
The Less Obvious Side of NONLJ~

Austin Tate 22-Aug-83

This working paper has been prompted by recent work on hierarchic non-
linear planners (NONLIN is such a system) and on some work in temporal
logics to support planning. The only easily available reference for
NONLIN was an IJCAI-77 (Tate, 1977) paper which concentrated on one
particular feature. The complete description is available in an
Edinburgh Department of Artificial Intelligence Research Report
(Tate, 1975). The NONLIN features to be highlighted below will be
related to the different terminology used by other workers and I will
show where their systems have gone beyond the applicability of NONLIN.

All of the work on hierarchic non-linear planners has a root in
Sacerdoti's landmark work on the NOAH planner at SRI (Sacerdoti,
1975). Work in Edinburgh on an U.K. Science and Engineering Research
Council grant "Planning: a joint AI/OR approach" used NOAH and work on
using "Goal Structure" to direct the search of planners as the basis for
the NONLIN planner used on the project. The application domain was the
production of project networks for civil engineering construction and
maintenance tasks (e.g., house building and electricity turbineoverhaul).

This paper will start by relating the feature of NONLIN that will be
familiar to most workers in the planning field (through the IJCAI-77
paper) to the underlying principles of NONLIN. The paper will then
give an introduction to some of the other features of NONLIN which may
be of interest for others working in the field.

Correcting for Interactions between Parallel Branches of the Plan

This was the theme of the IJCAI-77 paper (Tate, 1977) and the most often
referenced feature of NONLIN by other authors. The paper described the
method by which NONLIN extended the search space of Sacerdoti's NOAH to
ensure that detected interactions were corrected for (NOAH only tried
one of two legal plan re-orderings).

The analysis of correcting for the interactions was based on earlier
work on a linear planner INTERPLAN (Tate, 1974). This had its own roots
in the HACKER (Sussman, 1973) mechanisms for debugging PROTECTION-
VIOLATION faults during program synthesis. It proved the case that the
same analysis of the solution space applied to non-linear planning
systems also. In fact, the interaction detection and correction
features built a table of the underlying "goal structure" of the
emerging parallel plan in NONLIN (see the section on Goal Structurebelow) 

and can thus discriminate actual logical interactions from
unimportant side effects. This was the subject of my thesis work (Tate,
1975) as it related to linear planners.

Though I did not rea1ise it at the time, the STRIPS MACROPS operator
tables format for sub-plan re-use (Files, Hart and Nilsson, 1972) hold
most of the required information, but to my belief they were not used in

1



this way. Some recent works in A.I. planning are converging on a
similar ability to discriminate between genuine and unimportant
interactions but in their comparisons with earlier work usually only
relate their systems to NOAH which was very weak in this respect.

Goal Structure

This 

was considered by us to be one of the most important contributions
of NONLIN (and earlier work on INTERPLAN). A Goal Structure table was
kept during planning to record what facts had to be true at any point in
the network and the possible "contributors" that could make them true.
The system was able to plan without choosing one of the (possiblymultiple) 

contributors until this was forced by interaction detection.
This table was used to detect important interactions (conveniently
ignoring unimportant side effects) and could be used to directly suggest
the 2 minimal re-linking orders which could overcome each interaction
(the subject of the IJCAI-77 paper).

However, there had to be a way of being more precise about the
actual facts needed at any point in the plan. For normal "GOAL"
nodes which occur in non-linear planners operators (I now prefer to
think of these as "achieve" preconditions), these were precisely
specified by the planner, as only the relevant effect of an operator
which achieved the goal was recorded as necessary to maintain the Goal
Structure. Other effects (if not used elsewhere) could be contradicted
without the planner worrying.

To properly maintain the intended Goal Structure of a plan) it is
important to realise that there is also internal Goal Structure in the
operators specified by a user to describe the domain. This must be
properly reflected in the plan's Goal Structure whenever operators areused. 

When a user gives a blocks world operator expansion such as:

CLEARTOP(x)
\/

PUTON(x,y)

> ACTION<
\ /

CLEARTOP(y)

there is an implicit assumption that once CLEARTOP(x) is achieved for
the relevant instantiation of the variable x, that this is needed from
that point at least until the FUTON ACTION that follows it. The
same goes for CLEARTOP(y). If PUTON(x,y) is itself expanded to lower
levels of detail, the CLEARTOP(x) and CLEARTOP(y) conditions may be
needed up to particular points within such an expansion.

This was dealt with by providing a Task Formalism (operator
specification) language for domains which allowed a precise encoding
of the Goal Strucure ranges within any exapnsion (subplan) for theoperator. 

Sensible default handling of such condition ranges meant
that the normally implied structures with GOAL and subsequent ACTION
nodes in an expansion could be automatically inserted by the Task
Formalism language interpreter. However, the Task Formalism allowed a
greater degree of expression of domain specific information where this
was known. See the section on Task Formalism below for more details.

-2



Wilkins' 

ability to specify a "Plan Rationale" in SIPE operators
(Wilkins, 1983) and use this in interaction detection can be seen as a
form of the more general Goal Structure mechanisms used in NONLIN. The
SIPE ability to specify Plan Rationale to give the important effect of a
subplan (in terms of the major goal to be achieved) was to overcome
earlier problems with the NOAH scheme of assuming that ~ the effects
specified in an add list of an operator are achieved at the end of the
last node of the subp1an specified and that all the effects are
important preconditions to allow the following actions to be performed.However, 

the SIPE scheme of only searching for interactions on the Plan
Rationale pattern is probably a move too far in the other direction.

Other authors have referred to underlying structures for their
planners that seek to achieve the same benefits as the Goal Structure
of NONLIN. I believe that Goal Structure will be important for work
on plan execution monitoring and constructive re-planning schemes.
Such work is being persued in Edinburgh at present.

Table of MultiDle Effects (TOME) in NOAH

NOAH used a TOME to record all the world model changes at any node.
The NOAH TOME was modelled on earlier work in the INTERPLAN linearplanner 

on classifiers (called "ticklists") for categories of
interaction problems (Tate, 1974). Parallel nodes with contradictory
effect values were sought in the TOME by NOAH plan critics to detectinteractions. 

Nodes parallel to a GOAL which achieved it were also
sought as candidates for linking to use these, so called, beneficial
side-effects. However, the NOAH scheme detected and attempted to
correct for many interactions which were irrelevant to successful plan
execution due to the assumption that all effects of an operator wereimportant. 

It thus excluded a large class of solvable problems,
especially where the domain was represented realistically (with largenumbers 

of effects).

NONLIN did include a data structure called the TOME, but it shouldmore 
properly have been called a TOE (Table of Effects). This was not

used for interaction detection and correction (the Goal Structure was
used for this), but for question answering in the partially ordered
network of nodes in the plan.

Question Answerin£ in a Partially Ordered Network of Actions

A.I. 

planning languages such as CONNIVER (McDermott and Sussman, 1972),
and data base systems to support planners such as HBASE (Barrow, 1975)
have provided efficient mechanisms for storing facts with respect to a
tree of "contexts". Each "context" is made up of a series of
differential changes (called "layers") to some initial state. Branching
gives the effect of different final states in which questions can beasked. 

In a non-linear planner, questions must be asked as to what is
true at any point in a network of nodes. There is an analogy here to
systems which provide property inheritance with multiple ancestors.

NONLIN introduced an algorithm for asking questions in such a network
which could be based upon the storage of facts in a tree of contexts (to

-3 -



make use of the existing mechanisms avaliable) supplemented by the Table
of Effects and a graph search algorithm on the network plan structure
itself. This is fully documented in Tate (1976) and a more efficientversion, 

which was not implemented, is descibed in Daniels and Tate
(1982). NONLIN used the HBASE semantic network data base package
augmented with context facilities as described above; if-added, if-
removed and if-needed theorems as used in CONNIVER to add some measure
of deductive capabilities to the world modelling; and a new variable
type (labelled $*) for the HBASE pattern matcher which behaved similar
to the PROLOG logical variable (it could take on simple restrictions
before receiving a definitive value, and on failure could be matched to
alternative legal values).

The representation of the facts true at points in a plan recognised
that invariant- facts (true in any state) cou1d.be handled more
efficiently than normal changing information. Hence, the facts always
true were kept at the root of the tree of contexts (in a special
context called "ALWAYS-CONTEXT"). This was consulted before invoking
the normal question answering system to improve prerformance. A
similar scheme which also adds a type/property inheritance hierarchy is
included in Wilkin's SIPE planner.

Search Control Strategy -Heuristic and Dependency-directed

Most authors have assumed that a standard depth-first backtracking
algorithm was employed in NONLIN to achieve the proper handling of
interactions in a NOAH-like planner. The IJCAI-77 paper (Tate, 1977)
which described the technique did not assume any particular control
regime as it was intended as a simple-to-describe "fix" that anyone
could add to NOAH-like planners of many types then being worked on atvarious 

laboratories.

The actual scheme in the original NONLIN used a heuristic search tree of
alternative solution spaces (representing different ways to tackle the
problem and the level of detail of the network up to various points).
It had a simple heuristic evaluator which preferred major choice points
such as alternative linearisations to correct for interactions, choices
of different operators, etc., to minor choice points such as choosing
alternative instantiations for a variable (e.g., choosing alternative
instances of a block to perform some action after the first chosen block
proves unsuitable). The basic heuristic search regime would of course
support heuristic evaluators of greater complexity but this was not aparticular 

concern of the research. However, see the section below on
planning with time and cost information for one experiment that was
carried out.

Daniels (1977) added a dependency-directed control structure to NONLIN
in which a separate "decision graph" was constructed to record the
interrelationships between choices and their effects on the emergingplan. 

On failure, selective undoing of plan parts and their
replacement with appropriate alternatives was possible. The decision
graph was based on earlier Edinburgh work on a travel planning and re-
planning system (Hayes, 1975).

4 -



Task Formalism

1. Declarative The problem domain is described to the NONLIN planner
through a completely declaarative language called the "Task
Formalism". This contrasted with the procedurally specified (SOUP
code) operator descriptions in NOAH. NONLIN returned to STRIPS-like
descriptions. The TF was parsed by a simple front end and used macro
features to allow for semantically suggestive synonyms for some of
the keywords. The interface to the planner was an internal format
which more closely reflected the structures used to represent plan
networks and used to index on selecting appropriate information as
necessary.

2. User Interfaces and Applicability The TF is fully described in Tate
(1976). It went beyond the immediate needs of the research project
for which NONLIN was used ("Planning: a joint A.I./O.R. approach")
and was intended to form a reasonably stable base for that project
and for later application and research work. Hence the constructs
were intended to allow for the embedding of significantly more
heuristic information about the domain than had been the case with
earlier planners. The TF also reflected the underlying organising
principle of Goal Structure to describe the "intent" of the sub-plan
specified for any operator.

Although the TF parser actually used with NONLIN was very simple, the
TF language was designed as an intermediate formalism to which a user
front-end with a graphical interface and knowledge based assistance
could be added. The design of such an interface is now underway at
Edinburgh.

3. 

Tvped Conditions for Planning The TF operator descriptions
allowed the specification of "types" for the preconditions.
Earlier planning language work had identified the problem with the
single precondition type which could either be already true or could
induce subgoaling to be made true. The POPLER (Davies, 1973) system
introduced 2 precondition types into the PLANNER-like languages -one
to simply look up if something was true (perhaps instantiating
variables), and the other which was allowed to recursively make the
condition true if it did not already hold. This overcame important
inefficiencies in problem solving with the PLANNER language (Hewitt,
1972).

TF extended this notion and mated it with a "process" oriented view
of operator descriptions. A TF operator description specifies a
method by which some higher level action can be performed (or
higher level goal achieved). The operator introduces lower level
actions under the control of the operator "manager" (these are his
own resources in some sense). He says that something is to be done
in order to achieve part of his job. In TF these are specified as
SUPERVISED conditions. The "manager" also relies on other agents to
perform tasks that are their own responsibilities, but affect the
ability of this manager to do his job. These are given as
UNSUPERVISED conditions. There are other conditions which the
"manager" may wish to impose on the applicability of particular
solutions (i.e., don't bother to try this method for house building

5 -



if the building is over 5 stories tall). These were termed HOLDS and
USEWHEN conditions in versions of NONLIN, but I now believe some
other type name such as ONLYIF may reflect the semantics better.
Later releases of Vere's DEVISER planner added an *ALREADY condition
which performs the same function.

NONLIN in fact bad 2 other condition types which really relate to
other planning abilities and are not strictly part of the process
specification aim of the TF. These were QUERY for optional
inclusion of sub-plan parts, and COMPUTE to communicate witb
externally defined computations and data bases. The intensive
literals and VALUE.OF mecahism in Vere's DEVISER planner perform a
similar function to tbe TF COMPUTE "condition".

The TF parser had a facility for automatically filling in
SUPERVISED conditions between a GOAL node and the following ACTIONnodes. 

This ability allowed it to take operator descriptions in
the form accepted by most A.I. planners and still produce the
necessary TF condition structures without the user having to be
concerned with this. However, this could be overridden on any
individual operator for the inclusion of more precise domain
specific knowledge.

The TF condition types provided important search information for the
planner, facilitated the Goal Structure based interaction detection
and correction facilities and were used to reduce the alternatives
which needed to be considered when using the dependency-directed
backtracking system added to NONLIN (Daniels, 1977). In retrospect,
it seems that the issue of typed preconditions and their
applicability to the various stages of knowledge explication,
planning and search space control should receive more attention. The
points covered briefly above will be the subject of a more extensive
paper later.

4 Variable Restrictions The operator descriptions in TF could specify
that variable should be "restricted" to only match certain values.
The restriction was specified as a general pattern matcher pattern
interpreted by the underlying HBASE data base package. It could
express logical connectives, invoke any general matching function,
etc. The notion of constraining variables in operators during
planning has been greatly extended in Vere's DEVISER and Wilkin's
SIPE. These systems allow constraints to be accumulated rather than
forcing a choice between alternatives which satisfy the constraint
early in the planning process (as NOAH and NONLIN would). This helps
keep the planner search space from growing too large.

5. Deductive World Modelling If-added, if-removed and if-needed
theorems (as in CONNIVER) were added to the underlying HBASE data
base system used in NONLIN. This and the ability to specify a
"deductive" operator (no actions, just goals or conditions and
effects) allow deductive world models to be specified.

6. Main Effects A simple facility to provide a mechanism for seeing
the effects of choosing any of a set of similar operators applicable
to the expansion of any pattern is provided. This allowed the common

6 -



effects of such operators to be separately specified. The planner
could detect conflicts and benefits of the set of operators as a
whole before being committed to choosing any particular one. The
operator descriptions themselves then gave the effects unique to their
individual methods of performing the task. This has advantages from
the point of view of reducing the search space and increasing the
understandability of a large operator set in terms of sets of relatedmethods. 

This concept has some similarity to the "teams" of
operators used in other systems to restrict the range of operators to
be tried in a given situation.

Expansions and "compiled" IF Forms

The TF parser translated the declarative representation of a sub-plan
(or "expansion") for an operator into an internal form that was very
closely related to the internally stored form of an actual plan network
being constructed. The internal links in the sub-plan were based on
pairs of sub-plan node numbers with a zero base. Any actual plan was
associated with a variable, MAXNODES, that represented the number of
nodes in the plan at each stage. When an expansion was chosen, it could
be spliced into the plan by adding most of the sub-plan node list onto
the end of the full list of nodes in the plan and adding MAXNODES to the
numbers associated with the sub-plan nodes. A simple "relocation"
process on internal relationships such as the ordering links, condition
attachment points, etc could then fix up the sub-plan details to their
proper relationship to the overall plan network. The last node of an
expansion actually replaced the higher level node being expanded and
inherited its node number. This meant that many internal relationships
would already be correctly attached. This is fully described in Tate
(1976).

Planning with Time or Cost Information

The Task Formalism allowed a "duration" to be associated with each
action in the operator hierarchy. An option available when NONLIN was
entered brought into playa system that computed Earliest Start Time
(EST) and Latest Start Time (LST) information for each node in the
network at any stage of planning. The system also computed the total
plan duration (finding the critical path nodes as it did so -actions
which if delayed would cause the entire plan to take longer to execute).

The NONLIN planner had incremental algorithms to propogate the EST and
LST values through the network as expansions were made and links
introduced. There appears to have been little work in Operational
Research on such "incremental" algorithms for maintaining such critical
path analysis data (in O.R. the plan network is often specified in
advance of using analysis algorithms).

Daniels (1977) described a version of NONLIN in which choices of
alternative operators and alternative orders of linking to correct for
interactions were dependent on a plan cost measure which was the sum of
the costs of the nodes in the plan added to some factor of the overall
plan duration. She termed this the plan "efficiency". This was used to
make more sensible heuristic choices of alternative search branches.
The process is also documented in Daniels and Tate (1982).

-7



Vere's DEVISER planner (Vere, 1981) has taken the ability of hierarchic
non-linear planners to cope with time information much further. His
planner adds the capability to actually specify an EST and 1ST for any
node in the plan (rather than these simply being assumed to be dictated
by the ordering of the nodes as in NON1IN). Vere's incremental
algorithms for propogating EST and 1ST information through the plan
network can account for these "time window" specifications and can
signal when they are violated. Vere also allows externally caused
scheduled events to be taken into account during planning and allows for
delayed effect events (caused by earlier actions) to be handled (e.g., a
spacecraft is steady some time after firing a thruster).

Interactive Features

NONLIN was able to operate in "stand-alone" mode where the Task
Formalism was completed in a file in advance and given to the TFparser. 

The problem was specified to NONLIN using the same TF parser
and the system would work on the problem through to completion. This
was the mechanism most often used with the system. However, if NONLIN
tried to expand sOme pattern for which there were no operators, the
system would advise the user and make the TF parser available for on-
line entry of further TF forms. After a problem had been solved in such
an incremental specification mode, the external form of the TF given
during the session could be output to a file.

NONLIN was also used on a large problem of electricity turbine
maintenance overhaul in which the complete solution to the problems
set was unrealistic for the NONLIN planner as implemented. Hence, a
QUERY condition type was added by means of which the user could
interactively decide whether some sub-action of an expansion was to be
included or not.

The decisions at choice points in the NONLIN system were reported to
the user and were localised in the NONLIN code in order that a
dialogue could take place on which choices to prefer. However~ such a
dialogue system was not implemented. It was believed to be
particularily important for giving the planner assistance with
choosing instances for variables where these were not obviouslyconstrained.

Wilkin's SIPE planner has taken a more interactive approach to
cooperative man/machine plan construction and allows the user to
intervene at many points in the planning process.

Application Areas

The NONLIN system was used on various block stacking tasks intended to
test the features of the planner on problems known to exhibit
difficulties for planning systems. House building tasks in a simple
formalism that usually led to 25-50 node networks being generated was
used for much of the early work. A larger problem domain was coded in
TF for electricity turbine overhauls. This had 3 levels in thehierarchy, 

with 70,300 and 750 nodes at the various levels. It was
used to construct plans with around 300-400 nodes. However, this domain

-8



should be considered "simple" in terms of the interaction problems and
number of choices presented (hence it required little or no branching in
the search space).

References

Barrow, 

H.G. (1975) "HBASE: a fast clean efficient data base system"
D.A.I. POP-2 library documentation.

Daniels, 

L. (1977) "Planning: Modifying non-linear plans"
D.A.I. working paper no.24.

Daniels, 

L. and Tate, A. (1982) "A retrospective on the 'Planning: a joint
AI/OR approach' project" D.A.I. working paper no.125.

Davies, 

D.J.M. (1973) "POPLER 1.5 Reference Manual"
D.A.I. Theoretical Pshychology Unit Report no.1.

Fikes, 

R.E., Hart, P.E. and Nilsson, N.J. (1972) "Some new directions in
robot problem solving" in "Machine Intelligence 7", Meltzer, B. and
Michie, D., eds., Edinburgh University Press.

Hayes, 

P.J. (1975) "A representation for robot plans" Advance papers of
IJCAI-75, Tbilisi, USSR.

Hewitt, 

C. (1972) "Description and Theoretical Analysis (using schemata)
of PLANNER" M.I.T. A.I. Lab. Memo no.MAC-TR-256.

McDermott, 

D.V. and Sussman, G.J. (1972) "The CONNIVER Reference Manual"
M.I.I. A.I. Lab. Memo no.259.

Sacerdoti, 

E.D. (1-975) "The non-linear nature of plans" Advance papers of
IJCAI-75, Tbilisi, USSR.

Sussman, 

G.A. (1973) "A computational model of skill acquisition"
M.I.T. A.I. Lab. Memo no.AI-TR-297.

Tate, 

A. (1974) "INTERPLAN: a plan generation system which can deal with
interactions between goals" Machine Intelligence Research Unit
Report no.MIP-R-IO9.

Tate, A. (1975) "Using Goal Structure to direct search in a problem solver"
Ph.D. Thesis, Edinburgh University.

Tate, A. (1976) "Project planning using a hierarchic non-linear planner"
D.A.I. Research Report no.25.

Tate, 

A. (1977) "Generating Project Networks" Proceedings of IJCAI-77,
Boston, USA.

Vere, 

S. (1981) "Planning in time: windows and durations for activities
and goals" NASA Jet Propulsion Lab. Technical Report.

9


