
STATE OF THE ART
SKNOWLEDGE-BASED SYSTEM TOOLKIT

Paul W.H. Chung and John K.C. Kingston

M

AIAI-TR-54

arch 1988

n
M
This paper was an invited presentation to the 5th annual conference on Expert Systems i

edicine, Royal Free Hospital, London, 28 March 1988.

eArtificial Intelligence Applications Institut
University of Edinburgh

E
80 South Bridge

dinburgh EH1 1HN

©

United Kingdom

University of Edinburgh, 1988



T

Abstract

oolkits for building knowledge-based systems have been available for several years. The most

f
sophisticated commercially available toolkits are multi-paradigm systems. Multi-paradigm systems are
avoured because:

• Large programming problems can usually be divided into a number of sub-problems.

•
• A single paradigm may not be suitable for solving all of the sub-problems

Multi-paradigm systems allow the programmer to choose the right tool for each sub-task.

g
a
Multi-paradigm systems typically incorporate rule-based programming, object-oriented programmin
nd access-oriented programming. More sophisticated multi-paradigm systems may include

d
manipulation of ‘contexts’ (hypothetical states of the world) and extensive facilities to aid program
evelopment. Such systems usually use a schema-based representation of data, and relationships

s
w
between data. They may be designed by providing interfaces for a selection of programming language

hich are popular in Artificial Intelligence (such as POPLOG or Knowledge Craft ), by augmenting1 2

3 l
l
an existing system with a new language construct (such as the version of the HOPE functiona
anguage which incorporates unification), or by designing a new system that supports different

paradigms (such as Inference ART or KEE ).4 5

This talk looks at the features of three commercially available systems: ART, KEE and Knowledge
s

c
Craft. This is not intended to be an evaluation of these three systems, since multi-paradigm system
annot be compared very well by lists of options, and also the relative merits of each system may vary

1

for different application areas.

. Introduction

The first generation of knowledge-based systems were built using production rules. Well-known
l

i
examples include MYCIN (Shortliffe 1976), a system which deals with the diagnosis of bacteria
nfections, and R1 (McDermott 1980), the current version of which is used for configuring DEC VAX

e
t
computers. However, it quickly became apparent that production rules were inappropriate for som
ypes of knowledge-based system. One solution to this problem was to use schemata, also known as

p
frames or units, to represent data, and to perform inference using object-oriented and access-oriented
rogramming. However, schema-based systems also have their limitations (Kingston 1987). This

,
w
situation has led to the creation of more sophisticated toolkits for building knowledge-based systems

hich are multi-paradigm systems; that is, they incorporate and integrate rule-based programming and

T

schema-based programming.

his paper will give an overview of three such toolkits - the Automated Reasoning Tool (ART),

I
produced by Inference Corporation; the Knowledge Engineering Environment (KEE), developed by
ntelliCorp, Inc.; and Knowledge Craft, implemented by Carnegie Group Inc. These three products

o
currently dominate the commercial market for multi-paradigm toolkits. All three are currently available
nly in Lisp implementations. The overview aims to highlight the facilities that each toolkit provides,

.
E
and to point out similarities and differences between them. It is not meant to be an evaluation

valuations of such complex systems are difficult, because comparing them by looking at a list of

POPLOG is marketed by SD-Scicon plc.
2

1

Knowledge Craft is a trademark of Carnegie Group, Inc., of Pittsburgh, Pennsylvania. It is marketed in the UK by
Carnegie (U.K.), Ltd., GSI House, Stanhope Road, Camberley, Surrey GU15 3PS, England.

HOPE is a software package developed for research purposes at the University of Edinburgh (Burstall, MacQueen
a

3

nd Sannella 1980), and development has continued at Imperial College, London. All enquiries concerning HOPE
should be addressed to H. Glaser, Dept. of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ.

Inference ART and ART are trademarks of Inference Corporation of Los Angeles, who produce the package. It is
m

4

arketed in Europe by Ferranti Computer Systems Limited, Ty Coch Way, Cwmbran, Gwent, United Kingdom NP44
-

f
7XX. For the purpose of brevity, this document refers to the product simply as ‘ART’, although this should not be con
used with any other product with a similar name.

KEE (Knowledge Engineering Environment) is marketed by IntelliCorp, Inc. of California. It is marketed in the
U

5

.K. by IntelliCorp Ltd, Runnymede Malthouse, Runnymede Road, Egham, Surrey TW20 9B0. KEE, Knowledge En-
gineering Environment, and IntelliCorp are registered trademarks of IntelliCorp, Inc.



y
a
options available in each system may be misleading; also, the usefulness of each toolkit may var
ccording to the application area of the knowledge-based system that is being built.

g
r
All three toolkits include a schema-based representation of knowledge, forward and backward chainin
ules which can make use of this knowledge, and object-oriented and access-oriented programming.

p
They also include facilities for context manipulation, and sophisticated development environments. This
aper will discuss these features, and then go on to describe their application in each toolkit.

A

1.1. Schema representation

schema is a data structure which groups together information about one particular object or concept.
,

w
It resembles a ‘record’ in Pascal, or a ‘property list’ in Lisp. Each schema contains a number of slots

hich represent the attributes which the object represented by the schema may have. Each of these

{

slots may have one or more values. For example,

car-1
REG: JB007

r
M
COLOUR: silve

AKE: Rolls-Royce}

.

A

would be a typical schema

ll three toolkits allow inheritance to occur between schemata. Inheritance normally occurs between
r

m
two schemata, one which represents a class of objects, and the other of which represents a subclass o

ember of that class. It allows a system to assume that all characteristics (slots and values) pertaining
f

a
to a class are true of any member of that class. This means that information common to all members o

class only needs to be represented once in the system. This reduces the time required for knowledge

e
base development and updating, and, in some implementations, it enables system resources to be used
conomically. It also simplifies the creation of objects or concepts which closely resemble other objects.

r
Links between schemata (such as class-subclass links) are specified using slots, which are known as
elations.

1.2. Rule-based programming

Rule-based programming typically involves rules of the form:

A
IF condition-1 is true

ND condition-2 is true

e
A
THEN conclude conclusion-1 is tru

ND conclude conclusion-2 is true

A

AND execute action-1

n example of a rule might be:

d
A
IF there is a share which is being trade

ND there is a dealer who has executed more than 20 deals in the share today

T

AND the price of the share has changed by less than 3 pence today

HEN conclude that the dealer is possibly breaching the Financial Services Act
e

R

AND investigate how much commission the dealer gets for each deal in the shar

ule-based systems maintain a database of facts about the world (the working memory), so that they can
o

b
perform reasoning; if a fact about the world matches a condition of a rule, that condition is judged t
e fulfilled.

Inference using rules can proceed in a forward chaining or a backward chaining manner. When forward
echaining is being used, rules fire (have their conclusions asserted and actions executed) when they hav



e
c
enough information - that is, when all their conditions are matched by incoming data, or by th
onclusions of other rules. If more than one rule has all its conditions matched at a particular time,

r
various conflict resolution strategies are used to select one rule to fire. These strategies may include
efraction (not re-using a rule which has already fired, but is still matched by the same data), recency

r
t
(prefer a rule matched by data which has most recently entered the working memory), specificity (prefe
he most specific rule - that is, the one with the most conditions), and user-defined priorities. Whatever

a
the strategy is, rule-based systems will only fire one rule before re-evaluating the conditions of all rules
gainst the contents of the working memory. Forward chaining rules may be compiled into a network

a
n
based on the Rete algorithm (Forgy 1982), which is a fast pattern matching algorithm. Using such
etwork speeds up the process of matching the conditions of rules against facts in the working memory.

t
Backward chaining systems work by focussing on a particular part of the problem (that is, a solution to
he problem); rules operate only if one of their conclusions matches the solution under consideration. If

c
a rule is used, its conditions become new foci for the system. The search terminates when a rule’s
onditions are matched by data existing in the system, or data input by the user in response to a

R

question.

ule-based systems sometimes incorporate facilities for truth maintenance. The essence of truth
e

a
maintenance is that reasoning can be performed based on assumptions, and can be undone if any of th
ssumptions are found to be wrong. Some systems may explicitly alter the working memory to remove

1

all erroneous conclusions; others may leave those conclusions intact, but mark them as inconsistent.

.3. Object-oriented programming

Object-oriented programming is a method of drawing inferences based on a schema-based
s

(
representation of knowledge. An object is a schema, some of whose slots contain pointers to procedure
known as methods) written in a programming language. This allows methods which are most relevant

m
to a particular schema to be linked to slots within that schema, which is useful for creating a tidy and

odular knowledge base. Inference occurs by sending a message to the slot to which a method is
t

f
attached, which causes that method to be activated. Sending a message can be thought of as an indirec
unction call.

Like other values of slots, object-oriented procedures can be inherited between schemata. Some systems

1

allow local modification to inherited procedures.

.4. Access-oriented programming

Some knowledge-based system toolkits allow the user to define functions which are executed whenever

a
certain data is fetched or stored. Such functions are known as active values, or demons. Such functions
re useful if the value of a variable is dependent on another. Some toolkits also provide graphical front

.
T
ends which use active values which are activated by moving the cursor, or clicking mouse buttons

hese active values update the schema slot or slots which the graphical display represents, according to
r

c
the position of the cursor, or the mouse button that was clicked. Active values can also used fo
onstraint propagation, by making the value of one slot dependent on the value of another.

C

1.5. Contexts

ontexts allow a system to investigate the consequences of following several different lines of
t

i
reasoning. When a program reaches a point where it must make a choice, and it has insufficien
nformation available to make the best choice, a context can be generated to represent the consequences

s
b
of each choice. These consequences can then be compared, and the best one chosen. Contexts can thu
e thought of as possible states of the world, or as "hypothetical worlds".

e
i
Many knowledge-based programs require a search through a range of possible alternatives. Contexts ar
deal for such tasks, because contexts effectively allow the creation of multiple knowledge bases, since

,
g
contexts inherit data from parent contexts (previous states of the world, or choice points). However
enerating contexts for all possible alternatives is often computationally expensive, particularly if there

s
m
are many alternatives, or if the alternatives differ from each other by more than a few items. Context

ay also be used to represent the state of a time-varying system at different instances.



A system which is capable of maintaining and accessing several different, possibly conflicting, contexts,

1

is described as a "context layered" system.

.6. Development environments

All three toolkits are accompanied by a text editor, from which rules and schemata can be altered, and
e

k
individually recompiled into the existing loaded knowledge base. This avoids having to reload th
nowledge base every time a change is made. File handling facilities are available for saving schemata,

f
and sometimes rules and Lisp functions, to a file. The toolkits also incorporate textual and/or graphical
acilities for browsing the knowledge base and for tracing and debugging the rule base. Facilities are

.
F
available to develop graphical user interfaces for knowledge-based systems developed using the toolkit
inally, all the toolkits allow access to the Lisp development environment, which allows tracing of

H

function calls, and other useful features.

aving described the facilities which are available in state of the art knowledge-based system toolkits,

2

the implementation of such features in the toolkits can be discussed.

. ART

This review is based on ART version 3.0. ART was originally developed on Symbolics Lisp machine

w
hardware, and is now available on a range of Symbolics and Texas Instruments Lisp-based

orkstations, SUN 3 workstations, and a range of DEC VAX hardware. Inference Corporation have
s

b
announced that a version of ART is being developed for IBM mainframes, although no release date ha
een given.

2.1. ART - Schema representation

ART can represent data using either schemata or arbitrary propositions (known as facts). When a
a

n
schema is created, it is compiled into a series of facts with three elements - a slot name, the schem
ame, and the value of that slot. The value of a slot can be an arbitrary Lisp structure. Inheritance

t
s
occurs between schemata, and multiple inheritance (inheritance of several values from differen
chemata) is allowed - ART creates a separate fact for every value of a slot, whether asserted directly

F

or inherited.

or every slot, a schema exists which defines the behaviour of that slot. This is a powerful feature,

h
because the user can define his own slots, and specify the characteristics of the slot-behaviour schema
imself. This allows the user to define whether slots can contain one or many values, whether the slot

i
can be inherited, and so on. Some slots are used as relations - links between schemata across which
nheritance may occur. The user can define whether such relations are transitive or reflexive, whether

a
they can have inverses, and, in certain circumstances, whether the creation of a relation should
utomatically cause other relations and schemata to be generated.

A

2.2. ART - Rule-based programming

RT’s rules are based on production rules, but have been considerably extended. The left-hand side of

e
an ART rule may include facts or schemata, truth maintenance operators, and arbitrary Lisp
xpressions. Forward chaining rules use an IF-THEN format; backward chaining rules are the same as

i
forward-chaining rules, except that they have a goal pattern on their left-hand side. When a goal pattern
s satisfied, a backward chaining rule competes for firing in the same way as forward-chaining rules do.

r
ART performs conflict resolution based on user-defined rule priorities (known as salience); it only uses
ecency if saliences are equal. The right-hand side of an ART rule allows modifications to facts or

A

schemata, and the execution of arbitrary Lisp functions.

RT also allows the user to improve the efficiency of a system by restricting the invocation of

f
backward-chaining rules, and by optimising the construction of the join network (which is central to the
unction of networks based on the Rete algorithm).

ART’s rule-based programming is therefore very powerful, despite one or two limitations - for instance,
ART’s truth maintenance is unable to reassert facts which have been retracted, which limits its



s
o
usefulness. If its conflict resolution strategy is inadequate, it is possible for the user to implement hi
wn; however, this may slow down execution speed significantly (Inder 1988).

A

2.3. ART - Object Oriented Programming

RT supports a simple syntax for creating methods and sending messages. The methods themselves

o
(known as actions) are defined using Lisp functions. Actions can be defined as primary actions, before
r after actions, or whopper actions. Primary actions attached to an object are normally executed when

r
e
an object receives a message; if any before or after actions exist, they will be executed before or afte
xecution of a (possibly inherited) primary action. Whoppers may invoke any of the other three actions

r
if they exist, and the results produced by actions and/or passed to other actions may be modified en
oute by the whopper. Whoppers therefore allow unlimited local modification of actions.

A

2.4. ART - Access Oriented Programming

RT supports active values which are defined using schemata. They can be executed just before or just

c
after a slot’s value is read, asserted, changed, or deleted. The current implementation of active values
reates a lot of facts if active values are inherited; it "constructs a second inheritance hierarchy

2

isomorphic to the one motivating the inheritance" (Inder, 1988).

.5. ART - Context Manipulation

ART supports a context mechanism which allows rules to create, delete, or merge contexts. In ART, a

c
lot of context generation takes place automatically. ART tries to match the conditions of rules in any
ontext and, if a rule has conditions which are matched in two or more different contexts, ART will

u
automatically merge those contexts to create a new context in which that rule can fire. ART allows the
ser to specify contradiction rules; if the conditions of these rules are fulfilled in a particular context,

c
that context is poisoned (marked as inconsistent, and deleted). Contradiction rules can be used in
onjunction with ART’s truth maintenance system, which allows the user to specify an assumptive base

i
for a context. Contexts with a specified assumptive base are automatically placed at the optimal position
n the context hierarchy by ART.

ART will automatically poison a context if a single-valued slot in a context can inherit multiple values

a
from other contexts; and it will let the user believe a particular context, thus deleting all others. ART
lso increases the efficiency of the context mechanism by not actually copying any information into a

.
A
new context - it simply marks which facts may be inherited by that context, and which may not

RT’s context mechanism therefore supplies a very wide range of features.

t
i
ART also supplies the viewpoint mechanism, which allows the user to maintain multiple distinct bu
nteracting context hierarchies. This allows the user to factor out different kinds of knowledge. For

f
i
instance, a context hierarchy might be used if a stockbroker wanted to examine the consequences o
nvesting in a particular stock, given any one of a number of future economic conditions. If the

r
w
stockbroker had two clients, one of whom was interested in a very high rate of return, and the othe

as most interested in protecting his initial investment, then he might use viewpoints to allow him to

2

make decisions using two different strategies, but based on the same context

.6. ART - Development environment

ART’s development environment is mouse and menu-based. The ART studio provides a top-level6

r
o
menu which can be used to access a wide variety of information and optional actions. Among othe
ptions, the user can view the agenda of rules which are about to fire, examine particular rules, examine

,
d
and maybe modify the knowledge base, ask for rules to be traced, or for rule firings to be justified
isplay a diagram of an inheritance hierarchy (schema or context hierarchies), which may be

.
T
dynamically updatable, and obtain statistics about the program to aid in improving program efficiency

he ARTIST icon editor allows icons to be created using the mouse and menu options; schemata are7

ART also provides a "scrolling studio" for use on text-only terminals which are remotely logged in to a host which
r

6

uns ART.

ART Interface Synthesis Tool. ARTIST is a trademark of Inference Corp.7



n
S
created automatically to represent icons. As for file handling, the version of ART that runs o
ymbolics hardware allows the user to create files (and, more importantly, alter and then incrementally

3
w
recompile rules, facts and schemata) using Symbolics’ own ZMACS (emacs) editor. On the SUN

orkstation, similar facilities are provided by GNU Emacs, which is supplied with ART.

T

3. KEE

8

his review is based on KEE 3.05. KEE was originally developed on Xerox Lisp hardware, and is
f

‘
currently available on most Lisp workstations (Symbolics, TI Explorer and Xerox 1186), and a range o
engineering’ workstations (SUN, Apollo, DEC VAX and IBM 6150). A delivery version of KEE is

s
available on a Compaq 386 PC, and a full development version of KEE for a 386 PC will be released
hortly. A delivery version of KEE is also available on IBM PC ATs connected to a VAX host. IBM

n
I
and IntelliCorp have recently announced that a development version of KEE will become available o
BM mainframes.

3.1. KEE - Schema Representation

The majority of data in KEE is represented using schemata, which are known as ‘units’ in KEE,

u
although it is also possible to represent unstructured arbitary facts. KEE supports two relations between
nits, allowing the user to define either a member or a subclass of a class. These two relations define

s
o
the inheritance paths between units. Multiple inheritance is permitted. Each unit may contain two type
f slot - slots which can inherit values from other units, and slots which cannot. KEE does not directly

o
K
support user-defined relations, although this facility is available in SimKit, which is an extension t

EE, providing extra facilities for building knowledge-based simulation systems.

s
o
In KEE, each slot is provided with a series of constraints or facets which constrain the possible value
f the slot. The facets of a slot allow the user to control the inheritance of multiple values by the slot,

a
to specify the type or range of a slot value, to put cardinality restrictions on a slot value, to attach
ctive values to monitor a slot value, and attach graphical images which display (and may permit

3

updating) of the slot value. The value of a slot is stored in one of its facets.

.2. KEE - Rule Based Programming

KEE incorporates two types of rules - standard rules, and deduction rules. Deduction rules are used for

a
reasoning where the conclusions of a rule will always be dependent upon the premises of the rule. They
re implemented using KEE’s truth maintenance system.

n
K
Rules are partitioned into rule-sets, and reasoning is restricted to the rules within selected rule-sets. I

EE the same rules can be used for both forward and backward chaining; if a fact is asserted, and a

c
particular rule-set is invoked, then forward chaining may occur; if a query regarding a fact (possibly
ontaining one or more variables) is made, then backward chaining may occur. Intermixing of forward

T

chaining and backward chaining is possible, as is the simultaneous consideration of several rule-sets.

he KEE user is provided with a number of switches to control the strategies used in rule selection.

d
The backward chaining strategies include depth-first, breadth-first, and best-first search, as well as user
efined strategies. For forward chaining the user can choose between strategies based on recency,

3

specificity, or user-defined priorities; KEE also allows the user to define his own strategies.

.3. KEE - Object Oriented Programming

The object-oriented facilities of KEE are well developed, since KEE’s development was based on
f

s
UNITS, an object-oriented system. Lisp functions or lambda expressions can be attached to the value o
lots. Messages to invoke these methods are sent using a simple command that specifies the unit and the

t
r
slot to which the message is being sent, as well as any arguments that the method function migh
equire. Inherited methods can be overriden by local methods, or modified by attaching extra local code

before, after, or "wrapped" about, the inherited code.

GNU Emacs is a piece of software licenced free of charge by the Free Software Foundation for use or redistribu-
t

8

ion by anyone, on the condition that no attempt is made to charge for its use.



A

3.4. KEE - Access Oriented Programming

n active value can be defined by creating a unit. This unit can then be attached to the slot(s) to be
e

a
monitored by adding the name of the unit to the appropriate facets of the slot(s). The slots of th
ctive value unit define what actions should be taken whenever a monitored slot value is read, asserted,

3

added, or removed.

.5. KEE - Context manipulation

Contexts in KEE are known as worlds. KEE allows contexts to be created, deleted or merged. When a
e

s
slot value is changed in a world, a new copy of that slot is created, which is considered to exist in th
pecified world. Slots and values which exist within a world may be inherited by other worlds. The

t
i
user is allowed to specify that certain worlds may not be merged, or to define rules that detec
nconsistent states within a world. KEE will also declare a world to be inconsistent if it violates any

o
b
restrictions on slots, such as the cardinality, type, or range of slots. KEE allows inconsistent worlds t
e ‘resurrected’ if the inconsistency disappears.

Chaining of rules can take place within the context of a particular world, and the conclusions of each

3

rule may be asserted, creating a new world.

.6. KEE - Development Environment

KEE provides an extensive development environment. As well as an EMACS editor, it provides a
r

q
schema and knowledge base browser, a graphics interface development package, a language fo
uerying the knowledge base, and various sorts of debugging and trace information.

,
a
The graphics interface development package is mouse and menu based. It is based around KEEPictures
n extensive range of pre-defined graphic items which can be defined using units (and animated by

d
t
changing the values of slots). These graphic items include histograms, gauges, switches an
hermometers. Another feature of the package is ActiveImages, which are graphics which allow direct

p
access to the values of slots. An ActiveImage displays a slot value, alerts the user if the value reaches a
re-defined limit, and allows the user to change the value using the mouse.

e
v
The language for querying the knowledge base is known as TellAndAsk, which is an English-lik
ersion of Lisp. It allows the user to interrogate or modify the knowledge base.

g
r
KEE’s debugging information includes an viewer for the agenda (conflict set) for forward chainin
ules; dynamic graphic traces for forward chaining rules, backward chaining rules, and worlds; textual

K

traces for rules and methods; a rule cross referencer; and the (machine-dependent) LISP debugger.

EE automatically saves units, compiled methods, and the source code of methods, into a file.

T

4. Knowledge Craft

his review is based on Knowledge Craft version 3.1. Knowledge Craft version 3.1 was developed on
3

w
Symbolics hardware, and is available on Symbolics and TI Explorer Lisp machines, SUN

orkstations, and DEC VAX minicomputers and workstations. Knowledge Craft is built around
n

L
Carnegie Representation Language (CRL), which is an extension of the Schema Representatio

anguage designed at Carnegie-Mellon University in Pittsburgh.

A

4.1. Knowledge Craft - Schema Representation

lmost everything in Knowledge Craft is represented using schemata. Knowledge Craft allows the user

i
to specify the characteristics of a particular slot by using a slot control schema. A slot control schema
s a schema with the same name as a slot which appears in another schema. It allows the user to put

c
demons (active values) on a slot, restrict the values that can fill a slot, or restrict the schemata that can
ontain that slot.

Slot control schemata also allow the user of Knowledge Craft to define relations (slots which link one
e

u
schema to another), and to restrict which slots and values can be inherited across each relation. Th
ser is allowed to define the transitivity of a relation; for instance, if a spark plug is a COMPONENT-

OF an engine, and an engine is PART-OF a car, Knowledge Craft allows the user to specify that a



w
t
spark plug should be considered to be a COMPONENT-OF a car. Transitivities and restrictions allo
he user considerable subtlety in defining the semantics of a relation.

-
k
Knowledge Craft also uses schemata to represent meta-knowledge about the knowledge base. Meta
nowledge can be used to locally override or replace slot control schemata, or to record which schema

K

a value has been inherited from.

nowledge Craft permits multiple inheritance, as long as the appropriate global variable is set correctly.

K

4.2. Knowledge Craft - Rule Based Programming

nowledge Craft uses CRL-OPS for forward chaining. CRL-OPS is an enhanced version of OPS5,

o
which is a production rule system. The enhancements include allowing a limited range of Lisp functions
n the left-hand side of a rule; allowing CRL, Lisp, CRL-Prolog, or OPS5 commands to be executed on

e
t
the right-hand side of a rule with a minimum of awkward syntax; and allowing schemata to b
ranslated into CRL-OPS’ working memory. Conflict resolution in CRL-OPS is based on recency, and,

B

if rules are of equal recency, specificity is used. CRL-OPS rules are compiled into a Rete network.

ackward chaining in Knowledge Craft is handled by CRL-Prolog. CRL-Prolog is approximately
s

m
equivalent to Edinburgh Prolog (see Clocksin & Mellish 1987) in functionality, although its syntax i

ore reminiscent of Lisp than Prolog. It provides functions to permit access to Lisp and CRL
g

o
functions. It also has a simple schema interface which allows CRL-Prolog to perform pattern matchin
n schemata and slots.

4.3. Knowledge Craft - Object Oriented Programming

a
e
Knowledge Craft supports object oriented programming. It allows a Lisp function or a lambd
xpression to be defined as a method and attached to a slot. Methods are executed using a special

t
p
function which specifies the schema and the slot. Methods can be inherited. Knowledge Craft does no
rovide facilities for executing additional local methods as well as inherited methods.

A

4.4. Knowledge Craft - Access Oriented Programming

ctive values are known as demons in Knowledge Craft. A schema is defined which represents the

s
demon, and it is attached to the relevant slot using a slot control schema. The slots of the demon
chema indicate what operations on the slot value will cause the demon’s function to be executed,

w
whether that function will be executed before or after the operation that activated the demon, and

hether the demon will block that operation, alter its parameters, or leave it unaffected. Demons must

4

be explicitly enabled before they can be used.

.5. Knowledge Craft - Context Manipulation

Knowledge Craft allows contexts to be created, and deleted. It also allows two contexts to be combined
a

c
if one is a descendant of the other. Knowledge Craft provides no facilities for explicitly declaring
ontext to be inconsistent; if two contexts which are combined have conflicting values, one value

I

overwrites the other.

n Knowledge Craft, when a slot value is altered in a context, the whole schema is copied into that

K

context. Schemata can be moved or copied to different branches of the context hierarchy.

nowledge Craft includes a range of methods of constraining CRL-OPS rules to match in a particular

4

context, or in contexts on one branch of the context hierarchy.

.6. Knowledge Craft - Development Environment

e
S
Knowledge Craft uses the system editor on Lisp machines, and supplies an EMACS-like editor on th
UN workstation and the VAXstation. These editors allow incremental recompilation of rules,

C
schemata, or Lisp functions which have been altered while a knowledge base is loaded. Knowledge

raft also supplies some facilities for debugging the knowledge base, including the Knowledge Craft
,

w
workcentre, which can be used to issue CRL functions; the CRL-OPS and CRL-Prolog workcentres

hich supply a variety of windows which give various sorts of trace and debugging information for
CRL-OPS and CRL-Prolog; a graphical schema network editor; and two schema editors. These facilities



are mouse and menu-based.9

There are also some facilities for development of schema-based graphics, facilities for redefining some
r

s
of Knowledge Craft’s error handling functions, facilities for handling events, queues and time fo
imulation applications, and a tool for saving schemata created using the user interface tools to a file.

A

5. Possible extensions to knowledge-based system toolkits

lthough these toolkits provide an impressive range of facilities for building knowledge-based systems,

c
further extensions are still possible. Perhaps the most obvious is integration with more conventional
omputer hardware; although single-user workstations are coming down in price, and some of the

e
u
toolkits run on VAX minicomputers, many companies who are interested in expert systems ar
nwilling to buy anything that cannot be integrated with their existing hardware (often supplied by

d
c
IBM). At the very least, toolkits should be able to access database management systems an
onventional languages; apart from some facilities provided by KEE to access a range of databases or

r
p
the C programming language, the user of a toolkit must write his own Lisp functions to access othe
ackages. There are also worries about the usefulness of knowledge-based systems for real-time

e
a
problems, because they typically run more slowly than conventional programs of a similar size. Ther
re two main approaches to these problems. One is that the systems should be improved and extended

e
f
to provide the above features. Product announcements from the toolkit vendors suggest that som
eatures will indeed become available in later versions. The other approach is to treat the toolkits as

s
engines for rapid prototyping of knowledge-based systems. This approach suggests that a prototype
ystem is developed using a toolkit, and is then used as a specification for re-implementing a delivery

d
m
system on different hardware. This approach is becoming more feasible as more sophisticate

ainframe-based or PC-based knowledge-based system delivery environments become available 01

e
f
Other possible extensions to toolkits would depend on who would be using the toolkit. Those who ar
amiliar with numerical certainty factors might be surprised to find that the toolkits do not provide

i
certainty factors. However, the most common implementation of certainty factors is both easy to
mplement using ordinary arithmetical operators, and theoretically unsound (see Ross 1986). Or the

s
w
target user might be a domain expert with minimal computing expertise; in such cases, the toolkit

ould require very sophisticated user interfaces for building knowledge bases, incorporating semantic

t
checking, cross-referencing, version control, natural representation of spatial and temporal relations, and
he ability to control inferencing at a high level of abstraction (Mettrey 1987). Such facilities are very

l
d
unlikely to be incorporated in toolkits in the near future, because there are considerable theoretica
ifficulties with any system requiring an understanding of semantics, and because the effort involved in

C

building and maintaining such facilities probably exceeds the current demand for them.

onclusion

Multi-paradigm toolkits provide a wide range of features, which aim to allow systems to be developed
a

g
very rapidly. The user of a toolkit today needs a basic knowledge of Lisp, and it is helpful to have
rounding in the principles of Artificial Intelligence programming. Toolkits are very useful for

m
designing prototypes of knowledge-based systems rapidly, but would benefit from better integration with

ore conventional hardware and software.

Knowledge Craft provides a languages-only version, which is available on text-based terminals remotely logged in
t

9

o a host. This version does not supply any graphical editors or workcentres, although debugging information can still
be obtained using textual commands.

Multi-paradigm toolkits for developing knowledge-based systems (such as KEE or GoldWorks) are becoming
a

10

vailable on PCs. However, such toolkits currently run best on PCs which use the powerful 386 chip; the price of these
f

m
PCs is comparable to that of some workstations. It will be interesting to see how popular and useful the PC versions o

ulti-paradigm toolkits are.

GoldWorks is marketed by Artificial Intelligence Ltd, Intelligence House, 58-78 Merton Road, Watford, Herts, WD1 7BY



M

Acknowledgements

any thanks are due to Ian Filby, Robert Inder, and John Fraser of the AI Applications Institute for

R

their comments on earlier drafts of this paper.

eferences

Burstall R.M., MacQueen D.B and D.T. Sannella (1980) HOPE: An Experimental Applicative

C

Language. CSR-62-80, Department of Artificial Intelligence, University of Edinburgh.

locksin W.F. and C.S Mellish, (1987) Programming in PROLOG (Third edition). New York:

F

Springer-Verlag.

orgy C.L. (1982) Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.

F

Artificial Intelligence, vol 19 no 1, 17-37, Sept 1982.

raser, J.L. (1987) Overview of KEE. In Airing, no 2 AI Applications Institute, University of

I

Edinburgh.

nder R., (1988) The State of the ART. AIAI-TR-41, AI Applications Institute Technical Report Series,

K

University of Edinburgh.

ingston J.K.C., (1987) Rule-based Expert Systems and Beyond: An Overview. In Proceedings of the
:

G
Expert Systems Workshop, British Association of Accountants Conference 1987. University of Glasgow

lasgow Business School.

Kingston J.K.C., (1988) An Overview of Knowledge Craft: Parts 1 and 2. In airing no 3 and no 4, AI

L

Applications Institute, University of Edinburgh.

urent J., Ayel J., Thome F. and D. Ziebelin, (1986) Comparative Evaluation of Three Expert Systems
,

p
Development Tools: KEE, Knowledge Craft, ART. The Knowledge Engineering Review, vol.1, no.4
p.18-29.

McDermott, J. (1980) R1: An Expert System in the Computer Systems Domain. In: Proceedings of

M

AAAI-80, American Association for Artificial Intelligence, pp 269-274.

ettrey W., (1987) An Assessment of Tools for Building Large Knowledge-Based Systems. AI

R

Magazine, Winter 1987: 81-89.

icher, M.H. (1986) An Evaluation of Expert System Development Tools. Expert Systems, vol.3, no.3,

R

pp 166-183.

oss P., (1986) Expert Systems M.Sc. Course Notes. Department of Artificial Intelligence, University

S

of Edinburgh.

hortliffe E.H., (1976) Computer Based Medical Consultations: MYCIN. New York, Elsevier.

l
E
Wall R.S., Apon A.W., Beal J., Gately M.T. and L.G. Oren, (1985). An Evaluation of Commercia

xpert System Building Tools. Data & Knowledge Engineering, vol.1, pp 279-304.


