Hy44-000

RL-TR-92-217
Final Technical Report
August 1992

SPACECRAFT COMMANDV& CONTROL
USING Al PLANNING TECHNIQUES - THE
‘O-PLAN2 PROJECT

University of Edinburgh

Austin Tate, Brian Drabble, Richard Kirby

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Systems Command
Griffiss Ai‘r Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including

foreign nations.

RL-TR-92-217 has been reviewed and is approved for publication.

APPROVED: %,&f %é«.b

NORTHRUP FOWLER III
Project Engineer

. FOR. THE COMMANDER: /é; ; , :Z a

JOHN A. GRANIERO

- Chief Scientist

Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3C) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE | oV ibro0401ss

Public reporting burden for this collection of infarmation is estimated taaverage 1 hour per response, including the time for reviewing instructions, searching existi

! Lrden ; | toz . r e, A ing data sources,
gather.rg md rnartarr\gthe data needed. and con'pla:ng andi reviewing the collection of information. Send cormmerts regarding this burden estimate or any other aspect of this
ccne.mop of inforrmation, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations andReports, 1215 Jefferson
Davis Higrway, Sutte 1204, Arington, VA 22202-4302, and to the Offica of Managernert and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1992 Final Jun 89 - May 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SPACECRAFT COMMAND & CONTROL USING AI PLANNING C - F49620-89-C-0081
TECHNIQUES - THE 0-PLANZ PROJECT PE - 62702F
- PR - 5581
6. AUTHOR(S)) TA - 27
Austin Tate, Brian Drabble, Richard Kirby WU - 44
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Artificial Intelligence Applications Institute REPORT NUMBER
University of Edinburgh
80 South Bridge ATAT-TR-109
Edinburgh EH1 1HN, UK)
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3C) AGENCY REPORT NUMBER

525 Brooks Road

Griffiss AFB NY 13441-4505 RL-TR-92-217

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Northrup Fowler III/C3C/(315) 330-3011

12a. DISTRIBUTION/AVAILABILITY STATEMENT . {12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maxirnum 200 words)
0-Plan2 (the Open Planning Architecture) provides a generic domain independent

computational architecture suitablé for command, planning and execution
applications. The main contribution of the 0-Plan2 research has been a complete
vision of a modular and flexible planning and control system incorporating
artificial intelligence methods.

This report describes the 0-Plan2? agent oriented architecture and describes the
communication which takes place between planning and execution monitoring agents
built upon the architecture. Separate modules of such a system are identified along
with internal and external interface specifications that form a part of the design.
A description of the prototype implementation of 0-Plan2 is included and the report
describes an application of 0-Plan2 to the generation of on-board commands for a
simple, but realistic, spacecraft.

14, SUBJECT TERMS 15. NUMBER %FOF‘AGES

Planning, Artificial Intelligence

16. PRICE CODE

17. SECURITY CLASSIFICATION ~ |18. SECURITY CLASSIFICATION |19, SECURITY
OF REPORT SECURITY Ol 9. SE CLASSIFICATION |20. LIMITATION OF ABSTRACT

OF ABST Fg\C
UNCLASSIFIED UNCLASSTFIED UNCLAS S{FIED UL
NSN 7540-01-280-5500

- Standard Form 298 (Rev, 2-89)
Prescribed by ANS| Std. 23918
298102

Acknowledgements

The O-Plan project began in 1984, Since that time the following people have participated:
Colin Bell, Ken Currie, Jeff Dalton. Roberto Desimone, Brian Drabble, Mark Drummond,
Anja Haman, Ken Johnson, Richard Kirby, Arthur Seaton, Judith Secker, Austin Tate and
Richard Tobin.

Prior to 1984, work on Interplan (1972-4) and Nonlin (1975-6) was funded by the UK Science
and Fngineering Research Council.

From 1984 to 1988, the O-Plan project was funded by the Science and Engineering Research
Council on grant numbers GR/c /59178 and Gr/D /58987 (UK Alvey Programme project number
1KBs/151). The work was also supported by a felowship from spD-Scicon for Austin Tate from
1984 to 1985.

I'rom 1989 to 1992, the O-Plan2 project has been supported by the us Air Force Rome Labo-
ratory through the Air Force Office of Scientific Research (Arosgr) and their European Office of
Acrospace Research and Development by contract number I'49620-89-C0081 (EOARD/88-0044)
monitored by Northrup Fowler 111 at the usar Rome Laboratory.

Additional resources for the O-Plan and O-Plan2 projects have been provided by the Artificial
Intelligence Applicationis Institute through the rUrora (Edinburgh University Research on
Planning Architectures) Institute development project. ’

Since 1989, research on scheduling applications of the O-Plan architecture has been funded
by Hitachi Europe Ltd. From 1989 to 1992, the vK Science and Engineering Research Coun-
“cil (grant number GR/F36545 - UK Information Engineering Directorate project number IED
4/1/1320) has funded a collaborative project with 1¢L. Imperial College and other partners in
which the O-Plan architecture is being used to guide the design and development of a planner
with a flexible temporal logic representation of the plan state. A number of other research and
development contracts placed with aiat have led to research progress on the O-Plan prototype.

iii

Abbreviations

The following abbreviations are used within the report. This section serves as a reminder of
their meaning wherever the context is not clear.

ADS Associated Data Structure - the level of data structure in O-Plan2 at which a plan is
' represented. This is “associated™ with an underlying Time Point Network (TPN).

AM O-Plan2 Agenda Manager - one of the main processes of the O-Plan2 system and the main
part of the “Controller” which decides on what can be processed next in an O-Plan2
agent.

AT Agenda Table - used to represent outstanding activities for an O-Plan2 agent.

DM O-Plan2 Database Manager --one of the main processes of the O-Plan2 system which
manages the plan state and gives access to it on behalf of other modules.

Gopr Graph Operations Processor - a support routine in O-Plan2 used to process networks or
graphs (especially the Time Point Network - 1Py).~

GosT Goal Structure Table - used to hold conditions associated with a plan and their method
of satisfaction.

M O-Plan2 Interface Manager - one of the main processes of the O-Plan2 system which manages
inter-module, inter-agent and user communications.

kP O-Plan2 Knowledge Source Platform - one of the main processes of the O-Plan?2 system on
which Knowledge Sources can he run.

Ks Knowledge Source - a computational capability in O-Plan2.

KsF Knowledge Source Framework - a proposcd language for deseribing an agent’s capabilities
(it’s Knowledge Sources).

Ll Landmark Line - an ordered collection of time points held within the Time Point Network
(TPN) whose actual time is knowun.

McC Module Communications Channel - used for inter-module communications with an O-
Plan2 agent. .

MTC Modal Truth Criterion - another name adopted by other researchers fora process similar
to Question Answering (Qa).

Psv Plan State.Variable - an object in a plan which is not fully defined.
J | \

PSVB Plan State Variable Body - the body associated with a Plan State Variable used in a plan
and containing its constraints.

psvM Plan State Variables Manager - the Constraint Manager in O-Plan2 which looks after
Plan State Variables (psvs).

psvN Plan State Variable Name - the name associated with a Plan State Variable used in a
plan. Several Psv names can be associated with a single psv body.

QA Question Answering - the O-Plan2 support routine which finds the ways in which a plan
condition can be satisfied.

TC Temporal Coherence - a search ordering heuristic.

TD Trigger Detector - used to recognise when an O-Plan2 agent’s outstanding agenda. entries
can be passed to the Agenda Manager (an) for processing.

TF Task Formalism - the domain description language for the O-Plan2 planier.

TGM TOME/GOST Manager - the Constraint Manager in O-Plan2 which looks after effects and
conditions.

ToME Table Of Multiple Effects - used to hold effects associated with a plan.

TPN Time Point Network - used to hold time points associated with a plan and constraints
between these time points.

TPNM Time Point Network Manager - the Constraint Manager in O-Plan2 which builds and
looks after the Trn.

Contents

Acknowledgements iii
Abbreviations : _ iv
Contents : vi
1 Summary \ ; 1
1.1 Project Aims 1
1.2 Project Achievements e 1

2 Introduction s 3
3 History and Technical Influences 5
3.1 O-Planl o e e .5
3.2 O-Plan2 o e e 6
3.3 Characterisation of O-Plan2 o e 7

4 Communication in Command, Planning and Control 9
41 The Scena.ri? 9
42 Useof Dependencies 10
4.3 A Common Representation for Communnication between Agents 10

5 Representing and Communicating Plans ‘ 12
5.1 Plan States . . v o v o e e e e e e e 12
5.1.1 Task Formalism (1r) e 12

5.1.2 Plan Flaws e e e 12

52 Plan Patches 13
5.3 Plan Patch Attachment Points o . . o o0 o0 oo 14
5.4 Incremental Plan States ol o 0o e e 14
5.5 Plan Transactions o 15

6 Managing Concurrent Computations 16

vi

6.1

6.2

Choice Ordering Mechanisms in O-Planl00 0000000000

6.1.1 Building up Information in an Agenda Record . .. 0 00 000000
6.1.2 Granularity of Knowledge Sources
6.1.3 Priority of Processing Agenda Entries 000 L.
Choice Ordering Mechanisms in O-Plan2.o .o 000 ...
6.2.1 Knowledge Source Stages L '
6.2.2 Knowledge Source Triggers oL oo
6.2.3 Compound Agenda Entries e e e e e
6.2.4 Controller Priorities L

O-Plan2 Architecture

7.1

(W}

Domain Information 0
Plan State e e e
Knowledge Sources L.
Support Modules L
Controller« . . . e e
Discussion L e e
7.6.1 Knowledge Sources L
7.6.2 Controller Strategies L
Process Structure of the O-Plan? tmplementation0 ...

Processing Cycle in the Current O-Plan2 System .. oo 0000 0oL

O-Plan2 Planner

3.1

8.2

R.3

Plan State« . 0 o . e e e
8.1.1 Plan Network - Aps and vex .. . 00 o
R.1.2 TOME and GOST o . e e e e e
8.1.3 Plan State Variables e
8.1.4 Resource Utilisation Table 0. . 0 o0 00 o o
S5 Agenda .00 L e
Planning Knowledge Sources . . 0 000 0 0oL L e
Use of Constraint Managers to Maintain Plan Information 0o
8.3.1 Time Point Network Manager (TPNAM) L L 00 0 0 00 0 e e

vii

20
22
22
23
23
24
24
24
25
26
28

10

11

12

13

8.3.2 TOME/GOST Manager (TGM) o v v v v e e s e e e e e
8.3.3 Resource Utilisation Management (RUM) oL
8.3.4 Plan State Variables Manager (PSVM) e e e e e
8.4 Support Mechanisms in O-Plan2o o oo oo
8.5 Alternatives Manager oo
8.6 Implementation as Separate Processes oL

O-Plan2 Job Assigner
O-Plan2 Execution System

O-Plan2 User Interface

11.1 Planner User Interface PO

11.2 System Developer Interface I

11.3 O-Plan2 User Roles e
11.3.1 Domain Expert Role T
11.3.2 Domain Specialist Role o .. oo oo
11.3.3 Command User Role
11.3.4 Planner User Role e e e e e
11.3.5 Execution System Watch/NModify Role © o0 0 0000000000
11.3.6 System Developer Role L
11.3.7 User Support to Controller Rote . 0 . o o 0 o000 oo
11.3.8 User Support to Alternative Manager0 oo L oL
11.3.9 User as System Builder e e

Performance Issues and Instrumentation

12.1 Architecture Performance e e e e e
12.2 Constraint Manager and Support Routiue Performanceo oo
12.3 Monitors and Instrumentation e

Modularity, Interfaces and Protocols

13.1 Components.o o
13.2 Support Modules e
13.3 Protocols L e e e

viit

46
16

13.4 Internal Support Facilities L o oo
13.4.1 Knowledge Source Framework (KSF) o oo Lo
13.4.2 Agenda Trigger Language B
13.4.3 Controller Priority Language,

13.5 External Interfaces Lo
14 Spacecraft Commana and Control Application
15 Related Projects
16 Futuré Plans for O-Plan2
17 Concluding Remarks

References

ix

55

58

59

61

62

List of Figures

-3

Communication between Central Planner and Execution Agent 11
O-Plan2 Architecture. 21
Internal Structure of the Current O-Plan2 Planner 27
Example of activity planner at ADS using TPN 35
Example of resource allocation at ADS using TPN 35
Example Output of the AutoC'AD-based User Interface 43
Example Developer Interface for the O-Plan2 Planning Agent 45

Communications Wiring Harness of the pvsar satellite0 55

1 Summary

Planning, scheduling and control systems based on artificial intelligence techniques are now
maturing and are being applied to progressively more realistic problems. The Knowledge-based
Planning and Scheduling Group at the Artificial Intelligence Applications Institute at the Uni-
versity of Edinburgh has been involved in the production of several complete working Artificial
Intelligence (A1) planning systems with gradually improving scope and capability. The latest is
the O-Plan2 Architecture, the O-Plan2 Planner based on this architecture and a demonstration
environment for inter-agent command, planning and execution using the architecture.”

1.1 Project Aims

The O-Plan2 project has the following aims:

e to provide a generic domain independent computational architecture suitable for speciali-
sation into command, planning and execution syvstems with the addition of new processing
capabilities and domain knowledge.

¢ to provide a state-of-the-art a1 planning svstem which uses an activity based plan repre-
sentation.

¢ to provide means to allow a rich level of domain knowledge to be provided to the system
and to exploit this domain information in opportune ways within the system when choices
are being made and alternatives explored.

¢ to clarify and define the required modules and interfaces of the architecture, the planner
and other parts of the system.

s to provide a portable and flexible prototype system in which new functionality can be
experimented with. The design is intended to allow for experimentation with real-time
distributed command, planning and control in a multi-processor computer based system
in future.

¢ to demonstrate the architecture and planner on realistic problems.

1.2 Project Achievements

O-Plan2 provides an Architecture in which different agents with command (job assignment),
planning and execution monitoring roles can be built. The architecture seeks to separate out
the following components:

o the representation of the processing capabilities of an agent (in Knowledge Sources),

¢ the computational facilities available to perform thaose capabilities (the possibly multiple
Knowledge Source Platforms). . €

o the Constraint Managers and commonly used Support Routines which are useful in the
construction of command, planning and control syvstems,

e domain and task information about the application (Domain Information),
o theinternal model of th_e task. plan and execution environment (in the agent’s Plan State),
o the decision making about what the agent should do next (in the Confroller), and

e the handling of communication between one agent and others.

The main contribution of the O-Plan2 research has been in providing a complete vision of a
more modular and flexible planning and control svstem incorporating A1 methods. Thm 1ep011
is intended to describe this main contribution in detail.

A “state-of-project” prototype of O-Plan2 has been provi(l(’d which is a complete, even though
simplified, demonstration of our vision of a multi-agent system where agents are based upon the
O-Plan2 architecture and where communication hetween the three agents for job assignment,
planning and execution monitoring is in a regular format.

Most effort in the current O-Plan2 prototype has been devoted to the provision of a planner
which uses a hierarchical partially ordered activity representation of plans as its basis. The aim
has been to replicate the functionality of earlicr Edinburgh planners such as Nonlin [39] and
O-Planl [10] but in an improved computational framework which is more flexible and can he
made more widely available than those carlier syvstems.

The prototype of O-Plan2 includes a number of sample application domain descriptions and
demonstration files to show O-Plan2 in use. \ demonstration of the intended user interface for
O-Plan2 has been created which uses the widely available AutoCAD package [4] to show how
the system can link to such packages.

A demonstration of spacecraft planning and execution monitoring has been created for a simple,
but realistic, spacecraft model based on an actual satellite.

2 Introduction

The research on O-Plan2 has its roots in earlier work on other Edinburgh A1 planners: Nonlin
and O-Planl. It has drawn heavily on the experience gained over the last 20 years in Al
planning research. The report begins by drawing together a number of important advances
and individual items of technology which have heen integrated in the Q-Plan2 design. New
work on the ways in which command, planning and control agents interact in a distributed,
hierarchical problem solving framework is described along with the representation of plans as
used for communication between these agents. O-Plan2 is intended to be relevant to future
parallel processing platforms and for applications where the command, planning and execution
agents are spatially separated (perhaps with long or irregular communication times). Hence,
the new features of the O-Plan2 design intended to allow for the management of the A1 planning
process as a number of separate concurrent computations is described.

With this background, the report then describes the O-Plan2 architecture by introducing the 5
major components in the architecture: Knowledge Sources and their computational Platforms;
Domain Information; the Plan State: the Clontroller: and the Constraint Managers and Support
Routines. These will be referred to throughout the report and greater detail of the various
compounents are the subject of later sections, '

The current O-Plan2 project has concentrated on the provision of a planning agent within the
O-Plan2 architecture. This is the subject of the next section in the report. It is in this section
that a description is given of the ways in which the 5 components of the architecture referred
to above are specialised to enable the svstem to perform as a planner. Therve are brief sections
to describe the simple job assignment (command} and execution system agents whlch form a
part of the current O-Plan2 prototype,

The User Interface to the O-Plan2 system has been designed in such a way that it will allow
integration with a number of other sophisticated user tools. The next section of the report thus
highlights the issues of user roles with respect to a command. planning and control system and
explains the way in which O-Plan2 characterises user interactions. The section also describes
the interfaces built for the current O-Plan2 planner agent prototype.

O-Plan2 has been designed in such a way that components can be improved within the speci-
fications adopted. Performance issues have been cousidered in establishing the interfaces and
protocols used. The current prototype often includes only very simple implementations of some

of the components. However, extensive instrumentation and diagnostic fa(llmes have been built
into"0-Plan2 to allow for experimentation iu {uture.

The main theme of the O-Plan2 research has been the identification of separable support mod-
ules, internal and external interface specifications and protocols governing processing behaviours
which are relevant to an a1 planning svstem. Hence. the varions contributions which will have
been introduced in earlier sections of the report are drawn together.,

The title of the project — “Spacecraft Command and Control L-'sing' Al Planning Techniques” ~
reflected a chosen application area to demonstrate the ideas being developed within O-Plan2.
The spacecraft planning and control domain formed a useful example within which to consider
the need to separate functionality in different agents with very different computation and real-

time response requirements. A description is given of an O-Plan2 application to a simple, but
realistic, spacecraft.

The report is organised into the following sections:
Section 3 relates the background to the O-Plan2 work and the technical influences which have
been drawn uponiin the work.

Section 4 describes our philosophy for a regular style of communication between agents in a
simple command, planning and control environment;

Section 5 describes the representation of a plan within O-Plan2;

Section 6 explains the mechanisms used in O-Plan2 for managing concurrent computations
and deciding on the order of processing;:

Section 7 describes the major components of the O-Plan2 architecture:

Section 8 goes into greater detail on how the planning agent has been provided in the O-Plan2
architecture;

Sections 9 and 10 outline the job assignment and execution systems in O-Plan2;
Section 11 describes the user interface which has been designed for O-Plan2;

Section 12 looks at performance issues and the instrumentation of the O-Plan2 prototype;

Section 13 summarises the various aspects that relate to the modularity, interfaces and inter-
nal protocols within O-Plan2 - an important aspect of the design;

Section 14 describes an application of the O-Plan2 system to a simple, hut realistic, spacecraft
command and control example.

The report concludes with a description of related projects and our plans for the future.

3 History and Technical Influences

O-Plan was initially conceived as a project to provide an environment for specification, gener-
ation, interaction with, and execution of activity plans. O-Plan is intended to be a domain-
independent general planning and control framework with the ability to embed detailed knowl-
edge of the domain.

O-Plan grew out of the experiences of other rescarch into A1 planning, particularly with Nonlin
[39] and “blackboard” systems [29]. The Readings in Planning volume [1] includes a taxonomy
of earlier planning systems which places O-Plan in relation to the influences on its design. It is
assumed that the reader is familiar with these works as the bibliography does not cover all of
them. The same volume [1] includes an introduction to the literature of A1 planning.

The main Al planning techniques which have heen used or extended in O-Plan are:

¢ A hierarchical planning svstem which can produce plans as partial orders on actions (as
suggested by Sacerdoti in the Noau planner [33]). though O-Plan is flexible concerning
the order in which parts of the plan at different levels are expanded.

e An agenda-based control architecture in which cach control cycle can post pending tasks
during plan generation. These pending tasks are then picked up from the agenda and
processed by appropriate handlers (nEARSAY-11 [21] and OPM [22] uses the term Rnowledge
Source for these handlers).

o The notion of a “plan state™ which is the data structure containing the emerging plan,
the “flaws” remaining in it, and the information used in building the plan. This is similar
to the work of McDermott [28].

o Clonstraint posting and least commitment on object variables as seen in MOLGEN [44].

e Temporal and resource constraint handling. shown to be valuable in realistic domains by
Deviser [45], has been extended to provide a powerful search space pruning method. The
algorithms for this arve incremental versions of Operational Research methods. O-Plan
has integrated ideas from Or and a1 in a coherent and constructive manner.

e O-Plan is derived from the carlicr Nonlin planner [39] from which we have taken and
extended the ideas of Goal Structure. Question \nswering (Qa) and typed preconditions.

e We have maintained Nonlin's style of domain and task deseription language (Task For-
malism or TF) and extended it for O-Plan.

3.1 O-Plan1

The main effort-on the first O-Plan project {(now referred to as O-Planl) was concentrated in
the area of plan generation. The work on O-Planl is documented in a paper in the Artificial -
Intelligence Journal [10]. One theme ol the O-Plan| research was search space control in an Al
planner. The outputs of that work gave a better understanding of the requirements of planning

methods, improved heuristics and techniques for search space control, and a demonstration
system embodying the results in an appropriate framework and representational scheme.

O-Planl began with the objective of building an open architecture for an A1 planning project
with the objective of incrementally developing a system resilient to change. It was our aim’
at the start of the project to build a system in which it was possible to experiment with and
integrate developing ideas. Further, the system was to be able to he tailored to suit particular
applications.

3.2 O-Plan2
- The O-Plan2 project began in 1989 and had the following new ob jectives:

e to consider a simple “three agent™ view of the environment for the research to clarify
thinking on the roles of the user(s), architecture and system. The three agents are the
job assignment agent, the planning agent and the execution agent.

o to explore the thesis that communication of capabilities and information between the
three agents could be in the form of plan patches which in their turn are in the same form
as the domain information descriptions. the task description and the plan representation
used within the planner and the other two agents.

o to investigate a single architecture that could support all three agent types and which
could support different plan representations and agent capability descriptions to allow for
work in task planning or resource scheduling.

e to clarify the functions of components of a planning and control architecture.

o to draw on the O-Planl experience and to improve on it especially with respect to flow
of control [42].

e to provide an improved version of the O-Plan system suitable for use outside of Edinburgh
within Common Lisp, X-Windows and UNIX.

e to provide a design suited to use on parallel processing systems in future.

The first O-Plan project at Edinburgh. 1981-198%. focussed on the techniques and technologies
necessary to support the informed search processes needed to generate predictive plans for
subsequent execution by some ageut. The O-Plan2 project continues the emphasis placed on
the design of a planning and control architecture identifyving the modular functionality, the roles
of these modules, and their software interfaces. O-Plan2 has resulted in a demonstrator, capable
of acting as a foundation for further development. in addition to descriptions of the underlying
sub-systems and modules which we feel are important to support a practical planner.

O-Plan2 is incorporated within a blackboard-like framework: for efficiency reasons we have
chosen an agenda driven architecture. Items on the agendas represent outstanding tasks to be
performed during the planning process. and they relate directly to the set of flaws identified as
existing within the emerging plan. .\ simple example of a flaw is that of a condition awaiting

0

satisfaction, or an action requiring refinement to a lower level. A controller chooses on each
planning cycle which flaw to operate on next.

The nature of these flaw types has been influenced by experience from the O-Planl work, but the
main development focus is the handling and processing of the flaws. The “knowledge sources”
employed in O-Plan2 have cleaner triggering mechanisms and have been given a variable level
of granularity, enabling processing to be suspended if needed (we refer to this as knowledge
source staging) while further flaw information is gathered. This is particularly useful for a
planning system which attempts to be opportunistic and to operate on a least commitment
basis, while retaining completeness of search (where possible). It will also simplify the task
of maintaining and reasoning with partially bound variables in the plan, which proved to be
difficult and limiting in the O-Planl work.

Research in O-Plan2 has been concentrating on the problems associated with:
e temporal constraints and reasoning. The underlying data structures have been com-
pletely re-designed and reworked from the O-Planl work to allow {urther development

of the temporal search based pruning algorithms. and to support the enhanced condition
achievement procedure.

e resource utilisation management. Resources provide the most obvious link to scheduling,
where successes in resource utilisation management have been more pronounced, though
still limited.

e plan control. O-Plan2 is intended to communicate plans to an execution agent who can
communicate progress back. Control strategies are therefore required to enable plans to
be repaired in the case of simple failure or to begin replanning if required. Earlier work
employing qualitative process [13] theory will assist with repair strategies in future.

The end goal is to be able to demonstrate a domain independent AT Planner capable of accepting
descriptions of planning domains and generating realistic plans for subsequent execution.

3.3 Characterisation of O-Plan2

The O-Plan2 approach to command. planning. scheduling and control can be characterised as
follows:

e successive refinement /repair of a complete but flawed plan or schedule

o least commitment approach

e using opportunistic selection of the focus of attention on each problem solving cycle

e building information incrementally in “constraint managers™. e.g..

— effect/condition manager

— resource utilisation manager

~ time point network manager

— object/variable manager

¢ using localised search to explore alternatives where advisable

¢ with global alternative re-orientation where necessary.

O-Plan2 is aimed to be relevant to the following types of problems:

¢ project management for product introduction, systems engineering, construction, process
flow for assembly, integration and verification, etc.

e planning and control of supply and distribution logistics.

e mission sequencing and control of space probes such as Vovager, ERS-1, etc,
These applications fit midway between the large scale manufacturing scheduling problems found
in some industries (where there are often few inter-operation constraints) and the complex

puzzles dealt with by very flexible logic based tools. However. the problems of this type represent
an important class of industrial relevance.

4 Communication in Command, Planning and Control

The aim of this section is to describe in broad terms the motivation and reasoning behind the
design of the O-Plan2 architecture. Edinburgh research on planning and control architectures
is aimed at building a practical prototype system which can generate plans and can reliably
execute the plans in the face of simple plan failures.

We are using our experiences in dealing with applications of Al planning techniques to practical
projects to develop a planning system that closes the loop between planning and executing.
There have been some successes with previous attempts at closing the loop [13], [18], [27],
[46], but often the plans generated were rather limited and not very flexible. In general, the
complexities of the individual tasks of plan representation, generation, execution monitoring
and repair has led to research into each of these issues separately. In particular, there is now
a mismatch between the scale and capabilities of plan representations proposed for real-time
execution systems [20], [30] [32], and those that can be generated by today’s Al planners.
However, in most realistic domains the demand is for a system that can take a command
request, generate a plan, execute it and react to simple failures of that plan, either by repairing
it or by re-planning. Explicit knowledge about the structure of the plan, the contribution of the
actions involved and the reasons for performing plan modifications at various stages of the plan
construction process, provides us with much of the information required for dealing with plan
failures. Such knowledge is also essential for further planning and re-planning by identifying
generalisations or contingencies that can be introduced into the plan in order to avoid similar
failures.

“One of the largest simplifications most planners to date have made is to assume plans are
constructed with full knowledge of the capabilities of the devices under their control. Thus,
executing such plans involves the direct application of the activities within the plan by an
execution agent which has no planning capability. Unfortunately, unforeseen events will occur
causing failure of the current plan and a request for repair of the plan or re-planning directed
at the planning system. Building into the execution agent some ability to repair plans and to
perform re-planning would improve the problem solving performance of the execution agent
especially when it is remote from the central planning syvstem.

?

4.1 The Scenario

"he scenario we are investigating is as follows:

o A user specifies a task that is to be performed through some suitable interface. We call
this process job assignment.

e A planner plans and (if requested) arranges to execute the plan to perform the task
specified. The planner has knowledge of the general capabilities of a semi-autonomous
execution system but does not need to know about the actual activities that execute the
actions required to carry out the desired task.

o The execution system seeks 1o carry out the detailed tasks specified by the planner while
working with a more detailed model of the execution environment than is available to the

job assigner and to the planner.

We have deliberately simplified our consideration to three agents with these different roles and
with possible differences of requirements for user availability. processing capacity and real-time
reaction to clarify the research objectives in our work.

The execution agent executes the plan by choosing the appropriate a}‘ti\"ities to achieve the
various sub-tasks within the plan, using its knowledge about the particular resources under its
control. Thus, the central planner communicates a general plan to achieve a particular task,
and responds to failures fed back from the execution agent which are in the form of flaws in the
plan. The execution agent communicates with the real world by executing the activities within
the plan and responding to failures fed back from the real world. Such failures may be due to
the inappropriateness of a particular activity. or because the desired effect of an activity was
not achieved due to an unforeseen event. The reason for the failure dictates whether the same
activity should be re-applied. replaced with other activities or whether re-planning should take
place. '

4.2 Use of Dependencies

The use of dependencies within planning promises great benefits for the overall performance of
a planning system particularly for plan representation. generation. execution and repair.

The notion of the teleology of a plan. which we call the Goal Structure [39], refers to the
dependencies between the preconditions and postconditions of activities involved in the plan.
Although, such dependencies have been shown to be useful for describing the internal struc-
ture of the plan and for monitoring its execution [18]. [10]. there has been no comprehensive
discussion of their use in all aspects of plan generation. execution monitoring and plan repair.
Knowledge-rich plan representations of this tvpe were used as the basis for the design of an
Interactive Planning Assistant [2] {17] for the UK Alvey praxirt Club. This allowed for brows-
ing, explaining and monitoring of plans represented in a more useful form than that provided
in conventional computer based planning support tools. More recently, O-Plan2 style plan rep-
resentations were used within the oPTIMUM-AIV system [3] for spacecraft assembly, integration
and verification in work conducted by a consortium of which ATal was a part.

Early work on Decision Graphs [21] at Edinburgh has shown how the explicit recording of the
decisions involved in the planning process could be used for suggesting where and how much
re-planning should take place when unforescen situations make the current plan fail. Some
work to link these ideas with Nonlin was undertaken during the mid 1970's [11].

4.3 A Common Representation for Communication between Agents

Recently, we have been exploring a common representation for the input /output requirements
and capabilities of a planner and execution agent. ‘This supports the representation of the
communication between a user. requesting the plan. and the real world. in which the plan
is being executed. Such communication may take place either directly through a planner or
indirectly via a central planner aivd a dumb or semi-autonomous execution agent, In the latter

10

case, the communication between the central planner and the execution agent becomes an
interesting research issue.

Job Assign Domain Planner Domain xec Systend Domain
Capability Model Capability Model Capability Model
Requirements Output
— . PRI e Qe ™" Real
User Job Assign Planner Communication Exec System World
— S sl W e World
b Reporting Input
Plan State Plan State Plan State

Figure 1: Communication between Central Planner and Execution Agent

The common representation includes knowledge about the capabilities of the planner and exe-
cution agent, the requirements of the plan and the plan itself either with or without flaws (see
Figure 1). Thus, a planner will respond to the requirements of a user. Based on the knowledge
of its own capabilities and that of the execution environment. it will generate a plan. This plan
may then be executed directly in the real world. or. indirectly via an execution agent. The
execution agent executes this plan in the real world and monitors the execution, responding
to failures in one of two ways. If it does not have knowledge of its own capabilities, it simply
returns knowledge of the failure to the central planner and awaits a revised plan to be sent.
In this case, the execution agent is dumb. If it does have knowledge of its own capabilities,
it may attempt to repair the plan and then continue with execution. On the other hand, if
a repair is beyond the capabilities of the exccution agent. then this knowledge is fed back to
the central planner and again a revised plan is expected. In this case, the execution agent is
semi-antonomous. When failures during the application of the plan are fed back to the planner,
these may be acted upon by it and a repair of the plan made or total re-planning instigated.
This may, in turn, involve the user in reformulating the task requirement. A revised or new
plan is then executed. Finally, success of the execution or partial execution of the plan is fed
hack to the user.

Other issues relating to the choice of the common representation and communication protocols
include:

o when to repair the plan or when to seek re-plauning.
e continuing execution of parts of a plan. not allected by the failure.

¢ continuing to maintain a safe execution state even while awaiting initial commands or the
correction of faults in earlier plans.

e maintaining integrity and syvnchronisation of communicated plans and flaws.

5 Representing and Communicating Plans

‘5.1 Plan States

One of the most important problems which needs to be addressed in any planning system is
that of plan representation. An O-Plan2 agent’s plan state holds a complete description of a
plan at some level of abstraction. The plan state also contains a list of the current flaws in the
plan. Such flaws could relate to abstract actions that still must be expanded before the plan
is considered valid for passing on for execution, unsatisfied conditions, unresolved interactions,
overcommitments of resource, time constraint faults, etc. The Plan State can thus stand alone
from the control structure of the al planner in that it can be saved and restored, passed to
another agent, etc.

At any stage, a plan state 1'epi'esellts an abstract view of a set of actual plans that could
be generated within the constraints it contains. Alternative lower level actions, alternative
action orderings and ob ject selections, and so on are aggregated within a high level Plan State
description.

5.1.1 Task Formalism (TF)

Task Formalism (TF) (as used in Nonlin and O-Planl) is a declarative language for expressing
action schemata, for describing task requests and for representing the final plan. It allows time
and resource constraints in the domain to be modelled. The planner can take a plan state as a
requirement (created by a TF Compiler from the user provided task specification in TF) and can
use a library of action schemata or generic plan state fragments (themselves created by the TF
Compiler from a domain description provided by the user) to transform the initial plan state
into one considered suitable for termination. This final plan state could itself be decompiled
back into a TF description if required.

Our design intention for O-Plan2 is that any plan state (not just the initial task) can be created
from a TF description and vice versa. This was not fully achieved in the O-Plan1 prototype
[10], but this remains our goal. ‘

The O-Plan2 design allows for different plan state representations in the different agents. Task
Formalism is particularly suited to the representation of a plan state within the planner agent
and, hence, to act as a basis for communication to the planner’s superior (job assignment)
and subordinate (execution system) agents. The actual plan state inside the job assignment
and execution system agents is likely to differ to that within the planner. For example, the
execution system may be based on more procedural representations as are found in languages
like PrS (the Procedural Reasoning System [20]) and may allow iteration. conditionals, etc.

5.1.2 Plan Flaws

The plan state cannot contain arbitrary data clements. The A1 planner is made up of code
that can interpret the plan state data structure and interpret the lists of flaws in such a way

that it can select from amongst its computational capabilities and its library of domain specific -
information to seek to transform the current Plan State it is given into something that is desired
by the overall architecture. This is defined as the reduction of the list of flaws known to the
planner. The O-Plan2 architecture associates a knowledge Source with each flaw type that can
be processed [9]. An agenda of outstanding flaws is maintained in a Plan State and appropriate
Knowledge Sources are scheduled on the basis of this.

In practice, the O-Plan2 architecture is designed for operation in an environment where the
ultimate aim of termination will not be achieved. There will be new command requests arriving
and earlier ones being modified, parts of plans will be under execution as other parts are being
elaborated, execution faults are being handled, etc.

We believe that the basic notions described above can serve us well as a basis for an attack on the
problem of coordinated command. planning and execution in continuously operating domains.
There must be a means incrementally to communicate plan related information between the
agents involved with commanding. planning and executing plans - each of which will have their
own level of model of the current command environment, plan and execution environment. We
will explore the properties that we must seek from our basic notions in the following sections.

5.2 Plan Patches

The requirement for asynchronously operating planners and execution agents (and indeed users
and the real world) means that it is not appropriate to consider that a plaun requirement is set,
passed on for elaboration to the planner and then communicated to a waiting execution agent
which will seek to perform the actions involved. Instead, all components must be considered
to be operating independently and maintaining themselves in some stable mode where they are
responsive to requests for action from the other components. For example, the execution agent
may have quite elaborate local mechanisms and instructions to enable it to maintain a device
(say a spacecraft or a manufacturing cell) in a safe, healthy, responsive state. The task then is
to communicate some change that is requested from one component to another and to insert
an appropriate alteration in the receiver such that the tasks required are carried out.

We define a Plan Patch as a modified version of the type of Plan State used in O-Planl. It
has some similarity to an operator or action expansion schema given to an aj planning system
in that it is an abstracted or high level representation of a part of the task that is required of
the receiver using terminology relevant to the receiver’s capabilities. This provides a simplified
or black-box view of possibly quite detailed instructions needed to actually perform the action
(possibly involving iterators and conditionals. etc). Complex execution agent representational
and programming languages can be handled by using this abstracted view (e.g., [20]. [30]). For
example, reliable task achieving behaviours which included contingencies and safe state paths
to deal with unforeseen events could bhe hidden from the planner by communication in terms of
a simplified and more robust model of the execution operations [27].

Outstanding flaws in the Plan Patch are communicated along with the patch itself. However,
these flaws must be those that can he handled by the receiver.

It can be seen that the arrangement above (mostly assuied to refer to the communication be-

13

tween a planner and execution agent) also reflects the communication that takes place between
a user and the planner in an O-Plau2 type a1 planner. Requiring rather more effort is the
investigation of suitable Plan Patch constructs to allow execution errors to be passed back to
the planner or information to be passed back to the user, but we believe that this is a realistic
objective.

5.3 Plan Patch Attachment Points

There is a need to communicate the points at which the Plan Patch should bhe attached into
the full Plan State in the receiver. The sender and receiver will be operating asynchronously
and one side must not make unreasonahle assumptions about the internal state of the other.

We endow all the components with a real-time clock that can be assumed to bhe fully synchro-
nised. We also 111a.ke'si1hplifying assumptions about delays in communication to keep to the
immediate problem we are seeking to tackle {(while fully believing that extension to environ-
ments where communication delay is involved will be possible). Therefore. metric time is the
“back-stop” as a means of attaching a Plan Patch into the internal Plan State of the receiver.
Metric time is also important to start things off and to ensure a common reference point when
necessary (e.g., in cases of loss of control).

However, the use of metric time as an attachment point lacks flexibility. It gives the receiver
little information about the real intentions behind the orderings placed on the components of
the Plan Patch. It will, in some cases. be better to communicate in a relative or qualified way
to give the receiver more flexibility. Suitable forms of flexible Plan Patch Attachment Point
description will be investigated in future (such as descriptions relative to the expected Goal
Structure [39] of the receiver). '

5.4 Incremental Plan States

Our approach is to combine the ideas above to define an Incremental Plan State with three
components: ' '

¢ a plan patch,
e plan patch flaws as an agenda of pending tasks.

¢ plan patch attachment points.

Such Incremental Plan States are used for two way communication between the user and the
planner and between the planner and the execution agent. The O-Plan2 Plan State structures
and flaw repertoire has been extended to cope. initially. with a dumb execution agent that can
simply dispatch actions to be carried out and receive fault reports against a nominated set of
conditions to be explicitly monitored (as described in [40]). In future rescarch. the Plan State
data structures and flaw repertoire will he extended again to cope with a semi-antonomous
execution agent with some capability to further elaborate the Incremental Plan States and to
deal locally with re-planning requirements [31].

{4

A means to compile an Incremental Plan State from a modified type of Task Formalism (TF)
declarative description (and vice versa) will be retained.

5.5 Plan Transactions

The overall architecture must ensure that an Incremental Plan State can be understood by the
receiver and is accepted by it for processing. This means that all the following are understood
by the receiver:

¢ plan patch description is clear,
¢ plan patch flaws can be handled by the receiver’s Knowledge Sources,

¢ plan patch attachment points are understood.

It is important that the sender and receiver (whether they are the user and the A1 planner, the
planner and the execution agent, or one of the reverse paths) can coordinate to send and accept
a proposed Incremental Plan State which the receiver must assimilate into its own Plan State.
We propose to use transaction processing methods to ensure that such coordination is achieved.

‘We have created some specific flaw types and Knowledge Sources in the various components.

(job assignment, AI planner and execution agent) to handle the extraction and dispatch (as an
Incremental Plan State) of a part of an internal Plan State in one component, and the editing
of such an Incremental Plan State into the internal Plan State of the receiver.. The “extrac-
tion” Knowledge Sources must be supplied with information on the Plan Patch description,
flaw types and attachment points that the receiver will accept. This constitutes the primary
source of information about the capabilities of the receiver that the sender has available and
its representation will be an important part of the research.

Communication “guards” will ensure that the « priori criteria for acceptance of an Incremental
Plan State for processing by the receiver’s Knowledge Sources are checked as part of the Plan
Transaction. It may also be the case that initial information about urgency will be able to be
deduced from this acceptance check to prioritise the ordering of the new flaws with respect to
the existing entries on the agenda in the receiver.

6 Managing Concurrent Computations

The O-Plan2 architecture has been designed to allow for concurrent processing where possible.
The systems implementation itself is composed of a number of parts representing the major
components of the architecture. These can be run as separate processe/i if desired. In addition,
the basic flow of processing performed by the architecture allows for a wavefront of concurrent
threads of computation to be maintained and decisions can be taken about where to deploy any
computational effort available (whether this is actually implemented with parallel processors or
not).

O-Planl made a start on mechanisms for the implementation of an efficient planning system
able to take an opportunistic approach to selecting where computational effort should be con-
centrated during planning. However. some limitations were observered and taken into account
during the design of O-Plan2. The O-Plan2 mechanisms are listed in the following sections.

6.1 Choice Ordering Mechanisms in O-Plan1
6.1.1 Building up Information in an Agenda Record

O-Planl included the ability to allow a knowledge source to examine a possible decision point
(represented by the agenda entry it is asked to process) and to add information relating to the
choice to the fields of the agenda record. If the choice did not become suitably tightly restricted
as a result of the addition of this information. it was possible to put the agenda entry back onto
the outstanding flaws list with improved information for deciding on the time to reselect it for
processing. The ability to build up information around an agenda entry in an incremental way
prior to a final knowledge source activation is an important feature that ensures that work done
in accessing data bases and checking conditions can be saved as far as possible when processing
is halted. There are some similarities to mechanisms within real-time responsive architectures
such as RT-1 [38].

6.1.2 Granularity of Knowledge Sources

Each knowledge source within the O-Plan architecture encodes a piece of planning knowledge.
For example, how to expand an action. bind a variable, check a resource, etc. From a modularity
viewpoint, there is some advantage in having a very fine grain of knowledge source to implement
planning knowledge. However, this can lead to tens of agenda entries and knowledge source
activations with the overheads associated with such activations for even the simplest types
of action expansion. In simpler planners. such as Nonlin, an expansion is efficiently handled
as an atomic operation. There is a conflicting desire to have efficient large grain knowledge
sources implementing planning knowledge and very fine grain knowledge sources detailing each
individual step of some higher level plan modification operator.

In O-Plan1, with a finer grain of knowledge source. it was also found that ordering relationships
between agenda entries left in the agenda list had to be stated to ensure efficient processing.
The controller was then required to unravel the web of activation orderings that resulted.

16

'3

A special form of agenda entry called a sequence was implemented in O-Planl to assist the
controller in this task, it would only consider the head of the sequence for activation at any
time, subsequently releasing the following agenda items clustered in the sequence in the order
indicated. This process is similar to the control blocks used in the Tecknowledge s.1 system
[43].

6.1.3 Priority of Processing Agenda Entries

O-Plan1 assigned priorities to every flaw as it was placed on the agendas. The priorities were
calculated from the flaw type, the degree of determinacy of the flaw and information built up
in the Agenda Record as described earlier. These provide measures of choice within the flaw.
Two heuristic measures were maintained in each agenda entry. One called Branch-1 indicated
the immediate branching ratio for the ¢hoice point. An upper bound on this can be maintained
quite straightforwardly. The second measure was called Branch-n and gave a heuristic estimate
of the number of distinct alternatives that could be generated by a naive and unconstrained
generation of all the choices representéd by the choice point.

In O-Planl, three agendas were maintained to efficiently select between agenda entries which
were ready for knowledge source activation and ones awaiting further information to bind open
variables in the agenda information. This is described in [9]. Eventually though, the ready to
run agenda entries are simply rated according to a numerical priority maintained for each agenda
entry on the basis of flaw type and estimators which said how many choices there could be down
a particular search branch (the Branch-1 and Branch-n estimators). This forms too simplistic
a measure for allowing the controller to decide between waiting agenda entries. Consideration
was given to a rule based controller with knowledge of other measures of opportunism but no
implementation of this was done within the original O-Planl system.

6.2 Choice Ordering Mechanisms in O-Plan2

O-Plan2 seeks to provide a more coherent set of mechanisms to enable the planning and control
system builder to select suitable implementation methods for describing choices, posting con-
straints which will restrict choice, postponing choice making decisions until the most opportune
time to make them, and triggering chojces that are ready to be acted upon. These mechanisms
are:

o the use of stages in knowledge sources to allow for a linear thread of computation to be
defined which can be assumed to run through to completion, but provides a means for
interruption at defined staging points.

o the definition of triggers on knowledge sources and knowledge source stages to provide
a clear means to delegate a higher level of knowledge source activation checks to the
controller.

o the use of compound agenda entrics to put divect dependencies of some tasks on others that
must complete earlier. This allows complex computational dependencies and strategies
to he created. ’

o the use of agenda manager priovities to allow the controller to select appropriate ready-
to-run agenda entries and match these to waiting knowledge source platforms.

The following sections explain each of these mechanisms in more detail.

6.2.1 Knowledge Source Stages

The O-Planl mechanism for building up information in an agenda entry prior to making some
selection between alternatives was a very useful feature but proved difficult to use in practice.
A knowledge source had to be activated to initiate processing which might simply add a little
information to the agenda entries and then suspend to allow the controller to decide whether
to progress. This is very inefficient.

In O-Plan2, knowledge sources are defined in a series of stages. There can be one or more stages,
only latter stages may make alterations to the plan state (thus locking out other knowledge
source final stages which can write to the same portion of the plan state). Any earlier stages
may build up information useful to later stages. At the end of any stage, the knowledge source
must be prepared to halt processing if asked to by the controller. If it is asked to halt at a stage
boundary, the knowledge source may suinmarise the results of its computation in a field of the
agenda record provided for this purpose.- A controller directed support routine is called by the
knowledge source at the end of each stage to identify whether it must halt or may continue. This
allows the controller to dynamically re-direct computation as it considers all the information
available to it, while providing a simple and efficient way for the knowledge source to continue
computation without intermediate state saving while it continues to receive a go-ahead from
the end of stage continuation authorisation routine.

A Knowledge Source Formalism for O-Plan2 is being designed to allow for stage definition
and to assist with declaring the restrictions on the plan state portions affected by the final
plan state modifying stage of the knowledge source - to assist in lock management in parallel
implementations.

6.2.2 Knowledge Source Triggers

In O-Plan2, a mechanism of setting {riggers on agenda entries for activating knowledge sources
(and an individual stage of a knowledge source if desired) is provided. The triggers may use
various “items” of data available within the plan state and other global information available
to the planner. These may include things such as the availability of a specific binding for a
plan variable, the satisfaction of a condition at a specific action node in the plan network, the
use of a specific resource, the occurrence of an external event, information from the “clock”
within the planner, etc. The Knowledge Source Formalism referred to earlier will also be used
to define triggers on knowledge source stages. The triggering constructs in the language are
initially quite restrictive to ensure that efficient agenda entry triggering mechanisms can be
implemented. However, as we gain experience. we expect the triggering language to be quite
comprehensive. A knowledge source mayv also dvnamically create a trigger on a mntmuatlon
agenda entry when halting processing at a s1d0(‘ houndary.

IR

[V

Only agenda entries which are currently triggered will be available to the controller for decisions
on which entries to activate through to a knowledge source running on a knowledge source

- platform.

6.2.3 Compound Agenda Entries

Individual simple agenda entries can be grouped together into compound agenda entries. Gnly
the head entries in the compound agenda entry are considered at any time by the controller
(and possibly by the triggering mechanism considered above), thus cutting down on the amount
of processing required by the controller to select the next agenda entry to execute when such
pre-defined orderings can be specified. Compound agenda entries can be made by knowledge
sources to act as a meta-processing level to implement some definite planning strategy or to
implement pla.nlling algorithms with finer grain knowledge sources to provide modularity and
real time response improvement. '

A Support Routine is provided in O-Plan2 to allow any knowledge source to easily and reliably
build and return a compound agenda entry.

6.2.4 Controller Priorities

The controller is given the task of deciding which of the current set of triggered agenda en-
tries should be run on an available knowledge source platform. It does this by considering

the priority and measures of opportunism of the agenda entry. Four priority levels are avail-

able within O-Plan2 - Low, Medium. High and Emergency. The Emergency priority level is
only available to handle incoming external events. The RT-1 system has similar priority based
processing arrangements [38]. In certain cases. an O-Plan2 implementation will possess knowl-
edge source platforms dedicated to processing specific real-time responsive events appearing as
agenda entries - thus allowing for reliable real-time response to events categorised as Emergency
priority. '

A waiting knowledge source platform will be able to run one, several, or all knowledge sources.
Any restriction on a specific platform will be known to the controller. Only triggered agenda
entries at the highest priority level which can be processed on a waiting knowledge source are
considered by the controller on each cvcle. Where there is still choice, a range of measures
of opportunism and priority are emploved to make a selection. The underlying principle is to
make a selection according to a strategy given to the controller. Initially this strategy will use
user selected preferences or by default will seek to reduce search to the extent it can judge this
(reflecting the opportunistic generative planning nature of the early versions of O-Plan2 - like
its predecessor O-Planl). Measures such as Branch=1 (the immediate branching ratio for the
choice point) and Branch-n (a heuristic estimate of the number of distinct alternatives that
could be generated by a naive and unconstrained generation of all the choices represented by
the choice point) are relevant to this. However. the use of a utility function guided by task
specifiers given to the controller will be explored later for O-Plan2 when it is used in continuous
command and control applications.

19

7 0O-Plan2 Architecture

This section describes the O-Plan2 architecture in detail and describes the major modules which
make up the system. An agenda based architecture forms the central feature of the system
and the design approach. Within this framework, however, the emphasis on and development
of search strategies has been concentrated into crisper notions of choice enumeration, choice
ordering, choice making and choice processing. This is important as it allows us to begin to
justifiably isolate functionality which can be described in terms of: :

triggering mechanisms — 7.e. what causes the mechanism to be activated,
decision making roles — precisely what type of decision can be made

implications for search -— has the search space been pruned, restricted or further con-
strained as far as possible. -

decision ordering — in what order should we choose between the alternative decisions
possible.

choice ordering — for a decision to be made, which of the open choices should we adopt.

The main components are:

. Domain Information - the information which describes an application domain and tasks

in that domain to the planner.

2. Plan State - the emerging plan to carry out identified tasks.

3. Knowledge Sources - the processing capabilities of the planner (plan modification opera-

tors).

1. Support Modules - functions and constraint managers which support the processing ca-

pabilities of the planner and its components.

5. Controller - the decision maker on the order in which processing is done.

A generalised picture of the architecture illustrated with the components to specialise the
architecture to be a planning agent is shown in Figure 2. More detail of cach component
follows in subsequent sections. Illustrations of the contents of the main components are drawn

by referring to a planning agent.

20

PLAN
STATE

i

PLAN NETWORK

¢ TOME

e GO3T
RESOURCE
. USAGE

TIME
¢ WINDOWS

AGENDAS (Flaws)

CONTROLLER

BIND A VARIABLE

DONIAIN
INFORNATION

| ADD

A LINK

| SATISFY A CONDITION

EXPAND AN ACTI

VITY

KNOWLEDGE
SOQURCES

INPUT
EVENTS

OPERATOR
¢ SCHEMAS

PROC
e SCHEMAR

RESOUURCE
e DEFINITION

TASN
¢ DEFINITION

¢ CONITRAINTS

(3TATIC)

SUPPORT TOOLS

¢ TOME/GOST Ma

NAGER

¢ QUESTION ANIWERING

o TIME POINT NETWORK MANAGER

¢ PLAN JTATE VARIABLES MANAGER

¢ RESOURCKE MANAGER

AINSTRUMENTATION AND

o EVENT MANGER

FRPPORT Taoals

Figure 2: O-Plan?2 Architecture

21

ouTPULT
EVENTS

—_————

7.1 Domain Information

Domain descriptions are supplied to O-Plan2 in a structured language, which is compiled into
the internal data structures to be used during planning. The description includes details of:

1. activities which can be performed in the domain.
2. information about the environment and the objects in it.

3. task descriptions to describe the planning requirements.

The structured language (we call it Task Formalism or TF) is the means through which a domain
writer or domain expert can supply the domain specific information to the O-Plan2 system,
which itself is a domain independent planner. O-Plan2 embodies many search space pruning
mechanisms using this domain information (strong methods) and will fall back on other weak
(search) methods, if these fail. The Task Formalism is the mechanism that enables the user of
the system to supply domain dependent knowledge to assist the system in its search.

7.2 Plan State

In contrast to the infrequently changing domain information outlined above. the plan state
(on the left of Figure 2) is the dynamic data structure used during planning and houses the
emerging plan. There are many components to this structure, the principal ones being:

e the plan network itself. O-Plan2 has retained a partially ordered network of activities
as the basis of its plan representation, as originally suggested in the Noan planner. In
O-Plan2 the plan information is concentrated in the “Associated Data Structure” (ADS).
The ADs is a list of node and link structures noting temporal and resource information,
plan information and a plan history.

¢ the plan causal structure (sometimes called the teleology) of the plan. Borrowing from
Nonlin and O-Planl, the svstem keeps explicit information to “explain™ why the plan is
built the way it is. This rationale is called the Goal Structure (GosT) and. along with the
Table of Multiple Effects (TOME). provides efficient support to the condition achievement
support module (Question Answerer or QA) used in O-Plan2 (c.f. Chapman’s Modal
Truth Criteria [8]). '

o the agenda list(s). O-Plan2 starts with a complete plan, but one which is “flawed”, hence
preventing the plan from being capable of execution. The nature of the flaws present
will be varied, from actions which are at a higher level than that which the agent can
operate, to notes of linkages necessary in the plan to resolve conflict. ~Ilaws™ may also
represent potentially beneficial. but as vet unprocessed, information. The agenda lists
are the repository for this information which must be processed in order to attain an
executable plan. The original O-Planl used 3 agenda lists. In O-Plan2. effort has been
made to improve the structure of agenda information and the triggering mechanisms.
Only one main agenda is kept in a plau state although alternative plan states still require
a separate agenda as in O-Planl. '

o

The plan state is a self-contained snapshot of the state of the planning system at a particular
point in time in the plan generation process. It contains all the state of the system hence the
generation process can be suspended and this single structure rolled back at a later point in
time to allow resumption of the search!.

7.3 Knowledge Sources

These are the processing units associated with the processing of the flaws contained in the plan
and they embody the planning knowledge of the system. There are as many knowledge sources
(xss) as there are flaw types, including the interface to the user wishing to exert an inﬁuence\
on the plan generation process. The Kss draw on information from the static data (e.g. the use
of an action schema for purposes of expansion) to process a single flaw. and in turn they can
add structure to any part of the plai state (¢.g. adding structure to the plan, inserting new
effects or further populating the agenda(s) with flaws). -

7.4 Support Modules

In order to efliciently support the main planning functionality and provide constraint manage-
ment in O-Plan2 there are a number of support modules separated out from the core of the
planner. These modules have carefully designed functional interfaces in order that we can both
build the planner in a piecewise fashion. and in particular that we can experiment with and
easily integrate new implementations of the modules. The modularity is possible only through
the experience gained in earlier planning projects where support function requirements were
carefully separated out from the general problem solving and decision making demands of the
system.

Support modules are intended to provide efficient support to a higher level where decisions are
taken. They should not take any decision themselves. They are intended to provide complete
information about the constraints they are managing or to respond to questions being asked of
them to the decision making level itself.

The support modules include the following:

e Time Point Network (TPN) Manager to manage metric and relative time constraints in a
plan. '

e Question-Answering (QA). Akin to Chapman’s Modal Truth Criteria [8], this is the process
at the heart of O-Plan2’s condition achievement procedure. It answers the basic question
of whether a proposition is true or not at a particular point in the plan. The answer
it returns may be (i) a categorical “ves”. (il) a categorical “no”, or (iii) a "maybe”, in
which case @a will supply an alternative set (structured as a tree) of strategies which a
knowledge source can choose from in order to ensure the truth of the proposition.

Assuming that the Task Formalism and the knowledge sources used on re-start are the same “static” infor-
mation used previously.)

¢ TOME and GOST Management (TGM) to manage the causal structure (conditions and
effects which satisfy them) in a plan.

¢ Plan State Variables Manager to manage partially bound objects in the plan.
¢ Resource Utilisation Management to monitor and manage the use of resources in a plan.

o Instrumentation and Diagnostics routines. O-Plan2 has a set of routines which allow the
developer to set and alter levels of diagnostic reporting within the system. These can
range from full trace information to fatal errors only. The instrumentation routines allow

- performance characteristics to be gathered while the system is running. Information such
as how often a routine is accessed, time taken to process an agenda entry, etc, can be
gathered.

7.5 Controller

Holding the loosely coupled O-Plan2 framework together is the Controller acting on the agen-
das. Items on the agendas (the flaws) will have a context dependent priority which the controller
can re-compute, and which allows for the opportunism required to drive plan generation. The
agenda mechanismm and manager have been simplified from the ‘O-Planl work in that two of
the three agendas have been collapsed into a single structure. Entries on this single structure
employ a triggering mechanism for activating the knowledge sources via the use of plan state or
other data. Triggering on specific occurrences. such as the binding of a variable. the satisfaction
of a condition, the occurrence of an external event, etc., allow an efficiency to be built into O-
Plan2 that was missing in O-Planl. which used a priority scheme whereby agenda entries were
prioritised at time of entry. This enhanced scheme does have an impact on the extra complexity
of knowledge source required, forcing rules to be set regarding the writing of knowledge sources.
In return however, this has given us knowledge sources with much greater capability than pre-
viously achieved. For example a knowledge source may be able to dynamically create a trigger
for the continuation of another agenda entry on suspension of the current entry’s processing.

An agenda of alternative plan states is also held by the Controller for search purposes as was
the case in O-Planl.

7.6 Discussion

Having reviewed the main components in the O-Plan2 architecture. we wish to make some
observations on a number of issues.

7.6.1 Knowledge Sources

The O-Planl planning prototype allowed knowledge sources to perform operations at a relatively
low level. This proved unsuitable for some planning activities. such as that of expanding an
action, or satisfying a condition. where there is generally a large amount of work involved. This
includes the introduction of structure to the plan and the posting of effects and conditions. All

these entities are related - so O-Planl had difficulty treating these sub-operations as separate
schedulable agenda entries with suitable priorities. In the later stages of that research we
introduced the notion of a sequence to re-establish the relationships between the various entries,
with partial success. A cleaner mechanism, which we refer to as compound agenda entries, is
being explored for O-Plan2 to allow for knowledge of complex sequencing of planning decisions
to be provided to the planner by the knowledge source writer [42].

In addition, O-Plan2 employs a knowledge source staging scheme where the knowledge sources
allow for work to be deliberately staged [12]. At each stage the information within the agenda
entry is progressively built up for use in later stages. Only the later stages are allowed per-
mission to alter the final destination of this information - the plan state. At the end of eaclr
stage the knowledge source needs to satisfy staging conditions in order to continue processing
to subsequent stages, thus the controller has the ability to halt processing and suspend the
knowledge source. The agenda record itself carries all the “state™ of the processing, so can
safely be returned to the agendas for later vesumption: the knowledge sources themselves are
stateless.

The advantages of this scheme are many: firstlv there is no longer the ves/no situation of
whether an agenda entry can be processed as the information can be built up in stages. This
in turn offers the controller greater flexibility in its job of dynamically computing priorities for
agenda records awaiting processing. T'his much enhances the ability to exploit parallelism and
opportunism in the system. '

Knowledge sources run on Knowledge Source Platforms, which are basically processing engines
for the knowledge source code. The eventual O-Plan2 will exploit multiprocessor architectures,
where possible, so the current system has a clean separation of its knowledge source platforms
from the other system modules. and locking mechanisms will be put in place to ensure that
data in the system is up to date and consistent. Only the final stages of a knowledge source
can change any of the plan state; earlier stages merely build up information locally. We intend
to investigate a language for describing Knowledge Sources (Knowledge Source Framework).
Amongst other things this will allow for information concerning the selective locking of parts
of the database to be gathered..

7.6.2 Controller Strategies

The Controller plays a major role in the operation of the planner, and is largely responsible for
achieving the degree of opportunism sought in O-Plan2. Its main role is to choose a candidate
from amongst the set of currently triggered agenda entries to be loaded onto an appropriate and
available knowledge source platform. For this reason the Controller is also known as the Agenda
Manager. In order to do this work effectively and flexibly the controller must consider priorities
attached to or computed for each of the triggered agenda entries. Priorities can be relatively
complex and based around the fype of the agenda entry and its measure of determinism. O-
Planl used heuristic measures detailing the amount of choice contained in an entry both at
the “top” (i.e. the measure of choice seen immediately) and at the “bottom™ (i.e. a measure,
or estimate, of the eventual choice encountered if the entry is chosen). In O-Planl these were
referred to as the Branch-1 estimator (the immediate branching ratio for the choice point) and

25

the Branch-n estimator (a heuristic estimate of the number of distinct alternatives that could
be generated by a naive and unconstrained generation of all the choices represented by the
choice point). These measures have proved useful in distinguishing between choice items and
they ensure that opportunism is exploited where possible.

The controller is designed in such a way that it can operate with different pre-loaded strategies
and utility functions. At present the system operates with a simple default strategy (knowledge
sources priorities fixed by the user) but as the representational range of the Task Formalism
increases it can facilitate the loading of domain specific and specialised strategies and utility
functions. The controller will bé the subject of further research as we wish to develop more
powerful strategies, including:

e Qualitative Modelling. As O-Plan2 develops for use in continuous command and control
applications the need to predict and recover from situations becomes much more demand-
ing. An important role for the controller then is to behave in a much more pro-active
manner, exploiting as much knowledge of the system as possible. The earlier work of
Drabble [13] provides a good starting position for how this will be achieved.

e Ordering Mechanisms. Temporal Coherence (TC) [15] showed that algorithms must be
developed to address the many variants of ordering problems (TcC addressed the problem of
“condition” pre-ordering). Effective controller operation requires recognition of triggering
mechanisms for appropriate ordering related algorithms.

7.7 Process Structure of the O-Plan2 Implementation

The current architecture is able to support both a planner and a simple execution agent. The
job assignment function is provided by a separate process which has a simple menu interface.

The abstract architecture described in Figure 2 can be mapped to the system and process
architecture detailed in Figure 3. Communication hetween the various processes and managers
in the system is shown. Each entry within the Figure is explained later in this section.

LEFTIN

Planner User/Developer

.

RIGHTOUT

LEFTOUT

Controller (AM)

KPREADY

Guard Interface Manager
rDiag. Monitors | | InstrumentationJ Gua,l‘d
f DIARYIN
Diary
AGENDAIN

Knowledge Source
Platform(s) (KP)

Altern. | | Agenda
Manager| {Manager
TRIGGERSIN BBIN

§

[Trigger Detector

Database Manager

Plan State

ADS
Plan Network

Agenda TOME/GOST Domain
Table Information
(AT) '

TPN
I.L
O-Base

C'ontext Lavering

Figure 3: Internal Stracture of the Current O-Plan2 Planner

RIGHTIN

7.8 Processing Cycle in the Current O-Plan2 System

The basic processing cycle of the planner is as follows:

1. An event is teceived by the Event Manager which resides -within the Interface Manager
(1M). The 1M is in direct contact with all other processes of the architecture through the
Module Communication Channel (acc). Support modules allow the developer to change
levels of diagnostics and to set nup instrumentation checks on the planner. The event
manager has two Guards, one on the lelt input channel (from the superior agent) and
one on the right input channel (from the subordinate agent). The events on the input
channels themselves are broken down into levels:

1. level 1 (high priority): this is the highest priority channel and the system will
respond in real time to an event on this channel.

2. level 2 (normal priority): this channel deals with middle level events and will be
dealt with by integrating them into the current agenda of outstanding tasks at an
appropriate level of priority. .

3. level 3 (low priority): eveits iuput on this channel are deemed low priority, they
will be added to the agenda at a low level of priority -and will be dealt with when
the system has “spare™ processing power.

The guards verify and if necessary reject events which are not relevant to the system. For

f example, an event requestilig nse of a capability which the agent did not possess would
be rejected by a guard. Alternatively a request from an execution agent to replan for
some action not known to the planner could also he rejeetéed. The guards use knowledge
of the systems capabilities derived from the knowledge sources and domain information
currently loaded into the system. '

2. If the event is approved by the guard then it is passed to the Controller/Agenda Manager
(aM) which assigns it the necessary triggers and knowledge source activation entry. The
entry (now referred to as an Agenda Fntry) is then passed to the Database Manager
(DM) to await triggering. The entry is placed in the Agenda Table (A1) monitored by the
Trigger Detector (TD). o

3. When triggered, the Trigger Detector informs the Agenda Manager and may cache a
copy of the triggered agenda entry in the Agenda Manager. The order of entries on the
triggered agenda is constantly updated as new agenda entries are added or triggers on
waiting agenda entiies become invalid, \ trigger can become invalid due to:

1. the occurrence or nonoccurrence of an external event

2. the passing of a specified time. For example. a bank is open from 9.30am to 4£.30pm,
so any agenda_.entry concerning a visit 1o the bank not processed by -1.30pm should
have its trigger reset.

Knowledge Sources can use the Diary Manager functions to assist them to perform their
task. The Diarv Manager (DiaRY) is responsible for handling time triggers associated

with a given time. For example. send action 3.2 for execution at 4:02 or trigger a visit
bank activity at 9:30.

Eventually the agenda entry is selected for processing by the Controller/Agenda Manager.

4. The Controller/Agenda Manager assigns an available Knowledge Source Platform (xp)
which can run the pre-nominated Knowledge Source on the triggered agenda entry.

Ut

. When a Knowledge Source Platform has been allocated, if it does not already contain

the nominated Knowledge Source. the Platform may request the body of the Knowledge
Source from the Database Manager, in order to process the agenda entry. Knowledge
Sources may be stored with the Platform so this request is not necessary in all cases.
Some platforms may be best suited to run particular knowledge sources, hence the system
~will not store all knowledge sources at all platforms. The knowledge source platforms will
eventually have their own local libraries of knowledge sources. Locking down of a specific
real time knowledge source to a dedicated platform is allowed for in the design.

6. A protocol {called the Knowledge Source Protocol) for communication between the con-
troller/agenda manager and a knowledge source running on a platform controls the pro-
cessing which the knowledge source can do and the access it has to the current plan state
via the Databhase Manager (DAl). A\ knowledge source can terminate with none, one or
multiple alternative results through interaction with the Controller via this protocol. The
‘Controller uses an Alternatives Manager Support Module to actually manage any alter-
natives it is provided with and to seek alternatives when no results are returned by a
knowledge source. A knowledge source can also be asked to terminate at its next “stage”
boundary by the controller. 4

The internal details of the Database Manager (pa1) will depend upon the particular representa-
tion chosen for the Plan State. In Figure 3 the internal details of the Database maunager relate
to the O-Plan2 planner. Here there is a separation of the Associated Data Structure (ADS) level
which describes the plan network. the Table of Multiple Effects (ToME) and the Goal Structure
Table (GosT) from the lower level Time Point Network (TPN) and its associated metric time
point list called the Landmark Line (1.1}.

8 O-Plan2 Planner

8.1 Plan State

The planning agent plan state holds information about decisions taken during planning and
information about decisions which are still to be made (in the form of an agenda).

8.1.1 Plan Network - Aps and TPN

The Associated Data Structure ADS provides the conteztual information used to attach meaning
to the contents of the Time Point Network TPN, and the data defining the emerging plan. The
main elements of the plan are activity, dummy and event nodes with ordering information in
the form of links as necessary to define the partial order relationships between these elements.
The separation of the ADs level from the time points associated with the plan entities is a
design feature of O-Plan2 and differs from our previous approach in Nounlin and O-Planl. It is
motivated by our approach to time point constraint management [6] which reasons about both
ends of plan entities (such as nodes and links) and which can be more efficiently implemented
where there is uniformity of representation. ‘

Time windows play an important part in O-Plan2 in two ways: firstly as a means of recording
time limits on the start and finish of an action and on its duration and delays between actions,
and secondly during the planning phase itself as a means of pruning the potential search space if
temporal validity is threatened. Time windows in O-Plan2 are maintained as min/max pairs,
specifying the upper and lower bounds known at the time. Such bounds may be symbolically
defined, but O-Plan2 maintains a numerical pair of bounds for all such numerical values. In
fact, a third entry is associated with such numerical bounds. This third entry is a projected
value (which could be a simple number or a more complex function, data structure, etc.) used
by the planner for heuristic estimation. search control and other purposes. 2

Higher level support modules (such as Qa. the TOME and GOsST Manager. etc.) rely on the
detail held in the ADs and on the functionality provided by the TPN. The ADs is maintained
by a set of routines which we refer to as the Network Manager.

8.1.2 TOME and GOST

The Table of Multiple Effects (ToME) holds statements of form:
(fn argl arg2 ...) = value at time-point

The Goél Structure Ta.l)lé (GOST) h()](l,_s' statements of form:

condition-type (fn argl arg2 ...) = value at time-point
from contributor-list

2 . . ~, .
“All numerical values in O-Plan2 are held as such triples.

30

where contributor-list is a set of pairs of format:
(time-point . method-of-satisfaction-of-condition)

In the current implementation, effects and conditions are kept in a simple pattern directed
lookup table as in Nonlin [39]. The O-Planl Clouds mechanism [41] for efficiently manipulating
large numbers of effects and their relationship to supporting conditions will be used in O-Plan2
in due course.

8.1.3 Plan State Variables

O-Plan?2 can keep restrictions on plan state variables without necessarily insisting that a definite
binding is chosen as soon as the variable is introduced to the Plan State.

8.1.4 Resource Utilisation Table

The Resource Utilisation Table holds statements of form:

set/+/- {resource <resource-name> <qualifier> ...} = <value>
at <time-point>

The statement declares that the particular resource is set to a specific value or changed by
being incremented or decremented by the given value at the indicated time point. There can

be uncertainty in one or both of the value and the time point which are held as min/max pairs.
3

Task Formalism resource usage specifications on actions are used to ensure that resource usage
in a plan stays within the bounds indicated. There are two tyvpes of resource usage statements
in TF. One gives a specification of the overall limitation on resource usage for an activity (over
the total time that the activity and anyv expansion of it can span). The other type describes
actual resource utilisation at points in the expansion of a action. It must be possible (within
the min/max flexibility in the actual resource usage statements) for a point in the range of the
sum of the resource usage statements to be within the overall specification given. The Resource
Utilisation Table manages the actual resource utilisation at points in the plan.

8.1.5 Agenda

The agenda for the current plan state gives details of processing which remains to be done in
order that this plan state can be considered to have achieved its task. This defines the pending
decisions which remain. The agenda entries each refer to fluws in the plan state which require
further processing. Each flaw corresponds on a one-to-one basis to a knowledge source name
which can process the relevant agenda entry.

“O-Plan2 numerical values are held as a triple with & nunnerical minimum. maximum and a projected value.

31

An alternatives agenda of plan states other than the current one, which can be considered if
this plan state is unsuitable to achieve the task is kept by the Controller via the Alternatives
Manager Support Module. Formally. all possible Plan States known to the alternatives manager,
including the current plan state should be considered as the “state” of the agent.

8.2 Planning Knowledge Sources

The O-Plan2 architecture is specialised into a planning agent by including a number of knowl-
edge sources which can alter the Plan State in various ways. The planning knowledge sources
provide a collection of plan modification operators which define the functionality of the planning
agent beyond its default O-Plan2 architecture properties (essentially limited to communication
capabilities by default). '

The planning knowledge sources in the current version of the O-Plan2 planner are:

o KSSET.TASK a knowledge source to set up an initial plan state corresponding to the
task request from the job assignment agent.

¢ KS_EXPAND a knowledge source to expand a high level activity to lower levels of detail.

o KS_CONDITION a knowledge source to ensure that certain types of condition (only unsu-
pervised currently) are satisfied. This is normally posted by a higher level KS_LEXPAND.

e KS_ACHIEVE a knowledge source initiated by KS_EEXPAND for achieve conditions.

e KS_OR a knowledge source to select one of a set of possible alternative linkings and plan
state variable bindings. The set of alternative linkings and bindings will have been created
by other knowledge sources (such as KS_CONDITION) earlier.

¢ KS_BIND a knowledge source used to select a binding for a plan state variable in circum-
stances where alternative possible bindings remain possible.

o KS_POISON_STATE a knowledge source used to deal with a statement by another knowl-
edge source that the plan state is inconsistent in some way or cannot lead to a valid plan
(as far as that knowledge source is aware).

e KS_USER a knowledge source activated at the request of the user acting in the role of
supporting the planning process (Planner User Role). This is used at present to provide
a menu to browse on the plan state and potentially to alter the priority of some choices.

In addition, the default knowledge sources available in any O-Plan2 agent are present and are
as follows:

o KS_INIT Initialise the agent.

e KS_.COMPILE Alter the Knowledge Source {(agent capability) Library of an Q-Plan2
agent by providing new or amended Knowledge Sources (described in a Knowledge Source
Framework language). In the current implementation of O-Plan2. this cannot be done
dynamically.

e KS.DOMAIN Call the Domain Information (normally TF) compiler to alter the Domain
Information available to-the agent.

¢ KS.EEXTRACTRIGHT Extract a plan patch for passing to the subordinate agent to the
‘right’ of this agent - i.e the execution agent. In fact, in the current implementation,
a knowledge source with name KS_EXECUTE packages a plan for execution and then
passes this to KS_ EXTRACT_RIGHT for communication to the execution agent.

¢ KS EXTRACT_LEFT Extract a plan pa.tch‘for passing to the superior agent to the ‘left’ of
this agent - i.e the job assignment agent. In fact this communication between the planner
and the job assigner in the current implementation is performed by two knowledge sources.
KS_EXTRACT is used to pass requested information (such as when information about
a plan state is requested by the user) back to the job assignment agent (or to a plan or
world viewer process as appropriate). KS_PLANNER_FINISHED is used to inform the
job assignment process that the planner has completed its task.

e KS_PATCH Merges a plan patch on an input event channel into the current plan state.
In fact, in the current implementation. there is no use made of KS_PATCH directly.

It is intended that communication between the three agents in the O-Plan2 system (job as-
signer, planner and execution system) will respect the philosophy of communication via plan
patches and that the KS_LEXTRACT_LEFT. KS_LEXTRACT_RIGHT and KS_PATCH knowl-

edge sources will be the only ones which will make use of the event channels directly.

8.3 Use of Constraint Managers to Maintain Plan Information

0O-Plan2 uses a number of constraint managers to maintain information about a plan while
it is being generated. Thé information can then be utilised to prune search (where plans are
found to be invalid as a result of propagating the constraints managed by these managers) or
to order search alternatives according to some heuristic priority. These managers are provided
as a collection of support modules which can be called by knowledge sources to maintain plan
information.

8.3.1 Time Point Network Manager (Tr¥\)

O-Plan2 uses a point based temporal representation with range constraints between time points
and with the possibility of specifying range constraints relative to a fixed time point (time zero).
This provides the capability of specifving relative and metric time constraints on time points.
The functional interface to the Time Point Network (TPN). as seen by the Associated Data
Structure (ADS) has no dependence on a particular representation of the plan. For example,
rather than the simple ‘before’ relationship used in the O-Plan2 planner’s plan state representa-
tion. a parallel project exploring temporal logics. reasoning mechanisms and representations for
planning is investigating alternative higher level Associated Data Structure time relationships.

The Time Point Network is the lowest level of temporal data structure and consists of a set of
points (and associated time constraints) each of which has an upper and lower bound on its
temporal distance from:

1. other points in the network

2. a (user defined absolute) start time reference point

The points held in the TPN may be indirectly associated with actions, links and events, with
the association being made at the Associated Data Structure level. The points are numbered
to give an index with a constant retrieval time for any number of points. This structure allows
points to be retrieved and compared through a suitable module interface and with a minimum
of overhead. The interface is important and reflects the functionality required of the TPN,
and hides the detail. This ensures that we have no absolute reliance on points as a necessary
underlying representation. Time points whose upper and lower values has converged to a single
value are inserted into a time ordered Landmark Line (rr). This allows the planner to quickly
check the order of certain points within the plan. The TP~ and LL are maintained by the Time
Point Network Manager (TPNM). As well as its use in the O-Plan2 activity orientated planner,
the current TPNM has also been applied to large resource allocation scheduling problems in the
TOSCA scheduler [7] where the number of time points was in excess of 5000 and the number of
temporal constraints exceeded 3000. '

3

Figure 4 and Figure 5 show the use of the TpN for applications involving task planning and
resource allocation.

. . Delay T2 .
Action 1 Action 2
‘ At T1 Between T3 .. T4
| | 8 I
| | | | ADS
__________ r— -~~~
T1. T1 | I otz T2 | |
® [J ® >~ @]
t0 £1 t2 t3 £l
(0,0)
T3 LT
Figure 4: Example of activity planner at ADS using TPN
, Delay T2 ;
Resource 1 , oA Resource 1
At O - Between T3 .. T4
| | l |
| Resotrce 2 |
l At T | |
I I I | |
| | | | | ADS
I F - rr—-—~rr—— ==
! | | | | TR
| T1. T1 I | 12,12 | |
® ® e ® ®
t0 1 02 3 t4
(0,0) I

Figure 5: Example of resource allocation at ADS using TPN

35

8.3.2 TOME/GOS;T Manager (TGM)

The conflict free addition of effects and conditions into the plan is achieved through the TGM,
which relies in turn on support from the Qa support module which suggests resolutions for
potential conflicts. ‘

8.3.3 Resource Utilisation Management (RUM)

O-Plan2 uses a Resource Utilisation Manager to monitor resource levels and utilisation. Re-
sources are divided into different types such as: ¢

1. Consumable: these are resources which are “consumed” by actions within the plan. For
example: bricks, petrol. moneyv. etc.

2. Re-usable: these are resources which are used and then returned to a common “pool”.
For example, robots, workmen. lorries. ctc.

Consumable resources can be subcategorised as strictly consumed or may be producable in some
way. Substitutability of resources one for the other is also possible. Some may have a single
" way mapping such as money for petrol and some can be two way mappings such as money for
travellers’ cheques. Producable and substitutable resources are difficult to deal with because
they increase the amount of choice available within a plan and thus open up the search space.

The current O-Plan2 Resource Utilisation Manager uses the same scheme for strictly consum-
able resources as in the original O-Planl. However. a new- scheme based on the maintenance
of optimistic and pessimistic resource profiles with resource usage events and activities tied to
changes in the profiles is now under study.

8.3.4 Plan State Variables Manager (Psv)

The Plan State Variable Manager is responsible for maintaining the consistency of restrictions
on plan objects during plan generation. O-Plan2 adopts a least commitment approach to object
handling in that variables are only bound as and when necessary. For example. in a block
stacking problem, moving block A to block B means that it is necessary to consider the object
which A was previously on top of and from which it was moved. This object is introduced as a
plan state variable whose value will be bound as and when necessarv. O-Planl nsed a separate
agenda to hold variable binding agenda entries. This scheme proved to be difficult to use due
to the number of constraints which were built up between agenda entries and within agenda
entries. The constraints were specified as:

e Sames: This specifies that this plan state variable should be the same as another plan
state variable

o Not-Sames: This specifies that this plan state variable should not be the same as another
plan state variable

36

o Constraint-list: This specifies a list of attributes which the value to which the plan
state variable is bound must have. For example, it must be green, hairy and over 5ft tall.

To overcome these problems a separate Plan State Variables Manager within the Database
Manager (DM) has been implemented which maintains an explicit “model” of the current set of
plan state variables (Psv).

When a PsvV is created by the planner the Plan State Variables Manager creates a plan state
variable name PSVN, plan state variable body pPsvB and a range list from which a value must
be found. For example, the variable could be the colour of a spacecraft’s camera filter which
could be taken from the range (red green blue yellow opaque). A plan state variable must
have an enumerable type and thus cannot be, for example, a real number. The psvB holds the
not-sames and constraint-lists and is pointed to by one of more psvNs. This allows easier
updating as new constraints are added and psva’s are made the same. Two or more PSVB’s
can be collapsed into a single psvB if all of the constraints are compatible. i.e. the not-sames
and constraints-list. A PSVN pointing to a collapsed PsvB is then redirected to point at the
remaining PsvB. This scheme is a lot more flexible than the previous “sames™ scheme as it
allows triggers to be placed on the binding of psv’s (e.g., do not bind until the choice set is less
than 3) and allows variables which are creating bottlenecks to be identified and if necessary
further restricted or bound.

8.4 Support Mechanisms in O-Plan2

As well as the managers referred to ahove. a number of other support routines are available
for call by the Knowledge Sources of O-Plan2. The main such support mechanisms w lnch have
been built into the current O-Plan2 Planner include:

¢ Question Answerer (QA)

The Question-Answering module is the core of the planner and must be both efficient
and able to account for temporal constraints. Qa supports the planner to satisfy and
maintain conditions in the plan-in a conflict free fashion, suggesting remedies where
possible for any interactions detected. QA as implemented in O-Plan? is an efficient
procedural interpretation of Chapman’s Modal Truth Criteria [8], which was distilled
from Qa in Nonlin [39]. QA provides support for the TGM in the system. and is supported
in turn by another low level module -- Graph Operations (GoP)

¢ Graph Operations Processor (Gor)
The GOP is a software implementation of a graph processor, providing efficient answers
to ordering related questions within the main plan (represented by a graph). cop works
within temporally ordered. as well as partially ordered. activities in the graph.

o Contexts
All data within the O-Plan2 plan state can be “context layered” to provide support for
alternatives management and context based reasoning. An efficient, structure sharing
support module provides the ability to context laver any data structure accessor and

updator function in Lisp. This is particularly useful for the underlying content addressable
database in the system: O-Base.

¢ O-Base
This database support module supports storage and retrieval of entity /relationship data
with value in context. This model allows for retrieval of partially specified items in the
database.

In addition, there are support modules providing support for the User Interface, Diagnostics,
Instrumentation, etc., and there are.others which still need further development (e.g., variable
transaction management).

8.5 Alternatives Manager

There is an additional support module capability in O-Plan2 which is utilised by the Controller.
This provides support for handling alternative plan states within an O-Plan2 agent.

If any stage of a knowledge source finds that it has alternative ways to achieve its task, and it ’
finds that it cannot represent all those alternatives in some way within a single plan state, then

the controller provides support to allow the alternatives that are generated to be managed. This

is done by the knowledge source telling the coutroller about all alternatives hut one favoured

one and asking for permission to continue to process this {by the equivalent of a stage check).
This reflects the O-Plan2 search strategy of local best. then global best. A support routine is

provided by the controller to allow a knowledge source writer to inform the controller of all

alternatives but the selected one.

A knowledge source which cannot achieve its task or which decides that the current plan state

is illegal and cannot be used to generate a valid plan may terminate and tell the ‘controller

to poison the plan state. In the current version of O-Plan2, this will normally initiate con-

sideration of alternative plan states by a dialogue between the controller and the alternatives

manager. A new current plan state will be selected and become visible to new knowledge source

activations. Concurrently running knowledge sources working on the old (poisoned) plan state

will be terminated as soon as possible (at the next stage boundary) as their efforts will be
wasted.

As well as having the existing system’s option to explore alternative plan states. future versions
of O-Plan?2 will consider ways to unpoison a plan state by running a nominated poison handler
associated with the knowledge source that-poisoned the plan state or with the reason for the plan
state poison. This is important as we envisage O-Plan2 being used in continuous environments
where alternative plan states will become invalid.

8.6 Implementation as Separate Processes
In the unix and Common Lisp based implementation of O-Plan2 the main managers and

knowledge platforms are implemented as separate processes. One advantage of this approach
is that knowledge sources can be run in parallel with one another. and that external events

3R

can be processed by the Interface Manager (the manager in charge of all interaction, diagnostic
handling and instrumentation) as they occur. The reaction time performance of the system
is measured by the time taken to post an agenda entry by the event manager and it being
picked up by the agenda manager once triggered. The cycle time performance of the system is
measured by the reaction time plus the time to assign the agenda entry to a knowledge source
and have it run to completion.

39

9 O-Plan2 Job Assigner

In the current implementation of O-Plan2, job assignment is a simple process with a menu
of options available to the user. Communication between the job assignment agent and the
planning agent of O-Plan2 does not currently reflect our intentions of communication via plan
patches.

The current menu of choices is:

¢ Initialise Planner
e Input TF (via pop-up menu of TF files available)

o Set Task (via pop-up menu of tasks available in current TF file)
o View Plan

o View V\’oﬂd (at nominated node)

¢ Replan

¢ Execute Plan

Quit

The job assignment process maintains the set of open command choices depending on the
current status of the planning agent (whether it has been given domain information. set a
specific task or is currently planning or has already generated a complete plan).

The planner views the job assignment process as if it was a full O-Plan2 agent and takes
requirements and commands in the form of events from the job assigner. The planner also
packages its responses to the job assigner in the form of simplified events.

10

10 O-Plan2 Execution System

One of the aims of the O-Plan2 project is to investigate the issues involved in linking an
intelligent planner with a remote execution agent. In order to investigate these issues a version
of the O-Plan?2 architecture has been configured to act as an execution agent. To configure
O-Plan2 as an execution agent required a new set of knowledge sources to be defined which
allow the system to follow a plan rather then generate one.

The present O-Plan2 execution monitor accepts a “plan fragment” from the planner (this is
created through the use of a knowledge source KS_.EXECUTE in the planner) together with a
set of monitoring instructions specifving how the actions of the plan should be monitored. The
plan fragment consists of:

1. the plan specified as a partially-order network of activities
2. the TOME, GOST and temporal information built up during plan generation

3. the attachment point to be used by the execution monitor
The execution monitoring strategies which can be specified are as follows:

1. monitor all actions and report the success or failure of their execution
2. monitor specified actions for:

(a) success or failure during execution
(b) resource utilisation (usage and replenishment)

(¢) specified start or completion time of an action relative to a given reference point
(external event, time clock or plan action)

3. report only when the whole plan fragment has completed execution

The message is received by the left input guard of the execution agents’ Fvent Manager and
converted to an agenda entry. When the agenda entry is processed it causes the knowledge
source KS_.BREAKTUP to be run in the execution agent. KS.BREAKUP takes the input message
and performs the following two steps:

1. creates an agenda entry record for each of the actions in the plan. The trigger for the
agenda entry will be the time at which the action should be executed. The knowledge
source KS_DISPATCH will be used to send an action to the right out channel for execution.

2. creates an agenda entry record (if necessary) for the monitoring required for a particular
action. These agenda entries use two triggers: one is their expected execution time and
the other an indication that the action they are monitoring executed successfully. The
knowledge source KS_DISPATCI2 is used to monitor for a specific aspeet of an actions
execution.

The Diary Manager is set up to initiate triggers at the appropriate time. When triggered, the
agenda entry is added to the triggered agenda list to await the availability of a knowledge source
platform on which to run. The information derived from the monitoring is then assembled into
a “return message” for the planner. The message is accepted as an event through the right
input guard of the planner and scheduled as an agenda entry by the agenda manager. The
knowledge source KS_WORLD in the planner is used to analyse the message which is in the
form of a plan patch. If there was an execution failure then the patch would also contain a
flaw i.e. the reason for the failure. For example, a precondition not met, external event to be
removed, action which could not be decomposed, etc. . The planner then integrates the plan
fragment into the current plan state and adds the flaw to its list of agenda entries.

The work to date on the execution agent within the O-Plan2 architecture is only at a very
simple level and has mostly been concerned with ensuring that the communication capabilities
are present to address issues of inter-agent plan fragment passing. Further work to characterise
the requirements for and capabilities of a reactive execution agent have been undertaken [31]
and an associated research project is now underway to explore how the O-Plan2 architecture
can support these requirements.

*This failure would indicate that the planner assumed the execution agent had a capability which it does not

POSKEss

By

1-1 O-Plan2 User Interface

11.1 Planner User Interface

Al planning systems are now being used in realistic applications by users who need to have a
high level of graphical support to the planning operations they are being aided with. In the,
past, our Al planners have provided custom built graphical interfaces embedded in the specialist
programming environments in which the planners have been implemented. It is now important
to provide interfaces to Al planners that are more easily used and understood by a broader
range of users. We have characterised the user interface to O-Plan2 as being based on two
views supported for the user. The first is a Plan View which is used for interaction with a user
in planning entity terms (such as the use of peErT-charts, Gantt charts, resource profiles, etc).
The second is the World View which presents a domain orientated view or simulation of what
could happen or is happening in terms of world state.

“ ’K (oPlansNaniin v) i TF Irput =) o flan outout '*) (Ventral 9)
,"/ Ry g Planz YEI O Sy 3000000 GL: 0 AutoCAD
4[] O-FAanZ Joh Assignment oo
i = p
Status: plaming ... SETUP
Tomaini space_platform) b
Task: 1args_space.platforn BLoCkS
1) Initialise Planner DIt
2y Input TF EDIT
3) Set Task INQUIRY
* 4} Plan View U'#EP'
* 53 Horld View SEUfi{GS
E} Replan ProT
73 Execute Plan ucs:
* 8 Quit 11Ty
UTILITY
Plrase choose a nukber:- [} 3
ASHADE
SAVE:

AuloCAD Graphics Window - - fprojacti2iepliautocadiplan
(6-FTanfonlin o) (TF Input ____ ©) (Blan tutput
Layer 0 Snap 1040, 00,15%2.62

] dutoCAl

P
SETUP
BLOCKS

LAYER:
SETTINGS
PLOT
urs:
UTILITY

o R T E— BRI — SR — SRR K

3D
ASHADE

SAVE:

'
!
s

o

I 3
WaEE 53R I Wxﬁ?‘* 7 T - W o R i e 2 y

redraw
redraw

Command:
Comman
-

Computer Aided Design (CAD) packages available on a wide range of microcomputers and
engineering workstations are in widespread use and will probably be known to potential planning
system users already or will be in use somewhere in their organisations. There could be benefits
to providing an interface to an Al planner throngh widely available CAD packages so that the
time to learn an interface is reduced and a range of additional facilities can be provided without
additional effort by the implementors of Al planners.

Some CAD packages provide facilities to enable tailored interfaces to be created to other pack-
ages. One such package is AutoCAD [4]. [36] - though it is by no means unique in providing this
facility. AutoCAD provides Autol.ISP, a variant of the LISP language, in which customised
facilities may be provided [5], [37]. This is convenient for work in interfacing to Al systems as
workers in the Al field are familiar with the LISP language. However, the techniques employed
would apply whatever the customisation language was.

We have built an interface to the Edinburgh a1 planning systems which is based on AutoCAD.
A complete example of the use of the interface has been built for a space platform building
application. O-Plan2 Task Formalism has been written to allow the generation of plans to build
various types of space platform with connectivity constraints on the modules and components.
A domain context display facility has been provided through the use of AutoLISP. This allows
the state of the world following the execution of any action to he visualised through AutoCAD.
Means to record and replay visual simulation sequences for plan execution are provided.

A sample screen image is included in Figure 6. There are three main windows. The planner
is running in the window to the top left hand corner and is showing its main user menu.
The planner is being used on a space station assembly task and has just been used to get
a resulting plan network. In the Plan Vicw supported by O-Plan2, this has been displayed
using the Load Plan menu item in the large AutoC'AD) window along the bottom of the screen.
Via interaction with the menu in the AutoC'AD window, the planner has heen informed that
the user is interested in the context at a particular point in the plan - the selected node is
highlighted in the main plan display. In the World Vicw supported by O-Plan2, the planner
has then provided output which can be visualised by a suitable domain specific interpreter.
This is shown in the window to the top right hand corner of the screen where plan, elevation
and perspective images of the space station are simultaneously displayed.

The O-Plan2 Plan View and World View support mechanisms are designed to retain indepen-
dence of the actual implementations for the viewers themselves. This allows widely available
tools like AutoCAD to be emploved where appropriate. but also allows text based or domain
specific viewers to be interfaced without change to O-Plan2 itself. The specific viewers to be
used for a domain and the level of interface they can support for O-Plan2 use is described to
O-Plan2 via the domain Task Formalism (1r). .\ small number of vicwer characteristics can
be stated. These are supported by O-Plan2 and a communications language is provided such
that plan and world viewers can input 1o O-Plan2 and take output from it. ‘

Sophisticated Plan and World Viewers could he used in future with O-Plan2. We believe that
time-phased tactical mapping displayvs of the type used in military logistics can be used as a
World Viewer. We have also considered interfaces 1o a Virtual Reality environment we term
Plan World-VR.) ‘

11.2 System Developer Interface

When O-Plan2 is being used by a developer. it is usual to have a number of windows active
to show the processing going on in the major components of the planner. There is a small
window acting as the job assignment agent with its main O-Plan2 menu. There are then
separate windows for the Interface Manager (IM) - through which the user can communicate
with other processes and through which diagnostic and instrumentation levels can be changed.
The Agenda Manager/Controller (AM), the Database Manager (DM) and the Knowledge Source
Platform(s) (xP) then have their own windows. Further pop-up windows are provided when
viewing the plan state graphically or when getting detail of parts of the plan, etc.

A sample developer screen image is shown in figure 7.

B9 Wntarface ‘Manager (
IN: Initialised

IH: Sending :INIT to AM B
IN: Sending 2\\ bytss 1o fiagnostic Level

IN: Kt for 10K ot il
e o R T] Messmess [l Step B

IM: Sending :INIT to D4

Status: planner initialised
Domaing nane

Task: none IH: Sending 20 bytes to HLL Hessages Intercogate OH 3
1Mz Kasting for 20K o H1l Messages ¥

* 1) Initialise Plamner IM: Got 20K

x 23 Input TF I¥: Sanding 3INIT A1l Hessages

3) Set Task IM: Sending 20 byt. S

) Plan Ve 12 Maiting for 0 |

5 Horld View IN: Got 20K .

6) Replan IM: Sanding 13 bytes o I'u

7} Executs Plan IM; Dunping e LIFTRT
x 8 Quit IM: Trying to

IM: Cormected

Please chwose a numbers- [] IN: Sending 11

kererers

....... ST R

LA RS
N Apenda Manager (AM)
Ad: Initialised
M: Sending 18 butes ta M
N-EVENT: Receved (:KP-1 {HPREADY FREAY ¢:hP-13d frow slranpeackiil
222

ofrean §iLewpsock 0
i

DBIN:Answer 50K

ﬁﬂ: Sending I butes to iicemprochll

Figure 7: Example Developer luterface for the O-Plan2 Planning Agent

11.3 O-Plan2 User Roles

User interaction with O-Plan2 can occur for a variety of purposes. Various roles of a user
interacting with O-Plan2 are defined aund are supported in different ways within the system.
We consider the identification of the different roles to be a useful aid to guide future user
interface support provision.

11.3.1 Domain Expert Role

A single user responsible for defining the bounds oun the application area for which the system
will act. The domain expert user may directiv or indirectly specify O-Plan2 Task Formalism
to define the domain information which the planner will use.

11.3.2 Domain Specialist Role

One or more domain specialists ‘may define information at a more detailed level within the
framework established by the domain expert. Once again. the domain specialist may directly
or indirectly specify O-Plan2 Task Formalisim to provide the detailed dontain information which
the planner will use.

11.3.3 Command User Role

The command user interacts only with the User Reguirements/Command Agent window. This
is currently the top level menu for the O-Plan2 system. This user is responsible for the selection
of the task which the system will try to carry out. The menu currently allows for a domain
to be selected and for a selection from the task schemas within the Task Forialism for that
domain to be selected.

11.3.4 Planner User Role

The planner user is the user responsible [or ensuring that a suitable plan is generated to carry
out the given task. This may involve the selection ol alternatives. the restriction of options
open to the planner and browsing on the emerging and final plan to ensure it meets the task
requirements set by the command user. Since the planner aser can perform decision making in
the planner agent. the planner user is supported by a knowledge source called KS_USER. This
knowledge source can be added to the agenda for the current plan state on demand (via a user
request). Since the KS_-USER knowledge sonrce normally has high priority. it will normally be
called as soon as possible. The KS_USER knowledee source activation has access to the current
plan state to allow for decisions on user intervention 1o depend on such a state.

16

11.3.5 Execution System Watch/Modify Role

The user may interact with the execution system to watch the state of execution and perhaps
even to modify the behaviour of a world simulation in which the execution system is operating.

11.3.6 System Developer Role

The system developer has access to the diagnostic interface of the system running within each
agent. This is supported by the diagnostic interface of each O-Plan2 agent. The behaviour of
this interface can be set and modified by setting levels of diagnostics, using buttons, ctc.

11.3.7 User Support to Controller Role

The user may assist O-Plan2 agent’s controller to decide which knowledge source to dispatch to
a waiting knowledge source platform or to decide on when to force a running knowledge source
to stop at a stage boundary.

11.3.8 User Support to Alternative Manager

The user may assist an O-Plan2 agent’s alternative manager to decide which alternative to
select when one is needed or to suggest an alternative is tried rather than continuing with the
current plan state at that time.

11.3.9 User as System Builder

The O-Plan2 Agent Architecture is intended to be sulliciently flexible to allow a system builder
to create a system with defined hehaviour. To this end. it is possible to have radically different
plan state data structures, knowledge sonrces. domain information and controller strategies.
For example, the O-Plan2 Architecture already has been used to provide a Manufacturing
Scheduling System which uses a resource oriented representation for the plan state rather than
the action oriented plan representation in the O-Plan2 Planner. This scheduler, called Tosca
(The Open SCheduling Architecture). also has different knowledge sources to those used in the
O-Plan2 Planner.

12 Performance Issues and Instrumentation

O-Plan2 has been designed in such a way that components can be improved within the speci-
fications adopted. Performance issues have been considered in establishing the interfaces and
protocols used. The current prototype often includes only very simple implementations of some
of the components. The prototype is running in interpreted Common Lisp at present. However,
extensive instrumentation and diagnostic facilities have been built into O-Plan2 to allow for
experimentation in future.

12.1 Architecture Performance

An early consideration for the O-Plan2 project was 1o ensure that the agent orientated design
would not introduce overheads of computation which would be unacceptable. A number of
designs for the multi-process structure required to support O-Plan2 were discussed. These
included shared memory processes and processes which used a server for access to the shared
data elements. At the time that these discussions were taking place there was little uniformity
of handling concurrent processes in Cominon Lisp systems. Tests were conducted with complete
0O-Plan2 systems which had only a trivial knowledge source included. These were implemented
in versions of Common Lisp and the ¢ language.

Two measures were tested:

Agent Latency This measure shows the minimum time for an event at the agent boundary to
be noted by the Event Manager. communicated to the Agenda Manager/Controller, trig-
gered (where the trigger is null). commmunicated to a Knowledge Source Platform (which
is waiting and idle) and an appropriate Knowledge Source activated on the platform to
process the agenda entry corresponding to the event.

Agent Cycle Time This measure shows the minimum time for a Knowledge Source to post an
agenda entry back to the Agenda Manager/Controller and terminate its processing, for the
agenda entry to be triggered (where the trigger is null), communicated to a Knowledge
Source Platform (which is waiting and idle) and an appropriate Knowledge Source is
activated on the platform to process the agenda entry. This corresponds to a single cycle
of the agent internally when only one Knowledge Source Platform is available.

Our main performance goal was to allow the generation of a plan with a few hundred nodes,
which we judge would require 500-1000 agenda cveles. in about 3 minutes. Subjectively, we
judged that 3 minutes was an acceptable period for a user to sit awaiting a result in our
demonstrations. However, in the current implementation. some tasks take considerably longer
than this.

Tests showed that the design adopted could process 300 minimum cycles per minute on a
Sun Sparcstation 1 - which was on the margins of our requirements. However. this and a
similar figure for agent latency were considered adequate at the early stages of the project
when interpreted code was being used. knowledge sources were being dvnamically loaded on
cach cycle and slower computers thau envisaged for the later phases of the work were in use.

AR

12.2 Constraint Manager and Support Routine Performance

Our experience with earlier A1 planners such as Nonlin and O-Plan1 was that a large proportion
of the time of a planner could be spent in performing basic tasks on the plan network (such as
deciding which nodes are ordered with respect to others) and in reasoning about how to satisfy
or preserve conditions within the plan. Such functions have been modularised and provided as .
Constraint Managers (Graph Operations Processor. Time Point Network Manager, TOME/GOST
Manager, etc) and Support Routines (Question Answering, etc) in O-Plan2 to allow for future
improvements and replacement by more eflicient versions.

12.3 Monitors and Instrumentation

O-Plan?2 includes Monitoring and Instrumentation packages to assist the developer and to allow
us to address performance issues in future. In particular this will allow us to identify the areas
in which processing time is being spent for different styles of problem. It should allow us to
confirm our assumptions on the proportion of processing which takes place at the constraint
management and support routine level. We have only just reached the stage where the O-Plan2
system is complete enough to allow for such performance instrumentation to give us benefits.
Monitoring and instrumentation statements can be placed at any point within the O-Plan2
code and selectively enabled by the developer.

The Monitoring package allows for different levels of diagnostics in the various components of
O-Plan2 and can be controlled by the Interface Manager Control Panel to ensure the developer
receives the appropriate level of diagnostics for the particular task being undertaken.

The Instrumentation package allows a number of counting and elapsed or central processor time
measurements to be made. It allows for resetting the various counters, for incrementing and
decrementing them and for reading out the current values. The O-Plan2 prototype has been
instrumented in areas we consider sensitive and future work will begin systematic evaluation of
the recordings taken by the instruments as O-Plan2 is run on test problems.

14

13 Modularity, Interfaces and Protocols

This section provides a summary of contribution of the O-Plan2 project towards the identifica-
tion of separable support modules. internal and external interface specifications and protocols
governing processing behaviours which are relevant to an A1 planning system.

13.1 Components

The O-Plan2 project has sought to identify modular components within an Al command, plan-
ning and control system and to provide clearly defined mtelfaces to these components and
modules.

The main components are:

1.'Domain Information - the information which describes an apph(dtl()n domain and tasks
in that domain to the planner.

2. Plan State - the emerging plan to carry out identified tasks.

3. Knowledge Sources - the processing capabilities of the planner (plan modification opera-
tors). ‘

4. Support Modules - functions and constraint managers which support the processing ca-
pabilities of the planner and its components.

.. Controller - the decision maker on the orderin which processing is done.

N}

13.2 Support Modules

Support modules are intended to provide efficient support to a higher level where decisions are
taken. They should not take any decision themselves. They are intended to provide complete
information ahout the constraints they are mauaging or to respond to questions being asked
of them to the decision making level itself. The support modules normally act to manage
information and constraints in the plan state. Examples of Support Modules in O-Plan2 include:

o Effect/Condition (TOME/GOsT) Manager and Question Answering (Qa)

o Resource Utilisation Manager

e Time Point Network Manager

e Object Instantiation (Plan State Variables) Mauagor

¢ Alternatives Manager

o Interface and Event Manager

e Instrumentation

)

¢ Monitors for output messages. etc.

A guideline for the provision of a good support module in O-Plan2 is the ability to specify the
calling requirements for the module in a precise way (i.e. the sensitivity rules under which the
support module should be called by a knowledge source or from a component of the architec-
ture). ‘

13.3 Protocols

In addition, a number of external interface specifications and protocols for inter-module use have
been established. Only first versions of these interfaces have been established at present, but
we believe that further development and enhancement of the planner can take place through
concentrating effort on the specification of these interfaces. This should greatly assist the
process of integrating new work elsewhere into the planuing framework too.

The protocols for regulating the processing conducted by components of O-Plan2 are:

1. Knowledge Source Protocol o
for the ways in which a Knowledge Source is called by the Clontroller. can run and can
return its results to the Controlier aud for the wavs in which a Knowledge Source can
access the current plan state via the Database Manager.

2. KS_USER Protocol
for the ways in which the user {iu the role of Planncr User) can assist the planning svstem
via a specially provided knowledee source.

3. Inter-agent Communications Protocol
controls the way in which the KS_ENTRACTLEFT. KS_EXTRACT_RIGHT and
KS_PATCIH Knowledge Sources operate and may use the Interface Manager's support
routines which control the agent’s input and output event channels (LEFTIN, LEFT-
OUT, RIGHTIN and RIGHTOUT).

13.4 Internal Support Facilities

The internal support provided within the planuer 1o assist a Knowledge Source writer includes:

1. Knowledge Source Framework (Ksr)

is a concept for the means by which information about a Knowledge Source can he pro-
vided to an agent. This will ensure that a suitable Knowledge Source Platform is chosen
when a Knowledge Source is run inside an agent. It will also allow a model of the capa-
- bilities of other agents to be maintained. The ksr will also allow for triggers to be set up
for releasing the Knowledge Source for (Turther) processing. 1t will allow a description of
the parts of a plan state which can be read or altered by each stage within the knowledge
source (to allow for effective planning of concurrent computation and data base locking
in future).

BRSNS VA0S ISPI[MOUY JUILIND
oY UMW UL G} poffry o [[In RI[L odnposodd [2ne ol ST <uoHIuny 98e)s 8y > oy} —

e <
AR @R () o1 RLY 10831 awip) 0 yul] 0}
SURIWL PUR Polavfus o 0) ojeis ued o o sopnopiodop "oy pate8sLny siempe,,
e AO[[R [[IM 1] "UOLIUNY URDJOOY R IHIOJ [JIN 1T "0l 1080 9[04 [[IA J[OS)L Y1yMm
- oFenguer| 1088 |, Zur][-Q oY1 wod) posodiion og ez nondisep <48y > oyJ, —
RIS 0O URYL 2LOUL ST oloif} 1 110A1F o S|U0 Povll loquinu oSe)s oy) —

<uol Jeilojul d:mu_.vc_v <L MO

J 0BRSS > < = <WESH> <LIQUINT oFvis> —
HLIOL S} Ul UOIJRULIOJUT SoFk)s e

JI9SH 004008 0FPOINOUY 0} 0} ogridaair Bilog se polfLIon ST J[9s3T 921n0s 38 po[mouy o)
Aq auop jou pioy uotietwiojur Sunsod i1 jo noieayipont Sie Jey) 2INSUS 0] pasn ag osfe
Ued 3 (924008 VEpopnouy papuadsis v jo sodeis woomloq jdey Ajuresodway uorrULIONUT
10 POs) 901108 9FPI[MOUY ¥ Aq Yorq pordosov plolj toneuiiojut/Sunsod ay) Ioj serIjue
[B89] 91} 101)s01 0} Posn st sty [, “uoldisop et ploy :om,_‘f:._o%:_\w:Gaom epUaSe e

‘0IINOS @M—VQTFOSM oy} 03} ﬁwmmd&

9(A et} stojotivded RSO o) PLs0L 01 posit SN uonddsep pjew siojewrered e

THIOAO UR 1A [ROP O) 02108 0FPo|WoUY B SUIFRUIIION 10} PIsh OSR SI
W un A9 se sotne epuede ojqeiing Fupsod S Ajpqudes sigy ey 01 juem Ao1]1 1Ry ,

OJRIIPUL O} S90S OFPO|MOUY IO L POsI S| SH] [, "0 10$ 0FPI[AOUY oY) JO Wl 2Y) e

$[1R19p SUIMO[[0] DY) SIAIS ASM 1],
"JueSR ZurlJ-O UR 0} PaIR[IOP

ST A [IGRde) Mot e (a0 AQ WSROI 011 ST 021108 0B pojnouy e Jo wondrsap 48 v oin)

e ZUR[-0 211 01 PapLaodd o 0} 0IINOS VSPILMOTY ® 1RO UOTJRULIOJUT SMO[[R dSM oY],

(45)M) jjIomouwred adInog 98pojmouy] TSl

SSOTH[R] 0S0l]) O S[I210p S9N 9ALS SUOIes SUIMO[[O] o1,],

1oy oY1 oping 03 pesn are sanyroud

[eoltowIn U ofduls AJUO "APPUAINTY *IXIU s50004d 0} $oL11110 epUsGe PoreSS1) YdIym U0 I9[[oI)

U0y ZUB[J-Q 943 Aq Uaye) SUOISLIP SUMOPIO vy} 10) sojul adueping jo judur oy smofype :
bpnbuwy o 49pj043u0,) ¢

dnng Ul Apuedylusis papuedxs Sureq
STy 9jedidijue om Jnq “pury siyy Jo si988L) VjqrIoLUoOUl JO loquinl pajrw ' sapraoid !
APUILIND ZuR[J-(O "$IUAD Alel(] PaLdSFLil A[[RUIVIUL 10) 1O s1U9AS [RUID)Xe J0j ‘ueld a1}
UI{HIA UOIJRULIOJUL O} 9}R[91 P[NOD SUOLIIPUOD 1 [, “UO[}[PUO) SUWIOS }[eME O} SpeWl pue
popuadsns aq uey uoneIndwos ® oA A£G SUROUL 9} IO}LIM IDINOG wwto_\so:vﬁw S9AI3
sbvnbuvy uablivay vpusby g

— <locking information> is provided to allow information on whether this stage needs
the plan state in READ mode or WRITE mode. If not provided, the default as-
sumption is that the stage is a RIEAD mode stage and that all effects of the stage
are created by communication with the controller (normally also saving information
in the information field of the agenda record when the knowledge source terminates
if asked to do so at the stage end). It is also possible to give information about the
specific parts of the plan state that can he READ by or WRITTEN to by this stage
to allow for selective locking strategics to be explored in future versions of Q-Plan2.

o controller priority function. To provide heuristic guidance to the controller based upon the
overall information in the agenda record nominating this knowledge source. This will only
be applied to triggered agenda entries. It may use Branch-1 and Branch-n information
[10] in an agenda entry to provide heuristic guidance to the controller.

e plan state poison handler. The function to bhe called whenever this knowledge source
terminates with a request to poison the plan state (i.e. when this knowledge source
thinks that the plan state is inconsistent and that it cannot recover from the problem
itself). This is not used within the current version of O-Plan2.

The KsF is used to build a capability library for the agent and to define the event information
that may be passed by the guards on the external event channels of the agent. Extensions to
the KsF will be needed as further refinement of the agent properties of an O-Plan2 system are

defined.

13.4.2 Agenda Trigger Language

An agenda entry can be set to await a [riggcr. T'his trigger can relate to information in the
plan state, to external events, etc. The facility can be used by a Knowledge Source writer to
allow Knowledge Source processing to be suspended at a stage houndary and made to await
the trigger condition before resumption. The responsibility for reactivating the computation is
taken by the O-Plan2 system using facilities within the Database Manager.

The trigger can be composed from the O-Plan?2 Trigger Language - which itself will evolve over
time. Triggers will be composed to form a booleau function.

The current triggers available within the O-Plan2 planner are:
o “always triggered”.
o dependencies on the plan state to be selected inclnding:

wait for a suitable effect matching some specification appears.

wait for a fully instantiated binding or a Plan State Variable.
o links to events triggers at a specific time via the O-Plan2 Diary.

e empty agent agenda.

13.4.3 Controller Priority Language

Clurrently, the O-Plan2 Controller selects agenda entries based on a numerical priority which

is simply a statically computed measure of the priority of outstanding agenda entries in a plan
state. Our aim for the future is to provide a rule based controller which can make use of priority

information provided in the form of rules in an O-Plan2 Controller Priority Language. This

concept will allow us to clarify our ideas on what information should govern controller ordering

decisions. Domain information linking to generic Controller Priority Language statements which

can affect ‘the controller decisions is likely to be considered as part of a link between Task

Formalism (TF) and the operation of the Coontroller.

| 13.5 External 1nterfaces

The external interfaces provided by the planner are:

1. Task Formalism (TF) as the language in which an application domain and the tasks in-it
can be expressed to the planner.

2. Plan View User Interface which allows for domain specific plan drawing and interaction
- to be provided.

3. World View User Interface which allows for domain specific world state simulation facil-
ities and interaction to be provided.

4. External System Interface provided by 1+ compute conditions for ways in which exter-
nal data bases, modelling systems. simulations. CAD packages, geographical information
systems, route finders, look-up tables. ete.. can he used and for ways in which these ex-
ternal systems can access plan information and provide qualifications on the continued
validity of their results where appropriate,

14 Spacecraft Command and Control Application

0O-Plan2 has been demonstrated on a number of small applications during the development of
the ideas and the prototype. The title of the project - “Spacecraft Command and Control
Using A1 Planning Techniques” - reflected a chosen application to demonstrate the ideas being
developed. The spacecraft planning and control domain formed a useful example within which
to consider the need to separate functionality in different agents with very different computation
and real-time response requirements.

This application shows the development of a plan for the control of a simple satellite we have
called EusaT (Edinburgh University Satellite). This satellite is based on the actual University
of Surrey’s successful UOSAT series of satellites. Earlier research into the application of task
planning and scheduling at Edinburgh has included work on defining a Task Formalism de-
scription for Q-Plan1 for aspacecraft similar to vosaT-11 but omitting confidential information
(which we called BOGUSAT) [16]. This was further extended in the T-scuED scheduling system
[12] which took a scheduling perspective as opposed to a task planning view as in O-Planl and
generated actual on-hoard computer Diary commands. The O-Plan2 project EUSAT model uses
the same spacecraft model as BOGUSAT.

A communications wiring harness diagram for EvsaT is shown in Figure 8.

P T R N RS RO A2 e 550 2 ROB S AR T BRI R 0, % W 00 e B B

SUN SBMNSOI —
a

horizon Sensar w

3

space dust s

digitalier —

ced 5

particie wave

telemetry

transmitter

Mode Contont.
DER: rasd P I T
ORE: * write 3 “rer o
BUFFER: read Crast ute

Figure 8: Communications Wiring Harness of the pvsar satellite
The experiments of the spacecraft are drawn on the left side of the harness and include:

1. Navigational Magnetometer [NAVMAG)

2. Sun Sensor

3. Horizon Sensor

4. Space Dust Analyser

o7}

. Digital Voice Recording (DIGITALKER)

6. Charge Coupled Device (ccD)

=1

. Particle Wave Experiment

The experiments are connected via a series of switches to a tape recorder (DsSR) and then to
either a 70cm or 2m antenna for transmission to the ground. Alternatively some experiments
can be connected directly to an antenna through line6 instead of passing through the DsR.
One of the experiments, called the DigiTalker. allows for a message to be loaded into a tape
recorder (the DCE) from the ground and subsequently re-transmitted -at a later time back to
the ground. As well as the series of experiments. the satellite must also send telemetry data to
the ground.

The movement of data from an experiment to an antenna is modelled as a set of switch settings.
" Fach switch has a valid set of inputs and outputs and these are described as follows:

Switch No Inputs Outputs
1 line0 linel tine? tined lined | lined
2 lines line6 line?
. 3 line7 lineR line9 linel0 »
4 line6 linel2 linel3 linetls .
) linel6 antenna70cm antenna2m
6 antenna7lcm antennazm ground buffer

A task given to O-Plan2 describes the requirements for work in a typical day in the life of the
spacecraft.

1. monitor_spacecraft_health: Send current telemetry data to ground.

2. capture CCD: Collect data from the ¢cp and send it to the ground via the DsR.

3. capture p-w: Collect data from the PARTICLE WAVE EXPERIMENT and send it to the 2m
antenna either dirvectly or via the nsg.

4. capture space_dust: Collect data from the SPACE DUST ANALYSER and send it to the
2m antenna either directly or via the nsg.

. DCE_communicate: Receive and re-send a message from and back to ground.

Ut

‘ The task specifies the objectives of the mission. This is a series of experiments whose data
i must be collected and transmitted 1o a ground buller via oue of two antennas. O-Plan2 is able
: to generate.a plan for such a mission and give output in a form that conld be accepted by the
| normal diary based dispatch execution svstein on hoard a simple spacecraft,

a6

The O-Plan2 planning agent has been demonstrated generating a plan for such a task and
] - - [l >

passing it to an O-Plan2 architecture based execution system for simple dispatch and monitoring

to take place. '

Other related work at Edinburgh has led to the two planning systems for the European Space
Agency. The first was the Plan-Ers [19] svstem which could generate mission plans for the
European Space Agency’s ERs-1 spacecraft. This prototype was built in the KEE [23] knowledge
representation system and uses a simple plan representation. A second system, OPTIMUM-AIV
[3], is able to generate and support the execution of plans for spacecraft assembly, integration
and verification. This second planner uses a Goal Structure based plan representation working
alongside links to a traditional project management support system (ARTEMIS [26]).

15 Related Projects

O-Plan2 is one of a set of projects at. Edinburgh grouped under the title of EUrROPA (Edin-
burgh University Research into Open Planning Architectures). The combined research of these
projects cover issues in Knowledge Based Planning and Scheduling and are anchored around
the two main, long term research projects of O-Plan2 and Tosca (The Open SCheduling Ar-
chitecture). TosCA is a variant of the same ideas applied to the area of operations management
in the factory (job shop) environment [7]. Tosca employs appropriate knowledge sources for
its domain of application (e.g. resource assignment. bottleneck analysis) which operate on an
emerging schedule state, similar to the notion of the plan state mentioned above.

Another project is investigating temporal representations for Planning and Scheduling to pro-
vides a more flexible representation of plans and schedules based on temporal logics. Planning
and Scheduling are often considered to be similar activities, though the reality is that they are
quite different. However there is undoubtably a great deal of overlap, particularly with respect
to resource handling. Our aim is to develop designs and architectures suited to both types of
problem and to develop as much common ground as is possible. 0-Plan2 plays a key role in
this plan.

A student research project [31] is investigating the requirements for a reactive execution agent
and exploring the O-Plan2 architecture to meet the requirements.

16 Future Plans for O-Plan2

The O-Plan2 project is continuing actively to develop in a number of ways.

The current O-Plan2 prototype now gives us a basis as a complete system for command spec-
ification, planning and execution control. A number of parts of the system are provided in a
very simplistic way at present. It is intended that effort will be devoted to replacement of com-
ponents in the current system with improved versions. Some O-Plan1 components for example
(such as the “Clouds” data structures for helping with TOME and GOST management [41]) have
vet to be re-implemented in the current prototype. Experiments with the integration of support
modules provided by others for time point network management and for world modelling will
be conducted. The extremely simple controller strategies used in the current implementation
will be improved upon.

There is an intention to provide an improved and better packaged version of O-Plan2 for
the Clommon prototyping Environment of the vs parra/Rome Laboratory Joint Initiative in
Knowledge-based Planning and Scheduling.

More research is planned on the Resource Utilisation Management process within O-Plan2. Our
experience on the TOSCA project and recent work on O-Plan2 are to be used to make a more
predictive resource utilisation management capability available to the planner. This should be
able to cope with a wider range of resource types. [t will also be possible to guide the search
processes using resource information rather than just pruning search as at present.

It is envisaged that a facility for plan repair in the face of alterations of task and failures in the
environment will be added. We anticipate adding a- Deeision (raph of the kind proposed by
Hayes [21] and utilised in a version of Nonlin [11].

Further effort is required to clarify and further develop the O-Plan2 component and support
module definitions, the protocols (such as the Knowledge Source protocol and the KS_USER
protocol), external interfaces (such as Tr and the external systems interface) and internal
support facilities (such as the KsF and the agenda triggering language). Involvement with
other projects and research groups will be songht 1o hroaden our perspective during this further
development.

A Janguage KRSL is now being developed on the ts barpea/Rome Laboratory Knowledge-based
Planning and Scheduling Initiative to act as a domain description language for command, plan-
ning. scheduling and control applications. It is envisaged that a pre-processor to take descrip-
tions of application domains in KrsL and to create O-Plan2 Tr from them will be investigated.

In-future, we anticipate emploving qualitative world modelling within the O-Plan2 planning
agent as demonstrated by Drabble [13] in his Fxcalibur system (based on Nonlin). This will
be used to model processes not under the control of the planner and to predict the impact of
plans on the execution environment.

It is intended that communication between the three agents in the O-Plan2 system (job as-
signer, planner and execution system) will be hrought fully into line with our philosophy on
communication via plan patches and via the NS_LENTRACT_LEFT., KS_EXTRACT_RIGHT
and KS_.PATCH knowledge sources which are the ouly ones which should make use of the event

59

channels directly.

Work is already underway on a more comprehensive execution system based on the O-Plan2
architecture [31] which could replace the simple execution system in the current prototype as a
demonstration. This work is seeking to validate our ideas about the agent capabilities needed
for communication between an execution system and a planner.

It is not envisaged that a great deal of work will be carried out in the near future on the job
assignment agent. [lowever, we have a desire to im)prove the quality of the User Interface and
the support available for the effective writing of domain information about an application (in
TF), the specification and alteration of tasks set for the planner and execution system, and the
maintenance of a user view of the state of planning. execution and the external world model.

Gl

17 Concluding Remarks

O-Plan?2 provides an Architecture in which different agents with command (job assignment),
planning and execution monitoring roles can be huilt. The architecture seeks to separate out
the following components:

o the representation of the processing capabilities of an agent (in Knowledge Sources),

¢ the computational facilities available to perform those capabilities (the possibly multiple
Knowledge Source Platforms),

o the Constraint Managers and commonly used Support Routines which are useful in the
construction of command. planning and control systems.

o domain and task information about the application (Domain Information).
o the internal model of the task. plan and execution environment (in the agent’s Plan State),

o the decision making about what the agent should do next (in the Controllcr), and

the handling of communication between one agent and others.

The main contribution of the O-Plan2 research has been in providing a complete vision of a
more modular and flexible planning and control system incorporating a1 methods. This report
is intended to describe this main contribution in detail. '

A “state-of-project” prototype of O-Plan2 has heen provided which is a complete. even though
simplified, demonstration of our vision of a multi-agent system where agents are based upon the
O-Plan2 architecture and where communication between the three agents for job assignment,
planning and execution monitoring is in a regular format.

Most effort in the current O-Plan2 prototype has been devoted to the provision of a planner
which uses a hierarchical partially ordered activity representation of plans as its basis. The aim
has been to replicate the functionality of earlier Edinburgh planners such as Nonlin [39] and
O-Planl [10] but in an improved computational framework which is more flexible and can be
made more widely available than those carlier systems.

The prototype of O-Plan2 includes a number of sample application domain descriptions and
demonstration files to show O-Plan2 in use. A demonstration of the intended user interface for
O-Plan2 has been created which uses the widely available AutoC'AD package [{] to show how
the svstem can link to such packages.

A demonstration of spacecraft planning and execution monitoring has heen created for a simple,
but realistic, spacecraft model hased on an actual satelite.

£ 1

References

[1]
2]

(3]

[13]

(1]

Allen, J., Hendler, J. & Tate. A. Readings in Planning. Morgan- Kaufmann 1990,

Alvey Directorate (1987) Alvey Grand Meeting of Community (lubs. Available through
IEEE, Savoy Place, London.

Arentoft, M.M., Parrod, Y., Stader, J.. Stokes. 1. & Vadon. 1. OPTIMUM-ATV: A Plan-
ning and Scheduling System for Spacceraft ATV Telematics and Informatics Vol. 8, No. 4,
pp. 239-252, Pergamon Press.

AutoDesk AutoCAD Reference Manual. 1989,
AutoDesk Autol.ISP Reference Maunual. 1989,

Bell, C.E. and Tate, A. Using Temporal Constraints to Restriet Search in a Planner.
Presented at the Third Workshop of the Alvey INBS Progranmme’s Special Interest Group
on Planning, Sunnigdale. Hants. January 1985, Also available as ALALTR-5.

Beck, H.A. TOSCA: The Open SCheduling Arelitcciure. Papers of the AANAT Spring Svm-
posium on “Practical Approaches to Scheduling and Planning™. Stanford. C'A. USAL March

1992.

(ffha,plﬁa.n, D. Planning for conjunctive eoals. Artificial Intelligence Vol 22, pp. 333-377.
1987.

Currie, K.W. and Tate. A. (1985) O-Plan: Control in the Open Planning Architecture, Pro-
ceedings of the BCS Expert Svstems 85 Conference. Warwick, UK. Cambridge University
Press. :)

Currie, K.W. & Tate, A. O-Plan: the Open Planning Architecture. A 1'//2/[('/'}/1 Intelligence
Vol 51, No. 1, Autumn 1991. North-Holland.

Daniel, L. (1983) Planning and Opcrations Besearehin Artificial Intelligence: Tools, Tech-
niques and Applications (eds.) O'Shea and Fisenstadt, Harper and Row. New York.

Drabble, B. Mission Scheduling for Spacceraft: The Diavies of T-SCHED, In the Pro-
ceedings of First International Conference on Expert Planning Systems. Metropole Hotel,
Brighton, June 1990. Institute of Eléctrical Engincers. Savoy Place, London.

Drabble, B. Planning and reasoning with processes. PProcs. of the Sth Workshop of the
Alvey Planning sig, The Institutc of Elcetrical Fngincors, November, 1988, Full paper to
appear in Artificiad Intelligence Jowral, 1992, ’

Drabble, B. and Tate. A.. Using a C' VD) systen as an intcrface to an AT Planner, Furopean
Space Agency Conference of Space Telerobotics. Furopean Space Agencv. 1991, Noordwijk,
Holland.

Drummond. M. & Curdie. K. Exploiting temporal coherence in nonlinear plan construction,
Procs. of 11CA1-89, Delroit.

[16]

(18]

[19]

[20]

Drummond, M.E., Currie. KA. and Tate. A, (1988) O-Plan mects T-SAT: First results
from the application of an AI Planncr to spaccerafl mission scquencing. ATAI-PR-27, ATAIL
University of Iidinburgh.

Drummond, M.E., & Tate, A. (1992) PLANIT Interactive Planners’ Assistant - Rationale

“and Future Directions, ATALI-TR-108, ATAL University of Edinburgh.

Fikes, R.E., Hart, P.E. and Nilsson. N.I1. (1972) Learning and Feecuting Generalized Robol
Plans, Artificial Intelligence Vol. 3. :

Fuchs, J.J., Gasquet, B., Olalainty. B.. & Currie. K.W. (1990) Plan-ERS1: An Expert
System for generating Spacecraft Mission Plans, Proceedings of the First International
(C'onference on Expert Planning Systems. Brighton. UK. Available from IEE, London.

Georgeff, M. P. and A. L. Lansky (1986) Proccdural Knowledge, in Proceedings of the
IEEE, Special Issue on Knowledge Representation. Vol. 74, pp 1383-1398.

Mayves, P.J. (1975) A representation for robot plans, 1JCAL-75, Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. Thilisi. USSR.

Mayes-Roth, B. & Hayes-Roth. I'. A cognitive model of planning. Cognitive Science, pp
275 to 310. 1979.

] Intellicorp, KET - Knowledge Fngineering Fnvironment Manuals.

Lesser, V. & Erman, L. A retrospective view of the Hearsay-1I1 architecture. In procs. of
LCAI-77, pp. 27-35, 1977. ‘

Liu, B., Ph.D) Thesis, AKnowlcdgc Bascd Seheduling. Edinburgh University, 1988.

Lucas Management Systems Lid. ARTEMIS Project Management Svstem.

-

Malcolm, C. and Smithers. T. (198R) Prograniming Assembly Robots in terms of Task
Achieving Behavioural Modules: First Feporimental Resulls, in Proceedings of the Second
Workshop on Manipulators. Seusors and Steps towards Mobility as part of the International
Advanced Robotics Programme. Salford. UK.

McDermott, D.V. A Temporal Logic for Reasoning about Processes and Plans In Coognitive
Science, 6, pp 101-155. 19785.

Nii, P. The blackboard model of problent solving. In Al Magazine Vol.7 No. 2 & 3. 1986.

Nilsson, N.J. (1988) Action Nclworks. Proceedings of the Rochester Planning Workshop,
October 1988,

Reece. G.A. (1992) Reactive Ereewlion in a Conmand, Planning and Control Environment,
Ph.D Dissertation Proposal. Departinent ol AT Discussion Document. The University of
dinburgh.

Rosenschein. S.)..and Kaelbling, LD, (1957) The Synthesis of Digital Machines with Prov-
able Epistemic Propertics. SR AT Ceonter Techiical Note (12,

(3

[33)

[34]

[35]

[16]

[47]

Sacerdoti, E. A structure for plans and behaviours. Artificial Intelligence series, publisher.

North Holland, 1977.

Sadeh, N. and Fox, M.S., Preference Propagation in Temporal/Capacity Constraint Graphs,
Computer Science Dept, Carnegie-Mellon University, 1988, Technical Report CMU-CS-88-
193. .

Smith, S. and Fox, M. and Ow, P.S.. Constructing and maintaining detailed production
plans: Investigations into the development of knowledge based factory scheduling systems,
Al Magazine, 1986, Vol 7, No.4

Smith, J. and Gesner, R. {1989) Inside AutoCAD. New Riders Publishing Cp., Thousand
Oaks, Ca.

Smith, J. and Gesner, R. (1989) Inside AutoL.ISP. New Riders Publishing Cp., Thousand
Qaks, Ca.

Sridharan, N. Practical Planning Systems. Rochester Planning ﬂ"orl.t.s-ho]). AFOSR, 1988.
Tate, A. Generating project networks. In procs. DCAL-TT, 1977.

Tate, A. (1984) Planning and Condition Monitoring in a FAMS, Proceedings of the Inter-
national Conference on Flexible Automation Systems, Institute of Flectrical Engineers,
London, UK.

Tate, A. (198'6) Goal Structure. Holding. Periods and ~Clouds”, Proceedings of the Reason-
ing about Actions and Plans Workshop. Timberline Lodge, Oregon. USA. Eds, Georgefl,
M.P. and Lansky, A. Published by Morgan KNaufmann.

Tate, A. & Drabble, B. O-Plan2: Choice Ordering Mechanisms in an AT Planning Architec-
ture in Proceedings of the 1990 DARPA Workshop on Innovative Approaches to Planning,
Scheduling and Control, San Diego. California. USA on 5-8 November 1990, published
by Morgan-Kaufmann. Also updated with B.Drabble as ATAI-TR-86. ATAIL University of
FEdinburgh.

. Tecknowledge, S.1 Product Description, Tecknowledge Inc., 525 University Avenue, Palo

Alto, CA 91301. 1988.
Stefik, M. Planning with constraints. In Avtificial Intelligence. Vol. 16, pp. 111-140. 1981.

Vere, S. Planning in time: windows and durations for activities and goals. IEEE Transac-
tions on Pattern Analysis and Machine Intelligenee Vol 5. 1981,

Wilkins, D.E. (1985) Recovering from crccution crrors in SIPE, Computational Intelligence
Vol. 1 pp 33-45.

Wilkins, D. Practical Planning. Morgan Navfinan. 1988.

#U.S. GOVERNMENT PRINTING OFFICE: 1992-710-093-60058

01

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (ch) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

	6.2 Choice Ordering hfecliani\ttis in O-l™iilli2
	6.2.1 Iinowledge Source Stilgch
	6.2.2 Knowledge Soiircc Triggcrh
	6.2.3 C‚ompound Agenda I<nt rics
	6.2.4 Controller Priorit io>

	7 0-Plan2 Architecture
	7.1 Domain Tiiforination
	7.2 PlariState
	7.3 Tinowledge Soitrres
	T I Support Iblotlrlles
	7.5 (ﬁontrollcr

	7.(j Discussion
	11.3.4 Planner User Role
	11.3.6 System Deve1opc)r Ilol(1

	2 O-Plan2 Arrliitectilre

