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The paper is intended to introduce
Artificial Intelligence work on robot
planning systems which may have relevance
for production planning, condition
monitoring and recovery on a flexible
manufacturing system used for small batch
production. The paper describes the use of
"Goal Structure" as a representation of the
"intent" of plan steps and its potential use
as the basis for a hierarchic control system
for condition monitoring and re-planning.

INTRODUCTION

AI planning and knowledge representation
research has provided formalisms for
hierarchically representing data to the
planning process, i.e. a description of the
goals of the plan and the actions (or jobs)
of which it might consist at various levels
of detail. Planners are able to use this
information and a simulation of the effects
of the actions to generate, fairly
efficiently, plans to solve limited tasks in
a wide variety of domains. The methods used
allow a natural interface to libraries of
detailed pre-programmed sub-tasks (e.g.
provided by the manufacturer of a versatile
industrial robot).

Present AI systems still fall short of
meeting the requirements for a planning and
scheduling system which can be employed on
complex applications - often typified by the
need to interface to several other sub-
systems. There is also a need to coordinate
planning with condition monitoring and re-
planning activities. An approach to the use
of information which captures the "intent" of
plan steps may offer the chance to make
progess in this area.

The techniques are equally applicable to the
generation of plans and the monitoring of
their execution for a fully automated or
fully manual situation as well as the more
usual mixed workshop environment. Hence we
are suggesting an overall hierarchical
organisation within which individual modules
for planning or control can operate.

GOAL STRUCTURE AND THE NONLIN PLANNER

Goal Structure (Tate (25)) is a high level
representation of information about a plan
which states the relationship between the
individval actions in the plan and their
purposes with respect to the goals or sub-
goals they achieve for some later point in
the plan, This information may be used by a
planner to detect and correct conflicts
between solutions to sub-problems when
higher level plans are refined to greater
levels of detail.

The NONLIN planner (Tate (26)) makes use of
Goal Structure for interaction detection and
correction. An application domain
specification language, "Task Formalism", has
been provided to enable the intent of plan

steps to be expressed along with levels of
detail, ordering of steps and other
information about actions.

A Goal Structure table is kept during
planning to record what facts have to be
true at any point in the network and the
possible "contributors" that can make them
true. The system is able to plan without
choosing one of the (possibly multiple)
contributors until this is forced by
interaction correction. The Goal Structure
table is used to detect important
interactions (ignoring unimportant side
effects) and can be used to find the small
number of alternative links to be added to
the plan to overcome each interaction (fully
described in Tate (27)). Multiple
interactions arising at the same time
further restrict the possible solutions and
a minimal set of re-orderings can be
proposed.

We believe that Goal Structure can be
extended to represent information on which
an execution monitor can operate
effectively. The Goal Structure statements
represent precisely the outcome of any
operation which should be monitored. If
lower level failures can be detected and
corrected while preserving the stated higher
level Goal Structure, the fault need not be
reported to a higher.level. The
implications of any propogated failure are
computable and corrective action can be
planned.

APPLICATION AREAS OF AI PLANNERS

General purpose planning systems which can
automatically produce plans of action for
execution by robots have been a long
standing theme of Artificial Intelligence
research, A large number of techniques have
been introduced in progressively more
ambitious systems over a long period. There
have been several attempts to combine the
planning techniques available at a certain
time into prototypes able to cope with
realistic application domains:-

~ Program generation
HACKER (23), Waldinger (29)
Programmer's Apprentice (14,15)

- Robot or factory control
STRIPS (7), TROPIC (12), ISIS-II (8)

- Engineering maintenance and training
NOAH (17,18)

- Experimenting in molecular genetics
MOLGEN (21,22)

- House building and civil engineering
NONLIN (26)

- Electricity turbine overhaul
NONLIN (4)

- Journey planning
Hayes (9), Hayes-Roth & Hayes-Roth (10)

- Spacecraft mission sequencing
DEVISER (28)

- Aircraft carrier mission planning
SIPE (30)

- etec, ete.



EEATURES OF Al PLANNERS WHICH IMPROVE THEIR
RANGE OF APPLICABILITY

Methods of reducing the size of the search
space have been employed in planners. Some
are identified here and considered in more
detail in the sections which follow:-

- by considering "higher priority" goals
first in hierarchic planners

- by detecting and correcting for
interactions between solutions to sub-
problems in an intelligent fashion

- by checks on resource usage levels,
time constraints on actions, ete

- by using symbolic information to
restrict ways that goals can be
satisfied (e.g. rule-oriented
applicability conditions).

In addition, the following sections will
describe several features which are
essential for the support of a flexible
planning system which has to operate in
conjunction with other specialised planners
or knowledge sources and in the face of
execution-time failures:-

- interfaces to sub-planners and other
sub-systems

- re-startability at plan-time and
execution~time on failures,

Hi hy/Abst ion Level

The order in which conjunctive goals are
tackled can have a marked effect on the
efficiency of the search process for a plan
to perform some task. In some planners, it
can make the difference between finding a
solution and looping round on the same goals
repeatedly or getting solutions with
redundant steps. One approach to ordering
the various goals involves separating them
into levels of importance or priority. The
more abstract and general goals are worked
on first and the more concrete or detailed
levels are then filled into the skeleton
plan produced. Many AI planners use such a
scheme, It was first introduced in the
ABSTRIPS (Sacerdoti (16)) and LAWALY
(Siklossy and Dreussi (19)) planners.

Goal Orderi { Int tion Detecti l
Correction

Planners can be split into two basic types
with respect to the way that they tackle
multiple goals. The "linear"™ planners make
the "linearity assumption”; that solving one
goal and then following it by the solution
to a second goal is often successful because
the solutions to different goals are often
decoupled. The "non-linear" planners take a
"least-commitment" approach by representing
a plan as a partially ordered network (a
graph) of actions and goals and only
introducing ordering links between actions
or goals when the solution demands this.

In both types of systems, the solution to
one goal may interact with the solution to
the others. Several AI planners can detect
and in some cases correct for such
interactions.

The "Goal Structure" technique was
introduced to record the link between an

effect of one action that was a precondition
(sub-goal) of a later one., This
representation is orthogonal to the temporal
links between the actions themselves (as
some actions have effects that are used much
later in the plan). It also captures the
(relatively few) effects of an action that
are really required later. Goal Structure
was first used in the INTERPLAN linear
planner (Tate (24)).

The first non-linear planner, NOAH
(Sacerdoti (17)), incorporated code called
"eritics" which was used to search for
interactions between parts of the plan.
Critics used a Table of Multiple Effects
(TOME) to aid in discovering the
interactions., The TOME and critics were
themselves based on the Goal Structure
tables of INTERPLAN. Once detected, NOAH
could correct for interactions in a limited
way suited to the applications it was
employed on, NOAH did not consider search
alternatives - the best choice was committed
to at each stage.

Subsequently, the detection of interactions
by analysis of the underlying "Goal
Structure" was added to a non-linear
planner., The combination in NONLIN was more
effective than its earlier use in the linear
INTERPLAN system. Now, the minimum
additional ordering constraints necessary to
resolve any interaction could be suggested
by the introduction of temporal links into a
partially ordered plan only when this became
essential. The NONLIN system could consider
alternatives if failures on any chosen
search branch failed.

Plannipg with Time, Cost or Resource
Limitations

It is becoming increasingly important in
planning systems to perform in realistic
domains where the use of resources of
various types needs to be limited. Also,
planners are being used in domains where
time considerations and matters beyond the
control of the planning system itself must
be accounted for. Several systems have
explored this area.

An option available when NONLIN is entered
brings into play a system that computes
Earliest Start Time (EST) and Latest Start
Time (LST) information for each node in the
network at any stage of planning. The Task
Formalism allows a "duration" to be
associated with each action in the operator
hierarchy. The system also computes the
total plan duration and ecritical path nodes
(actions which if delayed will cause the
entire plan to take longer to execute).

The NONLIN planner has incremental
algorithms to propogate the EST and LST
values through the network as expansions are
made and links introduced. This
continuously maintains the Critical Path
Analysis data in a form which allows it to
be used during plan alternative selection.

Daniel (3) described a version of NONLIN in
which choices of alternative operators and
alternative orders of linking to correect for
interactions are dependent on a plan cost
measure which is the sum of the costs of the
nodes in the plan added to some factor of
the overall plan duration. She termed this
the plan "efficiency®. This is used to make



more sensible heuristic choices of
alternative search branches. The process is
also documented in reference (4). Recent
extensions to the NONLIN planner to deal
with multiple resources have generalised
this scheme to select alternatives according
to some specified combination of factors of
several limited resources.

NASA's DEVISER planner (28) has taken the
ability of hierarchic non-linear planners to
cope with time information much further.
DEVISER provides the facility to actually
specify an EST and LST for any node in the
plan (rather than these simply being assumed
to be dictated by the ordering of the nodes
as in NONLIN)., Vere's incremental algorithms
for propogating EST and LST information
through the plan network can account for
these "time window" specifications and can
signal when they are violated. The
detection and correction of interactions
must be sensitive to any temporal
displacement introduced. DEVISER also
allows externally caused scheduled events to
be taken into account during planning and
allows for delayed effect events (caused by
earlier actions) to be handled (e.g. a
spacecraft is steady some time after firing
a thruster).

Very much more flexible handling of the
propogation of temporal constraints between
the steps of a plan is being considered in
the widespread research effort on temporal
logic (e.g. McDermott (13), Allen and Kooman
(1), ete).

The use of objects being manipulated as
scarce resources on which usage conflicts
occur and need to be avoided was
incorporated in the MOLGEN (Stefik (21,22))
and SIPE (Wilkins (30)) planners.

I 1 m it} : c Ti
Lost and Resource Usage

The methods of accounting for time
constraints and resource usage in Al
planners are characterised by their
incremental nature, In Operations Research,
it is usual to construct a project network
or plan by hand and then to try to balance
resource usage or find critical time points
or activities in a single computation. This
is not suitable where many alternative
methods of performing parts of an overall
task have to be taken into account or where
the situation is highly dynamic and changes
must be accounted for at plan time or when
failures occur during execution. The
balanced use of resources or working within
time limits must be used to select between
the alternatives available when the plan is
actually being constructed.

Hence, ingcremental algorithms have been
developed (4,28) which propogate resource
usage levels or time related information
through the effected parts of a plan when
any change is made. The changes include the
adding of a new logical link between
activities (effecting the possible start
times of later activities), the choice of a
particular method of performing a sub-=-task
(effecting resource usage levels, time
estimates, etc) and the removal of some plan
part to reconsider other alternatives when
limits are exceeded or unresolvable
interactions are found (again effecting
resource usage levels, time estimates, etc).

Iask Formalism

The problem domain is described to the
NONLIN planner through a completely
declarative language called the "Task
Formalism". The TF reflects the underlying
organising principle of Goal Structure to
describe the "intent" of the actions
specified for any goals. TF is fully
described in reference (26). As an example,
a description of a method of performing a
decoration task is given in figure 1.

Although the TF parser actually used with
NONLIN is very simple, the TF language is
designed as an intermediate formalism to
which a user front-end with a graphical
interface and knowledge based assistance can
be added.

The TF operator descriptions allow the
specification of "types" for the
preconditions, Earlier planning language
work (e.g. on PLANNER by Hewitt (11)) has
identified the problem with the single
precondition type which can either be
already true or can induce subgoaling to be
made true. The POPLER (Davies (5)) system
introduced two precondition types into the
PLANNER-1like languages - one to simply look
up if something is true (perhaps
instantiating variables), and the other
which is allowed to recursively make the
condition true if it does not already hold.

TF extends this notion and mates it with a
"process" oriented view of operator
descriptions. A TF operator description
specifies a method by which some higher
level action can be performed (or higher
level goal achieved). The operator
introduces lower level actions under the
contrel of the operator "manager" (these are
his own resources in some sense). He says
that something is to be done in order to
achieve each part of his job. 1In TF these
are specified as SUPERVISED conditions. The
"manager"™ also relies on other agents to
perform tasks that are their own
responsibilities, but effect the ability of
this manager to do his job. These are given
as UNSUPERVISED conditions. There are other
conditions which the "manager" may wish to
impose on the applicability of particular
solutions (i.e. don't bother to try this
method for house building if the building is
over five stories tall). These are termed
HOLDS and USEWHEN conditions in versions of
NONLIN.

NONLIN in fact has two other condition types
which really relate to other planning
abilities and are not strictly part of the
process specification aim of the TF. These
are QUERY for optional inclusion of sub-plan
parts, and COMPUTE to communicate with
externally defined computations and-‘data
bases or with specialised sub-planners.

The TF condition types provide important
search information for the planner and
facilitate the Goal Structure based
interaction detection and correction
facilities. They are used to reduce the
alternatives which needed to be considered
when dealing with failures at plan~time or
during plan-execution,



Interfaces to Sub-planpers and other Sub-
Systems

The AI planning systems so far discussed are
only suited to planning at a supervisory
level for a manufacturing system. There
will be very detailed sub-actions necessary
to achieve the stated high-level

operations. Some of these will be planned
by specialised sub-planners. For example,
specialised planners are available for
trajectory planning, grasp position planning
(Wingham (31), temporary scaffolding
erection , etec., In addition, it may be
necessary to consult specialised deductive
systems (sometimes referred to as "belief"
systems) which can answer a query based on
computation or rule invocation from the data
available at some point in the plan. For
example, body modellers (Ambler and
Popplestone (2)) to deduce positional
information from given relationships between
component objects.

The NONLIN planner has a simple interface to
such sub-systems. It is based on the
"COMPUTE" condition fully described in
reference (26). As an example, if a sub-
system called POSITION can be given an
argument representing an object and can
return a vector of its x, y and z positions
for its centre of gravity (say), then we can
write:

COMPUTE {x y z} = POSITION axle

To make this a useful feature, the following
were considered necessary:

a) the ability to pass in the values of the
parameters (e.g. axle above) using
objects known to the planner

b) the ability to query the state of the
facts known at the required point in the
plan. This is provided via a planner
routine available to COMPUTE function
writers which returns the facts matching
some given pattern at the point in the
plan at which the COMPUTE "condition" is
called

c¢) the ability to match an answer from a
COMPUTE function with some pattern which
may contain variables to determine
whether the outcome is valid. The
variables can also be used to pick up
partial results needed in the plan or in
further COMPUTE conditions

However, it is now realised that it is
essential to add the following to any
planner/sub-planner interface:

d) the ability to return a set of answers,
any one of which would be appropriate as
a matching response. Related to this is
the ability to accept back a restriction
on a matching response which may not be
a fully instantiated answer

e) the ability to accept back from a sub-
system a set of conditions on the
continuing validity of the answer(s)

This final point is vital. For example, if
the POSITION routine returns a particular
value for the {x y z} of the axle's centre
of gravity, this would be based on
relationships and other data which were
found to hold at the required point in the
plan. If the derived information is to

continue to be valid, the logical support
for the deduction must continue to hold
(this is sometimes called "reason or truth
maintenance" (Doyle (6)) or "belief").

In addition, the derived information can be
used anywhere in the plan where the base
information holds, The statement of the
support conditions thus specifies the Goal
Structure that applies to the results of
calling a sub-system. Any interaction with
the support for the derived information must
be detected and corrected as for any other
planner introduced interaction.

A Re-startaple Planner

A re-startable planner is necessary to cope
with failures at both plan-time and plan
execution time. There have been several Al
planning systems which are able to keep a
record of the inter-relationships between
parts of a plan and the dependencies between
the choices made to introduce each part
(Hayes (9), Stallman and Sussman (20),
Daniel (3)). These have been used mostly

to limit the amount of an emerging plan that
must be discarded when a failure occurs at
plan-time to that part which is logically
dependent on the failed parts (rather than
all plan parts introduced after some
particular point which is the cause of the
failure), These, so called, "dependency-
directed backtracking" systems are also well
suited to coping with plan revision after
execution-time failures. The plan can be
tidied up by undoing all failure-dependent
parts and removing hl1 executed sections
(altering the initial state model
appropriately). Re-planning can then try to
generate a repaired plan to achieve the
original goals.

PLANNING AND CONDITION MONITORING
ARCHITECTURE FOR THE FM3

The control system for a Flexible
Manufacturing System is seen as a hierarchy
of modules, each providing localised
supervision of allocated tasks, condition
monitoring, limited recovery and status
reporting. At the lower levels, these
modules involve hardware sensing and
adaptive control or redundancy. At the
higher levels they involve business decision
support software. The AI techniques may
have a part to play in between. This is
shown diagrammatically in figure 2.

Figure 3 shows more detail of the interface
between the planning system and other parts
of a small batch factory automation system.
Planning assumes a fixed set of processes.
These are supplemented by a product or
component design system. The processes are
skeleton plans for the manufacture of given
products or for the performance of certain
manufacturing processes. They are
represented at various levels of detail.

The skeletons should state as much as is
known about the "intent" of each action
included (as Goal Structure condition ranges
or constraints) to give the planner and run-
time execution monitor more information to
use during re-planning on failures.

It is the job of the planner to refine a
"rough cut" schedule of activities (decided
from the order book using an estimate of
plant capacity, etc) into a detailed plan of
action for the actual plant conditions
prevailing. It accounts for consumable



resources and time critical events. The
plan is then passed via a resource allocator
(at least for resources limited by time) to
the execution system. The planner should
ensure that sufficient information is
available to enable the execution monitor to
properly check that plans achieve their
purposes.

A_MODEL _OF PLAN EXECUTION MONITORING BASED
ON GOAL STRUCTURE

A plan execution monitor is given a plan
generated by a planner together with
information on what the individual plan
steps achieve by what time for which
subsequent tasks (the Goal Structure). It
must supervise the allocation of tasks to
effectors (based on a capabilities data base
which might be trivial or quite complex in
nature). It must use any available condition
monitoring capabilities to monitor the
execution of each task to ensure (as far as
possible) that it achieves its purpose(s).

When failures occur, recovery steps may be
taken which might be of various types:

- recovery procedures for the effector
chosen (e.g. reset and repeat)

- recovery procedures for the task type
chosen (e.g. generic procedures for
ensuring that a task can be
successfully accomplished by passing
it to 8 special purpose effector or
skilled supervisor)

- recovery procedure for the particular
failed condition (e.g. by replacement
of a part or by fix-up actions, etec)

Recovery on failures can be simple or
complex depending on the local intelligence
of the effectors chosen, the closeness of
coupling of tasks in the domain, the
predictability of error outcomes, etec. When
a failure is found which cannot be locally
recovered from within the given Goal
Stucture constraints (of required outcomes,
resource usage or time limits), the
execution monitor must prepare a statement
of the failure and changed plan
circumstances to pass back to the planner
(which can then be used to suggest a plan
repair). This is shown diagrammatically in
figure 4.

As shown in figure 5, an activity can be
executed as soon as all the incomming Goal
Structure requirements are satisfied (by any
potential "contributor" if there are several
alternatives). & decision on the allocation
to a particular effector must then be made.
The activity is given a tag to identify it
through the execution monitor. The
activity, its tag and any associated
constraint information is then passed to the
effector. At the same time, the Goal
Structure outcomes of the activity are
entered, along with the relevant tag number,
into the condition monitoring system (which
can examine them to consider how best to use
its monitoring systems or sensors to test
the conditions).

The relevant effector executes the action
and its controller must report when the
activity is completed by returning the
associated tag to the execution monitor.
"Time-out" conditions related to the time
limits for the follow on actions to the Goal

Stucture outcomes are used to prevent the
system hanging up on effector controller
failure.

The condition monitor is triggered by
receipt of an activity tag to check all
associated Goal Structure outcomes of the
activity. This same model of execution and
condition monitoring applies where the
"activity" is the use of a sensor to capture
information needed at some point in the
plan. The Goal Structure outcomes in such a
case may contain variables which will be
bound to definite values when the
"condition" is checked.

If failures occur, local recovery is
possible (by either the effector or by using
fix-up plans accessible to the execution
monitoring system or condition monitors)
within the given resource or time limits set
for the follow on activities resultant on
each monitored outcome. The parallel Goal
Structure (i.e. outcomes of actions before
the failed activity which are required later
in the plan) provides a guide to the local
recovery system on what should be preserved
if the local recovery is to avoid
interference with other important parts of
the existing plan. Any interference with
such parallel Goal Structure should be
reported to the execution monitor as it must
be re-considered by the planner to work out
the actual effect on the plan.
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actschema decor

pattern {decorate}

expansion 1 action {fasten plaster and plaster board}
action {pour basement floor }
action {lay finished flooring }
action {finish carpentry }
action {sand and varnish floors }
action {paint }
orderings sequence-2 to 5§ 1 ===>3 6 ===> 5

oUW

conditions unsupervised {rough plumbing installed } at 1
unsupervised {rough wiring installed } at 1
unsupervised {air conditioning installed } at 1
unsupervised {drains installed } at 2
unsupervised {plumbing finished } at 6
unsupervised {kitchen equipment installed} at 6

supervised {plastering finished } at 3 from 1
supervised {basement floor laid } at 3 from 2
supervised {flooring finished } at 4 from 3
supervised {carpentry finished } at 5 from 4
supervised {painted } at 5 from 6

end;

Figure 1: NONLIN Task Formalism Schema describing a decoration task
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Figure U4: Flow of control of actions and
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