
O�Plan

Task Formalism Manual

Arti�cial Intelligence Applications Institute
University of Edinburgh
�� South Bridge
Edinburgh EH� �HN
United Kingdom

January ��� ���	

Version �
�

Acknowledgements
The O�Plan project began in ����� Since that time the following people have participated� Colin Bell	 Ken
Currie	 Je
 Dalton	 Roberto Desimone	 Brian Drabble	 Mark Drummond	 Anja Haman	 Ken Johnson	 Richard
Kirby	 Glen Reece	 Arthur Seaton	 Judith Secker	 Austin Tate and Richard Tobin�

Prior to ����	 work on Interplan ����
��� and Nonlin �������� was funded by the uk Science and Engineering
Research Council and provided technical input to the design of O�Plan�

From ���� to ����	 the O�Plan project was funded by the uk Science and Engineering Research Council on grant
numbers gr�c������ and gr�d������ �uk Alvey Programme project number ikbs������ The work was also
supported by a fellowship from sd�Scicon for Austin Tate from ���� to �����

From ���� to ���
	 the O�Plan project was supported by the us Air Force Rome Laboratory through the Air
Force O�ce of Scienti�c Research �afosr� and their European O�ce of Aerospace Research and Development
by contract number F���
�����C����� �eoard��������� monitored by Northrup Fowler iii at the usaf Rome
Laboratory�

From ���
 to ����	 the O�Plan project was supported by the arpa�Rome Laboratory Knowledge Based Planning
and Scheduling Initiative through the us Air Force Rome Laboratory through the Air Force O�ce of Scienti�c
Research �afosr� and their European O�ce of Aerospace Research and Development by contract number F���
��
�
�C����
 �eoard��
������ monitored by Northrup Fowler iii at the usaf Rome Laboratory�

From ���� to ����	 the O�Plan project was sponsored by the Defense Advanced Research Projects Agency
�darpa� and Rome Laboratory	 Air Force Materiel Command	 usaf	 under grant number f�������	�
������

Additional resources for the O�Plan and O�Plan projects have been provided by the Arti�cial Intelligence Ap�
plications Institute through the europa �Edinburgh University Research on Planning Architectures� institute
development project�

From ���� to ����	 research on scheduling applications of the O�Plan architecture was funded by Hitachi Eu�
rope Ltd� From ���� to ���
	 the uk Science and Engineering Research Council �grant number gr�f����� �
uk Information Engineering Directorate project number ied ������
�� funded a collaborative project with icl	
Imperial College and other partners in which the O�Plan architecture was used to guide the design and devel�
opment of a planner with a �exible temporal logic representation of the plan state� A number of other research
and development contracts placed with aiai have led to research progress on the O�Plan prototype�

The u�s� Government is authorised to reproduce and distribute reprints for Governmental purposes notwith�
standing any copyright annotation hereon� The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing o�cial policies or endorsements	 either express or
implied	 of darpa	 Rome Laboratory or the u�s� Government�

O�Plan is a valuable asset of the Arti�cial Intelligence Applications Institute and must not be used without the
prior permission of a rights holder� Please contact aiai for more information�

Contact Information
The O�Plan project team can be contacted as follows�

O�Plan Team
Arti�cial Intelligence Applications Institute
The University of Edinburgh
��	 South Bridge
Edinburgh EH� �HN
United Kingdom

Tel� ����� ��� ���
��

Fax� ����� ��� ��� ����
Email� oplan�ed�ac�uk

WWW� http���www�aiai�ed�ac�uk� oplan�

Created� January ��	 ���
 by Austin Tate
Last Modi�ed� January �	 ���� ������� by Je
 Dalton
Printed� January ��	 ����
c�����	 The University of Edinburgh

This material may be reproduced by or for the U�S� Government pursuant to the copyright license under the

clause at DFARS
�
�

�����
 �June ����� � Rights in Technical Data and Computer Software �Foreign��

Task Formalism Manual �

IMPORTANT NOTE

This Task FormalismManual presents a comprehensive view of a language for describing

planning domains� activities� processes� tasks and plans� It acts as a design focus for

work on the O�Plan project and research into planning domain modelling�

The current implementation of the O�Plan planner does not accept all of the Task For�
malism constructs documented here� A list of unsupported features and features under
investigation is given in section �����

Task Formalism Manual �

Contents

� Introduction to Task Formalism �

� Hierarchical AI Planning Systems �

� Some Key Concepts �

�
� Actions and Events �

�
� Schemas �

�
� Authority ��

�
� E
ects and Conditions ��

�
� Resources ��

�
� Patterns ��

�
	 hpatterni � hvaluei ��

�
� Min�Max Pairs for Time Windows and Resource Usage � � � � � � � � � � � � � � ��

�
� Notepad ��

�
�� O�Plan External System Interface ��

� Commented Examples ��

�
� Blocks World ��

�
� House Building �	

� Conventions Used in the TF Description ��

� Component De	nitions ��

�
� Basics ��

�
� Patterns� Values� Variables and Match Constraints � � � � � � � � � � � � � � � � � ��

�
� Expressions �	

�
� Sets ��

�
� Nodes ��

�
� Speci�cations of Node Numbers� Node Ends and Time Points � � � � � � � � � � � ��

�
	 Numerical Bounds ��

�
� Time Speci�cations ��

�
� Resource Speci�cations ��

Task Formalism Manual �

�
�� Authority Statements ��

� TF Forms ��

	
� Documentary Information ��

	
� TF Compiler Defaults ��

	
� Including �les ��

	
� User Interface Speci�cation ��

	
�
� Plan View ��

	
�
� World View ��

	
� Plan Levels ��

	
� Preferences and Heuristic Information ��

	
	 Resource Information ��

	
� Default Resource Information ��

	
� Calendar and Time Information ��

	
�� Domain Constraints ��

	
�� Compute Conditions ��

	
�� Language Speci�c Code ��

	
�� Object Types ��

	
�� Global Data ��

	
�� Actions and Schemas �	

	
��
� General Notes ��

	
��
� Schema ��

	
��
� Vars� Local vars and Vars relations ��

	
��
� Expands and Only Use For

 ��

	
��
� Nodes� Orderings � Expansions or Decompositions � � � � � � � � � � � � � ��

	
��
� Conditions ��

	
��
	 Conditions � Compute ��

	
��
� Notepad ��

	
��
� Authority ��

	
��
��Time Windows ��

	
��
��Other Constraints ��

	
�� Primitive Actions ��

Task Formalism Manual �

	
�	 Initial Information for Plan Generation ��

	
�� Task Schemas ��

 TF Compiler �

� O�Plan Commands ��

�� Prede	ned Compute hfunction namesi ��

�� Guidelines for Writing TF ��

��
� Scope the Domain and Initial Analysis ��

��
� Action Expansion or �Goal� Achievement� ��

��
� Levels of Modelling ��

��
� Writing a Schema � the Schema Envelope ��

��
� Help for the TF Writer ��

��
� Modelling Reusable Non�sharable Resources with E
ects�Conditions � � � � � � � ��

�� Current Implementation ��

��
� Unsupported Features ��

��
� Features Anticipated ��

��
� Features Under Review ��

�

� Introduction to Task Formalism

Domain representation in planning attempts to capture the detailed description of permissible
actions or operations within an application area� including information about the e
ects of
actions� conditions on the use of actions� and how such conditions should be satis�ed
 The
need to describe such a wide range of information has led to the speci�cation and development
of a high level action description language called Task Formalism� or more conveniently tf

tf originated in the Nonlin planning system but has been re�ned and extended for action
descriptions within the O�Plan Planning System being developed at aiai

tf is not intended as the normal mode of interaction with the user describing a domain
 It
is intended as an intermediate language which �ts between a supportive user interface and
the planner
 tf can be considered to be the target language for a helpful domain writer�s
support tool
 However� in the present release of the O�Plan system� it is necessary to use the
tf language directly
 tf has also been designed to allow a useful level of compile time checking
to be performed

tf is used to give an overall hierarchical description of an application area by specifying the
possible activities within the application domain and describing how those activities can be
�expanded� into sets of sub�activities with ordering contraints imposed
 Plans are generated
by choosing suitable expansions for activities in the plan �i
e
 re�ning those activities� and
including the sets of more detailed sub�activities described by the chosen expansions
 Ordering
constraints are then satis�ed to ensure that asserted e
ects of some actions satisfy� and continue
to satisfy� conditions on the use of other actions
 Other constraints� such as a time window
for the action and restrictions on resource usage� are also included in the descriptions
 These
descriptions of actions form the main structure within tf�the schema
 Schemas are also
used in a completely uniform manner to describe tasks set to the planning system� in the
same formalism
 Other tf structures hold global information of various sorts and heuristic
information about preferences for choices to be made during planning

The purpose of this manual is to introduce the potential tf writer to the constructs of the
language in order to describe application domains for the O�Plan planning system
 tf� like
high level computer languages� is compiled by the tf Compiler into an internal data struc�
ture representing the Domain Information
 The Compiler does some error checking� but it is
advisable to have a thorough understanding of tf before starting out

The tf descriptions included below are presented in a mixed reference�rationale form where
the speci�cation of tf structures are associated with explanatory notes

tf is still the subject of research and development
 There is no guarantee that forward com�
patibility of any tf form or component will be preserved across new releases of O�Plan
 This
manual includes an extensive domain description language which goes beyond the speci�c fea�
tures that can be supported by the current implementation of O�Plan
 Section ��
� describes
the current implementation in terms of unsupported features and features which are anticipated
for the future

	

� Hierarchical AI Planning Systems

Many knowledge�based planners�including the O�Plan Planning Agent�perform a similar
procedure to develop a plan
 The process is summarised in Figure �

(a) (b) (c)

Figure �� Outline of the operation of an AI Planner

Figure � is a simpli�ed overview of a �Hierarchical non�linear AI planner�
 The three parts
show�

a
 Based on a hierarchical representation of the plan� a task in the form of a skeleton plan or
a set of requirements can be given and expanded out to greater levels of detail

b
 The planner searches through alternative methods of expanding high level plans to lower
level ones �and alternative means of satisfying conditions� choosing objects� etc�
 Inter�
actions between solutions to di
erent parts of the plan are detected and corrected

c
 At each level� the plan is represented as a network of nodes in a form that allows the use
of knowledge about the problem �such as time and resource constraints� to restrict the
search for a solution

Hierarchical AI Planning Systems �

t t

t

t

t�
��

�
���

��

�
��

t t

t

t

t�
��

�
���

��

�
��

�
��

HHHHH��
��
�

�
��t t

t

t t

t

�
��

HHHHH��
��
�

�
��t

t

t

t

t

A B

C

D

E

A B

C

D

E� E�

E� E�

E�

E�

E� E�

E� E�

E�

E�

�

�

PLAN

EXPANDED

PLAN

EXPANSION OF E

LIBRARY OF ACTIVITY DESCRIPTIONS

Figure �� Expanding a step of the plan

Part �b� is often called �expanding� the plan
 As shown in �gure �� some high level represen�
tation of a step in the plan is selected and a more detailed method of carrying it out is found
in a �library� of such activity breakdowns �these are termed schemas�
 The expansion is then
inserted into the plan and any unresolved problems �such as unsatis�ed conditions� actions
needing further expansion� resource requirements� etc� are noted

�

� Some Key Concepts

��� Actions and Events

Planning takes place in an environment where certain things are under the explicit control of
one or more agents responsible for completing one or more tasks in the domain

Actions are the activities which can be performed under the control of the agents and which
can alter the environment in which the agents perform their tasks

Events are those activities outwith the explicit control of the agents

Actions and events can be described at a number of levels of detail in a hierarchical fashion by
being shown to be composed of a number of sub�actions or sub�events ordered in some given
way
 Primitive actions and events cannot be further decomposed

��� Schemas

Schemas are used to describe actions and events and where applicable their decomposition to
a more detailed level of description
 There are a number of di
erent types of schema� normal
�or action� schemas� process schemas� task schemas and meta�schemas

A normal �action� schema describes an action under the deliberate control of the plan
 A
process schema describes an event or process comprising several linked events which is outwith
the direct control of the agent �though actions performed by the agent may result in such events
or processes being triggered�
 A task schema describes a task which the planner is being asked
to perform and may describe the environment in which the task is to take place �in terms of
the world model and the known events that will occur in it�

A meta�schema is a simple means to allow for families of similar schemas of any of the three
types above to be described
 Meta�schemas are used at tf compile time

A schema can be pictured of as a triangle showing two ways in which the schema can be utilised

One� pointing from the top of the triangle� relates to its use as a means of re�ning� decomposing
or expanding an action or event to a lower level of detail
 The right hand �output� side relates
to its possible use to provide an e
ect to satisfy a condition �or to provide additional resources
or authorities required for use in a plan�
 The third left hand �input� side of this triangle is the
applicability conditions for the schema �or the resources or authority it requires�

Some Key Concepts ��

�
�
�
�
�
�
�
��JJ

J
J
J
J
J
JJ

� �

�

activity
decomposition

activity

authority

conditions
resources

authority

e
ects
resources

time �

��� Authority

The O�Plan planner is intended to operate in a distributed command� planning and execution
environment
 In such an environment� the authority provided to a planner to create a plan or
to modify it� and to an execution agent to allow execution or adaptation of a speci�c chosen
plan� needs to be made clear

O�Plan currently supports only a simple implementation of authority management
 However�
the basis of a more sophisticated scheme is allowed for with the following�

� the notion of separate plan options which are individually speci�ed task requirements� plan
environments and plan elaborations
 The Task Assignment agent can create as many as
required
 The plan options may contain the same task� with di
erent search options or
may contain a di
erent task and environmental assumptions
 It is possible to have only
one plan option as the minimum�

� the notion of plan phases
 These are individually provided actions or events stated ex�
plicitly in the top level task description given by the Task Assignment agent
 Greater
precision of authority management is possible by specifying more explicit phases at the
task level
 It is possible to have only one �phase� in the task as the minimum�

� the notion of plan levels
 Greater precision of authority management is possible by speci�
fying more explicit levels in the domain Task Formalism �tf�
 It is possible to have only
one �level� in the domain as the minimum

�Multiple conjunctive tasks speci�ed together is also possible�
�Plan options may be established and explicitly switched between by the Task Assignment agent�
�In fact any sub�component of any task schema or other schema included by task expansion in a plan can be

referred to as a �phase� within the O�Plan planner agent� This can be done by referring to its node number�

Some Key Concepts ��

� for each �phase�� planning will only be done down to an authorised �level� at which
point planning will suspend leaving appropriate agenda entries until deeper planning
authorisation is given

� execution will be separately authorised for each �phase�

The planner agent will only need to be able to refer to numbers for plan options� phases and
levels
 Domain related names that are meaningful to the user may be associated with these
numbers through the Task Assignment agent

��� E�ects and Conditions

At the heart of the O�Plan plan representation for e
ects and conditions are the tome �Table
Of Multiple E
ects� and gost �GOal STructure��tables to record all e
ects generated by
actions in the plan� the conditions satis�ed at points in the plan� and the intentions behind
the ways in which conditions have been achieved
 The gost is the means by which the scope
of an e
ect �there could be several alternative such e
ects� which satis�es a condition can be
recorded and used to protect against the introduction of interacting e
ects
 In a �nal valid plan
all conditions introduced during planning are required to have been satis�ed and maintained
over the required period� hence there will be a valid gost entry for each condition encountered

Conditions are one of the most elaborate of all tf statements due to the variety of condition
types identi�ed as being useful in O�Plan
 The main types are�

only use if A �lter on the relevance of the schema based on a statement in the environment
which it is not anticipated will be altered during the required range

Normally used to �lter out non�applicable schemas

In the Nonlin planner� these were called usewhen or holds conditions

only use for query A condition anticipated as being satis�ed in the environment

Normally used to bind variables appearing in the condition

supervised A condition established by �one or more alternative nominated� substep�s� of the
schema�s decomposition

Normally used to protect conditions across time intervals within a schema

unsupervised A condition which is anticipated as being established elsewhere in a plan in
which this schema is used

Normally used to order steps in a plan to meet sequencing requirements

achieve A condition which may be satis�ed by any means available to the planner �including
adding new plan structure�

compute These conditions provide the O�Plan External System Interface
 They are not con�
ditions satis�able directly from e
ects within a plan
 A compute condition describes a

Some Key Concepts ��

requirement which can be satis�ed using information from an external system �or database
or user�

Other condition types can be identi�ed but the ones above have been found to be useful ways
to extract knowledge from a domain writer in a form that can be used to restrict search in an
AI planner
 The control of planner search via condition types is worthy of a serious study in
its own right� and could form an ideal Ph
D
 topic

Condition typing allows information to be kept about when� how and why a condition present in
the plan has been satis�ed and the way it is to be treated if the condition cannot be maintained

However� use of this information itself will almost certainly commit the planner to prune some
of the potential search space thereby losing completeness of search if the tf writer uses an
inappropriate condition type
 Unfortunately this puts a burden on the domain writer and can
make domain writing a di�cult job

Condition typing helps direct the planning process� but it also requires the domain tf writer
to structure the hierarchy of the tasks or actions more clearly �usually using separate levels�

It forces checks to be made on processes or actions which should communicate with others to
ensure that they actually do advertise their results through a common vocabulary

��� Resources

The types of resource used in a plan can be classi�ed as shown here

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

��
��

��
��

��
�HHHHHHHHHHH

Resource

Consumable Reusable

Strictly Producible Non�Sharable Sharable

By�Agent By and
Outwith
Agent

Outwith
Agent

Independently Synchronously

consumable strictly� A set amount of the resource is available and cannot be topped up

consumable producible by agent� The resource can be topped up from actions for agents
under the control of the plan

Some Key Concepts ��

consumable producible outwith agent� This resource type is similar to consum�
able producible by agent except that extra resource is only obtained via an o
�line process
such as a delivery rather than via actions of agents under the control of the plan

consumable producible by and outwith agent� This resource is a combination of the two
above
 Resources can be produced both by agent actions and by o
�line processes

reusable non sharable� The resource is allocated from a �central pool� in unit amounts and
when the resource is �nished being used it is then deallocated back to the pool
 For
example workman� robots� lorries� etc

reusable sharable independently� The resource can be shared without coordination to spe�
ci�c time periods� e
g
 spaces in a car park

sharable synchronously� The resource is shared for a speci�c time� e
g
 capacity in a par�
ticular journey of a ship or cargo plane

��� Patterns

A hpatterni is a tf component used throughout the Task Formalism
 A hpatterni can be a
constant name beginning with a letter and followed by alphanumerical characters and one or
two other permitted characters �e
g
 abc� part ���� a number �e
g
 �� ��	�� �
����� or several of
these things surrounded by the braces f and g to any depth �e
g
 fon a bg� f�� �� ��g� fcolour
fcamera � �lter �gg�� or set brackets � and � to any depth �e
g
 �a �b c� d��
 These are all fully
instantiated hpatternis

A hpatterni may also contain variables which have the form �hnamei� e
g
 �colour
 Such
patterns containing variables are often used to state the conditions and e
ects of actions in the
domain

A hpatterni can also represent a pattern speci�cation by giving a template of pattern forms
that can match it
 All match constraint speci�cations start with the character ���
 The
general �match anything� speci�cation is ��
 Other match constraints include �fnot greeng�
�fboundg� etc
 For example� fon �� �fnot tablegg is a valid speci�cation for fon a bg but not
for fon a tableg

��	 hpatterni
 hvaluei

A basic building block within O�Plan is the hpatterni � hvaluei form which is used throughout
O�Plan to record information of the form�

function�param� ���� � value

such as in e
ects and conditions
 An example is�

�colour camera�	 filter�
� � red

Some Key Concepts ��

where the �rst �xed word on the left side of the � is the function and subsequent entries on
the left side are the parameters
 The value is usually a single name or number� but can also
be a general pattern where appropriate �e
g
 f�� �� ��g to represent a ��dimensional spatial
coordinate�
 The hpatterni � hvaluei form can be fully instantiated as in the example above or
may contain match constraints as mentioned earlier

��� Min�Max Pairs for Time Windows and Resource Usage

All time windows and resource usage speci�cations in O�Plan are maintained as min�max

pairs� specifying the upper and lower bounds known at any time
 Such bounds may be de�ned
by symbolic expressions which can depend on variables� but O�Plan maintains a numerical pair
of bounds for all such numerical values
 In fact� a third entry is associated with such numerical
bounds
 This third entry is a projected value �which could be a simple number or a more
complex function� data structure� etc
� used by the planner for heuristic estimation� search
control and other purposes

Time windows play an important part in O�Plan in two ways
 Firstly� as a means of recording
time limits for the start and �nish of an action� for its duration and for delays between actions

Secondly� during the planning phase itself as a means of pruning the potential search space if
temporal validity is threatened

speci�cation overall
� �

� �

invalid
range

valid
range

invalid
range

valid
range

valid
range

valid
range

range of sum of utilisation at node ends
� �

Similarly� resource usage speci�cations are used to ensure that resource usage stays within the
bounds indicated
 There are two types of resource usage statements
 One gives a speci�cation
of the overall limitation on resource usage for a schema �over the total time that the schema�s
expansion can span�
 The other type describes actual resource utilisation at points in the

Some Key Concepts ��

expansion of a schema
 It must be possible �within the restriction on the ranges in the actual
resource usage statements� for a point in the range of the sum of the resource usage statements
to be within the overall speci�cation given

��
 Notepad

A Notepad is associated with a plan in order that global information about the plan can be
recorded on it
 Conditions can also be stated with respect to the contents of the Notepad and
schemas can be selected to achieve entries on the Notepad
 Notepad e
ects are known as Notes

Normally� e
ects are asserted at a speci�c point in the plan network and conditions are stated
as needing to be satis�ed at speci�c points
 The Notepad facility provides a means to record
plan information which is not speci�c to any component of the plan

For example� notes can be used to record information about the strategy or approach being
adopted in the search for a solution� or it may be used to record information about the choices
being made
 A user may also use the Notepad directly during plan generation when acting in
the Planner User Role � the Knowledge Source KS USER normally allows Notes to be recorded
and the Notepad to be viewed

O�Plan� used the term jotter for the Notepad

���� O�Plan External System Interface

The O�Plan External System Interface is provided via compute conditions in O�Plan schemas

The external system could be a data base system� a modelling package for the application�
a CAD system� a table look�up system or a special interface to the user� for example
 The
external system is called by a function name and is passed parameters which are instantiated
versions of the schema variables referred to in the call expression
 The external system can also
be an O�Plan support routines
 One gives access to the question answering routine which can
query conditions at the point in the plan where the compute condition is evaluated
 Another
allows Notepad entries to be changed

A protocol for the External System Interface allows the results to be returned to the planner
in a form that can be understood
 This allows none� one or several alternative results to be
returned along with optional dependency statements on the continuing validity of the various
results �in a form which the planner can take responsibility to maintain�

New user�provided compute functions can be declared to the planner via a com�
pute conditions statement in the tf for a domain
 This ensures that the planner knows
how to call a compute condition and how to deal with its results

��

� Commented Examples

Before covering the detail of tf forms and syntax in this manual� two examples will be presented
here to give a �avour of the language

��� Blocks World

In this �rst example the single schema required to describe operations in a simple blocks world
is outlined
 The world is simple because there is no consideration given to block dimensions�
alignment of blocks or to the lifting mechanism
 The only prerequisites are that a block has to
be clear before it can be moved and that its destination block is also clear �the table is assumed
to have clear space always�
 The single schema is called puton to re�ect the lift�and�stack
nature of the application

In this particular application the schema is only used to satisfy achieve conditions through the
use of �only use for �e
ects� hence the expands pattern merely serves to describe the �primitive�
action
 This schema also illustrates the use of local schema variables
 These variables can be
instantiated by a number of means�

� By use of the expands or �only use for �e�ects with fully instantiated patterns

� By use of the only use for query condition type

� If the schema variables are not fully instantiated during the period of use of the schema
then such variables are converted to plan state �i
e
 global� variables� to be handled later
by an appropriate knowledge source

always �cleartop table��

types objects � �a b c table��

movable�objects � �a b c��

schema puton�

vars
x �
�type movable�objects��

y �
�type objects��

z �
�type objects��

vars�relations
x ��
y�
y ��
z�
x ��
z�

expands �puton
x
y�� ��� the actual action name

only�use�for�effects

�on
x
y� � true�

�cleartop
y� � false� ��� satisfy conditions in plan

�on
x
z� � false�

�cleartop
z� � true�

conditions only�use�for�query �on
x
z��

Commented Examples �	

��� only�use�for�query is used to bind one or more

��� free variables conditions have value true

achieve �cleartop
y��

achieve �cleartop
x��

end�schema�

The above representation of the Blocks World domain can be used to generate plans from tasks
set within appropriate task schemas
 Here is an example which describes an initial world �as
shown in the diagram� and a �nal world in which Block A is on Block B which is on Block C

task stack�ABC�

nodes 	 start�

� finish�

orderings 	 ���� ��

conditions achieve �on a b� at ��

achieve �on b c� at ��

effects �on c a� at 	�

�on a table� at 	�

�on b table� at 	�

�cleartop c� at 	�

�cleartop b� at 	�

end�task�

��� �����

��� � A �

��� ����� �����

��� � C � ���������� � B �

��� ����� ����� �����

��� � A � � B � � C �

��� ���������������������� �����

��� TABLE

��� House Building

The second example shows more of the features of tf� in particular the use of typed conditions

to re�ect the �sub�contractor� nature of individual schemas
 In particular� the schema actions
correspond to the activities performed by a possible contractor� and the schema conditions
make a statement about the level of commitment of that contractor to that particular con�
dition
 For example a supervised condition states categorically that the same contractor will
take responsibility for satisfying required conditions on actions within the sub�plan� whereas
unsupervised conditions state that the responsibility lies elsewhere but is required to hold at
the appropriate time

This example tf also shows a couple of time windows statements and primitive schemas� it
introduces alternative schema expansion methods� and it deliberately includes an alternative

Commented Examples ��

which fails to lead to a valid plan

task build�house� ��� top level task schema to initiate planning

nodes 	 start�

� finish�

 action �build house�� ��� this action is refined by the schema below

orderings 	 ����
�
 ���� ��

end�task�

schema build�

expands �build house�� ��� this expands the top level action

nodes 	 action �excavate and pour footers �� ��� some are primitive

� action �pour concrete foundations ��

 action �erect frame and roof ��

� action �lay brickwork ��

� action �finish roofing and flashing ��

� action �fasten gutters and downspouts��

� action �finish grading ��

� action �pour walks and landscape ��

� action �install services �� ��� some are not�

	� action �decorate ��

orderings 	 ���� �� � ����
�
 ���� �� � ���� ��

� ���� �� � ���� �� � ���� ��

��� actions � � 	� are not ordered wrt other actions � they are in parallel

conditions supervised �footers poured � at � from �	��

supervised �foundations laid � at
 from ����

supervised �frame and roof erected� at � from �
��

supervised �brickwork done � at � from ����

supervised �roofing finished � at � from ����

supervised �gutters etc fastened � at � from ����

unsupervised �storm drains laid � at ��

supervised �grading done � at � from ����

��� note the unsupervised condition � its satisfaction is outwith

��� the control of this schema but must still be satisfied

time�windows between 	�		�
���� and 	�	��
���� at ��

between 	�	������� and 	�	������� at
�

��� time window examples for start times of actions � �

end�schema�

schema service�	�

expands �install services�� ��� one way of expanding �install services�

only�use�for�effects �installed services 	��

nodes 	 action �install drains ��

� action �lay storm drains ��

 action �install rough plumbing ��

Commented Examples ��

� action �install finished plumbing��

� action �install rough wiring ��

� action �finish electrical work ��

� action �install kitchen equipment��

� action �install air conditioning ��

orderings 	 ����
�
 ���� �� � ���� ��
 ���� �� � ���� ��

conditions supervised �drains installed � at
 from �	��

supervised �rough plumbing installed� at � from �
��

supervised �rough wiring installed � at � from ����

supervised �rough plumbing installed� at � from �
��

supervised �rough wiring installed � at � from ����

unsupervised �foundations laid � at 	�

unsupervised �foundations laid � at ��

unsupervised �frame and roof erected � at ��

unsupervised �frame and roof erected � at ��

unsupervised �basement floor laid � at ��

unsupervised �flooring finished � at ��

unsupervised �flooring finished � at ��

unsupervised �painted � at ��

��� As in the real world this sub�contractor relies heavily on others

��� to prepare things beforehand � see the unsupervised conditions�

end�schema�

schema service���

expands �install services�� ��� another possible expansion

only�use�for�effects �installed services ���

nodes 	 action �install drains ��

� action �install rough plumbing ��

 action �install finished plumbing��

� action �install rough wiring ��

� action �finish electrical work ��

� action �install kitchen equipment��

� action �install air conditioning ��

��� This sub�contractor fails to �lay storm drains��

��� This will lead to plan failure when this schema is used

orderings 	 ���� �� � ����
� � ���� �� � ���� �� � ���� ��

conditions supervised �drains installed � at � from �	��

supervised �rough plumbing installed� at
 from ����

supervised �rough wiring installed � at � from ����

supervised �rough plumbing installed� at � from ����

supervised �rough wiring installed � at � from ����

unsupervised �foundations laid � at 	�

unsupervised �frame and roof erected � at ��

unsupervised �frame and roof erected � at ��

unsupervised �basement floor laid � at ��

Commented Examples ��

unsupervised �flooring finished � at
�

unsupervised �flooring finished � at ��

unsupervised �painted � at ��

effects �wallpaper on� � false at �� ��� an interaction check

��� Effects can be asserted � this one strips wallpaper�

��� Effects of this form can cause interactions to occur and plan steps

��� to be linearised if a condition �wallpaper on� � true appears in� say�

��� the decorate schema�

end�schema�

schema decor�

expands �decorate��

nodes 	 action �fasten plaster and plaster board��

� action �pour basement floor ��

 action �lay finished flooring ��

� action �finish carpentry ��

� action �sand and varnish floors ��

� action �paint ��

orderings � ����
�
 ���� �� � ���� �� 	 ����
� � ���� ��

conditions unsupervised �rough plumbing installed � at 	�

unsupervised �rough wiring installed � at 	�

unsupervised �air conditioning installed � at 	�

unsupervised �drains installed � at ��

unsupervised �plumbing finished � at ��

unsupervised �kitchen equipment installed� at ��

supervised �plastering finished � at
 from �	��

supervised �basement floor laid � at
 from ����

supervised �flooring finished � at � from �
��

supervised �carpentry finished � at � from ����

supervised �painted � at � from ����

time�windows between 	�		�
���� and 	�	��
���� at ��

between 	�	������� and 	�	������� at
�

end�schema�

��� Now for completeness a list of primitive actions� Primitives are

��� defined as having no nodes list and must have an expands pattern�

schema excavate�

expands �excavate and pour footers��

only�use�for�effects �footers poured� � true�

end�schema�

schema pour�concrete�

expands �pour concrete foundations��

only�use�for�effects �foundations laid� � true�

Commented Examples ��

end�schema�

schema erect�frame�

expands �erect frame and roof��

only�use�for�effects �frame and roof erected� � true�

end�schema�

schema brickwork�

expands �lay brickwork��

only�use�for�effects �brickwork done� � true�

end�schema�

schema finish�roofing�

expands �finish roofing and flashing��

only�use�for�effects �roofing finished� � true�

end�schema�

schema fasten�gutters�

expands �fasten gutters and downspouts��

only�use�for�effects �gutters etc fastened� � true�

end�schema�

schema finish�grading�

expands �finish grading��

only�use�for�effects �grading done� � true�

end�schema�

schema pour�walks�

expands �pour walks and landscape��

only�use�for�effects �landscaping done� � true�

end�schema�

schema install�drains�

expands �install drains��

only�use�for�effects �drains installed� � true�

end�schema�

schema lay�storm�

expands �lay storm drains��

only�use�for�effects �storm drains laid� � true�

end�schema�

schema rough�plumbing�

expands �install rough plumbing��

only�use�for�effects �rough plumbing installed� � true�

Commented Examples ��

end�schema�

schema install�finished�

expands �install finished plumbing��

only�use�for�effects �plumbing finished� � true�

end�schema�

schema rough�wiring�

expands �install rough wiring��

only�use�for�effects �rough wiring installed� � true�

end�schema�

schema finish�electrical�

expands �finish electrical work��

only�use�for�effects �electrical work finished� � true�

end�schema�

schema install�kitchen�

expands �install kitchen equipment��

only�use�for�effects �kitchen equipment installed� � true�

end�schema�

schema install�air�

expands �install air conditioning��

only�use�for�effects �air conditioning installed� � true�

end�schema�

schema fasten�plaster�

expands �fasten plaster and plaster board��

only�use�for�effects �plastering finished � � true�

end�schema�

schema pour�basement�

expands �pour basement floor��

only�use�for�effects �basement floor laid � � true�

end�schema�

schema lay�flooring�

expands �lay finished flooring��

only�use�for�effects �flooring finished� � true�

end�schema�

schema finish�garden�

expands �finish garden��

only�use�for�effects �garden finished��

Commented Examples ��

end�schema�

schema finish�carpentry�

expands �finish carpentry��

only�use�for�effects �carpentry finished� � true�

end�schema�

schema sand�

expands �sand and varnish floors��

only�use�for�effects �floors finished� � true�

end�schema�

schema paint�

expands �paint��

only�use�for�effects �painted� � true�

end�schema�

��

� Conventions Used in the TF Description

Some simple conventions used throughout deserve explanation before the tf language is de�ned�

Keywords Keywords used in tf are written in bold lettering for highlighting purposes in the
descriptions of statements

Components tf components are surrounded by angle brackets �h i�

Options Optional words or phrases are surrounded by square brackets �� ��

Choice If there is more than one possible representation for an expression then the alternatives
are separated by the vertical bar character �j�

Repetition If a structure can be repeated inde�nitely then this is indicated by three dots �

�
occurring directly under �i
e
 aligned with� the beginning of the structure to be repeated�
or directly after the structure �on the same line� when the meaning should be clear
�

Component De	nition Following the de�nition of a tf statement� a number of components
may be further de�ned
 This is indicated by following the name of the component by
����� and its de�nition

Punctuation Use is made of two punctuation marks in tf statement de�nitions� namely

�
 ��� indicates the end of a statement �for example a condition list�

�
 ��� is used as a list separator within statements

Neither is optional and their omission will cause an error when the tf is compiled

The tf Compiler requires �white space� to separate operators or potential operators
 E
g

you can write �� �� but not �� ���
 For the latter� you have to write �� ���
 However�
single character parentheses� braces and punctuation does not require surrounding white
space
 When in doubt add parentheses or white space

Comments Comments may be included anywhere in tf descriptions and are introduced by
three semicolons ����� Everything following these in the line is treated as comment and
ignored by the tf Compiler

�Note that if the structure ends with a comma	 the comma should still be treated as a separator� That is	
the comma should be written only to spearate instances of the structure and should not be written after the last
instance in a sequence�

��

� Component De�nitions

tf forms are the basis for the tf language and are de�ned in the next section
 A number of
commonly used components occur in several of these forms
 For convenience� these are de�ned
separately in this section

��� Basics

The following de�nes some basic components used in many tf forms

 atom� ��� name� � number�

 name� ��� � digit� ���� letter�or�special� name�body�

 name�body� ��� � letter�or�special� � digit� �

���

 letter� ��� A � B � ��� � Z � a � b � ��� � z

 letter�or�special� ��� letter� � � � !

 text�string� ��� " � character� ��� � "

Although a hnamei can start with a digit� it must not be a hnumberi

 number� ��� integer� � float� � inf � infinity

 integer� ��� � sign� � digits�

 float� ��� � sign� � digits� �� digits� � � exponent� �

 digits� ��� digit� ���

 digit� ��� � � 	 � � �
 � � � � � � � � � � � �

 exponent� ��� exponent�marker� � sign�� digits�

 exponent�marker� ��� e � E

 sign� ��� � � �

inf � infinity � � is a number larger than any other

Component De�nitions ��

��� Patterns� Values� Variables and Match Constraints

 pattern�component� ��� atom� � match�constraint� �

� pattern�component� ��� � �

� pattern�component� ��� �

 general�pattern� ��� � pattern�component� ��� �

 pattern� ��� � name� pattern�component� ��� �

 value� ��� pattern�component�

 variable�name� ���
 name�

 variable�restriction� ��� match�constraint� � undef

 match�constraint� ���

�
 name�

�
�bound�

�
�type type�name��

�
�not pattern�component��

�
�or pattern�component� ��� �

�
�and pattern�component� ��� �

�
�contains pattern�component��

�
�has function�name�

� other�function�argument� ��� �

 function�result� �

�
�satisfies predicate�name�

� other�predicate�argument� ��� � �

 function�name� � predicate�name� ��� name�

 other�function�argument� ��� parameter appropriate to function�

 other�predicate�argument� ��� parameter appropriate to predicate�

 function�result� ��� result appropriate to function�

 sup�position� ��� integer 	 to length of pattern� given�

The special match restriction undef is equivalent to �� and means that there is no restriction
on the item being matched

The other match restrictions have the following meaning�

� �fboundg matches items where any variables referred to are fully instantiated

Component De�nitions �	

� �ftype htype nameig matches items which are included in the set of names declared by
htype namei

� �fnot hparameteri g matches anything that does not match the parameter

� �for hparameteri ��� g matches anything which matches one of the parameters

� �fand hparameteri ��� g matches anything which matches all of the parameters

� �fcontains hseti g matches anything which matches one member of the set

� �fhas hfunction namei �hother function argumenti ��� � hfunction resultig
matches anything �the hmatched itemi� for which lisp can evaluate

�hfunction namei hmatched itemi �hother function argumenti

 � �

and where the result of this call matches the given hfunction resulti
 If Lisp cannot
evaluate the function on the given arguments� then the result is no match

An example of the use of has is �fhas length �g which can be used to check that a
matching item is a list with three elements at its top level

� �fhas hpredicate namei �hother predicate argumenti ��� �g matches anything �the
hmatched itemi� for which lisp can evaluate

�hpredicate namei hmatched itemi �hother predicate argumenti

 � �

and return t �true�
 If Lisp cannot evaluate the predicate on the given arguments� then
the result is no match

satis	es is an easier way to specify boolean match requirements than has� but otherwise
is very similar

An example of the use of satis	es is �fsatis	es ! ��g which can be used to check that
a matching item is greater than ��

��� Expressions

Expressions �possibly containing variables whose values will only become apparent when a form
is used within the planner� may be given wherever a number appears in suitable tf forms
 This
facility is not currently supported

 expression� ��� � plus�or�minus� � operand�

� expression� operator� expression�

� � expression� �

 plus�or�minus� ��� � � �

 operator� ��� plus�or�minus� � # � �

 operand� ��� number� � variable�name�

Component De�nitions ��

Operator precedence is � and � take precedence over and �
 No other precedence should be
assumed
 It is recommended that parentheses are used to make the meaning of the expression
clear where necessary

��� Sets

Sets are surrounded by parentheses ��� and ���
 They may be sets of names� or may be sets of
more general items which includes numbers� patterns� etc

 set� ��� name�set� � general�set�

 name�set� ��� � name� ��� �

 general�set� ��� � general�pattern� ��� �

It is possible to do matching on a member of a set with the �fcontains hseti g match constraint

It is anticipated that more comprehensive handling and matching for sets will be added in future

��� Nodes

Nodes are introduced in schemas to show a decomposition of a higher level task� action or
process
 Nodes have a type

 node�type� ��� action�or�event� � dummy�node�type�

 action�or�event� ��� action � event

 dummy�node�type� ��� dummy � start � finish

��� Speci�cations of Node Numbers� Node Ends and Time Points

 node�number� ��� integer�

 node�end� ��� � end� � node�number� � � end� � self�

 end� ��� begin�of � end�of

 at�spec� ��� at node�end�

A hnode endi can be given for any time point referred to in tf
 The default �end� depends
on the context of use � see the individual notes on tf forms for the default in each case
 at
self �possibly with an optional hendi� may be used to specify that the time point is the whole
schema expansion or the whole primitive being de�ned

Component De�nitions ��

��	 Numerical Bounds

 min�max�spec� ��� expression� �� expression�

� min expression� �� max expression�

� min expression�

� �� expression�

� max expression�

� � expression�

� expression�

� no�ne�

� some

� � min�max�spec� �

All numerical ranges map to a minimum and maximum pair as follows�

min max

x x x
x

y x y
min x

 max y x y
min x x in�nity
��x x in�nity
max y � y
��y � y
no or none � �
some � in�nity

Depending on the context� the default is usually some �e
g
 for resource speci�cations given
with the overall descriptor�� or none �e
g
 where resource usage speci�cations are given at
node ends�

��� Time Speci�cations

 time�spec� ��� expression� � time�units� �

� hours� � minutes� � � seconds� �

� days� � hours� � minutes� � � seconds��

 days� � hours� � minutes� � seconds� ��� integer�

 time�units� ��� seconds

� minutes

� hours

� days

 time�bounds�spec� ��� time�bounds�pair� � with time�preference� �

Component De�nitions ��

� � time�bounds�pair� � with time�preference� � �

 time�bounds�pair� ��� � occurs�at � time�spec�

� � et � � time�spec� � �� �

� lt � � time�spec�

� � between � � et � � time�spec�

� and � �� � � lt � � time�spec�

� after time�spec�

� � time�spec�

� before time�spec�

� time�spec�

 time�preference� ��� ideal � time�spec�

other preferences are being considered

The speci�cations of hdaysi� hhoursi� etc
 are integer
 All time speci�cations map to a number
of time units relative to some absolute zero time� �������
 In the absence of an explicit
speci�cation of the htime unitsi seconds is the default
 The special symbols inf and in	nity
may be used and map to a number larger than any other number

All time window speci�cations map onto the same form of a minimum�maximum pair as shown
in the table below

est�min lst�max

occurs at t t t
t t t
et�t�

lt�t� t� t�
t�

t� t� t�
et�t�

lt�t� t� t�
between t� and t� t� t�
after t t in�nity
� t t in�nity
before t � t
� t � t
default time speci�cation � in�nity

The initial time speci�cation for the plan will serve to assist the planner to improve the lower
time bound speci�cations when the planner operates

��
 Resource Speci�cations

 resource�usage�spec� ��� resource�usage�keyword�

� resource resource�name�

� resource�qualifier� ��� � �

� resource�range�

Component De�nitions ��

� resource�unit� �

� resource�scope�spec� �

 resource�name� ��� name�

 resource�qualifier� ��� name�

 resource�range� ��� unlimited � min�max�spec�

 resource�unit� ��� resource�unit�name� � resource�unit�synonym�

 resource�unit�name� ��� name�

 resource�unit�synonym� ��� name�

May be used for plural form� etc

 resource�scope�spec� ��� overall � at�spec�

Default is overall
If the at option is given without an hendi being speci�ed

for the given node� then the default is that speci�ed by the
hresource usage node endi in the defaults tf statement

 resource�usage�keyword� ��� sets � # �

allocates � � �

deallocates � � �

produces � $ �

consumes � v

The � symbol is used as shorthand for sets rather
than the more obvious � since a resource usage statement

containing it will already include a � symbol

The keyword overall when stated as a hresource scope speci allows resource speci�cation for the
schema
 This sets a bound on the resource allowed to be used in any expansion of the schema
as given in resource utilisation statements which always have an at hnode endi
 The single
character hresource usage keywordis given above are synonyms for the longer forms shown on
each line
 These short forms normally are used in printouts of resource usage statements in
O�Plan

consumes �resource money� � ���	��� dollars overall

Component De�nitions ��

This sets a �min� max� pair on the whole action� i
e
 it sets the limits within which resources
used in schema and any expansion of it will be con�ned
 In this case it would limit the amount
of money spent to ���� dollars
 The overall default limits are ��� in�nity�

There are limitations on the hresource usage keywordsi that may be given in a
hresource usage speci for a given hresource namei depending on the hresource classi it is de�
clared to belong to
 These are shown in the table below

hresource classi initial resources usage in a schema

consumable strictly sets�produces consumes
consumable producible by agent sets�produces consumes�producesy
consumable producible outwith agent sets�produces consumes�producesy
consumable producible by and outwith agent sets�produces consumes�produces

reusable non sharable sets�produces allocates�deallocates
�paired�

reusable sharable independently sets�produces ditto
reusable sharable synchronously sets�produces ditto

yproduces only allowed in a process schema �not a normal schema describing an agent�s delib�
erate actions� for consumable producible outwith agent and only allowed in a normal schema
�not a process schema describing activities outside of the agent�s direct control� for consum�
able producible by agent

���� Authority Statements

Authority to plan to a given level or to execute a plan is provided via the Task Assignment
agent in O�Plan
 tf provides support to ensure that relevant information can be communicated
to the planner

 authority�statement� ��� provides�or�requires� individual�authority�

 provides�or�requires� ��� provides � requires

 individual�authority� ��� �authority plan phase�number�� � level�number�

� �authority execute phase�number�� � yes�or�no�

 phase�number� �� node�number� � all

hnode numberi will refer to a node within the nodes component of a task
 Note that this is
only suitable for one task

 level�number� ��� � � 	 � ��� � inf � infinity

A hlevel numberi can range up the maximum number of plan levels �and the special �level� inf
or in	nity�

Component De�nitions ��

 yes�or�no� �� yes � no

��

	 TF Forms

Domain information is provided to the O�Plan Planner via a tf input �le which is translated
by the tf Compiler
 A tf �le is made up of tf forms
 The tf Compiler operates in a single
pass over the input �le
 The Task Formalism language syntax is designed to allow this

 tf�file� ��� � tf�form� �

���

There are a limited number of tf forms
 They can be given in any order� and more than one
particular form can appear in any separate htf filei
 Later forms add to the information
extracted from earlier forms
 The only requirement on the order in which forms are given is
that information used in later forms be available before use

 tf�form�keyword� ��� defaults � include � plan�viewer � world�viewer �

resource�units � resource�types � default�resources �

domain�rules � compute�condition � always � types �

initially � initial�resources � initial�authority �

initial�time

 tf�form�major�keyword� ��� tf�info � plan�levels �

preferences � language �

�meta���process��schema � task

tf forms have a regular structure
 Each is introduced by a keyword and ends with a semi�colon

Internal terms are separated by ���
 Where there is a compound tf form which has several
internal keyword forms �e
g
 for a schema de�nition�� then the outer level form is introduced
by a keyword and ended by end hkeywordi
 Thus the general structure of tf is�

 tf�form� ��� tf�form�keyword� component� �

���

� tf�form�major�keyword� component� �

��� �

 minor�keyword� component� �

��� �

���

end� tf�form�major�keyword�

 minor�keyword� ��� see specific tf�form� definition

 component� ��� see specific tf�form� definition

TF Forms ��

	�� Documentary Information

tf�info info�word� text�string� �

���

end�tf�info�

 info�word� ��� name�

For example the hinfo wordi could be title� author� date� history or description� etc

	�� TF Compiler Defaults

The tf Compiler provides defaults for a number of components of tf forms if they are not
given
 For example� for hpatterni � � hvaluei �� the hvaluei is optional
 If not provided� the
default �normally true� is used instead
 The tf defaults statement allows certain defaults to
be altered
 The tf complier will use the relevant defaults for all tf forms entered after the
end of the defaults statement and will use these defaults until a new domain is speci�ed to
O�Plan

defaults default�assignment� �

��� �

 default�assignment� ��� value � value�

� variable�restriction � variable�restriction�

� condition�at�node�end � end�

� condition�contributor�node�end � end�

� achieve�after�point � default�achieve�after�point�

� effect�at�node�end � end�

� resource�usage�node�end � end�

� time�window�node�end � end�

� link�from�node�end � end�

� link�to�node�end � end�

� resource�overall � min�max�spec�

� resource�at�node�end � min�max�spec�

 default�achieve�after�point� ��� �begin�of� self � �end�of� start

The following default are used by the tf Compiler if a defaults statement has not been given
for any defaulted component

defaults value � true�

variable�restriction � undef�

condition�at�node�end � begin�of�

condition�contributor�node�end � end�of�

TF Forms ��

achieve�after�point � begin�of self�

effect�at�node�end � end�of�

resource�usage�node�end � begin�of�

time�window�node�end � begin�of�

link�from�node�end � end�of�

link�to�node�end � begin�of�

resource�overall � ����infinity�� i�e� some

resource�at�node�end � ������� i�e� none

	�� Including �les

include file�name��

 file�name� ��� text�string�

The include statement causes the contents of the indicated �le to be processed by the TF
compiler
 It can be used� for instance� when it is convenient to break up a large �le into sections�
or when some TF de�nitions should be part of several several di
erent domain descriptions

	�� User Interface Speci�cation

The user interface for O�Plan is supported through two viewers � a Plan View and a World

View of the plan
 O�Plan provides default viewers for each of these in a domain independent
way
 However� it is anticipated that replacement or domain speci�c viewers will be provided for
realistic applications
 This can be done with the plan viewer and world viewer tf forms

����� Plan View

plan�viewer program � plan�viewer�program�name�

� � information � plan�viewer�parameter�string� �

� � plan�viewer�feature� � availability� �

��� �

 plan�viewer�program�name� ��� text�string�

 plan�viewer�feature� ��� plan�output � levels�output � resource�output �

node�selection � link�selection � entity�detail �

tf�input

 availability� ��� yes � no

The default is yes for plan viewer features listed in the tf form� otherwise no

TF Forms �	

 plan�viewer�parameter�string� ��� text�string�

The plan viewer is initiated as a separate shell process and is called with the command
hplan viewer program namei hplan viewer parameter stringi �
 The process is con�
nected via a two way communications channel �on unix a pipe� to and from an O�Plan process

The hplan viewer parameter stringi may hold the detail of a domain speci�c or plan viewer
speci�c �le of information to be used in the plan viewer �such as icons for nodes in the plan�
etc� as well as giving any necessary shell command modes and �ags
 A recommended format
for a �le holding details for a plan viewer program is provided� but variations for speci�c plan
viewers are possible

The features of a plan viewer are as follows�

plan output indicates that the plan viewer can accept output from the planner in the O�Plan
plan output format
 A simple textual presentation of this information is possible
 Note
that it is assumed that all plan viewers should have the plan output feature available
� it would be unhelpful of a plan viewer not to provide this feature at least in a simple
form"

levels output indicates that the plan viewer can show information about levels of a plan in a
useful form

resource output indicates that the plan viewer can show information about resource usage
perhaps in the form of gantt charts� capacity pro�les� etc

node selection indicates that the plan viewer is able to give input to O�Plan showing nodes
being pointed at in the last plan which was output
 The node numbers given in that
output will be passed for any node selected in the plan viewer by the user

link selection indicates that the plan viewer is able to give input to O�Plan showing links
being pointed at in the last plan which was output
 A pair of node numbers is produced
by the plan viewer �relative to node numbers given in the last plan output� representing
the end nodes of any link selected in the plan viewer by the user

entity detail indicates that the plan viewer can display detail of nominated entities

tf input indicates that the plan viewer can produce tf input in a legitimate format �for ex�
ample� if tasks can be speci�ed in the plan viewer by some means� or if actions� resource
pro�les� etc can be �drawn� and converted to legitimate tf�
 One way in which this can
be done is by the provision of drawing aids for actions� links� conditions� e
ects� etc

The O�Plan plan output format is introduced by the single word plan on one line followed
by statements describing nodes
 Nodes are introduced with the single word node on one line
followed by a �xed number of lines as described below
 A node statement is terminated with
the single word end node on a separate line
 The plan output format is terminated by the
single word end plan on a separate line
 Leading spaces and tab characters on any line may
be ignored
 Blank lines in the output may be ignored

TF Forms ��

plan

node

 node�reference�

� � predecessor of begin�end� ��� � �

� � successor of begin�end� ��� � �

� � predecessor of end�end� ��� � �

� � successor of end�end� ��� � �

 node�time�information�

 node�type�

 node�label�

end�node

���

end�plan

 predecessor of begin�end� � successor of begin�end� �

 predecessor of end�end� � successor of end�end�

��� end� node�reference�

 node�reference� ��� node� integer��� integer� ����

 node�label� ��� " � character� ��� � "

 node�time�information� ��� � earliest�begin�time�

 latest begin�time�

 earliest�end�time�

 latest�end�time�

 minimum�duration�

 maximum�duration� �

 earliest�begin�time� � latest begin�time� �

 earliest�end�time� � latest�end�time� �

 minimum�duration� � maximum�duration� ��� integer�

It is useful to know that hnode referenceis easily show the expansion level at which a node
was introduced into a plan
 An example node number for a top level node such as the 	nish
node of a plan is �node���
 A node which is at the third level might have a hnode referencei of
�node��������

If the plan viewer can call on a �le of information to tailor its output� it is recommended that
it contain entries in the following format �where this is possible�

 drawing�object�name� �� associated�instructions�or�data�

 drawing�object�name� ��� action�or�event� drawing pattern�

� dummy�node�type�

TF Forms ��

 drawing�pattern� ��� fully�instantiated�pattern� � pattern�with�

�

hfully instantiated patterni and hpattern with ��i are patterns not containing match restric�
tions or variables

The hassociated instructions or datai could hold icon �lenames or drawing instructions� etc

����� World View

world�viewer program � world�viewer�program�name�

� � information � world�viewer�parameter�string� �

� � world�viewer�feature� � availability� �

��� �

 world�viewer�program�name� ��� text�string�

 world�viewer�feature� ��� snapshot � incremental � tf�input

 availability� ��� yes � no

The default is yes for world viewer features listed in the tf form� otherwise no

 world�viewer�parameter�string� ��� text�string�

The world viewer is initiated as a separate shell process and is called with the command
hworld viewer program namei hworld viewer parameter stringi �
 The process is con�
nected via a two way communications channel �on unix a Pipe� to and from an O�Plan process

The hworld viewer parameter stringi may hold the detail of any domain speci�c drawing and
presentation information necessary to specialise the world viewer program as well as giving any
necessary shell command modes and �ags
 A recommended format for a �le holding details for
a world viewer program is made� but variations for speci�c world viewer programs is possible

The features of the world viewer program are as follows

snapshot indicates that the world viewer program can accept a sets of facts and statements
about the world state in the form of the O�Plan world output format and can present this
to the user
 A simple textual presentation of this information is possible

incremental indicates that it is possible to follow the initial startup of the program or any
snapshot output �if that feature is available� with changes in the world state which the
planner wishes to display
 These are in the same format as the full snapshot O�Plan world

output format but present only a partial description of a context in the plan

TF Forms ��

tf input indicates that the world viewer program can produce tf input in a legitimate format
�for example� if tasks can be speci�ed in the world viewer program by some means� or if
initial information can be provided �e
g
 an initial world state� and these can be converted
to legitimate tf�
 One mechanism is to allow the drawing of objects directly in the domain
�such as the features of a building or structure� or the placing of objects on a map� and
to convert these to initially or always tf statements

The proposed user interface for O�Plan allows for facilities for context snapshot image saving
�in a pic� and recording and playback of a series of such images �in �icks� to be provided

However� these will be provided and managed by the world viewer program and are thus not
part of the de�nition of the world viewer system in TF

The O�Plan world output format is introduced by the word world followed by a keyword
snapshot or increment on one line followed by statements of the form shown on a single line
with a line end world being used to terminate the output

world world�view�type�

 pattern� � value�

���

end�world

 world�view�type� ��� snapshot � increment

If the world viewer program can call on a �le of information to tailor its output� it is recom�
mended that it contains entries in the following format �where this is possible�

 domain�statement� � domain�value� �� associated�instructions�or�data�

 domain�statement� � domain�value� ��� fully�instantiated�pattern�

� pattern�with�

 �

The hassociated instructions or datai could hold drawing instructions� etc

	�� Plan Levels

The plan levels tf form allows a description of the names of actions� events� e
ects and
resources introduced at each distinct level

plan�levels number� � actions � � pattern� ��� �� �

� events � � pattern� ��� �� �

� effects � � pattern� ��� �� �

� resources � � pattern� ��� � � �

���

end�plan�levels�

TF Forms ��

	�� Preferences and Heuristic Information

Preferences can be stated to help the planner choose between valid options it encounters

preferences preference�statement� �

���

end�preferences�

 preference�statement� �� prefer�plans�with number� preference�word� �

��� �

� prefer�schemas pattern� � � value� �

use � schema�name� ��� � �

��� �

 preference�word� ��� � resource resource�name�

� resource�qualifier� ��� � �

� plan�feature�

 plan�feature� ��� earliest�finish�of�plan �

latest�finish�of�plan �

number�of�nodes

The preference information in prefer plans with is used to construct the heuristic evaluator
to be used by the planner to compare di
erent plans for continued development
 Including a
resource statement in the preference description means that lower utilisation of the resource
indicated is treated as preferential to higher resource utilisation levels

The preference hnumberi should be � for those resources or plan features which are most impor�
tant in a plan
 Progressively higher numbers may be used to indicate other resources or plan
features which a
ect the value of a plan in a progressively less important way
 It is possible to
give the same number two or more times to indicate that two resources or plan features are of
equal importance in rating alternative plans
 For example�

preferences

prefer�plans�with 	 latest�finish�of�plan�

� �resource fuel Port�	��

� �resource fuel Port����

 �resource money��

end�preferences�

earliest 	nish of plan is a measure of the earliest time at which the plan may �nish
 lat�
est 	nish of plan is a measure of the latest time at which the plan may �nish
 num�

ber of nodes counts the �complexity� of the plan

The prefer schemas statement gives the order in which the various schemas that can be used
to expand an action pattern or used to achieve an achieve condition should be tried after

TF Forms ��

ruling out any non�applicable schemas with the �lter information provided
 Any schemas not
mentioned in a prefer schemas statement but which can be used to expand an action pattern
or to achieve a condition are used in the order they are presented to the planner� but after the
ones declared as preferred

	�	 Resource Information

Resources statements are of the form�

resource name quali�er ��� � number �units�

Examples are�

�resource money� � 	�� dollars

�resource fuel port�A tank�C� � 	���� gallons

�resource bricks site����� � 	����

That no units are speci�ed means that individual brick units are used

The following unit and resource type declaration statements give the information which will
allow the O�Plan tf Compiler and planner to correctly handle resource declarations in later
tf

resource�units resource�unit�name� � � resource�unit�synonym� �

���

� � resource�unit�class� � �

��� �

resource�types resource�class�

� resource resource�name�

� resource�qualifier�spec� � ��� �

� � resource�unit� � �

��� �

resource�conversions to be defined� �

resource conversions allows resource unit or resource type conversions in one or two direc�
tions
 Schemas can be used to de�ne the production of one resource from another
 However� the
resource conversion statement may provide a convenient shorthand for some conversions

 resource�unit�class� ��� count � size � weight �

set � name� � ���� default is count

 resource�class� ��� consumable�strictly �

TF Forms ��

consumable�producible�by�agent �

consumable�producible�outwith�agent �

consumable�producible�by�and�outwith�agent �

reusable�non�sharable �

reusable�sharable�independently �

reusable�sharable�synchronously

 resource�qualifier�spec� ��� pattern�component�

Examples are�

resource�units person�people � count�

gallons � count�

resource�types consumable�strictly �resource money� � dollars�

consumable�producible�by�agent

�resource fuel
�type port�
�type tank� � � gallons�

The following notes apply to resource de�nitions�

� Names speci�ed in the resource units statement are used to de�ne unit types such as
person�people� gallons� kilograms� etc
 These are later used in resource types declara�
tions

� The unit type needs to be one of the following count size� weight or set
 If a set is
speci�ed then the full enumeration of the set should be de�ned
 If not speci�ed the unit
type is assumed to be count
 Only the count resource unit class is supported by O�Plan
at present

Not all of the hresource classies are provided at present� and a more thorough consideration of
their individual utility and necessity is still to be conducted

As described earlier� the class of a resource will limit the types of resource usage statement
that can be provided in an initial resources statement or in a only use for resources or
resources clause of a schema
 For example� a consumable strictly resource cannot be pro�
duced in a schema

	�� Default Resource Information

This statement can be used to indicate default resource information about certain actions
 Via
this statement it is possible to give bounds on resource usage for higher level actions� prior to
speci�c resource usage statements at the lower levels of detail
 This can be helpful in avoiding
wasted search
 The default information is overridden by any speci�c statement about a speci�c
resource for the same end of any action
 It is used at compile time by the tf Compiler

TF Forms ��

default�resources pattern�

� resource resource�name�

� resource�qualifier� ��� � � �

� resource�usage�keyword� �

 resource�range�

� resource�unit� �

� overall � at begin�of � at end�of � �

��� �

��� �

The overall� at begin of or at end of term is given after the resource usage declaration in a
position compatible with resource usage speci�cations given in schemas
 The default if this is
not speci�ed is overall

The indicated number of units of the given resource will be assumed to be set� allocated�

deallocated� produced or consumed whenever the hpatterni appears as an action in the plan

However this is only the default situation as this can be locally overridden for any speci�c
resource used by the action with name hpatterni used in a particular schema expansion by
explicitly declaring a resources clause for the node which speci�ed that action

	�
 Calendar and Time Information

All time speci�cations map to a number of time units kept as integers in O�Plan
 By default
these time units are assumed to refer to seconds
 It is intended that calendar information and
more �exible references to time points will be possible in future releases

	��� Domain Constraints

domain�rules � forall variable�name� � � variable�restriction� � �

��� �

 pattern� � � value� � � � � pattern� � � value� � �

���

�� pattern� �� value�� �

��� �

For example�

domain�rules forall
a�
�type block��
b�
�type block��

�on
a
b��true �� �cleartop
b��false�

The domain rules tf form is used to state implied relationships between statements about
the domain
 O�Plan� was able to use information about sets of inconsistent conditions to guide
preferences about ordering of choices using a heuristic called Temporal Coherence
 Domain rules
can also provide input to this heuristic since if A�v� � B�v� � C�v� then a requirement

TF Forms ��

for the set of conditions �A�v�� B�v�� C�not�v�

 is obviously inconsistent
 Such an
inconsistency can sometimes be avoided by temporal displacement of the establishment of one
or more members of the set� but this will usually require more work than attempting other
search paths
 Although the use of Temporal Coherence to exploit this heuristic was used
within O�Plan�� it is not currently used in O�Plan

	��� Compute Conditions

Domain speci�c compute functions which may be used in the compute condition clause within
a schema must be declared to the planner via the compute condition statement

compute�condition

�multiple�answer� � compute�function�name� � pattern�component� ��� ��

� value�

� depends�on compute�dependency�

��� � �

��� �

 compute�function�name� ��� name�

The keywordmultiple answer is stated if the compute condition can give alternative answers

Otherwise a single answer is assumed
 The optional depends on clause must be given if the
compute condition requires speci�c conditions to be maintained by the planner for the answers
to be valid
 The hpatternis in the declaration give restrictions on bindings for the various
parameters and the answer pattern format

A compute condition may have a depends on phrase
 The format is as follows�

 compute�dependency� ��� pattern� � � value� � � from variable�name� �

A set of pre�de�ned compute conditions with names starting with fn are provided in the O�Plan
system
 See the relevant section of this manual for those currently available

	��� Language Speci�c Code

It is possible to refer to speci�c language code relating to a domain description by using the
language statement
 This can be useful to de�ne hcompute function namei routines in partic�
ular

language language�name��

 language�statement�

���

end�language �

 language�name� ��� lisp

TF Forms ��

Only Lisp is supported at present

An example is�

language lisp�

�set�paramater �psgraph�all�nodes t�

�load "some�compute�functions"�

end�language�

	��� Object Types

types type�name� � name�set� � integer�range� �

��� �

 type�name� ��� name�

 integer�range� ��� � integer� �� integer� �

The types statement speci�es and names a class of objects within the domain
 One or more
of these types can then be speci�ed within a variable declaration to describe the possible set of
bindings for the variable
 For example�

types objects � �a b c d table��

movable�objects � �a b c d��

count � �	 �� 	���

It is then possible to give a variable restriction such as �ftype movable�objectsg

	��� Global Data

Statements which always hold in the domain may be given with the always tf form

always pattern� � � value� � �

��� �

Any always entry overrides any schema e
ect �for example� this may occur if a schema has
asserted the e
ect fclear
xg � false where �x has been bound to the �table�� but the
�table� has been declared always fclear tableg � true�

No match restrictions �e
g

 or
fnot tableg� are allowed in a hpatterni � hvaluei of an
always statement

It is anticipated that facilities will be added to the always statement to set up a class�sub�class
instance hierarchy of objects with attributes which have single values inherited from their super�
class�es�
 Patterns of form fhattributei hobjectig � hvaluei will be able to match against

TF Forms �	

always object�attribute�value de�nitions given in the anticipated form
 Hence� for the moment�
it is suggested that global data that could be more clearly written in a class�sub�class�instance
format be represented in a number of statements of form fhattributei hobjectig � hvaluei

	��� Actions and Schemas

The schema is the main form in Task Formalism

Except for the keywords schema and end schema and the hschema namei and subject to the
restriction that a usable schema will have at least one of the expands� only use for e�ects�
only use for resources or only use for authority statements� all other sub�clauses of a
schema are optional and their ordering can be quite �exible �in general introduce types� variables
or node numbers before use elsewhere�

To improve readability in the description below the � � brackets which should indicate that each
sub�clause is optional at the top level of a schema are omitted

�meta���process��schema schema�name��

instance�of meta�schema�name� �

��� public information

info info�word� text�string� �

��� �

vars variable�name� � � variable�restriction� � �

��� �

expands pattern� �

only�use�for�effects pattern� � � value� � � at effect�point� � �

��� �

only�use�for�resources resource�usage�spec� �

��� �

only�use�for�authority authority�statement� �

��� �

��� private information

local�vars variable�name� � � variable�restriction� � �

��� �

vars�relations variable�name� relationship� variable�name� �

TF Forms ��

��� �

nodes node�spec� �

��� �

orderings node�end� � ��� delay�spec� � ���� node�end� �

��� �

conditions condition�statement� �

��� �

effects pattern� � � value� � � at effect�point� � �

��� �

resources resource�usage�spec� �

��� �

authority authority�statement� �

��� �

time�windows time�window�spec� �

��� �

 other�constraint�clause� �

���

end�schema �

The sub�clauses in the various forms of schema contain the following components

 node�spec� ��� node�number� node�form�

� ordering�block�

 node�form� ��� dummy � start � finish

� action pattern�

� event pattern�

� iterate iterated�node�form�

� foreach iterated�node�form�

 iterated�node�form� ��� iterated�node�type� pattern� for iterators�

 iterated�node�type� ��� action � event

 iterators� ��� variable�name� over iteration�set�

�and iterators��

TF Forms ��

 iteration�set� ��� pattern�component�

 ordering�block� ��� sequential node�spec� ��� end�sequential

� parallel node�spec� ��� end�parallel

 effect�point� � condition�point� ��� node�end� � notepad

 delay�spec� ��� time�bounds�spec�

 time�window�spec� ��� time�bounds�spec� � at�spec� � �

duration node�number� � time�bounds�spec� �

duration self � time�bounds�spec� �

delay�between node�end� � and � � � node�end�

� delay�spec�

Initially� only a framework for other constraints is provided to allow for experimentation
 One
possible experiment might be the inclusion of a spatial constraint manager

The conditions sub�form is one of the most complex statement in tf and has a number of
options

 condition�statement� ���

supervised pattern� � � value� �

at condition�point� from contributor�entry� �

achieve pattern� � � value� �

� at condition�point� �

� after achieve�after�point� � �

 limited�condition�type� pattern� � � value� �

� at condition�point� � �

compute � compute�function�name� � pattern�

��� � � � general�pattern�

� at condition�point� �

� depends�on compute�dependency�

��� �

 limited�condition�type� ��� unsupervised �

only�use�if � only�use�for�query

 contributor�entry� ��� node�end� � � node�end� ��� �

� � node�end� ��� �

The � hnode endi

 � square bracketed alternative

TF Forms ��

syntax above is a valid option
 The � � brackets here do
not indicate optional inclusion as normal

 achieve�after�point� �� end� node�number�

� � begin�of� self � �end�of� start

The following sections describe some of the parts of the schema statement in more detail

������ General Notes

In all cases where a value is allowed and no � � hvaluei � term is given to accompany a hpatterni
�e
g
 in e
ects and conditions� then the hvaluei defaults to that set in the tf Compiler defaults
value statement

Similarly if there is no explicit at hnode endi mentioned then the relevant information �e
ect�
condition� time window� resources� etc
� is given with respect to the overall schema network
�i
e
 the equivalent of at self with a begin of or end of keyword�
 With normal tf Compiler
defaults for the end to use for e
ects and conditions� this implies that the e
ect is asserted
at the end of of the last node of the expansion� whereas conditions� time windows and
resources are assumed to take e
ect from the begin of of the �rst node of the expansion

This is the case for single and multiple node networks

������ Schema

meta schemas� process schemas and meta process schemas are not currently supported
by the O�Plan tf Compiler� but our intention is to provide these in future

A �meta ��process �schema may be an instance of an existing meta schema
 The e
ect is
as if all the components of the meta schema were already available to the new schema being
de�ned
 A meta schema can have any components that a schema can� except for nodes and
orderings on these nodes
 The meta capability is entirely implemented by the tf Compiler
and involves the equivalent of a textual addition of the components provided in ameta schema

into the schema which is declared to be an instance of the meta�schema

������ Vars� Local vars and Vars relations

Schemas may introduce variables via the vars statement� and can appear in any hpatterni or
hpattern���valuei component within the rest of the schema

When declared� variables may be unrestricted �the value undef � the default� or given some
restriction �e
g
 �fnot tableg or �ftype blockg�
 A type is required for any variable which will
not be bound after schema selection by the planner
 A schema may insist on a full binding for
a variable before being used for an expansion �using the �fboundg match speci�cation�

local vars �like vars� Variables which are declared in the vars and local vars sections are
handled similarly and indeed there is nothing to stop the tf writer declaring all variables in

TF Forms ��

the vars section
 However� by splitting the declarations a clearer distinction is made within
the schema between the public and private parts of the schema

The vars relations statement specifes that two variables within the schema have a speci�ed
relationship
 At present this can be � or � �

������ Expands and Only Use For ���

The expands hpatterni phrase is only present if the schema or process schema re�nes an action
or event �respectively� to a lower level of detail � this is essential in the case of a primitive
schema description
 If there are no only use for ���s mentioned then it is assumed that the
schema can only be used for expansion
 This implies then that at least one of the expands or
only use for ��� statements must be present in any schema

only use for e�ects allows selection of a schema to achieve a required condition in the plan

The only use for e�ects are asserted into the tome like normal e�ects
 The normal e�ects
in the schema are not used in the lookup of suitable schema expansions and they should not
repeat or contradict only use for e�ects statements used earlier in the same schema

only use for resources allows selection of a schema to change resource availability in a plan
� normally through the production of resources

only use for authority allows selection of a schema to change authority levels for planning
or execution

������ Nodes� Orderings � Expansions or Decompositions

The expansion or decomposition of a schema is de�ned by the nodes list and the associated
orderings

Nodes may have type action or dummy
 hnode typeis start and entry for each member of the
set and for iterate will establish a	nish are simply special forms of the dummy node type and
are only found in task schemas
 They may be introduced automatically by the tf Compiler or
User Interface rather than explicitly included by the user
 All dummy node types are de�ned
to have a duration of � time units� i
e
� their begin of time is identical to their end of time

The orderings on the nodes speci�ed in the schema networkmay include a hdelay speci between
the two hnode endis
 This may be set to � for consecutive actions or any numerical expression
specifying a delay �� �
 This expression may be an evaluable expression which may or may
not contain variables

An horder blocki allows ordering constraints to be speci�ed along with the nodes
 A sequential
block speci�es that the nodes and blocks it contains must be linked to enforce the order in which
they are listed
 A parallel block adds no restrictions of its own but allows nodes to be grouped
within a sequential block

The foreach or iterate option may be given for node types action and event along with
the associated from hvariable namei over hiteration seti phrase �which is only allowed in this

TF Forms ��

context�
 This indicates that the node information should be replicated for each member of the
set and the resulting nodes placed in parallel �foreach� or in a sequence �iterate�
 If there is
more than one iterator� connected by and� nodes are generated from the Cartesian product of
the sets

Although the hiteration seti is de�ned as a hpattern componenti� which might be a single vari�
able� it should be instantiated to a list of items� as if the syntax had been hgeneral seti

For both foreach and iterate� expansion will generate a new node entry for each member
of the set �or of the Cartesian product�
 For iterate� there will additionaly be a sequential
ordering of the nodes
 An example is�

N iterate action �fly�to
way�point�

for
way�point over ��	�� ��� ���� ��� �	�� ����

on expansion this would be equivalent to�

nodes N action �fly�to �	�� �����

X action �fly�to ���� �����

Y action �fly�to �	�� �����

orderings N ���� X� X ���� Y�

Any orderings on the original node number N are applied to the begin of the �rst node in the
sequence and the end of the last node in the sequence

A foreach is identical except that no orderings are introduced
 This means that any orderings
given on the foreach node number may cause dummy nodes to be inserted to preserve the
intended orderings
 For example�

N foreach action �counter�problem
problem�

for
problem over �issue�	 issue���

on expansion this would be equivalent to�

nodes N dummy�

X dummy�

Y action �counter�problem issue�	��

Z action �counter�problem issue����

orderings N ���� Y� N ���� Z�

Y ���� X� Z ���� X�

Note that the expansion for iterate and foreach is done while palnning and �not at tf compile�
time�
 Hence� it is possible for the iteration set to be something that could not be determined
at compile�time
 This llows� as examples� the set to be read from an external source of infor�
mation �such as an external trajectory computation routine� or instantiated through variables
set elsewhere in planning

TF Forms ��

������ Conditions

Typed conditions are used within O�Plan to aid the planning process

A supervised condition is satis�ed from an earlier point in that schema and must be fur�
ther quali�ed by the � from hcontributor entryi � which identi�es the point�s� at which the
contributing e
ects are made available

������ Conditions � Compute

compute conditions provide the external systems interface to O�Plan
 The left hand side of a
compute condition has the form�

� function�name� � parameter� ��� � �

where each parameter can have the same recursive form
 The parameters will typically be �or
at least include� schema variables which will normally be instantiated before use

The hgeneral patterni must match against the result for the compute condition evaluation to
succeed
 Further variable binding can occur during this match

The optional depends on phrase� which is only given for a compute condition� has one or more
hcompute dependencyi clauses of the form�

 pattern� � � value� � �from variable�name� �

and these are returned to record the dependencies that must continue to be maintained for the
results to be valid
 If the from phrase is speci�ed� the particular statement must be maintained
from �one of the list of� contributor�s� returned to the hvariablei

For example� the following compute condition would check if one block was over another block
by �recursively� checking individual statements of form fon g

compute �over
x
z��true at end�of

depends�on �on
x
y��true from
contrib�	

�over
y
z��true from
contrib��

If there is no from phrase then it is assumed that the contributor is the initial node of the plan�
that is from the initial state
 This also works for the case when the contributor is an always
fact� however� it is better not to give a depends on term if a dependency is related to a fact
which can never be invalidated
 Dependencies must be maintained to the hnode endi speci�ed
in the at phrase for the condition
 As with only use for query type conditions� dependencies
are maintained but are considered �re�establishable� by recomputing the compute function

This will result in the retraction of the original gost entry and the establishment of a new one

compute type conditions containing variables are evaluated as and when the appropriate vari�
able bindings are found

TF Forms ��

�����
 Notepad

The notepad can be used as an at quali�er to keep e
ects which are related to the overall plan
but are not associated with any speci�c plan item �such as an action� in the plan
 notepad
e
ects are known as notes
 Conditions can be stated with respect to the notepad e
ects using
at notepad

������ Authority

Not in use in the current version of O�Plan

������� Time Windows

It is possible to specify three types of time windows in schemas
 One is normally used to give
a metric time value �e
g
 a speci�c time or date� or a time relationship to a speci�c time point

This is done with the at option
 The second is used to specify the duration of a node �normally
an action node type� in the expansion
 The third allows time distances between two points to
be speci�ed �normally for a delay between between the hendis of one node and another
 This
delay between form is exactly equivalent to the speci�cation of a hnode endi � hdelay speci
�� hnode endi in the orderings statement
 The tf writer is free to use whichever form is most
convenient
 If both forms are used the speci�cations must be compatible �but not necessarily
equal�

������� Other Constraints

The O�Plan architecture allows for the replacement of the standard constraint managers for
time and resource management with more capable constraint managers from other sources� and
also for the addition of constraint managers for new constraint types

If a standard manager is replaced� then the more capable manager may be able to handle richer
constraints as well as managing the standard time and resource information given in tf
 Since
these richer constraints may not �t the standard time and resource syntax� they can be speci�ed
in an hother constraints clausei
 New types of constraints may also be speci�ed in that way

The tf compiler provides a way for the syntax of hother constraints clausei to be extended to
include these new syntaxes

O�Plan provides this feature as a way to allow for extension of the tf Compiler by a systems
integrator and to act as a demonstration of how to pass information between O�Plan and its
constraint managers
 Any other constraints which are rejected by the relevant constraint
manager which is installed in O�Plan will be treated as a notepad e
ect and will thus appear
there as a note

TF Forms ��

	��� Primitive Actions

A de�nition of a Primitive Action can be given by providing a schema with an expands
statement and no expansion �i
e
 no nodes and associated orderings�
 An action pattern
introduced by a higher level schema is then considered as primitive and not expandable further
if its action hpatterni matches such an expands entry
 A Primitive Action schema can still
have other schema related information such as vars� conditions� �only use for
e�ects�
time windows and �only use for
resource statements

	��	 Initial Information for Plan Generation

An initial world description and other initialisation for tasks may be provided through the
following tf forms�

initially pattern� � � value� � �

��� �

initial�resources resource�usage�spec� �

��� �

initial�authority authority�statement� �

��� �

initial�time time�spec� �

Unlike all other tf forms� these initial statements are not additive or incremental to the infor�
mation from previous forms
 They represent the total information to be used in the speci�cation
of any following task
 It is possible to select an empty set of initial information by use of the
following�

initially� ��� no initial world model statements

initial�resources� ��� no initial resource availability

initial�authority� ��� no initial authority �see note�

initial�time� ��� reset initial time to "zero" time

The initial information given is used for any following task that is provided
 A change of the
initial information does not alter the initial information which may have been used for earlier
provided task statements

Giving an empty initial authority would not be very useful as it would not allow any planning
to take place
 The tf Compiler will issue the warning �no authority to plan being given � check
that this is intended�
 A more useful �baseline� initial authority would be to allow planning to
the most primitive level of activity available� but not to go on and immediately allow execution
without further authorisation
 That is�

TF Forms ��

initial�authority provides �authority plan all� � inf�

provides �authority execute all� � no�

This is the default on O�Plan initiatisation if no explicit initial authority statement has been
given

	��� Task Schemas

Task schemas are the means of �uniformly� specifying particular tasks for plan generation

Within these schemas it is possible to fully specify separate resource limits� initial time windows
and initial world model states for each of the possibly many separate alternative task schemas
at the top level

Schemas whose name starts with the keyword task are selected by the O�Plan Task Assignment
user menu system to present to the user as alternative tasks to select from
 Once one is selected�
planning is initiated by posting an initial plan based on it

A task schema uses the information from the last provided initially� initial resources� ini�
tial authority and initial time tf forms as a basis
 Additional e
ects� resources and au�
thorities or a di
erent time speci�cation can then be provided and will add to those pro�
vided previously
 Task schemas inherit these initial statements in a manner similar to the
schema�meta schema relationships
 Note that in the case of initial authorities� if none are
given in an initial authorities statement� then the default is to allow planning to any level�
but not to allow execution �see initial authority de�nition section�

A task schema has the following general form�

schema task� name��

only�use�for�effects �task�achieved� � true at end�of ��

nodes 	 start�

� finish�

orderings end�of 	 ���� begin�of ��

��� the user may provide additional nodes� orderings� conditions� etc

time�windows initial�time� at 	�

resources initial�resources� at 	�

authority initial�authorities� at 	�

effects effects from initially statement� at 	�

end�schema �

The current relevant tf Compiler defaults node ends are used for the at � �start node�
position for initial e
ects� authority� resources and time
 Recall that a start node is a dummy

node and hence has zero duration
 This means that all initial information will apply at the
same plan�relative time whichever end is the current default

For convenience� a tf form is provided to ease the speci�cation of tasks
 The basic form is�

TF Forms �	

task name��

��� the user may provide nodes� orderings� conditions� etc�

end�task�

The tf Compiler adds the following to the entries provided by a tf writer in such a task�

time�windows initial�time� at 	�

resources initial�resources� at 	�

authority initial�authority� at 	�

effects effects from initially statement� at 	�

In all task schemas� the user must ensure that the start node is node number � and that the
	nish node is node number �
 These must be ordered with respect to each other and any other
user provided nodes such that provide for a unique start and �nish node for the task expansion

��

 TF Compiler

The O�Plan tf Compiler converts the Task Formalism language �coming from a �le or from
typed input from a user� into the internal Domain Information used by the O�Plan planner
 The
compiler can be run incrementally and will add to or modify the existing Domain Information
available to the planner

Where a tf form is speci�ed which has the same name as a form which already exists �say
a schema or a type with the same name� or where a statement which is not additive is given
�i
e
 the initially� initial resources and initial time statements� then these override any
previous entry in the domain information

It is anticipated that facilities to change previously speci�ed tf forms will be provided� as well
as the current facility to completely replace an old form or add to the forms already present

The defaults statement in tf is used to inform the planner of the defaults it should use in
its operation
 The compiler uses the given defaults or those provided in the last defaults
statement until such time as a new domain is selected �normally by re�initialising the planner
or calling the new domain O�Plan command�

The tf Compiler performs a number of tf form expansion roles
 Two examples are for the
incorporation of the current initially� initial resources and initial time statements into a
task schema and the incorporation of the text of a meta �process �schema into a schema
shown as an instance of the meta�schema

��

� O�Plan Commands

The following are commands which can be used to control the top level of O�Plan�

oplan This command is the means of entry into the menu�driven O�Plan task assignment
interface which will be the normal method of interacting with and controlling O�Plan
 It
provides access to each of the commands below in a convenient form

new domain This instructs the Planner to clear all knowledge of previous problems worked
on during this current session

tf hdomain namei This action loads in the tf description from the �le associated with
hdomain namei
 This �le name is derived directly from the hdomain namei
 It will incre�
mentally add to any previous tf descriptions given since the last new domain command

plan htask schema namei Planning starts with the loading onto the pending task agenda
of the task schema with name task htask schema namei describing the action�s� to be
expanded� or condition�s� to be achieved
 An error will be signaled if a task schema with
the given name has not been provided previously

plan view This command provides a menu of plan state browsing facilities to the user
 Plan
browsing is possible at any time� whether or not a plan has already been successfully
generated

world view This command provides a menu to a facility which can provide descriptions of
the state of the world model at nominated points in the plan
 Plan simulation is possible
at any time� whether or not a plan has already been successfully generated

replan Having already generated a successful solution� replan looks for a further solution
amongst the alternatives remaining

execute This command instructs the planner to pass the plan for execution to the execution
system
 An error will be signaled if the execution system is not available in the O�Plan
system running
 In the current implementation
 execute may only be used on a valid
fully generated plan

quit To exit from the O�Plan system

��

�
 Prede�ned Compute hfunction namesi

O�Plan provides a number of prede�ned compute functions
 Each has a name starting with
fn
 The prede�ned boolean predicates return values �true� or �false�
 This simpli�es the
writing of compute conditions in schemas
 E
g

condition compute true � �fn�neq
filter green�

� fn ask � hprompti � � hresponse listi � �
hresponse listi may be undef for any answer
 This is the default if no hresponse listi is
given
 The �rst answer in any list is the default if the user types return
 If the user types
return and the response list is undef� then the user is asked the question again after a
suitable message is given about their being no defaults

� fn cond � hbooleani � htrue resulti � hfalse resulti �
Provides a conditional answer which depends on the boolean parameter

� fn or � hbooleani � hbooleani �
This is a function to compute the �or� of the arguments

� fn and � hbooleani � hbooleani �
This is a function to compute the �and� of the arguments

� fn eq � hparameteri � hparameteri �
Checks if the parameters are equal

� fn neq � hparameteri � hparameteri �
Checks that the parameters are not equal

� fn leq � hparameteri � hparameteri �
Computes whether parameter � is less than or equal to parameter �

� fn geq � hparameteri � hparameteri �
Computes whether parameter � is greater than or equal to parameter �

These are available as if the following compute conditions statement had been provided

compute�condition �fn�ask

�or undef
�type list��� �

�

�fn�cond
�or true false�

� �

�

�fn�or
�or true false�
�or true false�� �
�or true false��

�fn�and
�or true false�
�or true false�� �
�or true false��

�fn�eq

� �
�or true false��

�fn�neq

� �
�or true false��

�fn�leq
�type number�
�type number�� �
�or true false��

�fn�geq
�type number�
�type number�� �
�or true false��

Currently� all prede�ned compute functions are de�ned to require fully instantiated parameters
�i
e
� have an additional constraint of �fboundg� and will return a single result without any
dependency information

��

�� Guidelines for Writing TF

It is intended that a guide to how to approach the modelling of a domain in tf will be provided
in due course
 For the moment� this section will collect together detailed advice on the use
of various tf forms and experience gained� or common pitfalls encountered� in coding speci�c
domains

We suggest below an ordered set of steps that a tf domain writer may go through to ensure
a good result
 We rather grandly call this the Task Formalism Method �tfm� to re�ect our
desire to gather experience of writing tf to improve the method itself and to provide future tf
Compiler intelligent support and user guidance

���� Scope the Domain and Initial Analysis

Like any data analysis task� it is important to plan carefully how a domain description is to be
provided in tf to O�Plan
 It is all too easy to let a domain description grow in a haphazard
and inconsistent way
 The present tf compiler and user interface support aids do not o
er the
tf writer much support apart from error�checking

It is useful to view one user role in writing a domain description in tf as being that of Do�
main Expert
 This user will decide on the scope of the domain and introduce the top level of
description
 It is then possible to ��ll�in� the details by considering other information given to
describe a domain in tf as being provided by one or more Domain Specialists

���� Action Expansion or �Goal� Achievement�

Two di
erent approaches are possible to model domains
 A hierarchical action expansion ap�
proach is primarily supported by O�Plan
 However� it is also possible to state required conditions
on the state of the world at certain points � a goal achievement approach
 This is also sup�
ported by O�Plan
 The approaches can be mixed in any way convenient to model the domain

However� it is useful to consider which is to be the main approach during the initial domain
modelling exercise

���� Levels of Modelling

It is all too easy to introduce actions� events� e
ects and resources and state conditions or use
resources at di
erent levels� making the modelling awkward and unnatural
 This is sometimes
referred to as �hierarchical promiscuity� or �level promiscuity�
 This will almost certainly lead
to the inability to make e
ective use of search restriction domain information such as condition
and resource types

Actions and the e
ects they introduce are at a particular domain modelling level
 Higher levels
are more abstract� lower levels are more detailed
 In some cases� certain �external� types of
conditions can only be stated on e
ects introduced at a domain modelling level which is at a

Guidelines for Writing TF ��

higher or the same modelling level as the condition
 In other cases� certain �internal� types of
conditions can only be stated on e
ects introduced at a domain modelling level which is at the
same or a lower modelling level as the condition

In anything other than trivial domains� it is essential to have a plan based on an initial analysis
of the structure of the problem to decide on what actions� events� e
ects and resources will be
modelled at progressively more detailed levels

Assuming an action expansion approach� we suggest the following method as being suitable
for O�Plan# it provides most e
ectively for hierarchical expansion of activity based plans with
associated condition�e
ect� resource and time modelling
 The steps may not be able to be
followed in a total order� but the items below may act as a useful checklist
 If a goal achievement
approach is being used primarily� then the ordering of the steps may place an earlier emphasis
on those steps related to condition �especially the achieve type� and e
ect modelling

�
 Identify the main actions �and events� that will appear at the top level of a task or plan

This is the task or top level

�
 Gradually work down through progressively lower levels of detail and try to identify the
more detailed actions �and events� to be introduced
 It is best if each level introduced
has some real meaning to those involved in planning in the real world
 Giving a �name�
to each level is a good discipline to ensure that the modelling levels will be useful

�
 It is then useful to decide on what statements about the world �in the form of e
ects� will
be introduced and manipulated at the various levels by the actions �and events� at each
level

�
 It is only after these steps have been taken that the conditions required for each action
�or event� need to be considered
 It is then possible to ensure that these are introduced
at levels at or below the level in which the relevant e
ects are introduced

Type information to restrict the usage of conditions to those that are meaningful in the
domain can now be added reliably

�
 This can then be re�ned by considering the resources that are manipulated at each level

�
 Time restrictions and information can then be considered

���� Writing a Schema � the Schema Envelope

When writing a schema in tf it is useful to view the schema as �owned� by some individual
responsible for the activity being described
 That individual describes one way in which the
higher level activity can be performed �or one way in which an indicated e
ect can be produced�
in a plan

Consider that there is a bounding box or envelope which at its outside edge performs the activity
or produces the desired e
ect�s�
 It is possible to state overall requirements for the schema on
the envelope itself � in terms of required conditions� outer bounds on resource usage� outer limits

Guidelines for Writing TF ��

of the time the activity will take� etc
 This can be done by using the keywords overall or at
self in appropriate speci�cations of resources� time windows and conditions
 Then� internally
within the envelope� the details of the way in which this is done can be described

���� Help for the TF Writer

These notes provide more detailed advice on the use of speci�c tf forms

�
 O�Plan �as its predecessors Nonlin and O�Plan�� is able to e
ectively exploit e
ects and
conditions expressed in a functional way
 Where non�boolean functional relationships
exist in the domain� modelling them directly can give great advantages in terms of search
space restriction and clarity of description over a more traditional modelling of facts in a
predicate logic form� as is common in other AI planners
 For example� rather than use�
fswitch 	 ong�true and fswitch 	 offg�false as two separate statements it is better
to use a functional form fswitch mode 	g�on and limit the value to be one of on or off

This is even more e
ective when the value can take a set of bindings
 E
g
 ffilter
camera 	g�cyan where the colour can be one of a set of �lter colours available
 Similarly
some numerical functional relationships are easily and e�ciently expressed to the planner
by this mechanism such as fage person �g�
�

�
 To model the inclusion of conditional actions� it is necessary to provide two schemas for an
e
ect which represents that a condition is satis�ed or the action is included
 For example
to conditionally include a painting action only if the walls are not already painted� it
is possible to provide two schemas with only use for e�ect �walls painted� say
 One
schema would have a set of conditions that checked if the walls were already painted but
would not introduce more actions
 The other would check that walls were not already
painted �via only use if conditions� and would introduce the action to paint the walls

The conditional action can then be introduced at any point in another schema by including
an achieve condition for the only use for e�ect �walls painted say�

�
 To model the conditional or case�based inclusion of e
ects it is necessary to provide several
schemas with mutually exclusive condition or variable restriction sets that di
erentiate
when the e
ect should be introduced and when it should not be

�
 Variables can be used in schemas� but it is a requirement that the planner know the type
of any partially instantiated variables left after all selection conditions and constraints
on the schema have been applied
 It is an additional constraint that this type must be
enumerable �such as a set type � like a Pascal scalar� or an integer with a bounded range�

If you write a schema in such a way that there is any possibility of a variable within the
schema being left not fully bound� then it must have such a type added to its restrictions
list

���� Modelling Reusable Non�sharable Resources with E�ects�Conditions

Until such time as O�Plan supports a wider range of resource types� reusable non�sharable
resources can be modelled with conditions and e
ects
 Reusable non�sharable resources are

Guidelines for Writing TF ��

�xed items such as keys or a speci�c transport vehicle

For Action Expansion In an action expansion modelling approach is being used� resource
allocation�deallocation can be done with e
ects� supervised and unsupervised conditions
at the outer envelope of the action
 The resources and their status would usually be
declared in the initial state for a task as follows�

effects �status workman�	� � unallocated at 	�

�status workman��� � unallocated at 	�

An action which required such a resource would have conditions and e
ects such as�

condition unsupervised �status
workman� � unallocated at begin�of self�

supervised �status
workman� � allocated�to�XX

at end�of self from begin�of self�

effects �status
workman� � allocated�to�XX at begin�of self�

�status
workman� � unallocated at end�of self�

The allocated to XX is quali�ed by the purpose of the allocation �XX� to ensure that
other potential parallel actions do not mistake the allocation of the resource as being
related to their di
erent purpose

The allocation of the resource can be more precise than the outer envelope of the whole
action �at self� if the range required is known to be less
 The interval between the
resource becoming available and it being released will be protected by the supervised
gost entry

The use of a unsupervised condition type as opposed to an only use for query will
greatly reduce the size of the search space since it leaves scheduling of the resources
until late in planning �at the expense of possible failure to resource a given plan at this
late stage�
 For example� in a problem of allocating � resources to two activities using
unsupervised as opposed to only use for query the number of planning cycles was
reduced from ��� to �� in a speci�c domain

For Goal Achievement If using a goal achievement approach �i
e
 achieve condition satis�
faction� most of the resource allocation can be done by the use of achieve conditions

This leads to larger search spaces

��

�� Current Implementation

���� Unsupported Features

The following features are not supported by the current implementation of O�Plan
 They have
been shown in the tf Manual as an indication of how O�Plan is intended to develop

�
 hexpressioni is not supported in htime speci and hmin max speci
 Only a hnumberi may
be given wherever hexpressioni appears in the syntax

�
 plan viewer and world viewer tf forms are supported only as documentation at
present
 Any speci�c plan viewer and world viewer programs other than the default
must be activated explicitly by the user

Only the world viewer snapshot output facility is supported

�
 preferences are not supported
 Schema preference ordering is the same as the order of
processing by the tf compiler� modi�ed by a cost estimate

�
 Only the consumable strictly resource class is supported
 Consideration of the value
of the di
erent resource classes is still necessary

�
 Only the count resource type is supported
 Consideration of the value of the di
erent
types is still necessary

�
 The default resources statement is not supported
 The value of this statement is under
consideration

	
 The domain rule statement is not supported
 Also� O�Plan does not use Temporal

Coherence information to inform its search choices

�
 The plan levels statement is not supported

�
 Restricted compute condition support is available
 The depends on clause cannot
be given� none of the prede�ned compute functions �see x	
��� are available� and the
compute condition statement is largely ignored
 However� any Common Lisp function
whose name would count as a hnamei can be called� and multiple answer is supported

�At present� the compute condition statement is consulted only to see whether function
are multiple answer or not
� Moreover� provided that all the variables in the function
arguments are bound by the time the condition is evaluated during schema selection�
numeric computations may be freely performed
 �After that� numeric values of variables
must be members of the variable�s type� and the only numeric types available are integer
ranges
�

��
 meta schemas and process schemas are not supported

��
 The event node type is not supported

Current Implementation ��

��
 The foreach and iterate node iteration is supported� but the iteration set�s� must be
fully instantiated by the time the schema is selected
 This can usually be accomplished by
using only use if or compute conditions to bind the variables in the hiteration seti�s�

Note that the expansion of foreach and iterate is not exactly as described in section
	
��
�
 Instead a dummy node is always created and all the generated nodes are put
between the two ends of the dummy
 This means that references to the node number of
the iteration can work unmodi�ed �while in the documented implementation some renum�
bering of references would be needed�� which signi�cantly simpli�es the implementation

However� it leads us to violate the rule that a dummy node always has zero duration

��
 The notepad is not supported

��
 The hother constraint clausei� which provides a place for new types of contraints managed
by �plug�in� constraint managers �including constraint managers external to O�Plan��
is supported� but the details are subject to revision and are not yet described in this
document

��
 The initial authority statement is not active at present
 Give the information directly
in a task schema
 However� initially� initial resources� and initial time will work

���� Features Anticipated

There are a number of areas where extensions to tf are anticipated in future� but where detailed
discussion of the form of the tf statement has not been decided

�
 tf has been designed to allow many compile time error messages and warnings to be given
to the tf provider
 The current system should detect most syntax errors and performs a
range of semantic checks
 However� more extensive checking is planned

�
 It is anticipated that facilities to change previously speci�ed tf forms will be provided� as
well as the current facility to completely replace an old form or add to the forms already
present

�
 It is anticipated that considerable development of the plan viewer and world viewer

features will be undertaken
 In particular the development of a query language to allow
the viewers to selectively interrogate the agent and plan state in O�Plan may be a focus
for future work

�
 It is anticipated that the type of a variable will be extended to allow further numeric
types

�
 It may be useful to require that a unique start and end node be provided for any schema
expansion given
 This would allow regular handling of plans and schema expansions in
the O�Plan system and in user interfaces
 If necessary� the tf Compiler could introduce
new dummy nodes to ensure that a unique initial and �nal node in an expansion was
available
 The tf Compiler could renumber the nodes in the nodes statement where

Current Implementation �	

necessary to ensure that the unique initial node is the hnode numberi � and the unique
�nal node is the hnode numberi �
 However� any such renumbering may spoil the user�s
view of node numbering and naming for authority�related matters and for diagnosis of
problems

�
 It is anticipated that an iteration facility will be allowed in a hresource usage speci
 This
will allow an initial resources declaration or a schema only use for resources or re�
sources clause to give repetitive delivery conditions for produces statements� for exam�
ple
 The type of statement may have the form�

 resource�usage�spec� � per time�unit� over�period time�bounds�spec� �

The per�over period quali�er will only be allowed for resources belonging to appropriate
resource classes

	
 A means to associate calendars with the time units in a �exible way should be provided

�
 A way to specify numerical comparisons rather more directly than through compute

conditions is envisaged

�
 A way to give conditional conditions relating to compute conditions is envisaged

��
 A method of specifying an open�ended set of e
ects instantiated from a set of matching
objects is being considered
 E
g

forall variable�name� in set�specification� pattern� � value�

For example�

forall
sw in �switch	 switch� switch
� �status
sw� � off

forall
x in
y �mode
x� � nominal

Where
y is set elsewhere

There may be a need to have similar set�based conditions� or to properly manage �for all�
conditions rather than �there exists� conditions as currently supported

��
 It is anticipated that more comprehensive handling and matching for sets will be added
in future

��
 Consideration may be given to allow restriction of the schemas which may be tried to
expand an action or event node or to satisfy an achieve condition
 This would be done
by allowing hschemais to be provided as advice which would be used instead of a general
lookup for matching schemas

Current Implementation ��

��
 Consideration may be given to an ability to specify ordering links with respect to a
sub�node of a nominated schema which expands an action or event type node� i
e
�
orderings K
L �� M
N
 This could be useful where schema expansion nodes at the
lower level represent for example phases of some activity which are to be referred to from
levels above

��
 Consideration will be given to the inclusion of a new node type which would allow an
action to be considered primitive for plan generation purposes� but which could be marked
as subsequently expandable in the normal way
 Such a node type was included in later
versions on Nonlin �called a query node type� to allow for actions which depended on
inspections or tests
 The ideas was that if the test failed� that normal expansion through
the use of suitable recovery or repair actions was then possible

��
 It may be useful to provide a facility to insist that a variable be fully instantiated during
the course of making a schema expansion �this may force the binding of the variable
during the expansion process if this does not occur due to other conditions restricting the
variable to one object�
 This is di
erent to the use of the �fboundg match restriction�
which insists that the variable is bound when a schema is �rst selected from the pattern
being expanded or the e
ect� resource or authority required

���� Features Under Review

O�Plan is a research prototype and the Task Formalism �tf� language is itself undergoing
changes as research ideas are clari�ed
 Any user of O�Plan and tf should note that the O�Plan
team� AIAI and the University of Edinburgh make no warranty that any tf statement form
will be supported in future releases

There are a number of areas where extensions to tf are anticipated in future� but where detailed
discussion of the form of the tf statement has not been decided

�
 At present it is anticipated that normal �action� schema node lists will not contain events�
and that process schema node lists will not contain actions
 Task schema node lists will
be allowed to contain both
 However� further consideration and trial coding of domains
is required to clarify this proposed restriction

�
 The default resources statement is under consideration for removal and is not supported
by the current release of O�Plan
 Another possibility is the removal of the begin of and
the end of optional quali�ers in the default resources statement and only to let the
statement de�ne the resource speci�cation limits between the beginning and end of the
action �i
e
 the equivalent to stating a hresource usage speci at overall�

Index

achieve condition ��
actions �� �	

primitive ��
action schemas �
agents �
authority ��� ��
authority statements ��

blocks world ��

calendar ��
commands ��
compute condition ��� ��� ��
compute functions

prede�ned functions ��
conditions ��

achieve ��
compute ��� ��� ��
compute dependency statement ��
holds ��
only use for query ��
only use if ��
prede�ned compute functions ��
supervised ��
unsupervised ��
usewhen ��

constraints
spatial ��

conventions used in tf description ��
current implementation ��

decomposition ��
default resource information ��
delays ��
documentary information ��
domain constraints ��
domain expert ��
domain specialist ��

e
ects ��
envelope of schema ��
events �
expands ��� ��

expansion ��
expressions �	
external system interface ��

foreach ��

global data ��
global information ��

heuristic information ��
hierarchical planning 	
hierarchical promiscuity ��
house building �	

initial information ��
iterate ��

language speci�c code ��
level promiscuity ��
levels of plan ��

match constraints ��� ��
meta�schema ��
meta�schemas �
min�max pairs ��

node ends ��
node numbers ��
nodes ��� ��
normal schemas �
note ��
note of other constraints ��
notepad ��� ��� ��
notes ��� ��
numerical bounds ��

O�Plan plan output format ��
O�Plan world output format ��
object types ��
only use for e
ects ��� ��
only use for query ��
only use for query condition ��
only use if condition ��
options of plan ��
orderings ��

��

Index 	�

other constraints ��

P�V ��
pattern � value ��
patterns ��� ��
pattern speci�cations ��
phases of plan ��
plan

levels ��
options ��
phases ��

plan levels ��
plan output format ��
plan view ��
preferences ��
primitive actions ��
primitives �
process schema ��
process schemas �
projected value ��

resource information ��
resources ��

defaults ��
resource speci�cations ��
resource types ��

consumable producible by agent ��
consum�

able producible by and outwith agent
��

consumable producible outwith agent
��

consumable strictly ��
reusable non sharable ��
reusable sharable independently ��
sharable synchronously ��

resource usage ��

schema ��
meta ��
process ��

schema envelope ��
schemas �� �	

action �
meta �
normal �

primitive ��
private information ��� ��
process �
public information ��� ��
task ��

set ��
spatial constraints ��
supervised condition ��

Task Formalism Method �tfm� ��
task schemas ��
temporal coherence ��
TF

compiler defaults ��
no warranty ��
syntax conventions ��

TF compiler ��
TF features

anticipated ��
under review ��
unsupported ��

TF forms ��
TF guidelines ��

action expansion ��
goal achievement ��
initial analysis ��
levels of modelling ��
schema envelope ��
scope the domain ��
task formalism method ��
writer help ��
writing a schema ��

TFM �Task Formalism Method� ��
time delays ��
time information ��
time points ��
time speci�cations ��
time units ��
time windows ��� ��
type

integer range ��� ��� ��

unsupervised condition ��
unsupported features ��
user interface speci�cation ��
usewhen condition ��

Index 	�

values ��
variables ��� ��
vars relations ��

world output format ��
world view ��
� ��
� � ��
� ��
� ��
�� ��
��� ��
��� ��
�� ��
�hnamei ��
�and hparameteri ��� �	
�bound ��� ��
�contains hseti �	
�has hfunction namei ��� �	
�not hparameteri �	
�or hparameteri ��� �	
�satis	es hpredicate namei ��� �	
�type htype namei �	
achieve ��� after ��� self ��
achieve ��� after ��� start ��
achieve ��� after ��
achieve after point ��
hachieve after pointi ��
achieve ��� ��
haction or eventi ��
action ��
after ��� self ��
after ��� start ��
after ��
allocates ��
always ��� ��� ��
and ��
hassociated instructions or datai ��� ��
at begin of ��
at end of ��
at notepad ��
hatomi ��
hat speci ��
at hnode endi ��
hauthority statementi ��

authority ��� ��
havailabilityi �	� ��
before ��
begin of ��
between ��
bound ��� ��
hcomponenti ��
compute conditions ��
compute condition ��� ��
hcompute dependencyi ��
hcompute function namei ��
compute ��� ��� ��� ��
condition at node end ��
condition contributor node end ��
hcondition pointi ��
hcondition statementi ��
conditions ��
consumable producible by agent ��
consumable producible by and outwith agent

��
consumable producible outwith agent

��
consumable strictly ��� ��
consumes ��
contains ��
hcontributor entryi ��
count ��� ��
hdaysi ��
deallocates ��
hdefault achieve after pointi ��
hdefault assignmenti ��
default resources ��� ��
defaults ��� ��
delay between ��� ��
hdelay speci ��� ��
depends on ��� ��� ��
domain rules ��
domain rule ��
hdomain statementi ��
hdomain valuei ��
hdrawing object namei ��
hdrawing patterni ��
hdummy node typei ��
dummy ��� ��
duration ��� ��

Index 	�

hearliest begin timei ��
hearliest end timei ��
earliest 	nish of plan ��
e�ect at node end ��
he
ect pointi ��
e�ects ��� ��
end node ��
end of ��
end plan ��
end world ��
end hkeywordi ��
hendi ��
entity detail �	
eq ��
et � ��
event ��� ��� ��
execute ��
expands ��� ��� ��
hexpressioni ��� ��
false ��
	nish ��� ��� �	
fn and ��
fn ask ��
fn cond ��
fn eq ��
fn geq ��
fn leq ��
fn neq ��
fn or ��
fn ��� ��
forall ��
foreach ��� ��� ��
from ��� ��
hfully instantiated patterni ��
hfunction namei ��
hfunction resulti ��
hgeneral patterni ��
hgeneral seti ��
has ��
holds condition ��
ideal ��
include ��
incremental ��
increment ��
hindividual authorityi ��

in	nity ��� ��
information �	� ��
hinfo wordi ��
info ��
inf ��� ��
initial authority ��� ��� ��
initially ��� ��� ��� ��� ��
initial resources ��� ��� ��� ��� ��� �	
initial time ��� ��� ��� ��� ��
instance of ��
hinteger rangei ��
hiterated node formi ��
hiterated node typei ��
iterate ��� ��� ��
hiteration seti ��
hiteratorsi ��
jotter ��
hlanguage namei ��
language ��
hlatest begin timei ��
latest 	nish of plan ��
hlevel numberi ��
levels output �	
hlimited condition typei ��
link from node end ��
link selection �	
link to node end ��
lisp ��
local vars ��� ��
lt � ��
hmatch constrainti ��
hmaximum durationi ��
max ��
meta process schemas ��
meta process schema ��
meta schemas ��
meta schema ��� ��
hminimum durationi ��
hmin max speci ��
hminor keywordi ��
min ��
multiple answer ��� ��
hname seti ��
hnamei ��
new domain ��� ��� ��

Index 	�

hnode endi ��
hnode formi ��
hnode labeli ��
hnode numberi ��
hnode referencei ��
node selection �	
hnode speci ��
nodes ��� ��� ��
hnode time informationi ��
hnode typei ��
node ��
none ��
notepad ��� ��
note ��
not ��
no ��
number of nodes ��
hnumberi ��
occurs at ��
only use for authority ��� ��
only use for e�ects ��� ��
only use for query ��� ��
only use for resources ��� ��� ��� �	
only use if ��� ��
hoperandi ��
hoperatori ��
oplan ��
horder blocki ��
hordering blocki ��
orderings ��� ��� ��
or ��
hother constraint clausei ��� ��
other constraints ��
hother function argumenti ��
hother predicate argumenti ��
overall ��� ��
over period �	
over ��
parallel ��� ��
hpattern componenti ��
hpattern with ��i ��
hpatterni ��
hpatterni � hvaluei ��
per �	
hphase numberi ��

hplan featurei ��
plan levels ��
plan output �	
hplan viewer featurei �	
hplan viewer parameter stringi �	
plan viewer �	� ��� ��
plan view ��
plan htask schema namei ��
plan ��
hplus or minusi ��
hpredicate namei ��
preferences ��� ��
hpreference wordi ��
prefer plans with ��� ��
prefer schemas ��� ��
process schemas ��
process schema ��� ��
produces ��� �	
program �	� ��
hprovides or requiresi ��
query ��
quit ��
replan ��
resource at node end ��
hresource classi ��
resource conversions ��
hresource namei ��
resource output �	
resource overall ��
hresource quali�er speci ��
hresource quali�eri ��
hresource rangei ��
hresource scope speci ��
resources ��� ��� �	
resource types ��
hresource unit classi ��
hresource unit namei ��
hresource unit synonymi ��
resource units ��
hresource uniti ��
hresource usage keywordi ��
resource usage node end ��
resource usage node end ��
hresource usage speci ��
reusable non sharable ��

Index 	�

reusable sharable independently ��
satis	es ��
schema variables ��
schema �� ��� ��
self ��
sequential ��� ��
sets ��
set ��
hseti ��
sharable synchronously ��
size ��
snapshot ��
some ��
start ��� ��� �	
supervised ��� ��� ��
tasks �
task ��
task �	
htext stringi ��
htf �lei ��
htf form keywordi ��
htf form major keywordi ��
htf formi ��
tf info ��
tf input �	� ��
tf hdomain namei ��
htime bounds pairi ��
htime bounds speci ��
htime preferencei ��
htime speci ��
htime unitsi ��
time window node end ��
htime window speci ��
time windows ��� ��
true ��
htype namei ��� ��
types ��
type ��
undef ��� ��
unlimited ��
unsupervised ��� ��
hvaluei ��
value ��
hvariable namei ��
hvariable restrictioni ��

variable restriction ��
vars relationships ��
vars relations ��
vars ��� ��
weight ��
hworld viewer featurei ��
hworld viewer parameter stringi ��
world viewer ��� ��� ��
hworld view typei ��
world view ��
world ��
hyes or noi ��

