
Object Histories: object-oriented
triumph over action-nets

Donald H. Mitchell

Proactlve Solutions, Inc.
10814 S. Quebec Ave.

Tulsa, OK 74137
dmltchell @trc.amoco.com

ProAct is our planner for direct end-user use in project
management and contingency planning. We’re building it
after extensive experience with SIPE-2 (Wilkins, 1989)
and discussions with Austin Tate and Brian Drabble. We
rely on untrained end users to create the plan knowledge.
Due to the nature of their planning needs, we’ve made sev-
eral significant changes to the functionality and represen-
tation over other classical planners. These changes have
rewarded us with additional benefits. Among the benefits
is the advantage of using a fully object-oriented represen-
tation.

We no longer use an action-net but instead use what we
call "object histories" to represent the modifications to
objects over the plan. Experiments and formal analyses
show that object histories almost always outperform action
nets for question-answering (or Modal Truth Criterion
(MTC)) and detection of precondition clobberers.

In this paper, I’ll explain why we’ve chosen a radically
object-oriented approach, how we represent "actions", and
how the MTC algorithm works. Due to space, I will be
unable to address how task insertion works including pre-
condition testing and detection of precondition clobberers.
I will also be unable to explain how we handle order link-
ing and other issues related to using this representation.

1.0 Why object-oriented?

As we move automated planners out of the laboratory and
into practice, we’re seeing two distinct application arenas:
robotics (situated automaton) and end-user planning.

Robotics planning appropriately sees real-time reaction
and rich formal causal representations as critical for suc-
cess. To achieve this success, robotics planners are devel-
oping architectures that require extensive AI knowledge to

program and build. Each application is painstakingly
crafted by experts for long-term and repeated use.

End-user planning, on the other hand, requires accessible
programming and debugging, rich interfaces, and a mini-
mum of representational distinctions. In our investigations,
end-user planning does not require the reactivity that
robotics requires. It does, however, impose unique and
challenging requirements. Most new plans introduce new
initial states, goal states, and actions. That is, these plan-
ning elements cannot be defined ahead of time; thus, the
planning environment must provide accessible methods
for the user to define their own states and actions. As in
other planning domains, change occurs. The user may
change the initial or goal states at any time. These changes
can include adding new objects.

In general, users are more familiar with object-oriented
concepts than declarative concepts. To facilitate the user’s
ability to program our planner, we’ve opted for a fully
object-oriented representation. The user has full access to
all the domain knowledge and can create, edit, and delete
any domain information they wish including the class hier-
archy, instances, and task templates (which are objects).
The instances define the "current" or "initial" state. Users
can also create and edit plan objectives.

Of critical importance to our users is the ability to see
what exists in the domain, to see what can be said about
those objects, to extend what exists and what can be said,
and to see the changes predicted by the plan. Using objects
and class hierarchies enables us to meet these needs.

By defining slots on classes rather than using arbitrary
predicates, we enable the user to see at a glance everything
that is known and can be said about each object. The user
does not need to guess what each predicate applies to.
Instead, the slots of the objects play the role of the predi-

88

From: AAAI Technical Report SS-93-03. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



Plan representation

cate. Using CLOS’s MOP, the planner can show the user
the list of applicable slots at each place that the user needs
to define a goal, effect, or condition. In addition, using a
slot facet we’ve defined for recording the legal value-type
of each slot, 1 the planner can also show the user all the
legal values. These capabilities enable us to build a power-
ful, structured interface for defining plan knowledge,
building plans, and analyzing plans.

2.0 Plan representation

Our plans are hierarchical and non-linear. The planner
does not insist on uniform expansion (i.e., that each
"level" be fully expanded or that if there is an action at a
given level, then all actions have either a hierarchical
descendent or ancestor at that level). There is not a strict
notion of level. As far as non-linearity goes, the planner
allows any ordering of actions as long as the order remains
consistent: that is, as long as the imposition of the order
does not create a temporal circularity. Thus, there may be
ordering constraints between actions at different levels of
the plans or in different abstraction subtrees 0f the plan.

A "completed" plan does not have to be completely
ordered, does not have to have specific assignments for
each "variable," and does not have to have an operator for
each goal. That is, any plan is complete as long as it is con-
sistent. A plan prescribes and describes the anticipated
changes in the world. The user may begin execution at any
time.

2.1 Domain objects

Users create and modify the classes representing the
objects in their domain. These classes are full-fledged
CLOS classes. For each class, the users can create and
modify the slots and their attributes. We provide four
attributes or facets for each slot: the type of object that it
takes as a value, whether it takes multiple values or can
only have one value at a time, who can see the slot, and an
optional documentation string describing the slot. Users
can also create and modify instances for any class. We use

1. CLOS allows programmers to specify types for slots; how-
ever, in our planner, all slots can hold not only elements of the
slot’s type but also plan variables. Thus, we defined our own slot
facet to hold the slot’s "type."

this object, slot, value representation in place of traditional
planning system’s sentential representation.

The planner includes a full modal representation for "vari-
ables." For each variable used in the plan that does not
have a unique value due to unification, we create a new
object. Following Wilkins, we name these objects "indefi-
nite objects." We use a defeasible truth maintenance sys-
tem ala Doyle (1979) to track the necessary and possible
matches (we call them "codesignations" after Chapman
(1987)). Bill Davis is publishing a paper in this workshop
on this codesignation system (Davis, 1993). We require
the user to specify a class for each variable. Each class in
the user’s class hierarchy then keeps track of its indefinites
as well as its instances.

2.2 Actions

Users create and modify operator instances (task tem-
plates) which are the schemata for events or actions in the
domain. They manipulate the operators through an object-
oriented interface using the presentation capabilities of
CLIM. They move objects or classes into the panes repre-
senting use-only-when, steps, main-effects, side-
effects, resource characteristics, and prerequisites of an
operator. They then specify which slots of these objects
this operator cares about and what, if any, value con-
straints the operator imposes on those slots. The user spec-
ifies value constraints by moving in objects or classes
from the type hierarchy.

The planner then instantiates these task templates into
actions in the plan. Actions keep track of the operator that
expanded them (if any), the mapping between the vari-
ables in the template and the indefinite or definite objects
in the plan, how the planner satisfied each use-only-when
and value-binding condition, the purpose of the action (a
goal), what action the action refines, what actions refine
this action, and what changes the action produces.

In addition, there are two hash tables for each action that
record that action’s predecessors and successors. The
tables do not merely encode an action net but the whole
precedence relation. That is, in the plan a --> b ~ c, a’s
successors table would include both b and c. When the
planner imposes a new precedence relation between the
two nodes e and f, it copies the contents offs "successors"
hashtable into e’s and into all the predecessors of e (need-
ing to copy into all the predecessors’ tables is why there

Object Histories: object-orlented triumph over action-nets

89



Plan representation

must be two tables). Similarly, it copies e’s predecessor
table into and beyondf. It stops copying the hashtables
wherever it finds that there are no new elements to add.
Thus, in a simple plan, looking up the precedence relation
of any pair of nodes is a constant time operation while
imposing a new precedence relation can take up to

2 ¯ ¯ .O (n). There is a comphcatton, however.

When the planner adds an expansion (or "refinement") to 
node, it does not copy the precedence tables down to the
new action nodes. Similarly, as the planner adds new ele-
ments to a node’s tables, it does not copy those elements
up or down the abstraction hierarchy. Thus, to find out
whether any action comes before, after, or is unordered
with respect to another action, the planner must check the
action’s hashtables. If it does not find the answer there, it
must successively check the abstraction ancestors until it
finds a record. If it does not find a record, then the nodes
are unordered where "unordered" includes nodes on paral-
lel branches of a traditional action net and nodes in ances-
tral relationship to one-another. This precedence test takes
O (log2n) where n is the number of actions in the graph
and thus logn is the expected height. The storage space
for all the hashtables is O (n2) .

In a standard action net, precedence tests require finding
paths and take at least O (n). Precedence tests are very
frequent operations; thus, the constant time to O (log2n)
complexity is very desirable.

The planner includes two other functions for making dis-
tinetions among the "unordered" relations: a function to
test whether one action is an abstraction ancestor of
another O (logn) and a function to determine whether
one cannot come after another. An action cannot come
after another if it must come before, it is an ancestor, one
of its descendents needs to come before the other action,
or one of the other action’s descendents needs to come
after it. These last two relations are unique to our planner
and make the non-uniform expansion and ability to impose
arbitrary precedence relations very powerful. The cost of
this test can be as high as O (n2) m the square of the
number of descendants from the test action.

2.3 Object histories

Given the object-oriented representation, we began to
think of how to represent changes to objects over the plan.
We1 developed a lightweight object type that contains only

the slots whose values change and additional information
needed to record how the change fits into the plan. We call
these objects, change-objects. Each change object has the
following "behaviors":

original-object: returns the object that this change
object represents a change to.

¯ previous-change-objects: returns list of immediately
preceding changes for the same object.

¯ next-change-objects: list of immediately following
changes to this object.

¯ higher-level-change: the hierarchical parent to this
change.

¯ refinements: the hierarchical children of this change

¯ causing-action: the action that generated this change.

¯ enabled-actions: all actions that in some way count
upon a change in this change object along with infor-
mation about which change (slot-name and value).
This slot represents what Wilkins (1990) calls protect-

until andwhat Currie and Tate (1991) call the GOST.

¯ slot-change-p: given a slot name, this function indi-
cates whether that slot changed at this change object.

¯ slot-multiple-valued-p: indicates whether a slot can
take multiple values. We use this information to inter-
pret the semantics of change in the MTC algorithm.

¯ slot-values-added, slot-value-asserted: the multiple
valued and single valued form for retrieving the new
values.

slot-values-removed: for multiple valued slots, what
values were negated at this change.

All domain objects also support the next-change-objects
behavior. Thus, each object points to a graph containing all
its changes. This graph represents the history of that object
or an object-centric action net. If a change occurs to an
indefinite object, then that change is inserted into the his-
tory for just that indefinite object. That is, indefinite
objects also support the next-change-objects behavior.
The object history of any given object only contains the
changes that necessarily occur to that object.

Change objects that have refinements do not maintain their
next-change-objects or previous-change-objects links.
The planner maintains a graph for only the most detailed
level of change. With only one level, the planner can

1. Jay W. Tompkins came up with the original idea and design.

Object Histories: object-oriented triumph over action-nets

90



Deriving PERT charts

maintain an accurate graph even given our flexible prece-
dence imposition rules. With more than one level, it is
very difficult to maintain a graph in a traversable form.

Figure 1 shows a simple single-level plan from both the
traditional action-net representation and the object history
representation.

3.0 Deriving PERT charts 4,0 The Modal Truth Criterion Algorithm

The user often wants to see the plan merely from the per-
spective of some object. In this case, our representation
provides an immediate correspondence. More often, how-
ever, the user wants to see the "whole" plan. As long as we
restrict the user to only seeing one plane through the plan,
it is easy to generate this view from our representation. By
one plane, I do not mean that it must be a specific level but
that the user cannot view an action and its abstraction in
the same graph. Generating these graphs takes O (n2)

where n is the number of nodes in the graph.1 Modifying a
previously generated graph to replace a node with its
refinement or abstraction requires O (n). Modifying it 
reflect subsequently imposed precedence relations can
also be done quickly.

The Modal Truth Criterion (MTC) or Question Answering
algorithm uses these object histories and the precedence
function and does not use the actions.

The MTC algorithm starts with at least an object, attribute,
action, and either the symbol before or the symbol after to
indicate at which edge of the action to test the truth. If the
caller supplies no value, then the MTC determines and
returns all possible values distinguishing necessary from
possible values and indicating the required binding and
linking constraints. If the caller supplies a value, the MTC
tests whether that value possibly or necessarily holds and
returns any constraints required to make it necessarily
hold.

1. We have an O (logn) algorithm based on quicksort that 
haven’t implemented.

The MTC algorithm first uses the codesignation lookup
function to determine which base and indefinite objects
possibly and necessarily unify with the object of the query.
The algorithm then traverses the object histories for these

~
someone receive
submissions

chair author ~ someone mail
ca -for-papersI I call-for-papers

subgroup answer
queries

r a _ rev’,~ _ s~le

objects change objects

FIGURE 1.

~q~
someone mailIletters

committee review

~
/~1 submissi°ns I~ committee schedule

talks

someone_~~

~ve
someone-~t~-Subl~sions

someone_~~

indefinite objects
Example traditional action-net and the new object histories. Example highly simplified by showing only
one level without any action-net confusing cross-links.

Object Histories: object-oriented triumph over action-nets

91



Summary

objects. Because these histories only have as many verti-
ces as there are changes to the specific object in the plan,
these histories will never be larger that the analogous
action net would be. In most cases, the histories will be
considerably smaller than the action net because it is
unlikely that every action will change the same objects.

To use the example in Figure 1, a query about committee
member n if only the last "someone" possibly codesig-
nates with that committee member would look through
just those two histories. The algorithm would use the
nearly constant time precedence lookup function to know
when to quit looking down the histories and to adjudicate
among its findings between histories.

Of course, if the query were about the chair and the chair
could be any of the someones, then the algorithm would
need to look through the four object histories.

By determining the possibly unifying objects at the start,
the algorithm does not have to perform unification at each
change against the query object. The only unification it
performs is against the value if one was supplied as part of
the query.

As you can see, object histories allow us to restrict the
MTC search space and reduce the unification checks. In
plans that contain chahges to the query object or one of its
possible unifications at every action, our algorithm will do
the same amount of graph traversal as a typical MTC algo-
rithm; however, our experience shows that these plans are
unusual unless they are very simple (a short set of cumula-
tive changes to the same object). Even in this unusual case,
our algorithm saves the effort of looking through all the
add and delete-list items at each action and immediately
restricts is attention to just the changes that possibly unify
with the query object. The only added expense of our algo-
rithm is computing all the possibly unifying objects at the
beginning.

bering tests (traversing all the possibly unifying histories
looking for enabled-actions using the changed slot-name
and spanning the time of the inserted effect).

A primary motivator in this switch is that we want users to
be able to develop and extend their own knowledge bases.
Our experience with users shows that sentential represen-
tations are confusing to them. Users want to know what
they have to work with and what they can say about those
things. The object-oriented representation with class
browsers and explicit inclusion of slots makes these trans-
parent.

6.0 References

Chapman, David. Planning for Conjunctive Goals. AL
32(3), 333-377, 1987.

Currie, K. and A. Tate. O-Plan: the open planning archi-
tecture. AI, 52(1), 49-86, 1991.

Davis, William S. Defeasible Codesignation Constraints
for Planning Variables. In the 1993 Spring Symposium
on Foundations of Automatic Planning: the Classical
Approach and Beyond, AAAI, 1993.

Doyle, John. A Truth Maintenance System. AI, 12(3), 231-
272, 1979.

Wilkins, David E. Can AI Planners Solve Practical Prob-
lems. Computational Intelligence, 6, 232-246, 1990.

5.0 Summary

We’ve succeeded at finding a new and effective represen-
tation for automated planning by setting aside sentential
logical formulae and looking at the implications of a fully
object-oriented system. Because of space, we’ve only had
time to describe the beneficial implications of this change
for the MTC algorithm. It also benefits precondition clob-

Object Histories: object-oriented triumph over action-nets

92




