
169

INTERACTING WITH AN INTELLIGENT PLANNING SYSTEM USING ENGLISH SENTENCES

E Crabtree’, R S Crouch’, D C Moffat3, N Piriel, s Pulman4, C D Ritchie3, A T a t d

’British Telecom Research Laboratories: 2University of Cambridge;
4SRI International, and University of Cambridge. UK .

3University of Edinburgh;

ALMS OF PROJECT

An intelligent planning system is an example of a software aid
which, although developed by specialists in artificial intelligence,
and custonlised for a particular application by knowledge engi-
neers, is intended eventually to be used by non-programmers for
a wide variety of tasks. That is, the domain-specific definition of
requirements, resources, etc. for a particular application will be
specified by people who are trained in their own trade or profes-
sion but ‘who are unlikely to be acquainted with the technicalities
of automatic planning systems. There is therefore a need for a
communication medium which allows the application specialist,
and the non-expert user of the eventual domain-tailored system,
to specify their needs without howing any of the low-level de-
tails of the planning notation or the actual operations of the
planning system.

This kmd of system is one where the ‘mice and menus’ approach
is unlikely to be able to provide a very flexible interface, since
i t is chaxacteristic of the type of interaction that one would like
to be able to have with a planner that the range and type of
potential queries is not predictable in advance, and thus not
reducible to choices withiii some predetermined set of options.
Furthermore, it is often desirable to have the planner try out
a range of hypothetical or counterfactual situations that could
not be represented in any obvious graphical form: some kind of
language, either artificial or natural. is a necessity here.

The aim of this project is to experiment with the use of English
language aa the medium of Communication. The kind of system
we have been trying to build during this three year project is one
where the user interacts with the planner to plan some type of
external activity, perhaps trying out several alternative scenarios
based on differing assumptions, and then, during the course of
execution of the resulting plans, engages in further interactions
making adjustments when parts of the plan turn out for some
unforeseen reason to be unachievable.

The following are examples of the kind of query which are suc-
cessfully handled in the final version of the system. The sample
domain that we have been using is one in which telephone field
engineers repair equipment faults. The aim of the planner is
to allocate engineers to faults in exchanges throughout the rel-
evant region in the way that maximises the use of their skills,
minimises travelling, and achieves highest overall productivity.

1. When will the fault at Ipswich be fixed?
2. Will Brown go to Ipswich from Base before anybody does

3. What jobs will be worked on while Smith is at Ipswich?
Jobl?

Queries l i e this require that notions of time, in relation to par-
ticular points in the current plan, or to the current state of
executioq of the plan, should he handled correctly.

4. Could Brown repair the fault at Bury?
5. If Smith goes to Ipswich, could Brown go to Martlesham?
6. If Smith had to do Joh2, who could do Jobb?

Here the interpretation of the queries depends on the ability to
consider alternatives to the current plan which still allow the
goals to be achieved. Modal notions like ‘could’ and ‘have to’ as
well as conditionals, cannot be interpreted without. implicit or

explicit reference to states of affairs that differ in some respects
from that currently being contemplated.

SYSTEM DESCRIPTION

The overall system consists of a Natural Language Front
End (NLFE), which produces logical forms (LF) representing
the meaning of an input sentence; a Plan Query Language Eval-
uator (PQLE) which accepts inputs in a Plan Query Language
and evaluates them against an internal representation of the
current plan, or by manipulating the planner itself to to try
produce further plans; and the planner: cnrrently the system
will run with Tate’s NONLIN planner (8) or IPEM, a system
developed at the Univemity of Essex. However, since these large
general purpose systems can Le rather slow, for development and
demonstration purposes we use a hand-crafted, domain specific
planner written in Prolog at BTRL. Modules exist for trans-
lating in both directions betwen the representations used by
these different components so that responses from the planner
are eventually presented back to the user by the NLFE.

The NLFE, PQLE and Planner are all separate processes, con-
trolled by a ‘debugger’ interfaced to the Sun\’iew Window sys-
tem, euahling the course of operation of the system to be traced.

THE NATURAL LANGUAGE FRONT END

The NLFE accepts English sentences and produces logical forms
representing the literal meaning of the sentences. Filst, the sen-
tence is parsed using a unification enriched context free gram-
mar, a lexicon and a bottom up, left to right parser originally
developed as part of the Alvey Natural Language Tools project
(5). This produces the syntactic structure of the sentence, which
is used to determine what the initial logical form of the sentence
should be.

Each syntactic rule in the grammar has one or more correipond-
ing semantic rules saying how the nieauiugs of the constituents

should be combined to give the meaning of the whole. (When
there are several semantic rules, the instantiations of syntactic
features determine which one is applicable). To give a simple
example, consider the (simplified) grammar rule

syntax: SCstype statement1 -->
NPCnumber 0num, person Qperl
VPCnumber anum, person @per, vform f i n i t e]

semantics: S ’ = NP’(W”)

This says that a sentence can consist of a noun phrase followed
by a verb phrase, provided the NP and VP agree in the values
given to their number and person features and that the VP is
finite. Agreement between features is enforced by unification:
feature values beginning with ‘a’ are variables. The semantic
part of the rule says that given a sentence built up from an
NP and a VP combined in this way, form the meaning of the
sentence (S’) by applying the meaning of the NP (NP’) to that
of the VP (VP’). For a very simple sentence we might have:

170

S
Cstype statement]
/ \

/ \
NP VP

[nun s ing , per 3rdl hum s ing , per 3rd.
vform f i n i t e]

I I
John snores

NP’ = [AP. P(john)]
VP’ = snore
S’ = [AP. P(john)] (snore)

= snore(john)
The meanings of the constituents are expressions in a typed
higher order logic based on a simplified form of Montague’s in-
tensional logic (see (2)). These meanings are ultimately built up
from logical expressions assigned as the meanings of individual
words by function application or composition. The expressions
produced by this stage of processing are not yet complete rep-
resentations of the sentence meaning, in several respects:

(i) they contain variables over higher order operators which
will later be further instantiated: for example, the meaning of
some NPs is translated with a veriable which can be instantiated
by one of two operators: ‘DIST-NP’ and ‘COLL-NP’. These op-
erators correspond to the distributive and collective readings of
NPs found in ‘the engineers slept’ and ‘the engineers conspired’,
respectively. The operators are abbreviations for more complex
logical expressions. DIST-NP, for instance, is a shorthand for
quantification over subparts of the (plural) object denoted by
an NP.
Thus at the initial logical form stage, the meaning of some NPs
is not completely determined, and it is left to a later stage to
instantiate their variable with the appropriate operator. The
alternative to this method would be to treat each NP as am-
biguous between the two readings and select the appropriate
one later. The current method is logically equivalent to this
but computationally much more efficient, avoiding an uncom-
fortable proliferation of ‘meanings’ for an input sentence which
differ only in the possibilities for collective and distributive read-
ings of NPs.

(ii) they contain terms which are proxy for the value of
anaphoric expressions like pronouns and definite descriptions.
In the current system, all anaphoric expressions are analysed as
involving the quantifier ‘the’ (unique existential), differing oiily

in that whereas a definite description like ‘the man’ will he:

the (x) man(x) &
a pronoun like ‘he’ will be:

t h e (x) he(x) &

Thus pronouns are analysed as predicates which give informa-
tion only about number and gender of the contextually unique
referent. In both cases, these subexpressions may be evaluated
against a local context and the result of that evaluation passed
on to subsequent processing. Currently, only intra-sentential
anaphora is implemented in the system, although the addition
of the ability to refer to entities mentioned in previous sentences
could easily be added (for simple cases, at least).

(iii) they contain free variables or temporal indices, which
will undergo a ‘linking’ process, representing the establishment
of contextually determined relations between them. These rela-
tionships are established by rules which are sensitive to the type
of verb involved in the sentence, whether or not it is temporally
modified, and so on. Thus, for example, in a non-temporally
modified, present tense stative sentence, the ‘current-time’ in-
dex will be set to the value of the ‘speech-time’ index.

(iv) they contain markers corresponding to certain types of
elided constituent. For example, a sentence like ‘Will Joe go to
Ipswich before Fred?’ is regarded as elliptical for the full form
‘Will Joe go to Ipswich before Fred goes to Ipswich?’. Later on,
the appropriate semantic content for the missing constituent is
worked out on the basis of the logical form for the main clause,
and sortal information about the entities corresponding to the
arguments of the verb: this enables the differing types of inter-
pretation of sentences like

‘Will Joe go to Ipswich before Norwich?’
which is syntactically identical to the earlier example.

(vi) certain subparts of a logical form are identified as cor-
responding to presuppositions which must be satisfied before a
query can be answered appropriately. In the example just given,
for example, it is presupposed that it is in fact true that ‘Joe will
go to Ipswich’. This information can be made use of in providing
a helpful response in the case where a query might be answered
in a misleading fashion (i.e. ‘no’) because the presuppositions
are not satisfied.

The logical form that results from ‘fleshing out’ the initial, syn-
tactically generated logical form may contain higher order con-
structions like predicate modifiers, as well as various tense op-
erators. Such expressions are relatively hard to deal with in-
ferentially, and since the translation from LF to PQL involves
inference based on the contents of the LF, these LFs are con-
verted to a more tractable form.

In the case of the tense operators, conversion amounts to r e
placing the operators by equivalent quantifications over times.
In fact we go slightly further than this. Our tense operators are
defined using time periods rather than time points. But time
periods are more easily reasoned about if we represent them in
terms of their start and end points. Thus each operator is con-
verted into a quantification over start and end points of periods.
For example (PRES (fau l ty ipswich)) is said to be true a t
the triple of time <s , t ,h if I is a period which has s as an ini-
tial period, t i s contained in I , and (fau l ty ipswich) is true at
time e. (Intuitively, s is the speech time, t is the ‘event’ time,
and I is a localisation time, a time period within which all the
events being talked about must occur). Assuming that s has the
value ‘now’ (for speech time), the expression is converted into
something that quantifies over times as follows:

(some (1)
(and (time 1) (T= (s t a r t 1) (start now)))

(some (t) (and (time t)
;; now s t a r t s 1

(and (T>= (s t a r t t) (s t a r t 1))
;; t contained i n 1

(D= (end 1) (end t))))
(f a u l t y ipswich t)

A sentence like ‘Fred works in Ipswich’ will contain a verbal
predicate modifier, and (ignoring tense) will be expressed as:

[(in Ipswich) works] (Fred)

where ‘in’ applies to ‘Ipswich’ to form a predicate modifier
that modifies the predicate ‘works’. In this case it will cut down
the set of people who work to the set of people who work in
Ipswich. The resulting predicate is applied to Fred. In general
it is not possible to convert predicate modifications like these
into a logically equivalent and more tractable form, as we can
with tense operators. We therefore introduce events during the
conversion, to give us

(some (e) (event e)
(and (work Fred e) (i n e ipswich)))

171

‘There is a working event by Fred, and the event is in Ip-
swich’. It should he pointed out that events are merely intro-
duced as a device for making inference easier.

To illustrate some of these features, here is the initial logical
form for the query ‘Who does johz?’:

((S-tense -tel -til)
;; t ense

;; Wh-phrase
(lambda (-xi) (PRES (do -xi job3)))))
;; Verb phrase

When the wh-phrase is expanded out:

(((WHdet -uhl) person)

(6 - t e n s e - t a l -til)
(some (-vhl) (person -whl) (PRES (do -whl jobs))))

In this case there are no pronouns. After the rules have
expanded out the tense operator, and linked temporal indices,
the final first order logical form is:

(some (-til)
(time -til)
(some (- te l)

(t i n e - t e i)
(some (-ubi)

(person -ubi -tei)
(and (T>= (start -til) (s t a r t now))

(T>= (start - t e l l (s t a r t -til))
(n- (f in i sh -til) (f i n i s h - t e l)))

(some (-el) (event -e l) (do -whl job3 - e l -tell

As will be evident, quite complex temporal relations are ex-
pressed via predications involving the start and end points of
events, and their relations to the time of utterance of the sen-
tence (i.e. ‘now’). Notice also that it is strictly speaking inac-
curate to regard this process of fleshing out the compositionally
derived logical form as one of macro expansion: actually, we are
translating from expressions in one language to expressions of
another with a systematic semantic relationship to it (much as
skolemisation does in transforming to normal form for theorem
proving purposes). For example, the two place logical constant
‘do’ given as the original translation of English ‘do’ is eventually
mapped into another which is 4 place, relating agents, entities,
events and times.

The final translation into PQL is made easier by the fact
that we now have a fully fiist order expression (though this is
desirable on other grounds also):

exists(type(??whl, person),
ex is t s (type(?e l , done(job3, ??whl, -, -)I,

=<(now, s t a r t (? e l)))) .

Notice that the temporal information supplied by the lin-
guistic analysis is much simplified in PQL: this is a reflection
of the more general point, amplified below, that the informa-
tion derivable from the English input is much richer than can
be made use of in the planner.

PLAN QUERY LANGUAGE

Our original intention was to develop a formal language in which
to talk about the structures and operations of a planning system
in a way which was independent of any particular application,
and which did not rely on any idiosyncrasies of a particular
planner - a type of SQL for planners. We would like the language

to provide in a precise sense a definition of the range of possible
interactions it is possible to have with a planning system. PQL
would have a clear deuotational or operational semantics, which
any ‘implementation’ of it in terms of a particular planner would
have to respect. Then the process of moving our system from one
planner to another operating of the same factual domain would
be simply that of implementing PQL using the hasic mechanisms
of the planner in question. (There are of course a different set
of problems arising when the domain is different too).

However, the analogy is not one which holds as firmly as we
might like. For one thing, database theory and practice is much
more advanced in standardisation than is the case with planning.
Only if some reasonable convergence on the range of operations
and type of structures that planners deal with emerges will it
be possible to provide a definition which has a chance of being
fairly generally applicable. As it is, there is a wide variety of
types of system being used for planning: deductive, procedural,
agentless, multi-agent, those that include plan execution and
monitoring, or on-the-fly replanning, etc. etc. There seems to
be no great measure of agreement (at any useful level of detail)
about the primitive concepts of planning systenw in general,
other than those we have already tried to incorporate. Thus
any proposed version of PQL is quite likely to be overtaken by
events in the world of planning research.

The language that we actually use for communicating with
planners and reasoning about plans is, in essence, a sorted first
order logic with equality, with the addition of three modal-like
operators which can only be used in queries.

To give an example of a traditional type of planning operator
formalised in PQL, consider:

needs (movetX,Y,Z),

makes (move(X,Y.Z),
[block(X), on(X,Y), c lear (top(Z)) l)

Con(X,Z), clear(top(Y)), -clear(top(Z))l)

The ‘needs’ predicate expresses the relation between an action
and its preconditions, and ‘makes’ expresses the relation he-
tween the action and any postconditions. The list appearing
as a second argument is a shorthand form for a series of in-
dividual predications each relating the event to a single pre-
condition. The sortal structure that we assume distinguishes
between events, times, propositions, and other individuals, so
that ‘move’ is a function from entities to events, ‘on’ and ‘clear’
etc. are functions from entities to things that we might as well
call propositions. We also have relations between propositions
or events, and times, expressed by ‘holdsat’, e.g. ‘holdsat(t3,
on(block3,block4))’.

This language is then suitable for formalising the concepts
known and used by the planner, the plans that are actually
delivered, as well as domain specific information which may not
be needed to form plans, but could be relevant to answering
questions.

Queries posed against a PQL ‘database’ are answered by a
procedural interpreter. In the case of the three extra modal
operators, the process of answering the query also involves in-
voking the planner. The modal operators aim to capture notions
of necessity, possibility and conditionality. Given a specification
of a task we are trying to perform, MUST(P) is true with re-
spect to the task if P is true in all the plans solving the task.
MAY(P) is true with respect to the task if P is true in at least
one of the plans solving the task. Conditionals of the form ‘If P
then Q’ involve modifying the task specification to include the
information contained in the antecedent, P, and evaluating the
query Q by generating plans from the new specification.

172

It is tempting to look at the modalities in tern- of possible
worlds (4), whereby the sentence MAY(P) is true in the current
world if there is some possible world accesible from the current
one in which P is true. Here we can regard plans as possible
worlds. The current world is the plan currently under consid-
eration, and accessible worlds are those plans that achieve the
same goals as the current plan. But this view faces certain diffi-
culties in terms of the procedural implementation of possibility
and necessity, different ‘grades’ of modality that arise, and the

treatment of conditionals.
The procedural interpretation of possihilty and necessity as

true in some and true in all plans runs into problems with the
fact that planners are carefully designed not to search a full
space of plans. In a route planning domain, we would not want
the planner to return a route from London to Cambridge that
went via Dumfries. This is a possible route, but it involves go-
ing at least 10 times as far as any of the more obvious routes.
If you asked a question like ‘Can I go from London to Cam-
bridge via Dumfries?’ and answered it by looking at the London-
Cambridge routes the planner returned, the answer would be
therefore be ‘No’. But there is a sense in which the answer
should be ‘Yes’, as such a route is possible, if ill-advised. To
get a ‘Yes’ answer, we must contrive to alter the space of plans
that the planner searches over. This can be done by making it
a goal that the route passes through Dumfries. This motivates
the following procedural treatment of possibilities, MAY(P).

If P is true in the current plan, then TRUE. 0th-
erwise add P to the set of goals, and see if a plan
can he generated that meets these goals. If one can,
then TRUE. else FALSE.

This treatment of possibility makes it appear as though the task
specification is altered rather than held constant. However, it
is possible to avoid this consequence if we distinguish between
goal conditions that are genuinely part of the task specification,
and those that are merely added to alter the planner’s search
space.

Necessity on the other hand is treated by simply looking at
all the plans generated from an unmodified set of goals. This
means that in dealing with possibility we are searching over a
wider range of plans than we are with necessity. This can lead
to the following paradoxical situation. Suppose we ask ‘Must
Smith do Job 3?’. and in all the plans that the planner can
currently search over, Smith does indeed do Job 3. Thus the

answer is ‘Yes’. Now suppose that we ask ‘Could Jones do Job
3?’. In answering this, we change the range of plans that the
planner will search over, and it possible that Jones does do Job
3 in one of these previously unconsidered plans, in which case
the answer would be ‘Yes’. On the assumption that only one
person can do a job, the two answers are contradictory. The
problem could he avoided if we could add negative conditions
to the set of goals. In this case, we would treat MUST(€‘) by
adding the negation of P to the set of goals. Assuming that
there was at least one plan for the original set of eoals. if no

In practice, the paradox is not a serious problem. Instances of
it do not frequently arise. Also, most users are likely to have a
fairly accurate idea of the space of sensible plans, and are un-
likely to be posing questions of the type designed to prise out
these little inconsistences. The query will not be answered in
too misleading a way provided that the idea that these modal-
ities are interpreted with respect to a set of particular desired
conditions, and not some more general background, is kept in
mind.

Another difficulty for the possible worlds/plans view of modality
is the existence of different ‘grades’ of modal. A question like
‘Can Jones repair the fault at the TXE exchange in Cambridge?’
can be interpreted in two ways. It could be a question about
valid alternatives to the current plan. Or it could be a more gen-
eral question about Jones’s ability as engineer: whether Jones
knows how to repair TXE exchanges. The second interpreta-
tion of the qnestion makes no appeal to a current plan being
the current ‘world’. The association of worlds with plans is too
rigid.

In general, possibility and necessity are evaluated with respect
to a set of background assumptions (3). In many cases the back-

ground assumptions will be exactly the specification of the task
to he solved. In other cases we might remove some of the goals
from the assumptions, leaving perhaps just a specification of en-
gineers’ abilities and the locations and types of faults. Alterna-
tively, we might add the description of a plan to the assumptions
1.

In theory the range of background assumptions form a con-
tinuous scale, and necessity and possibility can be viewed in
terms of entailment by or consistency with the assumptions.
In practice it difficult to identify what background is being as-
sumed, and it is helpful to distinguish different types of back-
ground. It is also undesirable to appeal directly to logical entail-
ment and/or consistency with respect to a set of assumptions,
since planners do not search a logically complete space. PQL
categorises three grades of modal: those taken against a task
specification, those taken against a particular plan, and those
taken against a more general background that assumes no par-
ticular task but which do assume a certain amount of knowledge
about the domain. The different grades of modal are evaluated
in different ways. Task modals are evaluated in the way de-
scribed above, by using the planner to generate plans. The
planner can he seen as a kind of theorem prover, albeit logically
incomplete. Plan modals are evaluated by carrying out genuine
inference on the description of a plan. This inference is done
within the PQLE, and does not invoke the planner. Non-task
modals are not implemented yet. There are two ways of dealing
with them, depending on whether the planner is used or not.
Without using the planner, the PQLE could use inference to
determine entailment or consistency by the non-task oriented
assumptions. Alternatively the assumptions could be used to
construct a new mini-task, and the planner employed to see if
such a task can he solved. Thus, for a non-task interpretation

‘We can also identify two different interpretations far quationa of the
plans can be generated-once we ensure-that P is fays,, then P
must where is
false, P need not be true. This treatment would make necessity
the dual of possibility. Unfortunately. there is no general way of

form ’Could A happen after B?’, since typically plans returned by a planner
give only a partial specification of the order of events. If the ordering of
A and B is left unspecified, the question could be about possible orderings
within the current plan. or about completely different plans

he true‘ If a ’Ian can be

-
imposing negative goals on planners.

173

of a query like ‘Can Jones repair the fault a t the TXE exchange
in Cambridge?’ we set up a task with just one goal (that Jones
repair the fault a t Cambridge) and initial conditions involving
Jones’s abilities etc., and see if a plan can be produced.

The third kind of modal operator is the conditional. This too
is evaluated relative to a set of background assumptions and is
inspired by the h m s e y treatment of conditionals (1,6). The
information in the antecedent of the conditional is added to
the set of background assumptions, and the consequent eval-
uated relative to fhe updated set of assumptions just as if it
was a non-conditional query. Again, we have three grades of
conditional: plan, task and non-task (with non-task condition-
als unimplemented). The modification of the assumptions may
be counterfactual, in that the conditional’s antecedent contains
information that is inconsistent with those assumptions. Nor-
mally this means that the background assumptions have to be
adjusted, causing ‘minimal‘ change, so that the antecedent can
be consistently added. Bringing, about such an adjustment is
a non trivial matter. However, with the classification of back-
ground assumptions that we employ this process can be made
easier. The assumptions form a hierarchy, starting with non-
task assumptions that simply describe the domain and perhaps
the initial state of the world, followed by task assumptions that
add a set of goals to the non-task assumptions, and finished by
plan assumptions that add a description of a plan to the task as-
sumptions. An antecedent may be counterfactual with respect
to a particular plan without being counterfactual to the task
specification used to produce it. In such cases, the antecedent is
added non-counterfactually to the task msumptions rather than
counterfactually to the planpssnmptions. There are cases where
dealing with counterfactual antecedents by ascending a hicrar-
chy will not work, e.g. if something is counterfactual against
non-task assumptions. In these cases there are some very sim-
ple heuristics for attempting to add the antecedent consistently,
and if these fail, the conditional is not evaluated.

The procedural implementation of conditionals taken relative to

the task specification is as follows. The antecedent is added to
the task specification, a plan is generated, and the consequent
is treated EIS a n o d query. If the consequent is non-modal,
as in ‘If Smith did Job 3, who would do the job in Ipswich?’
the consequent, ‘who would do the job in Ipswich‘ is evaluated
against the first plan generated. This contrasts with conditionals
with modal consequents, like ‘If Smith did Job 3, who could
do the job in Ipswich?’. Here we have to generate a range of
plana to determine all the people who could do the job rather
than the person who would in fact be assigned to do it were
Smith to do Job 3. This has a passing, though misleading,
resemblance to the Stalnaker (7) treatment of Conditionals. On
this account, conditionals are handled by going to the ‘nearest’
possible world in which the antecedent is true, and evaluating
the consequent from there. Finding the nearest world involves
the use of a similarity relation, ordering the worlds. The order in
which a planner generates plans from a task specification could
be seen as a kind of similarity relation. However, it functions in
a different way from the Stalnaker similarity relation. For them,
the similarity relation is a way of incorporating counterfactual
information. For us, this is already done by other means, and
the order of plans is only used for conditionals with non-modal
antecedents.

One interesting thing to note about our implementation is the
treatment of conditlonals of the form ‘If P then May(Q)’. First
P is added to the task specification. Then to evaluate May(Q),
Q is added to the specification, and plans are then generated.
This means that the query become equivalent to ‘May(P and
Q)’ and also ‘If Q then May(P)’. Such equivalences do not hold
with conditionals like ‘If P then MUST(Q)’, and they are a bye-
product of the incompkte search space of planners. However,
these equivalences seem to be haimless, and this suggests that
the ‘directionality’ of conditionals is a matter of implicature
rather than of truth conditions. In many cases, the antecedent
is taken to precede the consequent (e.g. ‘If he comes here, I will
leave’), but in other cases, especially in planning domains, there

is no such directionality (e.g. ‘If Smith does X, Jones will do Y’
where Y may be done before X).

It is also important to note that to handle the treatment of
modals and conditionals given here, the planner must be able
to accept partial plans. This is because the task specification,
as well as giving initial and goal conditions, may also specify
certain operations that must be used in any resultant plan a t
a particular place. To allow this, the planner must be able to
build up complete pIans on the basis of a partial description of
a plan. Most planners do allow this.

GENERAL INTERFACING ISSUES

There are some general lessons that we feel can be learned
from our experieuces with this attempt to provide a natural
language interface to a planning system. The first concerns the
limitations of the system that we are interfacing to. The general
point is that a system which was not designed with a view to
having access via natural language is unlikely to include facilities
which such an interface would find useful. In this respect plan-
ners, and other typen of problem solving systems, are different
from databases, which are the most usual system to provide NL
interfaces to. Whereas with database systems the range of possi-
ble (sensible) queries is more or less limited to the contents, and
to some degree, the organisation of the database, with a planner
there are far more things that could sensibly and usefully be
required.
For some of these type of interactions, there may be little or
nothing inside the actual planner for the front end system to
use. In presenting our earlier example of successive translations
from logical form, we mentioned that much temporal detail is
stripped out of the the sentence meaning when it is trapslated
into PQL. This is because the temporal structure in a planner
is invariably much simpler than that presupposed by the tense
and aspect system of a language.

In fact, NONLIN in our present system provides an example of
this: there is actually no explicit temporal information at all in

a NONLIN plan. The partial ordering of nodes in a plan places
some constraints on how the plan could be temporally executed,
but all of this is neutral as to particular approaches to the rep-
resentation of time. Nevertheless, we still want to be able to
ask and answer questions about temporal ordering of jobs to be
done, and so on. In our current system, this has either to be in-
ferred from domain information, or (as is actually done) treated
in an oversimplified manner by associating nodes in a plan with
temporally located events. Whereas in this application this is

1 74

fairly satisfactory, it is not difficult to imagine other applications
in which consumption of time resources were important, where
this kind of temporal information would have to be superim-
posed on the actual planner in a way fairly unconnected with
how the plans were actually arrived at.

The complexity in the LFs arise as a result of giving a compo-
sitional semantics for tense that covers a wide range of cases.
though in any one instance much of the information is will in
fact be redundant. The translation thus involved an element of
generating logically equivalent but non redundant expressions.

If the designers knew that the planner was going to be used with
an NL interface, then it might well be the case that the system
could be built in such a way that the relevant information could
be more easily superimposed on the basic planning system.

Many interactions do not require invoking the application so
much as the domain model, or a declarative representation of
the current state of the system. In some more extreme cases,
it might be information straightforwardly about the nature of
the domain which is needed to answer the question, informa-
tion that is totally irrelevant for the operation of the planner
itself and thus not represented in it. In our current system we
would have to represent this knowledge inside PQL, for the not
very good reason that there is nowhere else for it to go. But
enriching PQL so as to encompass the ability to answer such
questions would not, we feel, be a good idea: a general purpose
knowledge representation formalism should not be confused with
a planning-specific language. In retrospect, we should have de-
voted much more attention to modelling the domain of applica-
tion: we tried to avoid this, motivated partly by the practical
necessities of building a system within limited resources in t e r m
of time and effort, and partly by the feeling that it was theoreti-
cally undesirable to have to emulate some of the knowledge and

output of the planner in another part of the system, However,
this intuition was, we now feel, wrong: it is better to bring as

. - ~.
Such expressions are not easy to simplify or optimise, and in
the general case there may not even be a decision procedure for
doing this. It would be much easier if the inference required for
this simplification were done in the question answering process
rather than in the question forming process. This suggests a
different way of using PQL and the PQLE. PQL could he used
to provide a language in which to express the semantic clauses
that provide an interpretation for LF expressions, much as the
language of set theory is normally used for this purpose. Thus
instead of producing a single PQL expression for a single LF
query, a procedure generates smaller PQL expressions in an at-
tempt to interpret the LF. Many problems need to he sorted

out with this approach, and it may tum out to be as difficult to
implement as direct translation, but it is an approach we would
like to study.

ACKNOWLEDGEMENTS

This project is supported by the Alvey Directorate, British
Telecom, and the Science and Engineering Research Council
(Alvey IKBS 179, SERC GR/D/83507).

REFERENCES

much as possible of the back-end application, whether a pian-

end processing system. To give a concrete example, much of

Natural Language input is also necessary for an informed trans-
lation into the language of the planner, and can in many cases
be used to answer questions without consulting the planner or
the plan at all.

ner, expert system, or whatever, within the purview of the front ’. van Benthem, J’ (1985) Manual Of Intensional csL1
Lecture Notes No 1.

to Montague Semantics’, Dordrecht: D. Reidel Publishing.
3. Kratzer, A. (1977) ‘What ‘Must’ and ‘Can’ Must and Can

Mean’, Linguistics and Philosophy, 1, 337-355
4, Kripke, S . (1963) ‘Semantical Analysis of Modal Logics,,

I, Zeitschrift fur Mathematische Logik und Grundlagen der

the information that is necessary for the disambiguation of the 2’ Dowty> D’> wall, R’, and Peters, S. ‘An Introduction

We should also have paid more attention to issues arising out
of interfacing an NL front end to a back end (in this case the
PQLE), with its own query language. We had assumed that we
could simply translate from logical forms to expressions in PQL,
so that a question would produce a single LF query which would
get translated into a single PQL query. We now suspect that this
is the wrong approach. A particular problem we encountered in
the translation was simplifying the complex temporal informa-
tion in LFs to a less complex and non-redundant form in PQL.

Mathematik, 9, 67-96.
5 . Phillips, J. D. (1986) A Simple, Efficient Parser for Phrase-

Structure Grammars. AISB Quarterly 59, pp.14-18.
6. Ramsey, F. P. (1950) ‘General Propositions and Causality’,

in Foundations of Mathematics and other Logical Essays, New
York.

7. Stalnaker, R. 1968 ‘A Theory of Conditionals’, in N. Rescher,
ed. Studies in Logical Theory, Oxford: Basil Blackwell.

8. Tate, A. (1977) ‘Generating Project Networks’, IJCAI-77,
Cambridge, Ma. USA.

