ������

�



� KBS Tools

The 
rst stage in the project was to acquire knowledge about di�erent tools� and the
factors which a�ect the selection of KBS tools� This was done by reading product
brochures� by performing knowledge elicitation sessions with a member of AIAI
sta�� and by reading product reviews �such as �Mettrey� ������ and literature �such
as �Price� ���
��� A KBS tool is taken to be a software package designed to assist
in the development of expert systems� These di�er from knowledge elicitation
tools and �knowledge engineering workbenches�� which are designed to assist in
knowledge elicitation and modelling� KBS tools provide an environment within
which expert systems can be prototyped� developed and implemented�

There are approximately �

 commercially available KBS tools� and so the

rst step in understanding the products available was to attempt to determine
if they could be grouped together in some fashion� Initial knowledge acquisition
suggested that the most useful dimensions for classi
cation are price� functionality
and platform� and that the 
rst two are closely related �based upon the observation
that additional functionality is usually tied to additional cost�� Most authors use
a broadly similar classi
cation� for example� �Alty� ����� groups the products into
three main categories based primarily on functionality� which also happen to di�er
markedly in the platforms on which they are available�

� Shells

� Languages

� Toolkits

�Price� ���
� has a similar classi
cation� However he breaks down toolkits into
three subgroups� loosely coupled� high�end and medium�priced toolkits� Loosely
coupled toolkits are simply products with a selection of tools complete with an
underlying language� High�end and medium�priced tools are classi
ed based upon
the relationship between price and functionality�

After performing a knowledge elicitation session� the classi
cation described
below was decided upon� based on the representational features o�ered by each
tool�

��� Shells� toolkits and languages

����� Shells

Shells are the smallest and simplest of all KBS tools� They tend to run on PCs�
often requiring kilobytes rather than megabytes of RAM� They are a lot cheaper
than the larger tools� with a top price of around ��


� They are also easier to

�



learn and use �knowledge representation is largely restricted to the use of rules��
and so can be used by people without many AI or programming skills�

On the negative side� shells are more restrictive in the types of tasks that they
can undertake� Memory constraints and the lack of certain knowledge representa�
tions �such as objects� means that more complex knowledge�based problems such
as planning or design problems may not be able to be handled with these products�

Shells can be broken into two further categories� Rule Based Network Shells and
Pattern Matching Shells� Rule based network shells are the most restrictive type�
their rules cannot contain any variables� with the result being the rules e�ectively
form a decision tree� The usual inference method in these shells is backward�
chaining� A good example of a rule network shell is CRYSTAL� from Intelligent
Environments�

Pattern matching shells are usually less restrictive� Rules can contain variables�
with forward or backward chaining provided �although usually not both�� The main
feature of this classi
cation is the pattern�matching network present in the tools�
This network is designed to speed up the inference process� A good example of a
pattern matching shell is OPS��

����� Toolkits

Toolkits are much more powerful than shells� Representational power is increased
by providing both rules and objects� Toolkits tend to require powerful machines�
allowing the development of more complex systems than shells can handle easily�
Some toolkits o�er both forward�chaining and backward�chaining of rules� However�
the increased power means that the level of expertise of the developer needs to be
higher� in both programming and AI terms� this is often because experience is
needed in order to select the best features for the task at hand�

Toolkits� like shells� can be broken into two main subcategories� Mid�range
Toolkits and Top�range Toolkits� Mid�range toolkits tend to require ��� PCs or
more powerful machines� the price usually falls in the range between ��


 and
��


� They are typically written in C� making them reasonably e�cient� These
toolkits allow programming using both rules and objects� Top�range toolkits require
powerful workstations� originally this meant dedicated LISP machines� but now
UNIX workstations can be used� Most top�range toolkits are still written in Lisp� A
key feature of top�range toolkits is the provision of some form of assumption�based
truth maintenance system �de Kleer� ������ this allows the creation of multiple
what�if scenarios� Top�range toolkits also allow the use of forward and backward
chaining rules as well as objects� and a number of other features�

�



����� AI Languages

Languages are the most �exible tools of all� They can cater for any type of task
that can be represented on a computer� However� what is gained in representational
power is also lost in the increased time required to develop systems�

Unlike the previous two categories� shells and toolkits� languages do not provide
any sort of inference engine�� Nor is any knowledge representation formalism �rules
or objects� provided� and so one must be developed�� These factors contribute to
a longer development time and a need for expensive expertise�

��� ART�like and KEE�like

A second dimension for classifying tools was also identi
ed� This groups the prod�
ucts into various camps based on whether the product is similar to ART or KEE�
Inference ART c�and KEE c�were among the 
rst commercially successful toolkits�
For some time� they were almost the only commercially available tools to o�er both
rules and objects integrated withing a single package� Many of the tools that fol�
lowed tended to copy the features of either ART or KEE� thus producing the �ART
Camp� and the �KEE Camp��

����� ART Camp

Tools in this category are based around the rule as the prime representational mech�
anism� All products in this camp have a e�cient forward�chaining inference method
based upon the Rete network� This network dramatically improves the speed of
the inference engine� Backward�chaining is provided by a few tools� implemented
on top of the forward�chaining engine�

Most ART�like tools provide objects� but these tend to be secondary to the rule
system� A limited form of graphics is sometimes supplied�

Examples of tools in the ART Camp are�

� Inference ART

� Clips

� Eclipse

� OPS�

� ART�Enterprise�

�The exception is Prolog� which provides a simple goal driven� depth��rst inference engine�
�Again� the Common Lisp Object System �CLOS� provides an exception to the rule�
�formerly called ART�IM

�



����� KEE Camp

Tools in the KEE camp use objects as their main representation method� Rules
are usually provided� but they tend to be less e�cient than the ART camp� Both
forward and backward�chaining inference� usually on the same rules� are provided�

A powerful feature of many tools in the KEE camp is active images� graphics
which are linked to objects� When the object is altered in any way� this alteration
is re�ected in the display� conversely� if the graphic image is altered by the user�
the underlying object is also updated�

Examples of tools in the KEE Camp are�

� KAPPA�PC

� KEE

� Object�IQ

� ProKappa

��� Other important features of KBS tools

It is clear from the discussion in the previous section that the representational
features o�ered by a tool � i�e�� support for rules and�or objects� forward and�or
backward chaining � are the most important features to consider when choosing a
KBS tool� However� the knowledge elicitation on this project identi
ed a number of
other factors which should be considered� For example� facilities for supporting un�
certain or hypothetical reasoning may be useful� several shells support numerically
based uncertain reasoning �often by attaching Bayesian probabilities to assertions�
while the top�range toolkits provide support for full�scale assumption�based truth
maintenance systems �de Kleer� ������ The interfaces which a tool supports are also
very important� this category includes facilities for constructing user interfaces� the
user interface of the tool itself� and interfaces to external programs �e�g� databases
or spreadsheets�� There are also a large number of other features to be considered�
such as

� price �both development and delivery versions��

� required hardware and software�

� vendor support�

� quality of documentation associated with the tool�

� any features which the tool might provide for securing knowledge bases�

�



For a fuller list of features� see �Stylianou et al� ������
For this project� the large number of possible features which could be consid�

ered were summarised using categories derived from �Rothenberg� ������ These
categories were�

� Flexibility�

� Ease of Use�

� E�ciency�

� Extendability�

� Support�

In addition� two other categories were explicitly identi
ed� These were�

� Portability�

� Reliability�

����� Flexibility

This refers to the range of knowledge representation techniques in a KBS tool� The
larger the number of techniques� the more �exible the product� The implication
of this is that top�range toolkits are usually more �exible than mid�range toolkits�
mid�range toolkits more �exible than pattern matching shells� and pattern matching
shells more �exible than rule network shells� AI languages are the most �exible tools
of all�

����� Ease of Use

This attempts to measure how usable the product is� This factor is inversely related
to the number of features provided by a tool� because the more features a tool has�
the harder it is to use� However� the quality of the interfaces provided by a tool
can greatly a�ect the ease of use�

It is important to note that the user of a tool will vary over the course of
the development life�cycle� During exploration� prototyping� and development� the
knowledge engineer is the user� during 
elding and operation� the end�user becomes
the system user� The quality of the interfaces provided for the knowledge engineer
and the interfaces which can be produced by the knowledge engineer are therefore
both germane to ease of use�

�



Tool Time �sec�� Ratio

Art ���
� ��� �
Kee ����� ��� ���

Table �� Relative Speeds of Art and Kee

����� E�ciency

The e�ciency of the tool relates mainly to the speed of execution� It was found
that the most important e�ciency issue� particularly for tools which use forward�
chaining rules� is the presence of a pattern matching network� The aim of this
network is to reduce the number of matching operations that need to be performed
during each recognise�act cycle� It does this by building a network of all the possible
matches for the rule base� This network is only altered when facts are asserted or
retracted�

The most common form of pattern matching network is the Rete algorithm� A
full description can be located in �Forgy� ������ This is the algorithm present in
the Art Camp products� and represents a substantial speed di�erential over those
products which do not have such a network�

This claim can be demonstrated with reference to a test carried out by
�Riley� ������ This saw the monkey�and�bananas problem carried out on a Sym�
bolics Lisp machine with ART� with a Rete network� and KEE� without a Rete
network� The results can be seen in Table �� ART outperformed KEE by more
than two orders of magnitude� �N�B� Both ART and KEE have progressed by sev�
eral versions since this test was performed� so the absolute timings should not be
considered valid for current versions of these tools��

There are a number of other issues a�ecting the e�ciency of a product� Products
written in C tend to have a slight speed advantage over those written in languages
such as Lisp� In addition� the presence of a knowledge base compiler can improve
the speed of inference by generating a representation in the underlying language�

����	 Extendability

This is the degree to which any system developed using the KBS tool can be ex�
tended� The extension can encompass a variety of avenues� These include increasing
the size of the knowledge base� interfacing with external programs and receiving
data from outside sources �databases and spreadsheets��

����
 Support

The primary issue in this category is the level of support provided by the vendor�
This covers areas like telephone hot�lines� training services and consultancy� In

	



addition the stability of the vendor and their commitment to the product must be
factored in�

The history of Expertech Ltd� provides a good example of the importance of
vendor stability and commitment to a product� Expertech produced the pattern
matching shell Xi Plus� which sold fairly well in the ���
s� Expertech then took
over the operations of another vendor� ISI� who sold a shell named SAVOIR and
a mid�range toolkit named Egeria� Expertech ceased to support SAVOIR �since
it was a competitor to Xi Plus� but continued to market Egeria� vendor stability
was therefore a major factor in the demise of SAVOIR� Some years later� Ex�
pertech merged with the Inference Corporation to become Inference Europe Ltd�
Inference Europe no longer market Egeria �which competes with their mid�range
toolkit� ART�Enterprise�� and their clear commitment to ART�related products
raises questions about their commitment to marketing and supporting Xi Plus�

����� Portability

The important issues here concern the runtime options of the product and the
delivery hardware that will be utilised� If the product is only designed to run on
a single machine� then this sharply reduces the portability of that product� A
separate version of the product would have to be purchased for each production
machine� The highest degree of portability is exhibited by those products which
supply an compiler to produce an executable version of the system�

����� Reliability

A crude measure of reliability might be the history of the product� If a product
has had a large amount of previous development� then it could be considered more
reliable than a product which has only had a little use� This tends to favour those
products that have been around longer� because the developers have had more time
and �presumably� more demand to iron out most of the problems�

There is not much of a need for a reliability measure for most commercial KBS
tools� these products are well�tested� commercially successful products� and are
therefore believed to be reliable� If an organisation considers some of the shells
available in the public domain� then reliability might become a far greater issue�

� Tool Selection

So how is tool selection performed� A KBS tool needs to be suitable for�

�� the nature of the problem�

�� the phase of development�

�



�� the policy and capabilities of the organisation�

�� the budget for the project�

�� the development team�

�� the available hardware�

If more than one tool proves suitable� then a good heuristic is to used the
simplest tool possible�

�Use a shell when you can�
a toolkit when you should�
and a language if you must�� �Barrett � Beerel� �����

��� Suitability for the Nature of the Problem

It is well known amongst AI researchers that some knowledge�based tasks are easier
than others to encode in knowledge�based systems� and that more di�cult problems
generally require more powerful tools� As a result� various attempts have been made
to classify knowledge�based tasks �e�g� �Price� ���
� �Stylianou et al� ������� and to
understand what makes a task easy or di�cult for a knowledge�based system� One
of the most useful classi
cations is that provided by the CommonKADS methodol�
ogy for KBS development� which categorises tasks as system analysis tasks� system
synthesis tasks or system modi�cation tasks� The full hierarchy can be seen in Fig�
ure �� As the category names imply� system analysis tasks involve the analysis of
an existing system or state� system synthesis tasks require the creation of a new
system or state� and system modi
cation requires both analysis �of a non�optimal
state� and synthesis �of an improved state�� In general� system analysis tasks are
the simplest tasks for knowledge based systems to tackle� and system modi
cation
tasks are the hardest�

�



SYSTEM
MODIFICATION

SYSTEM
SYNTHESIS

SYSTEM
ANALYSIS

Prediction

Identifying

Repairing

Controlling

Remedying

Modelling

Transformation

Design

Planning

Configuration

Refinement
design

Transformational
design

Monitoring

Classification

Prediction of
values

Prediction of
behaviour

Maintaining

Assessment

Diagnosis

Simple
classification

Multiple fault
diagnosis

Single fault
diagnosis

Localisation

Causal Tracing

Systematic
Diagnosis

Heuristic
Classification

Multiple stream
refinemt design

Single stream
refinemt design

Exploration-
based design

Hierarchical
design

Figure �
 The CommonKADS taxonomy of task types

However� the task type is not the only feature of a problem which a�ects the
suitability of KBS tools� This can be illustrated by examining three well�known
expert systems in the medical domain� MYCIN� INTERNIST and CASNET �see
�Johnson � Keravnou� ������� These three systems all perform the same task �med�
ical diagnosis�� but require signi
cantly di�erent levels of functionality in their pro�
grams� MYCIN is entirely rule�based� INTERNIST makes heavy use of objects�
and CASNET uses FORTRAN to implement a causal model of symptoms and dis�
eases� In fact� the functionality which is desirable for a particular problem depends
on a large number of features of the problem� so many that an entire book has been

lled with �probing questions� �Kline � Dolins� ������ which are statements which
identify one or more features of a problem� and suggest suitable functionality based
on that feature� An example of a probing question is given below�

On average� do we know 
ve or more new facts about a domain object
simply by being told that it is of type X�

�




OR

Are these new facts not known with certainty� but assumed unless there
is evidence to the contrary�

Yes � Place the object in a data structure �e�g� frames� semantic nets
or objects� whose inheritance mechanism will provide the facts when
needed� and whose default values will be assumed unless an exception
is speci
cally asserted�

No � Assert the new facts explicitly� which is a �cheap solution�

AIAI has its own set of probing questions� based on the expertise of its own sta�
as well as on published work �see �MacNee� ����� or �Kingston� ������� The use of
these questions to identify necessary functionality for a project has been integrated
with the 
nal stages of CommonKADS modelling� It was assumed that the project
for which a tool was being selected had already been subjected to probing questions
analysis� and that the recommendations of the probing questions could be taken as
input to this system�

��� Suitability for the Phase of Development

A number of factors which a�ect the choice of product depend upon the phase of
development within which the product will be used� Rothenberg �Rothenberg� �����
suggests the following 
ve phases of development in the lifecycle of a typical KBS�

� Exploration�

� Prototyping�

� Development�

� Fielding�

� Operation�

����� Exploration

This phase is also known as conceptualisation� The focus is upon the support
provided by the tool for the task of de
ning a problem� This de
nition can involve
the clari
cation of the problem scope� identifying the main issues and even some
broad design�

��



The most important factors in this phase are �exibility and ease of use� Flexi�
bility is important� as the developer may need to utilise many di�erent knowledge
representation techniques�

����� Prototyping

This is phase where one or more implementations of the system are developed
rapidly� The purpose of these implementations is to re
ne the problem successively
and to test the merits of di�erent approaches�

Like the previous phase� �exibility is an important factor� The very nature of
prototyping demands a wide range of techniques� whose features can be adopted
and tested� Support from the vendor and product for the developer tend to be
important� The developer may be trying relatively new techniques� This may
require training and debugging tools�

����� Development

The main purpose of this phase is to provide a functional system� The requirements
for the system can emerge from a prototyping exercise� in�depth analysis� or a
combination of the two� At the completion of this phase� the system should be
ready for delivery to user�

At this point in the development life cycle of a product� design decisions become
locked in� This reduces the importance of �exibility� Reliability� ease of use and
support tend to be the more dominant factors�

����	 Fielding

Until this phase� the main user of the product has been the system developer� The
end�user may have been given access to some of the early prototypes with the aim
of providing guidance for future development�

This phase sees the end�user playing a more important role� During this phase�
the system is moved from a development environment into the end�user� or delivery�
environment� This makes the ease of use factor concerned with user interfaces� not
the development environment� This movement from development to production
increases the importance of portability�

����
 Operation

The day�to�day running of the delivered system is the main function of this phase�
The end�user is the main operator of the system� The only time the developer
would be active in this phase� is for the purpose of maintenance�

��



Reliability� e�ciency and ease of use are the most important issues in this phase�
Unless the users are satis
ed with all these factors� then the development may not
be viewed as successful�

����� Relationship between Development Phases and Tool Features

In order to bring the phases and factors together� the relationship between them
can be summarised in Figure �� This graph is similar to one in �Rothenberg� ������
It di�ers in the addition of the two factors� portability and reliability�

OperationFieldingDevelopmentPrototypingExploration

Ease of Use

Flexibility

Support

Portability

Efficiency

Extendability

PHASE

IMPORTANCE

Reliability

Figure �
 The Relationship between Factors and Development Phases

��� Suitability for the Organisation

Organisations do have policies which can restrict the choice of product� vendor or
hardware� The restriction on products and vendors may be due to some special price
arrangement� preferring products which have a substantial development history� or
strategic policy� Organisations also have sta� with certain skills � and� typically�
budgets with certain limitations� These must be considered when selecting a KBS
tool� indeed� they may prove to be the overriding factor in selection in many cases�

��



��� Cost

Although the cost of a product is dependent upon development phase� it was not
included in the previous section� As a project progresses� overall costs increase�
The main commitment to cost occurs at the transition between phases� At this
point� management must commit itself to the requirements of the following phase�
It is this always increasing� transitional nature of cost that causes it to be handled
separately�

The price of the product is not the only impact upon cost� The need to purchase
additional hardware� training and consultancy charges all have a substantial impact
on the overall cost of a project� This data is much harder to obtain� For the pur�
poses of simplicity� this project only considered the product price when evaluating
cost�

��� Development Team

The makeup of the development team can have a big impact on the choice of
product� There are two main areas to consider when evaluating the team� These
are expertise and preferences�

��
�� Team Expertise

Expertise can take three forms� The level of AI experience can have an impact on
the choice of product� The top�range toolkits do require a substantial amount of
AI experience� This is because of the wide variety of features o�ered� Experience
is needed to select the best features for the task at hand�

Some products do not deliver all the features that are required� However� it
may be possible to program those features� For example� none of the top�range
toolkits support the use of certainty factors within rules� but this feature can be
programmed in if desired� The team s ability to program these features must be
considered�

The third� and 
nal� form is previous experience with the products� If any
member of the team has had experience with a certain product� then this may
be a case for choosing it� This is because less training and familiarisation will be
required�

��
�� Team Preference

Some notice should be taken of the preferences of the development team� The
team may prefer to use a certain product over others� This is not as important as
expertise� but it should be considered�

��



��	 Hardware

Products are supplied to run on a 
xed set of hardware platforms� Some products
do have di�ering development and delivery platforms� but most o�er a common
platform�

Shells and mid�range toolkits tend to run on PCs� The top�range toolkits are
available on Unix Workstations or Lisp machines� A few products are now available
for the IBM Mainframe�

� Analysis of the problem using CommonKADS

The categorisation of the tools and the identi
cation of the factors which in�uence
tool selection completed the knowledge acquisition for this project� The next stage
was to analyse the knowledge acquired using the various models prescribed by
the CommonKADS methodology� The heart of this process is the creation of an
expertise model� which represents knowledge about a problem at three levels�

� Domain knowledge is declarative knowledge about objects� states and rela�
tionships�

� Inference knowledge is procedural knowledge about the processes which are
required to solve the problem�

� Task knowledge describes the control over these processes�

��� Building the Expertise Model

	���� Domain level analysis

The domain level of the expertise model comprised the classi
cations identi
ed
in the knowledge acquisition phase� plus a selection of factors which in�uence the
choice of tool �such as the cost of the tool� the required platform for development�
and the experience of programmers with the tool�� It also de
ned a prototype
�object � with a number of attributes �or� in the terminology of CommonKADS�
a concept� with a number of properties� for de
ning tools� This object proved
remarkably di�cult to de
ne� because of di�culties in distinguishing properties of
tools from tool�related concepts� For example� there was considerable discussion
on whether the frame should have �forward chaining� as a property �with values
such as rete� procedural or none� or whether it should have �reasoning types�
as a multiple�valued property� with forward chaining being one of the values of
this property� Eventually� it was decided that more detailed information could be
encoded if �forward chaining�� �backward chaining� etc� were encoded as individual
properties�

��



	���� Inference level analysis

When the inference level is considered� it can be seen that this project uses various
design features and other requirements to select a suitable tool� or class of tool�
The task required when selecting a tool is to select the best tool for the task�
This requires comparison of a set of possible tools against all relevant factors�
and assessment of how well each tool matches the overall set of criteria� The
most appropriate task type in the CommonKADS taxonomy �shown in Figure ��
is therefore assessment�

The next stage in CommonKADS is usually to obtain the generic inference
structure for assessment tasks from the CommonKADS library of inference struc�
tures� This generic inference structure would then be modi
ed and instantiated
to represent the processes which are actually carried out on the project� However�
some guidance has been published by members of the CommonKADS consortium
�L!ockenho� � Valente� ����� �Valente � L!ockenho�� ����� on altering the generic
inference structure for assessment tasks of inference structures� so that it resembles
the activities carried out in a particular project more closely� This guidance con�
sists of a series of questions which the knowledge engineer asks himself about the
application� a positive answer to a question causes an inference step to be replaced
by one or more inference steps and knowledge roles� A worked example of this
con
guration process can be found in �Kingston� ������

System ModelCase Description

Decision Class

Match Cases

Figure �
 Generic inference structure for assessment tasks

For this project� the starting point was the generic inference structure for assess�
ment tasks shown in Figure 	� The con
guring questions were then applied� The

rst two questions determine whether the case description needs to be abstracted
before it is matched� and whether the system model needs to be speci�ed before it
is matched�

��



� Is the case description already abstract enough to be matched�
Yes�
The description of the desired expert system building tool will be based upon
the system model� This will ensure that the case is in the correct format�

� Is the system model already speci
c to be matched�
Yes�
The measurement system will be explicit in the system model� The input
knowledge role will be compared directly against the system model� identify�
ing those products that could ful
ll the task�

The fact that the answers to both the above questions was �yes�� means that
no further inference steps �ellipses� are needed to represent abstraction of the case
description or speci
cation of the system model�

The next problem is to determine the �inner contents� of the match inference
step� CommonKADS suggests three di�erent approaches to matching� These are
matching �only�� matching plus computation and matching plus con�ict resolution�
The choice is again guided by con
guration questions�

� Is the decision class the direct result of matching the case against the mea�
surement system�
No�
The matching process could yield many products which match the features
of the input case� Some further pruning is required�

� Is the decision class the result of computation�
No�
Some form of con�ict resolution will be required to distinguish between the
many potential products�

The answers to these questions suggest that the third approach �matching plus
con�ict resolution� is the approach being used to solve this problem� In order to
represent this in the inference structure� the match inference step is replaced by
two specify inference steps� one measure inference step and one resolve inference
step� with intermediate knowledge roles� In addition� the systemmodel knowledge
role is renamed to measurement system� for the sake of clarity� The end result
is the inference structure shown in Figure ��

�	



Abstract Case
Description

Measurement
System

Decision Classes

Measure Case Set of Norms

Specify Set of
Norms

Specify Conflict
Resolution

Conflict Resolution
CriteriaResolve Conflicts

Decision ClassDecision Class

Resolve Conflicts Conflict Resolution
Criteria

Specify Conflict
Resolution

Specify Set of
Norms

Set of NormsMeasure Case

Decision Classes

Measurement
System

Abstract Case
Description

Abstract Case
Description

Measurement
System

Decision Classes

Measure Case Set of Norms

Specify Set of
Norms

Specify Conflict
Resolution

Conflict Resolution
CriteriaResolve Conflicts

Decision ClassDecision Class

Resolve Conflicts Conflict Resolution
Criteria

Specify Conflict
Resolution

Specify Set of
Norms

Set of NormsMeasure Case

Decision Classes

Measurement
System

Abstract Case
Description

Figure �
 Con
gured inference structure for selecting a KBS tool

This inference structure must then be instantiated to the domain� in other
words� the knowledge roles are given domain�speci
c names� indicating which do�
main knowledge they represent� Any domain�speci
c knowledge which is not yet
represented as a knowledge role� or domain�speci
c links between knowledge roles
and inference steps� are also identi
ed at this stage and added to the inference struc�
ture� This produces the inference structure which becomes part of the Expertise
Model for this project� This structure can be seen in Figure ��

��



Desired Product
Features Available Products

Measure Case

Specify Set of
Norms

Available Product
Features

Chosen Products

Conflict Resolution
Criteria

Specify Conflict
Resolution

Resolve Conflicts

Ideal Product

Figure �
 Instantiated inference structure for selecting a KBS tool

It can be seen that the task of selecting a KBS tool requires comparison of the
features of available tools against the features desired for a particular project� this
produces a shortlist of suggested tools� which is then further re
ned to choose the
ideal tool for the job�

	���� Task level analysis

The third level of a CommonKADS Expertise Model comprises the task knowledge�
that is� control knowledge about partial ordering of inference steps� input and
output of individual inferences� and alternative methods for achieving the same
goal� It was decided that this level would not be developed in great detail for this
project� the inference structure was considered to su�ciently simple for detailed
speci
cation of control knowledge to be unnecessary�

��



��� The project
 design and implementation

The con
gured inference structure contributed greatly to the quick and accurate
development of an expertise model� Once the model was complete� design was
performed� with the assistance of AIAI s set of probing questions� These questions
suggested a number of techniques�

� Frames�objects �to represent individual tools��

� Inheritance �between tools in the same category e�g �shells�� �ART camp
tools���

� Rules �to represent the applicability of di�erent factors��

� Canned text �for explanation��

� Data�driven reasoning�

� Goal�driven reasoning�

The recommendations for both data�driven reasoning and goal�driven reasoning
are possibly contradictory� and are therefore worthy of further investigation� It
turns out that data�driven reasoning was proposed as the result of the following
answers to probing questions�

� The number of solutions exceeds the number of data required�

� Solutions are not mutually exclusive�

� The user is seeking all possible solutions�

Goal�driven reasoning was recommended because of the following answers to
other probing questions�

� Solutions can be pre�enumerated�

� Tasks can be decomposed into sub�tasks�

� Data is gathered by questions and answers�

� Reasoning will be presented to the user on request�

It seemed that either data�driven or goal�driven reasoning could be utilised in
the solution to this problem� both have advantages and� perhaps more importantly�
none of the probing questions which indicate major disadvantages for certain rea�
soning types �e�g� goal driven reasoning for a synthetic task� were triggered� It
may even be the case that both could be used� in di�ering parts of the system�

�




At this point� it was necessary to choose a software tool for this project The
postgraduate student who carried out this project was o�ered a choice of two tools
�CLIPS ��� and Sicstus Prolog�� because these two tools �plus Lisp� were the only
tools easily available to students� The limited choice simpli
ed the decision pro�
cess� for reasons described below� Prolog was chosen as the most appropriate tool�
The system was therefore implemented using Prolog� using a goal�driven approach
which investigated several di�erent categories of tool features one by one� The
features of 
fteen di�erent KBS tools were entered into the system� using a Prolog
predicate called �frame� which allowed the representation of object�like structures�
The attributes of these �objects re�ected the features of tools� as identi
ed in the
domain knowledge of the Expertise model� The features of each tool were then
matched against the features required for a KBS project� the relative importance
of each feature in the overall assessment was scaled according to the phase�s� of
development for which the tool would be used� and according to an importance
value entered by the user� The 
nal list of tools� ordered by their overall score� was
then displayed to the user� As further information was obtained� the importance
scores were updated�

In order to test the system� it was retrospectively applied to the choice of the
most suitable tool for this project� considering all �� tools in the system s knowledge
base�� The results of the consultation showed that Sicstus Prolog and CLIPS were
among the more highly favoured of the tools considered� although they were not at
the top of the list� however� the tools which were more highly recommended were
considerably more expensive� Prolog was preferred to CLIPS� because�

� There are problems in integrating rules and objects in version � of CLIPS���

� The student s greater familiarity with Prolog suggested that features which
were unavailable in Prolog �such as object�like structures� could easily be
programmed�

� The PDQ system �MacNee� ����� �Kingston� ������ which automates probing
questions analysis� suggested that goal�driven reasoning was slightly preferred
to data�driven reasoning�

It therefore seems that the choice of Prolog was the best decision from the available
options�

�These tools were chosen as a representative sample of the many tools which are available�
�Version � of CLIPS included a full object�oriented programming system� but these objects

could not be pattern matched in the conditions of rules� Version 	 of CLIPS has introduced this
facility�

��



� Discussion

It can be seen that the problem of selecting a suitable KBS tool is amenable to
representation as a knowledge�based assessment task� and to implementation within
a knowledge�based system� The task does appear to be an assessment task �one
where the best solution is chosen from a number of possibilities� rather than a
classi
cation task �e�g� categorising every tool as �suitable� or �unsuitable��� It s
also important to note that the representational features o�ered by the tool are
important� but are by no means the only factors to be taken into account� for
example� this project showed that the policies of an organisation can greatly restrict
the range of choices� and that familiarity with a tool can often compensate for a
lack of certain representational features�

The system could usefully be extended in a number of ways�

� The categorisations of products could be used to develop a concept of �sim�
ilar products� This could be used to determine how easy it would be for
a knowledge engineer to learn a new product� for example� a knowledge en�
gineer who has experience with CLIPS would 
nd it easier to learn to use
ART�Enterprise than to learn how to use KEE�

� A package could be developed to support maintenance of the knowledge base�
a user interface could provide easy access to the �frames � and a chronological
sorting function could notify the user of frames which have not been updated
for some time�

� Further features could be added to the list of features considered� For exam�
ple� the ability for knowledge�based tools to be embedded into other products�
or at least to communicate via DLLs or DDE� is becoming increasingly im�
portant�

The use of CommonKADS modelling and the probing questions has led to a
knowledge base architecture which is well supported by documentation and jus�
ti
cation� more importantly it can be extended easily� because new tools can be
added to the knowledge base simply by de
ning a new �frame � However� the dif�

culties experienced in deciding on appropriate properties for a tool �reasoning
types vs forward chaining� highlight an important factor in CommonKADS domain
modelling� the distinction between concepts and properties is dependent on the
viewpoint taken� In other words� an item of knowledge �such as forward chaining�
which is classi
ed as a property from one viewpoint may be classi
ed as a value of
a property �i�e� a concept� from another viewpoint� This implies that reusability of
domain knowledge in CommonKADS may prove di�cult� since a new knowledge�
based task must share not only a domain� but also a viewpoint� with an existing
knowledge�based task�

��



References

�Alty� ����� Alty� J� L� ������� Expert system building tools�
Topics in Expert System Design�

�Barrett � Beerel� ����� Barrett� M� L� and Beerel� A� C� ������� Expert
Systems in Business	 A Practical Approach� Ellis
Horwood�

�de Kleer� ����� de Kleer� J� ������� An assumption based truth main�
tenance system� Arti�cial Intelligence� ���

�Forgy� ����� Forgy� C� �September ������ Rete� A fast al�
gorithm for the many�pattern�many�object pattern�
match problem� Arti�cial Intelligence� ������

�Johnson � Keravnou� ����� Johnson� L� and Keravnou� E� ������� Expert Systems
Technology	 A Guide� Abacus Press� Cambridge�
Mass� 
�����

�Kingston� ����� Kingston� J� ������� Pragmatic KADS� A method�
ological approach to a small knowledge based systems
project� Expert Systems	 The International Journal
of Knowledge Engineering�

�Kingston� ����� Kingston� J�K�C� ������� Re�engineering IM�
PRESS and X�MATE using CommonKADS� In
Research and Development in Expert Systems
X� pages �	���� Cambridge University Press�
http���www�aiai�ed�ac�uk� jkk�publications�html�

�Kingston� ����� Kingston� J� K� C� �February ������ Applying KADS
to KADS� knowledge based guidance for knowledge
engineering� Expert Systems� ������

�Kline � Dolins� ����� Kline� P� J� and Dolins� S� B� ������� Designing
expert systems 	 a guide to selecting implementation
techniques� Wiley�

�L!ockenho� � Valente� ����� L!ockenho�� C� and Valente� A� �March ������ A Li�
brary of Assessment Modelling Components� In Pro�
ceedings of 
rd European KADS User Group Meeting�
pages �����
�� Siemens� Munich�

��



�MacNee� ����� MacNee� C� �September ������ PDQ� A knowledge�
based system to help knowledge�based system design�
ers to select knowledge representation and inference
techniques� Unpublished M�Sc� thesis� Dept of Arti�

cial Intelligence� University of Edinburgh�

�Mettrey� ����� Mettrey� W� �February ������ Expert systems and
tools� Myths and realities� IEEE Expert�

�Price� ���
� Price� C� J� ����
�� Knowledge Engineering Toolkits�
Ellis Horwood�

�Riley� ����� Riley� G� D� ������� Timing tests of expert�system�
building tools� US government memo� Lyndon B�
Johnson Space Center� NASA� Houston�

�Robertson� ����� Robertson� S� �September ������ A KBS to advise
on selection of KBS tools� Unpublished M�Sc� the�
sis� Dept of Arti
cial Intelligence� University of Ed�
inburgh�

�Rothenberg� ����� Rothenberg� J� ������� Expert system tool evalua�
tion� Topics in Expert System Design�

�Schreiber et al� ����� Schreiber� A� Th�� Wielinga� B� J� and Breuker� J� A��
�eds��� ������� KADS	 A Principled Approach to
Knowledge�Based System Development� Academic
Press� London�

�Stylianou et al� ����� Stylianou� A� C�� Smith� R� D� and Madey� G� R�
������� An Empirical Model for the Evaluation and
Selection of Expert System Shells� Expert Systems
with Applications� �������������

�Tansley � Hayball� ����� Tansley� D� S� W� and Hayball� C� C� �������
Knowledge�Based Systems Analysis and Design	 A
KADS Developers Handbook� Prentice Hall�

�Valente � L!ockenho�� ����� Valente� A� and L!ockenho�� C� ������� Assessment�
In Breuker� J� and van de Velde� W�� �eds��� The
CommonKADS Library� chapter �� IOS Press�

��



A A Sample Session

The following is a script of a session with the Tool Selection program� The purpose
of this session was to choose a platform with which to develop the program itself�

Tool Selection Program

����������������������

The purpose of this program is to assist in the selection

of an Expert System shell� toolkit or language for use in

the development and�or delivery of an expert system�

The following products are evaluated�

level��

personal�consultant�easy

experience

crystal

clips

eclipse

leonardo�level�	

sicstus�prolog

austin�kyoto�common�lisp

personal�consultant�plus

nexpert�object

prokappa

art

kee

muse

Enter 
help
 for a list of all the available commands

Do you wish to restrict the evaluation to a subset

of these products�

�� no

Knowledge Representation

������������������������

This refers to the way 
expert knowledge
 is

encoded by the product� Usually a product may

have more than one method available� It is left

to the developer to decide which method to choose�

Please enter the features you require within this class� 
One per line�

Each feature MAY be followed by a measure of importance�

This importance must be an integer between 	 and ��

�� � is 
very important
 or required

�� 	 is 
not important
 or desired

If no importance is entered� it defaults to ��

What knowledge representation features do you require�

�� options

The following options are available�

rule�based�representation

frames

objects

meta�knowledge

knowledge�sources

��



facts

What knowledge representation features do you require�

�� rule�based�representation �

What knowledge representation features do you require�

�� objects �

What knowledge representation features do you require�

In the area of knowledge�representation� you requested�

rule�based�representation importance �

objects importance �

Inference Type

��������������

This is the direction of inference employed by

the product� It can proceed from the data to the

goal� from the goal back to the data� or a combination

of the two�

Please enter the features you require within this class� 
One per line�

Each feature MAY be followed by a measure of importance�

This importance must be an integer between 	 and ��

�� � is 
very important
 or required

�� 	 is 
not important
 or desired

If no importance is entered� it defaults to ��

What inference types do you require�

�� goal�driven�reasoning �

What inference types do you require�

�� data�driven�reasoning �

What inference types do you require�

In the area of inference�type� you requested�

goal�driven�reasoning importance �

data�driven�reasoning importance �

Inference Control

�����������������

This is the search strategy and control mechanism

used by the Product� They affect the order states

are examined during the inference process�

Please enter the features you require within this class� 
One per line�

Each feature MAY be followed by a measure of importance�

This importance must be an integer between 	 and ��

�� � is 
very important
 or required

�� 	 is 
not important
 or desired

If no importance is entered� it defaults to ��

What inference control techniques do you require�

In the area of inference�control� you requested no features�

��



Uncertainty

�����������

The methods employed to represent uncertainty

in the knowledge�

Please enter the features you require within this class� 
One per line�

Each feature MAY be followed by a measure of importance�

This importance must be an integer between 	 and ��

�� � is 
very important
 or required

�� 	 is 
not important
 or desired

If no importance is entered� it defaults to ��

What types of uncertainty do you require�

In the area of uncertainty� you requested no features�

System Interface

����������������

The mechanisms available to the product for

interaction with external systems�

Please enter the features you require within this class� 
One per line�

Each feature MAY be followed by a measure of importance�

This importance must be an integer between 	 and ��

�� � is 
very important
 or required

�� 	 is 
not important
 or desired

If no importance is entered� it defaults to ��

What system interface features do you require�

In the area of system�interface� you requested no features�

Product Score Change

������� ����� ������

nexpert�object 	� 	�

prokappa 	� 	�

art 	� 	�

kee 	� 	�

experience 		 		

clips 	� 	�

leonardo�level�	 	� 	�

level�� � �

eclipse � �

sicstus�prolog � �

personal�consultant�plus � �

muse � �

personal�consultant�easy � �

crystal � �

austin�kyoto�common�lisp � �

Limitation Phase

����������������

The quality of the delivered representational mechanisms

must be taken into account�

NOTE� No scaling of this phase takes place�

Do you require variables in the rules�

�� y

�	



What is the estimated size of the rulebase�

�� ��

Product Score Change

������� ����� ������

prokappa 	� 	

kee 	� 	

nexpert�object 	� �

art 	� �

experience � ��

eclipse � �

sicstus�prolog � �

personal�consultant�plus � �

muse � �

level�� � ��

clips � ��

personal�consultant�easy � ��

crystal � ��

leonardo�level�	 � ��

austin�kyoto�common�lisp � �

�� why change in clips

Product� clips

Phase� limitation

Description Influence

����������� ���������

REQUESTED� rule�based�representation

REQUESTED� objects

object�limitation
pattern�matching� ��

REQUESTED� objects

object�limitation
multiple�inheritance� �	

Task Phase

����������

The details of the task to be performed with this product

are considered in this phase� The answers given in this

phase� tend to affect a product� depending on which class

of expert system building tool it is�

How important do you consider the task�

�� �

What size range of rulebase are you anticipating�

�� small

Can all the solutions to the problem be pre�enumerated�

�� y

��



Does the task involve large amounts of simultaneous reasoning�

�� n

Do you require a special representation language�

�� n

Does the task require a real time interface�

�� n

Product Score Change

������� ����� ������

prokappa 	� �

kee 	� �

nexpert�object 	� �

art 	� �

experience 		�� ���

eclipse 		�� ���

level�� ��� ���

clips ��� ���

sicstus�prolog � �

personal�consultant�plus � �

muse � �

personal�consultant�easy ��� ���

crystal ��� ���

leonardo�level�	 ��� ���

austin�kyoto�common�lisp � �

Cost Phase

����������

This phase considers the approximate amount of money

you are prepared to spend on a product�

How important do you consider cost�

�� 	

What is the maximum price you would like to pay for a tool�

�� �

Do you want to exclude more expensive products�

�� n

��� no change in scores ���

Vendor Phase

������������

A company may have Vendors they prefer to deal with�

��



How important do you consider the vendor�

�� 	

Please enter the names of any preferred vendors�

��� no change in scores ���

Hardware Phase

��������������

A project may be restricted in the choice of hardware it

has available to use� This phase attempts to take this

into consideration for both development and delivery�

How important do you consider hardware�

�� �

What development phases will this product be

required to perform�

�� exploration

What development phases will this product be

required to perform�

�� prototyping

What development phases will this product be

required to perform�

�� fielding

What development phases will this product be

required to perform�

What platform will be used for development�

�� unix�workstation

What platform will be used for development�

Do you want to exclude all products without the

required hardware�

�� n

What delivery platform will be utilised�

�� unix�workstation

What delivery platform will be utilised�

Product Score Change

������� ����� ������

prokappa 	� �

kee 	� �

�




art 	� �

nexpert�object 	� �

eclipse 		�� ���

sicstus�prolog � �

muse � �

experience ��� ����

clips ��� �	��

level�� ��� ����

personal�consultant�plus ��� ����

personal�consultant�easy ��� ����

crystal ��� ����

leonardo�level�	 ��� ����

austin�kyoto�common�lisp � �

Team Phase

����������

The experience and preferences of the development staff

are an important consideration� If a product does not

deliver requested features� but they can be programmed �

then the importance for that feature is incorporated�

How important do you consider the team�

�� �

What products would the development team prefer to use�

�� sicstus�prolog

What products would the development team prefer to use�

�� clips

What products would the development team prefer to use�

What products do the development team have experience with�

�� sicstus�r� �prolog

What products do the development team have experience with�

�� clips

What products do the development team have experience with�

�� austin�kyoto�common�lisp

What products do the development team have experience with�

What level of AI experience does the development

team possess�

�� �

��



What programming skills do the team possess�

Product Score Change

������� ����� ������

prokappa 	� �

kee 	� �

art 	� �

nexpert�object 	� �

sicstus�prolog 	��� ���

eclipse 		�� ���

clips 		�� ���

muse � �

experience ��� ���

level�� ��� ���

personal�consultant�plus ��� ���

austin�kyoto�common�lisp ��� 	��

personal�consultant�easy ��� ���

crystal ��� ���

leonardo�level�	 ��� ���

Ease of Use Phase

�����������������

This is the 
user friendliness
 of the product� The user

of the product changes as the development life cycle

progresses� The developer is the main user in the early

stages� with the end�user being important later�

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider usability�

�� 	

Do you require a graphic interface for the users�

�� n

Product Score Change

������� ����� ������

prokappa 	��� ���

kee 	��� ���

art 	��� ���

nexpert�object 	��� ���

sicstus�prolog 	��� ���

eclipse 		�� ���

clips 		�� ���

muse ���� ����

experience ��� 	��

personal�consultant�plus ��� ���

level�� ��� ���

austin�kyoto�common�lisp ��� ���

personal�consultant�easy ��� 	��

crystal ��� 	��

leonardo�level�	 ��� ���

��



Efficiency Phase

����������������

This phase attempts to take into account the efficiency

of the product� Important issues are�

KB Compilers

Type of forward chaining mechanism

Whether the program is written in C

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider efficiency�

�� �

Product Score Change

������� ����� ������

prokappa 	���� ����

kee 	��	� ����

art 	��	� ����

nexpert�object 	��	� ����

sicstus�prolog 	���� ����

eclipse 	���� 	�	�

clips 		��� ����

muse 	��	� ����

experience ���� ����

level�� ��	� ����

personal�consultant�plus ���� ����

austin�kyoto�common�lisp ��� ���

personal�consultant�easy ���� ����

crystal ���� ����

leonardo�level�	 ��	� ����

�� why change in sicstus�prolog

Product� sicstus�prolog

Phase� efficiency

Description Influence

����������� ���������

The product was written in C 	

Development phase � exploration�

SCALE� ��	

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � average�

SCALE� ���

���������

CHANGE FACTOR ����

��



�� why change in clips

Product� clips

Phase� efficiency

Description Influence

����������� ���������

REQUESTED� rule�based�representation

rete�forward�chaining �

The product was written in C 	

REQUESTED� goal�driven�reasoning

rete�forward�chaining

Art Camp �	

Development phase � exploration�

SCALE� ��	

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � average�

SCALE� ���

���������

CHANGE FACTOR ����

Extendability Phase

�������������������

This phase considers the ability of any system developed

with product to be extended� The important issues are�

external program interfaces

rulebase size limitations

database interfaces

spreadsheet interfaces

integration with other systems

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider extendability�

�� 	

Product Score Change

������� ����� ������

prokappa 	���� ����

kee 	��	� ���

nexpert�object 	���� ����

art 	���� ����

sicstus�prolog 	���� ����

eclipse 	���� ���

clips 	���� ����

muse 	���	 ����

experience 	��� ����

personal�consultant�plus ���� ����

��



level�� ���� ����

personal�consultant�easy ��� ����

crystal ���� ����

leonardo�level�	 ���� ����

austin�kyoto�common�lisp ��� ���

Flexibility Phase

�����������������

The number of knowledge representation methods available

in a product contribute to its flexibility� The larger

the number� the more flexible�

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider flexibility�

�� �

Product Score Change

������� ����� ������

kee 	���� ���	

art 	���� ���	

prokappa 	���� 	���

nexpert�object 	���	 ����

sicstus�prolog 	��	� ����

clips 	���� ����

eclipse 	���	 ����

muse 	��� ����

experience 		��� 	���

personal�consultant�plus 	���	 ����

austin�kyoto�common�lisp ���� ����

level�� ���� ����

leonardo�level�	 ���	 	���

personal�consultant�easy ���� ����

crystal ���� ����

Portability Phase

�����������������

This phase considers the ability of a system developed

on this product to ported from one machine to another�

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider portability�

�� 	

Do you intend to implement any systems developed with

this product on multiple machines�

�� n

��



��� no change in scores ���

Reliability Phase

�����������������

An attempt to measure how reliable a product is�

NOTE� There is currently no information in the KB

regarding reliability�

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider reliability�

�� 	

Product Score Change

������� ����� ������

kee 	��	� ��	�

art 	���� ��	�

prokappa 	���� 	���

nexpert�object 	���	 ����

sicstus�prolog 	��	� ����

clips 	���� ����

eclipse 	���	 ����

muse 	��� ����

experience 		��� 	���

personal�consultant�plus 	���	 ����

austin�kyoto�common�lisp ���� ����

level�� ���� ����

leonardo�level�	 ���	 	���

personal�consultant�easy ���� ����

crystal ���� ����

Support Phase

�������������

Support is broken down into two main parts�


a� vendor assistance


b� developer assistance from product

The need for support diminishes as the development life

cycle progresses�

The following phase is scaled according to its importance

in the development phases in which the product will be

operating�

How important do you consider support�

�� 	

Product Score Change

������� ����� ������

kee ����� 	���

art 	���� 	���

prokappa 	���� 	�	�

nexpert�object 	��	� ����

��



sicstus�prolog 	���	 ��	�

clips 	��� ���

eclipse 	���� ����

muse 	���� ����

experience 	���� ����

personal�consultant�plus 		�	� 	�	�

level�� ���� ����

austin�kyoto�common�lisp ���� ���

personal�consultant�easy ���� ����

leonardo�level�	 ���� ����

crystal ���� ����

Selecting the Best Product

��������������������������

Product Score

������� �����

kee �����

art 	����

prokappa 	����

nexpert�object 	��	�

sicstus�prolog 	���	

clips 	���

eclipse 	����

muse 	����

experience 	����

personal�consultant�plus 		�	�

level�� ����

austin�kyoto�common�lisp ����

personal�consultant�easy ����

leonardo�level�	 ���

crystal ����

The best product for the situation is � kee

Product� kee

Version� ��	

Vendor� intellicorp

Cost� 	���� usd

KEE� short for Knowledge Engineering Environment� is

one of the most powerful toolkits on the market�

It has a wide range of representation techniques�

including rules� frames� objects meta knowledge and

a truth maintenance system� It provides support for

both forward and backward�chaining� Its rules

are less efficient than those of ART� as no Rete

network is employed� A fully developed developer

and user interface is provided� The object system

is linked to the user interface by means of an active

graphic facility� called ActiveImages�

To see how a product arrived at its score�

enter 
how �product name�


�� how sicstus�prolog

sicstus�prolog had the following requested features�

Feature class � knowledge�representation

�	



Feature Importance

������� ����������

rule�based�representation �

Feature class � inference�type

Feature Importance

������� ����������

goal�driven�reasoning �

data�driven�reasoning �

Product� sicstus�prolog

Phase� team

Description Influence

����������� ���������

team�preference
sicstus�prolog� �

product�experience
sicstus�prolog� �

Program phase importance � above�average�

SCALE� ���

���������

CHANGE FACTOR ���

Product� sicstus�prolog

Phase� efficiency

Description Influence

����������� ���������

The product was written in C 	

Development phase � exploration�

SCALE� ��	

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � average�

SCALE� ���

���������

CHANGE FACTOR ����

Product� sicstus�prolog

Phase� extendability

Description Influence

����������� ���������

external�program�interface �

integrated �

��



Development phase � exploration�

SCALE� ���

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � low�

SCALE� ���

���������

CHANGE FACTOR ����

Product� sicstus�prolog

Phase� flexibility

Description Influence

����������� ���������

rule�based�representation 	

Languages are very flexible �

Development phase � exploration�

SCALE� ���

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � above�average�

SCALE� ���

���������

CHANGE FACTOR ����

Product� sicstus�prolog

Phase� support

Description Influence

����������� ���������

REQUESTED� rule�based�representation

rule�tracer 	

Development phase � exploration�

SCALE� ���

Development phase � prototyping�

SCALE� ���

Development phase � fielding�

SCALE� ���

Program phase importance � low�

SCALE� ���

���������

CHANGE FACTOR ��	�

��



�



