
�

O�Plan� the Open Planning Architecture

Ken Currie � Austin Tate

AI Applications Institute

University of Edinburgh

�� South Bridge

Edinburgh EH� �HN
United Kingdom

Revised November ����

Abstract

O�Plan is an AI planner based on previous experience with the Nonlin planner and its deriva�
tives� Nonlin and other similar planning systems had limited control architectures and were only
partially successful at limiting their search spaces� O�Plan is a design and implementation of a
more �exible system aimed at supporting planning research and development� opening up new
planning methods and supporting strong search control heuristics� O�Plan takes an engineering
approach to the construction of an e�cient domain independent planning system which includes
a mixture of AI and numerical techniques from Operations Research�

The main contributions of the work are centred around the control of search within the O�
Plan planning framework� and this paper outlines the search control heuristics employed within
the planner� These involve the use of condition typing� time and resource constraints and domain
constraints to allow knowledge about an application domain to be used to prune the search for
a solution�

The paper also describes aspects of the O�Plan user interface� domain description language
�Task Formalism or tf� and the domains to which O�Plan has been applied�

� History and Technical In�uences

O�Plan was initially conceived as a project to provide an environment for speci�cation� generation�
interaction with� and execution of activity plans� There are three distinct components �see �gure ���
the planner�s workstation or user interface� the plan generator� and the execution monitoring sys�
tem� The main e	ort has been concentrated in the area of plan generation� Plan generation is
di
cult and it is a classic example of a search problem in AI� The main target of this research
is therefore search space control� The outputs of this study are a better understanding of the re�
quirements of planning methods� improved heuristics and techniques for search space control� and
a demonstration system embodying these results in an appropriate framework and representational
scheme�

The story of O�Plan starts from a software engineering viewpoint� namely how to build an open
architecture for an AI planning project with the aim of incrementally developing a system resilient
to change� It was our aim at the start of the project to build a system where it was possible to
experiment with and integrate developing ideas� Further� the ��nal� system was to be tailorable
to suit particular applications� Section brie�y describes the components of the system in which
the overall controller and some of the internal �knowledge sources� can be customised or replaced

by the end user� O�Plan is intended to be a domain�independent general planning and control
framework with the ability to embed detailed knowledge of the domain� Of course� ���� �exibility
can never be achieved� The user does have to live with some basic design features and planning
philosophies� The primary limitation being the least commitment approach taken by the system�

O�Plan grew out of the experiences of other research into AI planning� particularly with Nonlin ����
and �blackboard� systems ����� We have included a taxonomy of earlier planning systems ��gure �
which places O�Plan in relation to the in�uences on its design� It is assumed that the reader is
familiar with these works as the bibliography does not cover all of them �see ��� for an introduction
to the literature of AI planning��

The main AI planning techniques which have been used or extended in O�Plan are�

� A hierarchical planning system which can produce plans as partial orders on actions �as
suggested by Sacerdoti ������ though O�Plan is �exible concerning the order in which parts of
the plan are expanded�

� An agenda�based control architecture in which each control cycle can post pending tasks dur�
ing plan generation� These pending tasks are then picked up from the agenda and processed
by appropriate handlers �hearsay�ii ��� uses the term Knowledge Source for these handlers��

� The notion of a �plan state� which is the data structure containing the emerging plan� the
��aws� remaining in it� and the information used in building the plan� This is similar to the
work of McDermott �����

� Constraint posting and least commitment on object variables as seen in molgen �����

� Temporal and resource constraint handling� shown to be valuable in realistic domains by
Deviser ���� has been extended to provide a powerful search space pruning method� The
algorithms for this are incremental versions of Operational Research methods� O�Plan has
integrated ideas from or and AI in a coherent and constructive manner�

� O�Plan is derived from the earlier Nonlin planner ���� from which we have taken and extended
the ideas of Goal Structure� Question Answering �qa� and typed preconditions�

� We have maintained Nonlin�s style of task description language �Task Formalism or tf� and
extended it for O�Plan�

As with most planning systems intended to operate in realistic domains� control of the search and
the management of con�ict between competing actions has been the focus of the work� The eventual
aim of all such systems is to incorporate techniques which should scale up to tackle the expected
complexities�

� O�Plan Architecture

O�Plan is a domain independent planning system and its structure is shown in �gure ��

�

O�Plan is built up in a succession of layers of functionality in order to support the control require�
ments in a concise manner� At the lowest level are the basic support modules such as the O�Base
functions in context database� This is used to provide support for e	ect and condition mainte�
nance in a context layered fashion� In turn the e	ect and condition manager maintains �clouds�
of �aggregated� side e	ects and holding periods �ranges� for e	ects contributing to the satisfaction
of necessary conditions in the plan state being developed ����� Moving up the layers� this is turn
provides support for qa �Question Answering� which is the basic reasoning component within the
system� qa results drive plan state alterations made by the planner�s knowledge sources which in
turn are maintained by the net management module� Thus� at the highest level of the structure of
O�Plan are the planner�s knowledge sources� which include a means to interact with the user�

The Task Formalism or tf domain description is compiled into data structures� to be used during
the plan generation process � in particular� activities are represented as schemas� The left hand side
of �gure � denotes the plan state� which comprises the emerging plan �based on the partial order of
activities�� the list of plan �aws� and internal detail such as the Goal Structure �c�f� Nonlin�s gost
���� and sipe�s plan rationale ������ the e	ects of activities �c�f� noah�s Table of Multiple E	ects
or tome ����� and plan variables� The �aws are posted onto agenda lists� which are simply lists
of outstanding tasks to be performed during the plan generation phase� and are picked o	 by an
overall controller to be processed by the knowledge sources in the middle of the diagram� These in
turn may add detail to the plan state� for example by expanding actions to greater levels of detail�
establishing how conditions are satis�ed �via the qa procedure� or posting new �aws as a result of
detecting interactions�

The process has some similarity to the basic �ow of control in blackboard systems� The design� cou�
pled with the modularised software engineering approach taken� has provided O�Plan with su
cient
�exibility to support our research� There are a range of �aw types and each is matched with an ap�
propriate knowledge source which can process the particular �aw� Recognised �aw types �and hence
knowledge sources� include expand� conditions� linkings� effects� variable bindings and
even the user� This approach allows for the extension of the capabilities of the system� Table �
shows the set of knowledge sources used in O�Plan�

Flaw descriptions need not be fully instantiated� However� the knowledge sources can only process
fully speci�ed tasks so O�Plan maintains two agenda lists holding outstanding �aws� The main
agenda is used to post fully speci�ed �aws� which can be immediately scheduled by the controller
for processing� and a second agenda holds those �aws which require further detail before they can
be released for handling by the relevant Knowledge Source� Once these are fully detailed they can
be moved over to the main agenda and scheduled as normal� There are scheduling related agenda
entries to give �aw ordering advice to the controller �we call these sequence agenda entries��

Control of the agendas centres around the ability to pick o	 the �next most opportune� �aw at
each planning cycle �a cycle starts and �nishes with the picking and processing of a �aw� and this
relies on being able to recognise what is the next best thing to do� It is di
cult to achieve this
ideal at this primitive �aw level for all �aw types as the controller cannot be equiped to know every
issue of search space control� some aspects require detailed knowledge which is domain speci�c� for
instance� The various means to achieve conditions� in particular� o	er the opportunity of control
of the search at a di	erent level in the system from the controller and this became one of the issues
of this study� Our understanding of the dynamics of the plan generation process is the limiting

�

Knowledge Sources

expand node Uses schemas to add detail to the plan by ex�
panding actions

condition Satis�es the various types of conditions on ac�
tions in appropriate ways

effect Records e	ects and checks for interactions
jotter effect Allows for information to be associated with

the overall plan state rather than with some
speci�c action

object var Restricts or binds the value of a variable in
the plan state

alternative allows alternative choices to be represented
and considered

or Handles the network linking disjunctions and
alternative variable bindings suggested by the
qa process

sequence Logically relates a number of plan �aws to be
scheduled in a pre��xed order

user In the prototype O�Plan system� the user has
access via a high priority knowledge source
with interaction capability with the system

Table �� Main O�Plan Knowledge Sources

�

factor to the implementation of a totally dynamic �aw controller which can exhibit opportunistic
behaviour� One in�uencing factor� for example� is recognition of �aws on the agendas which have
become out of date� If the introduction of an e	ect or condition requires a series of ordering links
to be included in the partial order �held as a type of �aw�� then we have to be able to recognise
that working on one suggested linking may make other �aws already on the agenda out of date�

Let�s be clear about why there may be more than one suggested link on the agenda at any point
in time �see Sacerdoti ����� Tate ���� or Wilkins ���� for description of resolving interactions�� If
an operator is introduced into the plan it may itself introduce more than one effect �as well as
conditions� actions� etc��� If in introducing these e	ects into the plan we �nd that each causes
a �di	erent� potentially harmful interaction in the existing partial order then we have to resolve
these interactions� This is done in O�Plan� as in Nonlin� by suggesting linking strategies between
nodes in the plan which resolve the problem � in general there will be choice of how to link to
remove any single interaction� If we maintain the aim of search space completeness then we have
no a priori reason for performing one linking action before any other� O�Plan recognises this and
hence puts these �aws on the agendas awaiting opportunistic scheduling by the controller� When
one of these �aws is actually handled then the others may become out of date� since the partial
order may further restrict the orderings possible� It has to be reworked to re�ect the changes made
to the network� O�Plan includes means to e
ciently limit outstanding order linking �aws as such
changes take place� O�Plan however does not perform true opportunistic scheduling in all respects�
It is a manifestation of the general problem of the ordering of possible choices which provided the
focus of much of our work�

O�Plan currently assigns priorities to every �aw placed on the agendas at the time they are placed�
The priorities are calculated from the �aw type and the degree of determinacy of the �aw which is
a measure of choice within the �aw� Flaws may still contain choice� even when all detail describing
the choice becomes fully ground and the �aw is thus available to be scheduled for processing by the
relevant knowledge source� The ability to build up triggering information around an agenda entry
in an incremental way prior to knowledge source activation is an important feature that ensures
that work done in checking conditions can be saved as far as possible� There are some similarities
to newly proposed real�time responsive architectures such as rt�� �����

The problem of ordering of choice making is crucial and often ignored� In his work on the tweak
planner� Chapman ��� says �I�ll assume that the nondeterministic control structure always guesses
right the �rst time�� He was talking about goal ordering � at this point� and this is probably
the most important ordering problem in planning but not the only one� To motivate the problem
even more� consider how fast the search space de�ned by Chapman�s Modal Truth Criteria �the
equivalent of Nonlin and O�Plan qa� might expand� Suppose that a typical partial plan for the
block world has on average � outstanding goals �hardly an excessive number�� Also� suppose that
there are on average � ways to achieve each of these goals �very plausible� with the possibilities of
binding variables� ordering operators� and introducing new operator schemata�� This gives us� on
average� � ways to change an arbitrary block world plan into another one� Each change is designed
to remove �at least� one goal �and perhaps introduce others�� For an average block world problem�
suppose that � plan modi�cations are required to change an initially provided plan into one which
has no outstanding goals� This tells us that breadth��rst search will explore �at worst� �� partial

�
and ordering � which goal to tackle next�

�

plans� For a seemingly trivial block world domain� a search space of this size is remarkable� If a
means of correctly ordering these goals can be found �planning without the guesswork� then this
space will be drastically reduced� surely one of the prime aims of planning� We cannot realistically
expect such search space control issues to lie solely with the system controller�

Dependency information to guide choice is another story and is di
cult to use� This may seem
surprising since several systems already claim to be using �dependency directed backtracking�� In
practice� only limited use of dependencies is made in implemented planners� Dependency directed
backtracking �and other backtracking schemes� seems rather impotent when one considers their
role in search guidance� They simply allow you to search the search space without an excess of
repeated e	ort� What one really wants to do is prune the search space� This is the subject of
section � of this paper�

Finally control in O�Plan can be driven by the user� The user can elect to control each and every
cycle of the planning phase� making every choice at every stage� or the user can elect to intervene
selectively or even not at all� The �computer� system can detect the user�s desire to intervene and
can schedule a high priority user �aw on the agendas for immediate attention� another example
of uniformity in the system� In practice though it is very di
cult for even an experienced user to
take e	ective control of the system� This is due to the complexity of the AI planning process itself�
Further details of control in the Open Planning Architecture can be found in ����

� Domain� Task � Plan Representation

In O�Plan we were guided by the desire for uniformity in task description� goal or problem setting�
action representation �the inputs� and plans �the output�� The representation chosen is a means
of specifying the overall e	ects of the application of an operator on a world state� Operator
descriptions� or operator schemata� are action characterisations� Each schema describes an action
�or more generally a process� in terms of the action�s preconditions and e	ects� relevant temporal
and resource constraints� and its action description� As with many other planning systems O�Plan
adheres to the notions �rst used in a basic form in strips��� to describe these preconditions and
e	ects of the operators as well as describe the action associated with the operator� O�Plan operators
make use of a basic building block which is a pattern which can represent a function of arguments
with a value� not necessarily restricted to binary truth values�

ffunction arg� arg ���g � value
e�g� fon Block� Blockg � true

f�lter colour camera �g � red

Supporting these patterns is the functions�in�context datastore which holds the entity�relationship
data as statements with values in context ���� �also called �viewpoints� or �possible worlds� in
other systems�� Context layering provides e
cient storage of a possibly rapidly changing database
by layering alterations made to earlier states of the database� This allows search to be continued
in parallel if necessary in the system� by supporting the backtracking functions required during the
�failure of the� search processes� The model also allows for retrieval of partially speci�ed items in
the database� Except for the �rst word �the function predicate� the other terms in a pattern can

�

specify ground or non�fully ground atoms� It can even include other nested patterns� Support for
these operations in O�Plan is e
cient then in terms of storage and lookup� Hardware support for
the functions�in�context data model has been considered �����

Another important building block for the data structures used in O�Plan is that of min�max pairs
specifying lower and upper bound values on some numeric quantity� Numeric quantities are impor�
tant in the system as O�Plan uses time and resource constraints to improve search space pruning�
The algorithms implemented to perform this pruning are most appropriate in a planner where
the values of plan variables a	ect actual resource usage speci�cations� start times� �nish times�
durations� and waits �or delays� on activities� A fundamental philosophy in O�Plan is that of a
least�commitment approach� thus it is possible that plan variables will not be fully instantiated at
intermediate stages of the planning process� So� a pair of numeric bounds are used to represent
any uncertain numeric quantity in the system�

The numeric lower and upper bounds �which might be as imprecise as � to in�nity� may be derived
from symbolic formulae containing other variables which are not fully instantiated� As variables are
restricted or further instantiated� the formulae a	ected are reconsidered to see if improved �tighter�
numeric bounds can be computed� Symbolic interval arithmetic� such as described in Bundy ����
may be used to derive this� though this has not been included at this stage�

Pairs of bounds on quantities which a planner must reason about are useful representational tools
in the following situations�

� Aggregation over alternatives �e�g� resource usage may not be uniquely de�ned until one of
several alternative methods of performing an activity is chosen��

� Uncertainty in modelling the application domain �e�g� inability to specify the exact duration
of an activity or know the exact execution time situation��

� Flexibility in modelling the application domain �e�g� an activity may start at any time during
some given interval��

In practice� there may be a third component of any numeric variable which we term the projected

value� This is used to record predictions of actual values for heuristic selection� among other
purposes�

��� The Operators

The actions of the domain are described to the system through the Task Formalism �tf� operator
representations� These operators have to include the pattern based descriptions �e	ects� precondi�
tion� etc� as well as the numerical constraints and any plan fragments outlining the action expansion
details of the �high level� operator� O�Plan uses the ffunction arg� arg� ���g � value nota�
tion for e	ects� where the value is true by default but can take any value including false� numbers�
elements of enumerated sets� etc� In this way� only an effect list is necessary rather than separate
add and delete lists that were required in strips since the value false can be used to �delete� an
e	ect� The aim of the Task Formalism is to produce an improvement in descriptive power over the
previous plan description language used in Nonlin� We are aware of the limitations of the ad�hoc

�

nature of the result� We have been pre�warned� Bundy ��� noted that the AI world �abounds with
plausible looking formalisms� without a proper semantics� As soon as you depart from the toy
examples illustrated in the paper� it becomes impossible to decide how to represent information
in the formalism or whether the processes described are reasonable or what these processes are
actually doing�� Even though we have gone for expressiveness� coupled with ease of use� the actual
coding up of a domain description in tf remains a di
cult job�

One powerful means of restricting search in a planner is to recognise explicit precondition types�
as introduced into Nonlin� Conditions play a greater role in O�Plan than in previous systems since
there is no special notion of goal� Nonlin style goals are simply achievable conditions in O�Plan�
Other condition types include�

supervised� satis�ed by a sub�activity within the same overall activity�

unsupervised� satis�ed outwith the overall activity by some outside agent� possibly another �con�
tractor� working earlier or in parallel�

query� it was recognised that some conditions were used in operator descriptions in earlier plan�
ners to ensure a variable was bound at some required point� Making this explicit can give
the planner a lot of information about the importance or otherwise of the work it will be
involved in� Some of the success of this project relates to the embedding of Goal Structure�
or teleological information� into the eventual plan structure and this condition type shows a
simple example of noting a low level of commitment to a chosen binding�

only use if� of similar intent to the Nonlin holds or usewhen condition � but this tidies up the
confusion and commitment to satisfaction that was required in that system� This is satis�ed
by environmental information known at the time this condition becomes relevant� It has the
e	ect of operating as a gate condition on the applicability of operators�

Other condition types can be identi�ed but the problem is where to stop� This is worthy of a
serious study� in its own right� into control in planners via condition types and could form an ideal
Ph�D� topic�

Condition typing allows information to be kept about when� how and why a condition present in
the plan has been satis�ed and the way it is to be treated if the condition cannot be maintained�
However use of this information itself will almost certainly commit the planner to prune some of
the potential search space thereby losing claims of completeness of search if the tf writer uses an
inappropriate condition type� Unfortunately this puts a great burden on the domain writer and
makes domain writing a job more suited to the AI or search space expert� The other extreme is
the tweak type ����� formal approach which almost necessarily includes no search control issues�
Chapman�s work therefore provides a description of the search space� but not a speci�cation of how
to control search in that space�

Now let us see how these details are used in writing operator descriptions�

�Nonlin employed the usewhen condition type as a �lter on the applicability of a particular schema to the current

situation� For instance if objects to be moved were heavier than the limit on a particular lifting device then schemas

mentioning this device should not be considered�

�

��� A Block Operator

The operator schema below shows how a simple puton operator for the block world would look�
This is not the only way to code up this particular action descriptions�

schema puton�

vars �x � undef� �y � undef� �z � undef�

expands �put �x on top of �y��

only	use	for	effects

�on �x �y� � true�

�cleartop �y� � false�

�on �x �z� � false�

�cleartop �z� � true�

conditions only	use	for	query �on �x �z� � true�

achievable �cleartop �y� � true�

achievable �cleartop �x� � true�

endschema�

The expands statement describes the parameterised action description� used in this instance to an�
notate a single plan network node that would result from using this scheme� only use for effects

and general effects are separated to di	erentiate between those e	ects that would provide a rea�
son for using the schema and those which are regarded as side e	ects� This operator schema has no
side e	ects � all the e	ects available are considered as usable to satisfy conditions elsewhere within
a plan� Note that there is no separate add and delete list for the e	ects but that there is the notion
of retraction or negation of an e	ect using the value associated with the e	ect�

An operator schema can be thought of as a triangle with two points of entry� One relates to the
possible use of a schema to provide an e	ect to satisfy a condition �this is the case for this block
world schema�� the other as a means of re�ning or expanding an action to a lower level of detail�
Look below for an example of this� The third side of this triangle is the pre�conditions�

��

�
�
�
�
�
�
�
��JJ

J
J
J
J
J
JJ

� �

�

operatorconditions e	ects

expansion

The conditions in puton are split between two that are required to be achieved during the planning
process in order to be able to use this schema �equivalent to goals in Nonlin�� and one which is
used to bind a variable� This is an internal consideration for the planning system� but can be read
as �I need to know� at some stage� what block �X is on� and you can be assured that it is on
something�� This is an indication that condition typing can be extended to assist with the problem
of choosing the time to seek to make a variable binding�

��� An Action Oriented Operator

The following two operators introduce other features of tf� almost completely orthogonal to those
above� However� these operators are more typical of those used in realistic application of O�Plan as
against the more puzzle oriented operators used in domains such as block stacking� The following
house building examples show the use of the expands statement as the entry point to the schema
in order to re�ne a high level action into lower levels of detail� This is the more normal use of
tf� and is the way in which hierarchical planning operates in O�Plan� The nodes and orderings

statements introduce the plan fragments which provide this expanded detail� We also introduce
other condition types into this example� and show a few examples of how the min�max bounds
on numerical quantities are used �more would be present in a full description of the operators
shown�� Remember that O�Plan uses both time and resource constraints to prune the search
space� The information to allow O�Plan to do this comes through operator and task descriptions�
Time windows can be speci�ed on start� �nish and duration times of activities and on delays
between successive activities� and denote times which are between� occurs at� after� before or
even ideal for the activity� which in turn is attached to a node in the expansion �and therefore
eventually the plan�� The notation used below speci�es day and time of day� it is terse and future
systems would need to associate calendars with the internal time representation� The resources
are speci�ed similarly with resource type and the optional unit description� The importance and
handling of these speci�cations is explained later� The resource speci�cations are obviously explicit

��

speci�cations but we realise that other resource con�icts play a big part in plan generation and we
discuss later how these con�icts necessarily introduce the need for a scheduling line of reasoning to
be taken during planning�

schema build�

expands �build house��

nodes � action �excavate� pour footers ��

� action �pour concrete foundations ��

 action �erect frame and roof ��

� action �lay brickwork ��

� action �finish roofing and flashing ��

 action �fasten gutters and downspouts��

� action �finish grading ��

� action �pour walks� landscape ��

� action �install services ��

�� action �decorate ��

orderings � ���� �� � ����
�
 ���� �� � ���� ��

� ���� � ���� �� � ���� ��

conditions supervised �footers poured � at � from ����

supervised �foundations laid � at
 from ����

supervised �frame and roof erected� at � from �
��

supervised �brickwork done � at � from ����

supervised �roofing finished � at from ����

supervised �gutters etc fastened � at � from ���

unsupervised �storm drains laid � at ��

supervised �grading done � at � from ����

resources bricklayers � between � and � persons at ��

time	window start between �����
���� and �����
���� at ��

start between ���������� and ���������� at
�

endschema�

schema service	��

expands �install services��

only	use	for	effects �services installed� � true�

nodes � action �install drains ��

� action �lay storm drains ��

 action �install rough plumbing ��

� action �install finished plumbing��

� action �install rough wiring ��

 action �finish electrical work ��

� action �install kitchen equipment��

� action �install air conditioning ��

orderings � ����
�
 ���� �� � ���� �
 ���� �� � ���� ��

conditions supervised �drains installed � at
 from ����

supervised �rough plumbing installed� at � from �
��

�

supervised �rough wiring installed � at from ����

supervised �rough plumbing installed� at � from �
��

supervised �rough wiring installed � at � from ����

unsupervised �foundations laid � at ��

unsupervised �foundations laid � at ��

unsupervised �frame and roof erected � at ��

unsupervised �frame and roof erected � at ��

unsupervised �basement floor laid � at ��

unsupervised �flooring finished � at ��

unsupervised �flooring finished � at ��

unsupervised �painted � at �

endschema�

Two schemata are included here demonstrating the hierarchical nature of tf� as the build schema
above contains actions further re�ned by the install services schema below �� In this application
most e	ects are introduced at the lowest level of description� The use of this style of description is
in contrast to that in the block world example given earlier�

��� A Goal Schema

For uniformity� problems are set to the planner in exactly the same way as describing an operator�
though the schema name used starts with the keyword pre�x goal � Here is an example of the
Sussman anomaly in the block world ����� Recall that the a condition or e	ect has a
tt true value by default� In fact much of this rather explicit description would be available by using
defaults� essentially allowing only the initial e	ects list and the �nal achievable conditions list to
be given�

schema goal	sussman�

only	use	for	effects �goal� at ��

nodes � start�

� finish�

orderings � ���� ��

conditions achievable �on a b� at ��

achievable �on b c� at ��

effects �on c a� at ��

�on a table� at ��

�on b table� at ��

�cleartop c� at ��

�cleartop b� at ��

endschema�

�Nodes not explicitly mentioned in the orderings statement are considered to be unordered with respect to the

other nodes� i�e� they are in parallel with the other nodes�

��

Although this looks lengthy� it is essentially a template with some detail edited into it� Proformas for
goal schemata are used in the front�end to the O�Plan system to simplify this� The conditions are
used as the means of describing the �nal �or goal� state requirements and the effects are used to
describe the initial world state� Planning systems generally assume that the initial state description
is complete� though the �nal state need only mention those conditions that must necessarily hold�
This requirement may restrict the applicability of such systems� The nodes statement introduces
a plan expansion� which in this case is a dummy plan� our starting point� At any stage of plan
generation there is always a complete plan with outstanding ��aws�� Here the outstanding plan
contains two dummy nodes one following the other� and the �aws are the two conditions that are
not yet achieved� There is a complete plan at any point of the process� At the end� success is
implied by there being no outstanding �aws�

To initialise the house building example the goal schema is as follows�

schema goal	build	house�

only	use	for	effects �goal� � true at ��

nodes � start�

� finish�

 action �build house��

orderings � ����
�
 ���� ��

endschema�

Here there is a third node in the initial plan which �completes� the work of building a house� The
�aws in this plan is that the action mentioned is not primitive and must be further expanded� Note
the ordering� our convention always has node � as the start node and node as the �nish node of
a plan� This assists in automatic manipulation of goal proformas in a suitable User Interface�

��� Plan Representation

The basic plan representation in O�Plan is based on the partially ordered network of activities as
used in noah ���� with the action being represented by the node in this network� This partial
order is an important component of the main data structure in O�Plan� namely the plan state� At
any stage of the planning process all relevant information required in the plan is contained in this
structure� This includes all information about alternative paths still to be searched in the space�
non�fully ground variables in the plan� the Goal Structure and the �aws still outstanding� Within
O�Plan� the plan state is held in a �context layered� fashion to allow O�Plan to explore alternatives
without generating very large internal structures�

Search in O�Plan is goal directed and progresses through a space of partial plans with the application
of a planning operator transforming one partial plan into another� This is a very di	erent search
regime from that of simple state space search� The representation of plans as partial orders of
action descriptions leads quite naturally to the use of a least commitment approach during search
since the partial order deliberately does not commit to total action ordering� until such time as
the plan is executed� On top of the least committment to action orderings� O�Plan employs a least
committment approach to variable binding and operator selection�

��

The Goal Structure �gost� in Nonlin has been adopted and extended to hold information giving
detail of the scope of protection of an e�ect required to satisfy a condition� This is in the form

f� how �� what �� from �� to �g

e�g� fachieved by linking� fon block� block�g � true� 	
 ��� �g

This example says that a condition fon block� block�g�true is required at node � and is satised
by virtue of requisite effects being asserted at nodes
 and �� The requirement is that there must
be at least one requisite effect� Therefore� either of node
 or � would be su�cient to contribute
to the satisfaction of the condition� The how gives a good measure of commitment to a particular
Goal Structure entry and can take several forms� A gost entry does not simply record a range�
or holding period� for an e�ect�condition pair but says a lot about what went on to establish this
bond� A gost entry with a high degree of commitment imposes control by causing a restriction of
the search space since the protection interval specied by the gost entry itself is a constraint on
that space�

There is uniformity of representation of plans� actions and goals� This uniformity allows the planner
to work to a specic level of detail of the plan which can then be used as aguide for the next level
of planning� O�Plan is not conned to expanding nodes at one level to a more detailed level in a
set manner� The agenda based nature of the system is also capable of enhancing this abstraction
approach provided that the controller is fed su�cient information� The intention of this approach
to abstraction is to enable the denition of an abstraction level to be dynamic or opportunistic
according to the current context of the planning problem� rather than be statically dened by the
input domain description or by the human planner interacting with the system�

The partial order on actions and Goal Structure� augmented by time and resource information at
the nodes� makes the basic condition�e�ect interaction detection and correction algorithms used
during the plan reasoning more complex than in the Nonlin system� The mechanism used is the qa
�question�answering� process developed by Tate in Nonlin 	�
� but extended to handle metric time�
The goal remains the extension of the reasoning to support resource alloction to activities and
disjunctive plan construction in order to increase the �exibility of nal plans by o�ering a measure
of contingency� This is a necessary requirement for many practical application domains though it
has not yet been solved� We have designed the type of plan representation we wish �c�plans 	�����
and we have experimented with a disjunctive form of qa 	���� We remain active in this area of
research and in the related area of execution of such disjunctive structures 	��� ����

� Tackling Search

AI planners to date have generally taken a very simple view of search control propped up by
a backtracking scheme� Our aims were to understand the nature of the search space and then to
implement search control heuristics which would prune that search space� Further� it was necessary
to understand the requirements for e�ective plan repair on failure either during generation of the
plan or on execution� We believe that we have had some success in developing heuristics for pruning
search� some of which were achieved through di�culties encountered in developing dependency
directed backtracking and plan repair schemes� However we further claim that we have reduced

��

the need for backtracking� and hence plan repair� at plan generation time� The needs for plan
generation and execution seem to require�

� schemes to minimise the need for backtracking and repair

� proper repair schemes to excise the faulty parts of a plan whilst e�ecting a repair to the
remaining part of the plan

The former we have looked at� the latter is part of our on�going research work� We shall now
describe the search space that O�Plan works in� and then some of the techniques and heuristics
developed in O�Plan for control and pruning of that search space�

��� A De�nition

AI planning systems are charged with trying to produce a plan which is a possible solution to a
specied problem� or some task specication� In O�Plan this works as follows� We start by giving
O�Plan an input problem �specied in a complete but �awed partial plan� and a set of action
descriptions to work with� it returns a plan for the task in hand in terms of the given actions�

����� Partial Plans

The plans produced by O�Plan are networks� The nodes in a network denote actions� and the
arcs signify an ordering on action execution� Each node has information associated with it which
describes the action�s preconditions and e�ects� Preconditions are the �logical� conditions which
must hold before the action can occur� E�ects are those logical conditions which will hold after
the action is completed� Resource information can also be associated with each plan node� Since
actions can require and release resources� each plan node can say something about action�specic
resource requirements�

Each plan network can be layered into levels of abstraction� This simplies O�Plan�s construction
task� since process details can be hidden until they must be considered� It also makes it easier for a
user to specify and understand a plan� since the myriad confusing low�level details associated with
a complete plan need not be considered at the higher abstraction levels�

A problem is specied to O�Plan as an incomplete or �awed plan� The plan will be incomplete or
�awed in the sense that it will have some parts missing �i�e� more detail is required�� and other
parts that will not work as required �e�g� there is a con�ict between competing actions in the plan��
O�Plan�s task is to correct this input plan so that it will work as required� To do this� it needs to
modify the input plan until a ��awless� plan is produced� Plan modications are designed to add
a required plan component to achieve an unsatised condition� to expand actions to lower levels of
detail� or to rearrange the plan so as to remove an interaction �aw� etc� There will often be more
than one plan modication possible� that is� there will often be a choice of how to achieve a goal or
how to x a fault� These choices lead to search� O�Plan searches through a space of partial plans�
modifying one plan to obtain another� It seeks a complete plan that is free of faults�

��

����� Plan Modi�cation Operators

To change one partial plan into another� O�Plan uses the application of Plan Modication Operators
�pmos� which are embodied in Knowledge Sources� Example pmos are available to

� To �expand� an abstract action by choosing from amongst the lower level actions available
that match the higher level action description

� To choose action descriptions which will satisfy outstanding� required conditions in the plan

� To correct for interactions against a protected interval in the Goal Structure by proposing
minimal changes to the action orderings that remove the interaction

� To select instances for object variables

The Knowledge Sources which cope with expanding an abstraction or achieving an unsatised
condition use a library of schemata to do this� O�Plan must be given schemata if it is to be
applied to the problem of generating plans in a given domain� The language used to communicate
task specication and schemata to O�Plan is called Task Formalism� or tf� Schemata are simply
parameterised plans� Each schema looks exactly like a fragment of a regular plan� In place of the
names of specic objects� dates� and places� there may be parameters� These parameters can be
lled as appropriate for any given problem� With a �awed plan and a set of operator schemata�
O�Plan will examine the schemata in order to determine which can expand some high level action
or how their addition can remove unsatised condition �aws� If no schema is available to remove
a �aw� then there is little that can be done� More likely however� there will be a few schemata
in the set which o�er help in removing a plan �aw� This set of possibilities represents a choice
point� O�Plan will choose one of the possible schemata heuristically� and then attempt to remove
the remaining plan �aws� If it turns out that the remaining �aws cannot be removed� O�Plan
is prepared to backtrack to the choice point in order to explore the ramications of the available
alternatives� Backtracking is not necessarily in chronological order of choice point creation� A
heuristically weighted search over all open choice points can be made� This means that O�Plan
does not commit to any particular solution� and� eventually� is prepared to consider all possible
solutions in its search space� Of course in the interest of e�ciency� users almost never require all
solutions� and are instead happy with a single feasible solution�

��� Generators for the Space

O�Plan follows its predecessors interplan 	��� ��� �
� and Nonlin 	�
� in using a tightly constrained
method of generating the nodes considered in the search space� This is based on the use of an initial
abstract plan with a least�commitment representation of actions and orderings on those actions� is
transformed into a nal� acceptable plan by a simple process of expanding the plan as instances of
actions are chosen� As this process takes place� the Goal Structure � of the plan is monitored to
ensure that there are no violations of protected intervals over which some condition has to hold� It

�Goal Structure is sometimes called the teleology of the plan � the e�ects of actions and their relationship to the

satisfaction of conditions elsewhere in the plan�

�

is only when such a protection violation �	���� occurs that the planner considers a di�erent Goal
Structure Approach to the problem �hence opening the search space by using a novel teleological
approach�� Earlier work �see the work in 	��� which was generalised for planners with a least
commitment representation of action ordering in 	�
�� has shown that there are at most two new
teleological approaches that can be proposed to correct for any single interaction� specically the
odering of the violating condition before or after the protected interval� In practice� multiple
interactions and other constraints in realistic plans can further constrain the number of approaches
that are proposed�

O�Plan searches for a nal acceptable plan� by using the initial Goal Structure Approach it is
provided with in its initial partial plan� and will only increase the size of the search space as
protection violations are found whilst using this approach� In this way we class the search as being
teleologically driven�

��� Pruning Techniques

O�Plan incorporates a number of mechanisms� some novel and some derived from Operational
Research �or� or other AI planners� in order to restrict the search space the planner needs to
consider� The various mechanisms are described below�

����� Condition Typing

One main form of search reduction in O�Plan is through the use of condition typing� also used in
	�
� ��� ���� This technique allows domain knowledge to be used to prune the search� It is fed into
the system via the tf domain description language� The responsibility for engaging this pruning
therefore falls on the user which may or may not be a bad thing� What sets this technique aside
from the other techniques and heuristics outlined below however is that it necessarily leads to loss
of completeness in the abstract search space since the domain writer takes the responsibility for a
deliberate pruning of the space� Condition typing can be very successful but there is work to be
done on how far this technique can be developed� It is precisely the demands of this technique that
caused us to adopt the term knowledge based planning to describe our work� In practice condition
typing is essential on realistic problems in order to reduce search spaces to a manageable level� and
this can be done e�ectively by a domain writer providing instructions to the system about how to
satisfy and maintain conditions required in the plan�

����� Time

At any stage of planning� an activity is represented by a node in the plan state� Each activity
has distinct start and nish instants stored with the activity node in the form of �earliest time�
latest time� windows� Thus each activity has an earliest start time� latest start time� earliest nish
time� and latest nish time� A time window management algorithm has been developed 	�� and
is used incrementally �whenever the plan network is altered� to revise information contained in
time windows� In this revision process� overall consistency of temporal constraints is checked� If
the constraints are mutually inconsistent then the algorithm signals this condition and the corre�

��

sponding plan state is poisoned �abandoned�� resulting in an e�ective pruning of the search� These
algorithms have extended those in Deviser 	��� and have provable termination criteria in contrast
to the algorithms in Deviser�

The time window approach accepts a lack of precise knowledge about the timing of instants in the
plan� No attempt is made explicitly to represent probabilistic uncertainty� However� probabilistic
uncertainty might well be one reason causing the planner to have imprecise knowledge on the timing
of an instant�

In specifying imprecise knowledge� the user is free to supply any range �l�u� for the duration of an
activity or the required delay between an activity and one of its immediate successors in the plan�
l must be non�negative and u must be greater than or equal to l� Thus� ����� represents complete
lack of knowledge� In general� specication of narrow ranges imposes tighter temporal constraints
and enhances the possibility of pruning the search space due to mutually unsatisable temporal
constraints� Thus� for example� it may be helpful to impose a realistic deadline on the nish time
of the overall plan rather than to specify an upper bound of �� Analogous comments apply to
specifying nish times of subplans represented by action descriptions�

The temporal representation in 	�� assumes that an activity is represented by two time points� its
start instant and nish instant� A range on the duration of an activity or on the elapsed time
between the nish of one activity and the start of another is represented by a pair of arcs� Metric
time constraints on the start or nish instant of an activity are represented by a pair of arcs between
some em start�of�all�time point and the instant� The plan network orderings explicitly represents
relative temporal constraints� each represented by one arc� Using standard network longest path
algorithms� one can then discover constraints which are implicitly represented� A longest path of
length lij between instant i and instant j is equivalent to a direct arc of length lij between the same
two nodes� Most constraints are computed on demand� Explicitly represented constraints make
up a sparse network� The time window information is su�cient to signal mutual unsatisability
of temporal constraints when this is present� In O�Plan this start and nish time information is
attached to a single action node to allow for quicker access to temporal information but this is
equivalent to the uniform representation in 	���

The implementation of this time window management algorithm has highlighted the need for AI
systems in general to be able to import and incorporate techniques developed in other disciplines�
It can be proved that this algorithm operates in polynomial time and its e�ciency is enhanced as
it operates incrementally� triggered on any local change to the emerging network�

����� Resources

Three types of resource have been identied as being important during a plan generation process
� consumable� renewable and substitutable resources� These resource types are distinct from time�
which we do not treat as a resource in its own right�

Consumable Resources Consumable resources are those for which an initial stockpile is avail�
able which can only be depleted by actions in the plan� Our problem is one of representing and
propagating resource consumption constraints in an e�cient manner and guaranteeing that total

��

usage does not exceed the initial availability� We will consider a single resource� widgets� with an
overall availability of u �a known quantity�� The minimum overall usage of widgets must not fall
below l �a known quantity� typically ��� Thus the overall usage of widgets must lie in the range
�l�u�� In any particular plan state we have lower and upper bounds on the number of widgets used
by any action� Our plan will be valid with respect to the widget resource if it is possible to select
actual usages of widgets for every action from within that action�s known bounds such that the
total usage in the plan lies in �l�u�� Because plan states can only be further constrained as the
planning process proceeds� we must insist that the �lower bound� upper bound� widget usage range
for action a must apply to the overall usage of widgets in a more detailed subplan which replaces
action a�

For each action in the plan� a �lower bound� upper bound� range on widget usage for that action
is maintained� Our algorithm maintains consistency between all such ranges� If one such range
should shrink because the planner is somehow made capable of making a more precise statement
of resource usage for a particular action� then this constraint is propagated throughout the plan�
Such propagation may cause widget usage ranges to shrink for other actions�

Widget usage constraint consistency is maintained as follows� assume that the current plan state
is valid with respect to widget usage and that each node has an attached widget usage window�
These windows re�ect all known widget usage constraints on the plan as it stands� Now assume
that an additional constraint is imposed� i�e� the lower or upper bound of widget usage at some
node of the plan is altered so that that node�s resource window shrinks� There are � conditions
which must be maintained �or reachieved� through constraint propagation� These conditions relate
the resource window at a particular node n with resource windows at node n�s parent� children�
and siblings� Maintenance of these conditions thus involves propagation of constraints throughout
the hierarchy of nodes� The resource propagation algorithm computes and maintains min�max pair
information for the use of a single consumable resource� 	�� gives precise details of the algorithms
used�

There is value in having bounds as narrow as possible at any node� Narrower bounds represent
tighter constraints� if each constraint introduced is as tight as reasonably possible� then the possi�
bility of discovering that all constraints are mutually unsatisable is enhanced� This is helpful in
pruning the overall search space� Thus there might well be later benet in immediate investment
of computational resources to compute relatively tight bounds rather than to simply use a default
value like ������ Liberally wide min�max intervals are of limited value in pruning the search space�

Shared Resources with Unit Availability A shared resource with unit availability is not
consumed but can be used by only one agent at a time� Despite an availability of �� maintaining
constraints on usage of this resource is far more di�cult than maintaining constraints on a strictly
consumable resource� Usage of a shared resource must be scheduled� scheduling problems are
potentially combinatorial because of the number of schedule permutations and may require search
to satisfy constraints on such uasge� We see little distinction between the problem of scheduling a
shared resource with unit availability and maintaining any other logical condition �e�g� �on a b� �

true� in a plan� At any instant the gadget may be either in use or not in use� Thus a precondition
to allocating the gadget to an agent is that �in use gadget� is false� an immediate e�ect of this
allocation is that �in use gadget� is made true� and an immediate e�ect of returning the gadget

��

to the resource pool is that �in use gadget� is made false� No special purpose representation is
proposed for shared resources with unit availability� Normal e�ects and conditions can be used to
reason about such a resource�

Shared Resources with Availability Greater than � Given our observation that there is
no essential di�erence between maintaining constraints on a resource with unit availability and
maintaining any other logical condition� one might be tempted to decompose a resource with
availability r � � into r distinctly named resources with availability �� Unfortunately� the resulting
r resources will be substitutable and a planner could expend much useless e�ort trying to satisfy
unsatisable resource constraints by trying other permutations of the usage of such substitutable
resources� For example� assume that r � ��� that the planner has allocated units � through �� to
actions a�� � � � � a�� in parallel� and that the planner discovers that action k also in parallel requires
one unit of this resource� The planner correctly diagnoses the con�ict that �� units are required
when only �� are available� In attempting to correct the situation� the planner might then try each
of ��� possible reallocations of units � through �� to actions a�� � � � � a��� Enough said�

It then appears essential that we model a controller of the usage of any particular resource� A plan
would be valid with respect to that resource if it contained a schedule of activities which met all
temporal constraints required in our temporal management algorithm and also obeyed the resource
constraints imposed by the controller of that resource� Resource smoothing �the management of
shared resources� is an inherently intractable problem� A least�commitment approach to planning
would insist that we could reassure ourselves that a plan exists which is valid with respect to every
resource while respecting temporal constraints� This is a notorious problem� Although it is possible
to construct simple heuristics for resource smoothing� these heuristics are not guaranteed to nd
a feasible solution� Thus these heuristics cannot be used if we wish to ensure completeness of the
search�

Our problem di�ers from traditional sequencing and scheduling problems which seek to minimize
such objective functions as project makespan� weighted tardiness of jobs� etc�� subject to constraints
on the �ow of jobs through a shop� utilization of machines� etc� The primary di�erences and
analogies are�

� our objective is simply to verify the existence of a feasible schedule �and to construct it when
planning is completed��

� some of our resource constraints are analogous to those in traditional job shop sequencing
and scheduling� A shared resource with availability n is analogous to n identical machines in
parallel�

� many temporal constraints that result from one action�s e�ects being a precondition to a later
action do not have analogues in traditional scheduling and sequencing�

� strictly consumable resources and shared resources are not often handled within the same
scheduling and sequencing model �although both are common in di�erent models��

� sequencing and scheduling models do not provide for the possibility of resources which are
renewable in the sense that some activities may be inserted into the plan which have the
e�ect of increasing the resource�s availability� Such resources are discussed brie�y below�

��

The rst two items should work toward making our task easier than that of traditional scheduling�
However the rest make the typical AI planning task considerably more complicated than scheduling
problems which can be handled successfully by techniques reviewed in 	�� or other more recent or
texts� To speculate a little� it is reasonable to question whether present domain�independent AI
planners can cope with realistic problems that have a heavy sequencing component� Such planners
do well in environments where their task of plan synthesis involves primarily nding appropriate
schemata to satisfy particular goals or expand particular actions� and their scheduling activity is
mainly the correction of interactions� In this case scheduling takes the form of adding to an existing
set of temporal constraints which can be represented without resorting to disjunction� Sequenc�
ing� on the other hand� requires extensive use of disjunction in representing possible orderings of
activities thus implying lots of search� A natural area for further research is to investigate the
appropriateness of known sequencing and scheduling algorithms or more �exible disjunctive plan
representations within a domain�independent AI planning framework� We are considering such
approaches�

Renewable Resources Resource smoothing problems are further complicated by the introduc�
tion of renewable resources� This provides a mechanism for the possible substitutability of resources�
a concept which is di�cult to analyze in a traditional mathematical model� With renewable re�
sources it may be possible to consume resource� in a task whose e�ect is to produce additional
units of resource�� e�g� money may be converted to fuel� Thus resource� and resource� become
substitutable in the sense that a valid plan may be constructed out of various combinations of
initial availabilities for the two resources� If resource� and resource� are both consumable rather
than shared then it may be possible to represent constraints on their overall usage� Such con�
straints would be standard linear programming constraints provided that the process of producing
one resource from some combination of other resources had a linear production function� However�
if either resource� or resource� is a shared resource� the picture is considerably more complicated�
Since handling shared renewable resources is inherently more complicated than handling the shared
resources mentioned above� this type of resource usage modelling has not yet been approached by
us�

����� Temporal Coherence

There may be constraints on legal states of a world model� some combination of facts may not be
able to hold simultaneously in a physical state� Sets of such inconsistent facts have been referred
to as domain constraints� Temporal coherence is our method of using such constraints to reduce
search� The technique is fully described in 	���� This work was motivated by the di�culties of plan
repair and dependency recording and by the failure of some earlier AI planners to generate some
obvious plans in the blocks world� It was further motivated by a gap in the work of Chapman 	���
Chapman provided the Modal Truth Criterion �mtc� as a statement of the conditions under which
an assertion will be true at a point in a partially ordered plan� Essentially� the mtc says that an
assertion p is necessarily true at a point in a plan if and only if �� there is a point necessarily before
the required point where p is necessarily asserted� and �� for every operator that could possibly
come between the point of assertion and point of requirement� if the intervening operator possibly
retracts an assertion which might turn out to be p� then there must be another �appropriately

��

placed� operator which restores the truth of p whenever the intervening operator deletes it�

One can take a procedural reading of the mtc to produce a non�deterministic goal achievement
procedure �e�g� as in Chapman�s tweak�� Such a procedure will form the heart of any correct
�Nonlinear� planner� tweak searches a space of partial plans� using the goal achievement procedure
as a partial plan generator and in tweak the space is explored breadth�rst� However planning
systems such as Nonlin� sipe� Deviser and O�Plan strive for realism and so cannot a�ord this luxury
of breadth�rst search� Heuristics for selecting among the plan modication operations sanctioned
by the mtc are required if plans are to be produced in acceptable time�

The mtc says nothing about an order in which to pursue goals� Possible bindings are determined
by goal�ordering� so the mtc gives no guidance regarding sensible bindings for un�bound variables�
The heuristic of temporal coherence addresses this problem� It suggests avoiding work on plans
whose bulk preconditions do not �make sense�� The bulk preconditions for a plan are the overall
conditions on which the plan depends for its successful execution� We say that these preconditions
do not make sense if they do not describe a physically realisable domain state� If a plan�s bulk
preconditions do not make sense� then the plan has internal inconsistencies� and is best avoided�

The basic principle of temporal coherence is this� prefer not to work on partial plans which have
inconsistent bulk preconditions� Think of this as follows� At each point in its search a planner will
have a partially completed plan� The search begins with a given� or �root� plan� and each partial
plan uncovered in the search will di�er from the root plan by the addition of some number of
operator schemata and binding of variables� Each added operator schema will have preconditions�
Unless the plan is complete� �awless down to the truth of each and every precondition� there will
be at least one precondition of at least one operator in the plan which is not true by the mtc�

Each assertion �precondition� which is true will either be true by some added operator� or true
from the initial situation� We are interested in analyzing those assertions which must be true if the
partial plan developed so far is to be �executable�� these assertions are the bulk preconditions for
the developed plan�

Temporal coherence suggests working on those plans whose bulk preconditions describe a physically
possible state of the given planning domain� By �possible� here we mean consistent with certain
prespecied physical laws� Suppose that a plan�s bulk preconditions do not describe a possible
domain state� Why would this happen� It would happen only if the operators in the plan were not
�causally independent� of each other� and required further sequencing to form a valid plan� Future
goal achievements allowed by the mtc might well do this� but when faced with the choice between
a plan which already requires a valid state of the world for its execution� and one which does not� it
makes sense to choose the former� If possible it is best to avoid plans which require impossible initial
states and the corrective work they entail� This avoidance of temporary impossibilities appears to
be a good search heuristic� In our experience� this can lead to signicant time savings in plan
construction�

Temporal coherence is currently implemented in O�Plan in the way described above though we
believe it to have much more potential 	�
�� The basic problem of ordering is a crucial one and goes
beyond goal ordering� The ordering problems associated with agenda handling in general also need
to be tackled� We have made a start� Full details of the work on Temporal Coherence is given in
	����

��

��� Search Order

Temporal coherence only addresses goal ordering� but the mere fact that there are many di�erent
types of choice open to a planning system means that other approaches to search control are
necessary� In O�Plan the agendas are again used to record choice left open to the system at any
point during the generation of a plan� Agenda records are assigned a priority rating when rst
added to the agenda lists� This is done in a fairly simple �too simple�� way at the moment as
this calculated priority remains with the individual record until such time as it is picked up by a
knowledge source for processing� Ideally AI planners need to operate much more opportunistically
and be able to select the �next best� agenda record every time�

However O�Plan does calculate these priorities in an informed manner� The agenda record type
�including a particular condition type� says much about which order any particular ��aw� �re�
member agenda records map onto plan �aws� will be worked on� For instance an unsupervised

condition has a low priority and should be able to be tidied up after all necessary additions to the
plan have been included� An achievable condition type however has a higher rating as this has a
greater e�ect on the plan and may involve the generation of other �aw types in turn� At the top
level� the user may interrupt the system via the generation of the highest priority agenda record�
O�Plan also uses a sequence agenda record type to logically group together a collection of related
agenda records in a way that is presequenced by some knowledge source �i�e� the meta planning
level of O�Plan�� This seems to be advisable in order to embed programmer knowledge on how
to process a comples �aw� but this may alse be handled by an agenda controller with su�cient
information to allow it to dynamically focus its attention on the current demands�

A ner level of priority is achieved by maintaining measures of specicity of each agenda record�
For instance if there is more than one way to handle a record then this should be rated lower
than a record which has a single means of processing as the e�ects of processing this latter record
will denitely appear in the nal plan� For example an expand �a node� record with only a
single matching schema will have a higher priority than a similar record with choice of schema for
expansion� We go further than this and also specify a measure of specicity of each record at its
�lowest level�� What do we mean here� Consider the process of Question�Answering �qa�� which
asks if a proposition has a particular value at a particular point in the non�linear plan� The answer
returned may be an unqualied yes or no� or it could be a maybe in which case this answer will
be qualied with a potential tree of suggested node�to�node linkings and plan variable bindings to
make in the plan in order to satisfy the truth of the proposition� qa is the process which detects
and begins to correct for interactions in the plan� Each branch of this possibility tree represents
choice in the search space� and this is captured in an or record� The specicity of this record is
detailed in the measure of choice at the top of the tree �possibly none� and with an estimate of the
number of leaf nodes at the bottom� each representing a possible solution to the qa process� We call
these branch� and branchN estimators� O�Plan will choose to work on the most fully determined
records rst in order to constrain the search space�

With these measures and with the pruning techniques� such as temporal coherence� in mind O�Plan
progresses its search in a local best� then global best manner� It is an aim however to improve the
local best component of the system even further�

��

� The User

The O�Plan project includes work on the design and implementation of a planning workstation�
which supports various styles of interaction with a user� The user may have various roles with
respect to the AI planner � provider of domain descriptions� requestor of plans� seeker of information
on plans� developer and debugger of the O�Plan system� assistant to the planner�s search control� etc�
Our interfaces have tried to identify clearly the di�erent roles being played by the user with respect
to the system in order to present appropriate information and options� Early work was implemented
in Pascal on a Perq computer 	��� and was eventually reworked for the Sun workstation� O�Plan
currently runs on a Sun� using the Poplog environment� New work is underway to provide a
Common Lisp implementation�

The O�Plan system is intended to operate with concurrent graphical plan output and plan simula�
tion facilities� There would normally be three �windows� active� The planner would be running in
one window� a plan network drawer would be active in a second and would allow the user to view
partial or complete plans both during and at the end of planning� A third window would provide a
view of the state of the world at some point in the plan that interested the user� A sample display
of the O�Plan user interface showing these three windows for O�Plan running on a block stacking
problem is show in gure ��

A Graph Drawing package translates the partially ordered plan produced by O�Plan into a graphic
display� It allows various node representations �dots� boxes� annotated boxes� etc�� and this includes
the ability to specify� through the tf� an iconic description of the activity at the node� The graphs
in gure � and gure � demonstrate plans drawn in standard box mode or in iconic mode� Note
that in the second graph the drawing is bigger than the window size� The Graph Drawer allows
the graph to be panned by use of the viewer box at the top left of the window� or by use of the
scroll bars�

The Graph Drawer supports user interaction through the workstation �mouse�� Pointing and
clicking the mouse at a node is interepreted by O�Plan as a request to view all planning information
relevant up to that point in the plan� Much of this information can only be presented textually
�such as the Goal Structure� but the �context� �the aggregate of the e�ects up to that point in
the plan as found by the qa procedure� can often be graphically displayed given a suitable domain
state drawer� O�Plan allows a domain dependent display process to be specied in the application
tf which then takes all responsibility for the interpretation of the e�ects and their presentation to
the user� This can be highly e�ective� A trivial example is shown in gure � for the blocks world
and in gure
 for a more realistic example� in this case the construction of a space platform� After
plan generation� user interaction is at a browsing level only� This can be extended to a �simulation�
of the plan by �icking through the graphical representation of all states up to the point of the plan
of interest� We have developed the interface and context drawing software for the blocks world� for
a �real� spacecraft at the level of its wiring harness� and for a space platform construction task�

During plan generation the user has full access to all information in the system� including agendas�
partial order� Goal Structure� etc� Access is gained through a request to schedule a user agenda
entry� The user knowledge source provides a menu of ways in which the user can act to control
search or view the emerging plan� The user can therefore elect to exercise any form of control on
the system� This is only suited to the developer or extender of the O�Plan system itself at present

��

since the internal information and control procedures within the system become too complex for
manual control�

The other form of user interaction is through tf� As has been discussed earlier� Task Formalism
can be di�cult to use directly for complex domain descriptions� Front end user interface support
would be required in a realistic planning system which would automatically generate the revelant
tf� The design of the Task Formalism is geared towards this� tf is evolving to cater for new
features of new domains� Some experiments with the use of a requirements analysis methodology
to assist the domain describer in the generation of tf have been conducted 	����

The O�Plan project has also been concerned with the interfacing of an AI Planner to a Natural
Language system for command and control� First results are described in 	��� User interface work
undertaken recently has explored the use of a readily available Computer Aided Design package
�AutoCAD� 	��� as an interface for operator schema and task input� plan output� plan browsing and
domain specic simulation of the context at points in the plan� The output graphs can be generated
quickly in this interface and can look natural for small plans� However� they do not replace the need
for a precise graph drawing capability in which all ordering links can be unambiguously followed �
this continues to be provided by the main Graph Drawer described earlier� The AutoCAD interface
has been demonstrated on house building and space platform assembly tasks 	���� A sample screen
image from this interface is shown in gure
�

� Applications

O�Plan has been used on a variety of applications� with varying degrees of success� The domains
have been chosen to test the various capabilities of the system� and are representative of the type
of problem we would expect ai Planners to be tackling� Characteristics include action expansion�
condition achievement� interaction detection and correction� temporal and consumable resource
management� and management of alternatives� Typical plans generated have been of the order
���
� nodes in size� and have been generated autonomously from specication right through to
plan visualisation �graph drawing�� The larger plans take a few minutes of workstation Cpu time�
typically ��� minutes� to generate�

The applications include�

� Block World� Many AI planners are tested against the conceptual problems arising in the
many �avours of block problems� The simplicity of the domain enables problem scenarios to
be isolated and bounded� and described easily� O�Plan has been extensively tested against
problems set in this domain� However� O�Plan is not particularly suited to �puzzles� of this
kind� It performs best when realistic constraints restrict search in the domain�

� House Building Project Planning� Again a �standard� domain used previously with Nonlin�
this application allows useful benchmarking and various scenarios to be created and tested�
In particular the domain can include examples of temporal and resource constraints� and can
exploit the use of typed preconditions�

� Oil Platform Construction Project Management� This example from 	��� is a simple applica�
tion� but it exhibits features of real interest� Several di�erent ground conditions on which an

��

oil rig can be constructed leads to suitable problems for exploring disjunctions in plans and
disjunctive qa for this problem 	�
� 	����

� uosat�ii Scheduling� This problem involved a real� orbiting spacecraft used in a parallel AI
in Space study 	���� 	���� and was chosen as an exercise in coding domains in tf and for
exploring the simulation user interface to O�Plan using a display of the state of the wiring
harness of the spacecraft� The task of O�Plan is to generate mission sequences to produce
the weekly �diaries� relating to the various activities demanded of the craft� This particular
application showed the problems of adopting a simple least commitment planning philosophy
and the associated problems of plan variable binding� Improved integration of scheduling and
constraint reasoning methods are required for a satisfactory solution to the problems in this
domain� See 	��� for details�

� Space Platform Construction� Nonlin and O�Plan have been applied to the generation of
a range of di�erent congurations of space platform made up on joints� trusses� living and
working modules� equipment pallets� antennae� solar pannels and radiators� This application
was used to explore the use of a widely available Computer Aided Design package �AutoCAD�
as a tool for task description� plan output� plan browsing and plan simulation 	����

� planit� The uk Alvey Programme planit Collaborative Club provided data from a Price�
Waterhouse software project management application� relating to the control of a project to
develop an information processing system� This data was used to generate activity plans
for subsequent browsing and manipulation� Both Nonlin and O�Plan were used to generate
the required plans� Simplication were made to the real problem description in the area of
resource modelling in order to cope with the application on the current O�Plan prototype�
The domain provided the opportunity to apply tf to a real problem description� and also
the opportunity to generate �knowledge�rich� plans for post�processing and analysis� The
generated plans� and the underlying plan representation concepts were used as the basis for
the design of the full planit Club ipa� the Interactive Planning Assistant 	���

� Conclusions

The O�Plan architecture and planning system is a move towards fullling the needs of a practical
planning system� However as it stands it is not robust or complete enough to justiably meet that
claim� The main features of O�Plan are its overall structure� based around a central plan state data
structure and agenda based reasoning� and its concentration on attacking the central problem of
planning � search control� In exploring issues of search� we have have extended previous ideas on
Goal Structure and condition typing� and heuristics based on the use of time and resources in a
planning domain� Our temporal coherence heuristic has focussed attention on the development of
an approach to the problem of �goal ordering�� These heuristics make some progress in achieving
realistic application of AI planning methods though there is still research e�ort required to advance
resource management� condition typing� and the use of domain information �temporal coherence� as
a means of controlling search� The use of e�ective search space pruning methods will not eliminate
the need for proper plan repair schemes �as opposed to elaborate backtracking schemes� but will
minimise the need for such schemes during plan generation�

�

O�Plan touches on the need to integrate resource reasoning to support a mix of planning and
scheduling� This is seen as essential for resource based� planning domains� and also to extend the
features of AI planning to the world of scheduling�

A range of di�erent applications have been run on O�Plan to demonstrate and test various features�
Experimentation with user interfaces for AI Planners has taken place�

Future work will provide a portable version of the O�Plan prototype and this work is now underway�
Work is also ongoing to develop the dependency recording schemes which can be used for plan repair�
The O�Plan system is intended to cope with plan execution and control as well as plan generation�
This implies that the system should be able to operate in an incremental fashion with the possibility
of adjustment of the goals being worked on and the environment in which the plans are intended
to operate� Initial work by us on such an incremental version of O�Plan is described by Tate 	����

� Acknowledgements

Thanks go to our colleagues on the O�Plan project � Colin Bell� Roberto Desimone� Brian Drabble�
Mark Drummond� Anja Haman� Richard Kirby and Judith Secker�

O�Plan was funded by the uk Alvey Programme through the Science and Engineering Research
Council on grant number gr�d�����
 �Alvey Directorate project number ikbs����� and supported
by a fellowship from sd�Scicon� Recent work was partially supported by the Articial Intelligence
Applications Institute and the US Air Force�European O�ce of Aerospace Research and Develop�
ment by grant number EOARD�������� monitored by Dr Nort Fowler at Rome Laboratory� The
views expressed are those of the authors only�

References

	�� Allen� J�� Hendler� J� � Tate� A� Readings in Planning� Morgan�Kaufmann� �����

	�� Alvey Directorate� Alvey Grand Meeting of Community Clubs� Available through Institution
of Electrical Engineers �ieee	� London� ��
��

	�� AutoDESK� AUTOCAD Reference Manual� AutoDESK Ltd� London� �����

	�� Baker� K� An introduction to sequencing and scheduling� Wiley� �����

	�� Bell� C�E�� Currie� K�W� � Tate� A� Managing scheduling and resource usage constraints in
O�Plan� Alvey Planning sig� No �� Sunningdale� uk Also Arti�cial Intelligence Applications
Institute aiai�tr�� ��
��

	�� Bell� C�E� � Tate� A� Using temporal constraints to restrict search in a planner� Arti�cial
Intelligence Applications Institute aiai�tr�� ��
��

	
� Bundy� A� The computer modelling of mathematical models� Academic Press� ��
��

��

	�� Chapman� D� Nonlinear Planning� A rigourous reconstruction� In procs of the Ninth Interna�
tional Conference on Arti�cial Intelligence� Los Angeles� ��
��

	�� Crabtree� B�� Crouch� R�S�� Mo�at� D�C�� Pirie� N�� Pulman� S�G�� Ritchie� G�D� and Tate�
A� A Natural Language Interface to an Intelligent Planning System� Proceedings of the uk
Information Engineering Directorate IT Conference� Swansea� July ��

 Also available as
Department of AI Research Paper No ���� University of Edinburgh�

	��� Currie� K�W� � Drummond� M� A case for preferential ordering� Petri Net newsletter No ���
��
��

	��� Currie� K�W� � Tate� A� The O�Plan Task Formalism Workstation� Alvey Planning sig� No
�� Sunningdale� uk Also Arti�cial Intelligence Applications Institute aiai�tr��� ��
��

	��� Currie� K�W� � Tate� A� O�Plan� control in the open planning architecture� In proc of the
BCS Expert Systems �
�� Warwick� uk� Cambridge University Press� ��
��

	��� Currie� K�W�� Drummond� M� � Tate� A�� O�Plan meets T�SAT� rst resuls from the applica�
tion of an AI planner to spacecraft mission sequencing� Final report to serc on grant number
gr�e������ Also Arti�cial Intelligence Applications Institute aiai�pr���� ��

�

	��� Daniels� L� Planning and Operations Research� AI Tools� Techniques and Applications� eds
O�Shea � Eisenstadt� Harper � Row� ��
��

	��� De Kleer� J� An assumption based truth maintenance system� AI Journal Vol �
� ��
��

	��� Dean� T� Temporal imagery� an approach to reasoning about time for planning and problem
solving� Yale University� technical report no ���� ��
��

	�
� Desimone� R� � Mallen� C� Complete� consistent goal sets� controlling the search for non�
linear plan generation� In procs First International Conference on Expert Planning Systems�
Brighton� uk� �����

	��� Doyle� J� A truth maintenance system� AI Journal Vol ��� �����

	��� Drummond� M� Plan nets� a formal representation of action and belief for automatic planning
systems� PhD Dissertation� Dept of Arti�cial Intelligence� University of Edinburgh� ��
��

	��� Drummond� M�E�� Currie� K�W�� � A� Tate� Contingent plan structures for spacecraft� In
Proceedings of the JPL�NASA Workshop on Telerobotics� Pasadena� CA� ��
��

	��� Drummond� M� � Currie� K�W� Exploiting temporal coherence in Nonlinear plan construction�
Computational Intelligence Journal� ���	� ��

�

	��� Drummond� M� � Currie� K�W� Goal ordering in partially ordered plans� In procs ijcai�	
�
Detroit� usa� ��
��

	��� Drummond� M�� Currie� K�W� � Tate� A� Contingent plan structures for a spacecraft� nasa
Workshop on Space Station Telerobotics� jpl� Pasadena� ��
��

��

	��� Fikes� R�E�� Hart� P�E� � Nilsson� N�J� Learning and executing generalised robot plans� AI
Journal Vol �� �����

	��� Fikes� R� � Nilsson� N� strips� a new approach of the application of theorem proving to
problem solving� Arti�cial Intelligence �� pp �
����
� �����

	��� Fraser� J�L�� Conway� S�� et al� Using on�board AI to increase spacecraft autonomy� Interna�
tional conference on human�machine interaction � and AI in Aeronautics and Space Toulouse�
France Sept ��

�

	�
� Hayes� P�J� A representation for robot plans� In proc of ijcai���� �����

	��� Lesser� V� � Erman� L� A retrospective view of the Hearsay�II architecture� In procs of ijcai�
��� pp ������ �����

	��� Levitt� R� � Kunz� J� Using knowledge of construction and project management for automated
schedule updating� Project Management Journal Vol xvi no �� ��
��

	��� Liu� B� Reinforcement planning for resource allocation and constraint satisfaction� PhD thesis�
Dept of Arti�cial Intelligence� University of Edinburgh� ��

�

	��� McGregor� D�� McInnes� S� � Henning� M� An Architecture for associative processing of large
knowledge bases� In The Computer Journal� Vol ��� No �� ��
��

	��� Manna� Z� � Waldinger� R� A theory of plans� In procs of csli�aaai Workshop on Planning
and Action� Oregon� ��
��

	��� McDermott� D�V� A Temporal Logic for Reasoning about Processes and Plans In Cognitive
Science� �� pp �������� ���
�

	��� Nii� P� The blackboard model of problem solving� In AI Magazine Vol� No � � � ��
��

	��� Sacerdoti� E� Planning in a hierarchy of abstraction spaces� AI Journal� Vol �� No �� pp����
���� �����

	��� Sacerdoti� E� A structure for plans and behaviours� Arti�cial Intelligence series� publ North
Holland� �����

	�
� Secker� J� Use of O�Plan for oil platform construction project planning� �em Articial Intelli�
gence Applications Institute aiai�pr���� �����

	��� Secker� J� A solution to the disjunctive planning problem� In procs Eighth Alvet Planning SIG�
Nottingham� uk Also Arti�cial Intelligence Applications Institute aiai�tr���� ��
��

	��� Smith� S�� Fox� M� � Ow� P�S� Constructing and maintaining detailed production plans� Inves�
tigations into the development of knowledge based factory scheduling systems� AI Magazine
Vol � No �� ��
��

	��� Sridharan� N� Practical Planning Systems� Rochester Planning Workshop� afosr� ��

�

	��� Stek� M� Planning with constraints� In Articial Intelligence� Vol ��� pp ������� ��
��

��

	��� Sterling� L�� Bundy� A�� Byrd� L�� O�Keefe� R� and Silver� B� Solving Symbolic Equations with
press� In Computer Algebra� Lecture Notes in Computer Science No ���� Edited by Calmet�
J� �Springer Verlag	�

	��� Suen� D� An implementation of a distributed planning system in parlog� MSc Thesis� Dept
of Arti�cial Intelligence� University of Edinburgh� ��

�

	��� Sussman� G�J� A computational model of skill aquisition� MIT AI Laboratory tr��
�� �����

	��� Tate� A� Interacting goals and their use� In proc of ijcai��� �����

	��� Tate� A� Project planning using a hierarchical non�linear planner� Department of Arti�cial
Intelligence Memo No ��� University of Edinburgh� �����

	�
� Tate� A� Generating project networks� In procs ijcai���� �����

	��� Tate� A� Functions in context database� Second Alvey workshop on Large Knowledge Base
Architectures� Manchester� uk� July ��
� Also Arti�cial Intelligence Applications Institute
aiai�tr��� ��
��

	��� Tate� A� Goal Structure� Holding Periods and �Clouds�� In Reasoning about actions and plans�
Morgan�Kaufmann� ��
��

	��� Tate� A� Coordinating the activities of a planner and an execution agent� In procs of the
Second NASA Conference on Space Telerobotics� GRodriguez	� Pasadena� CA� ��
��

	��� Tate� A� Interfacing a CAD system to an AI planner� Paper to the SERC seminar on In�
tegrating Knowledge�Based and Conventional Systems� Edinburgh� May ���� Also Arti�cial
Intelligence Applications Institute sc aiai�tr���� �����

	��� Vere� S� Planning in time� windows and durations for activities and goals� ieee Transactions
on Pattern Analysis and Machine Intelligence Vol �� ��
��

	��� Wilkins� D� Practical Planning� Morgan Kaufman� ��

�

	��� T�SAT� Concluding report on the technology satellite design study� Rutherford Appleton Labs
serc report ral�

���� March ��

�

	��� Wilson� A�C�M� Information for planning� MSc thesis� University of Edinburgh� ��
��

��

Figure �� O�Plan Overview

��

Figure �� Planning Taxonomy

��

Figure �� O�Plan Modules

��

Figure �� O�Plan Session

��

Figure �� Standard Plan

Figure �� Iconic Display

��

Figure
� AutoCAD interface to O�Plan

