THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

USING GOAL STRUCTURE TO DIRECT SFARCH IN A PROBLEM SOLVER

BRTIAN AUSTIN TATE

Ph.D
University of Edinburgh
1975

ABSTRACT

- - . -

This thesis describes a class of problems in which interactions
occur when plans to achieve members of a set of simultaneous goals are
concatenated in the hope of achieving the whole goal, They will be
termed "interaction problems". Several well known problems fall
into this class. Swapping the values of two computer registers
is a typical example.

A very simple 3 block problem is used to illustrate the
interaction difficulty, It is used to describe how a simple
method can be employed to derive enough information from an
interaction which has occurred to allow problem solving to proceed
effectively,

The method used to detect interactions and derive information
from them, allowing problem solving to be re-directed, relies on an
analysis of the goal and subgoal structure being considered by the
problem solver, This goal structure will be called the "approach”
taken by the system. It specifies the order in which individual
goals are being attempted and any precedence relationships between them
(say because one goal is a precondition of an action to achieve
another). We argue that the goal structure of a problem contains
information which is simpler and more meaningful than the actual plan
(sequence of actions) being considered. We then show how an
analysis of the goal structure of a problem, and the correction of such
a structure in the light of any interaction, can direct the search
towards a successful solution.

Interaction problems pose particular difficulties for most
current problem solvers because they achieve each part of a composite
goal independently and assume that the resulting plans
can be concatenated to achieve the overall goal. This assumption is
beneficial in that it can drastically reduce the search necessary in
many problems, However, it does restrict the range of problems which
can be tackled, The problem solver, INTERPLAN, to be described as a
result of this investigation, also assumes that subgoals can be solved
independently, but when an interaction is detected it performs an
analysis of the goal structure of the problem to re-direct the search.
INTERPLAN is an efficient system which allows the class of
interaction problems to be coped with.

INTERPLAN uses a data structure called a "ticklist" as the basis
of its mechanism for keeping track of the search it performs. The
ticklist allows a very simple method to be employed for detecting and
correcting for interactions by providing a summary of the goal structure
of the problem being tried.

TABLE OF CONTENTS

ABSTRACT 1
TABLE OF CONTENTS 2
1. INTRODUCTION 6
1.1 Interaction problems 6
1.2 Goal structure 8
1.3 Ticklists 10
1.4 Other relevant work 10
2, ROBOT PROBLEM SOLVING 11
2.1 Problem paradigm 12
2,2 Problem representation . 13
2,3 Forward search 14
2.4 Means-end analysis 15

2.5 Search trees in means-end analysis driven problem

solvers 17

2.5.1 An Example 17

2,5.2 Means-end analysis on the example 18

2,5.3 Goal control trees 19

2.5.4 Push-down goal lists vs, Backup 21

2.6 HACKER snd goal protection 25

3. THE KEYS AND BOXES PROBLEM 27

3.1 Ststement of the Keys and Boxes problem 28

3.2 What are the difficulties? 31
3.2,1 There are actions with imprecisely defined

outcomes 31

3.2.2 We do not know precisely which object is a key 31

3.2.3 Keeping track of the objects at each place 32

4. INTERACTING GOALS AND THEIR USE 33

4.1 Interacting goals 33

4.2 The 3 block problem 37

4.3

Using goal interactions to suggest new approaches
to a problem

INTERPLAN: THE PLAN GENERATOR

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

HOwW

Aims and assumptions

Specification of a problem

Ticklists

INTERPLAN ‘s search space

Ticklist levels - the goal control tree

Protection

Classifiers and Fditors

Inclusion of heuristic guidaace information in INTERPLAN

The Approach - successful Ticklist headings

INTERPLAN SOLVES THE 3 BLOCK PROBLEM

EXAMPLE PROBLEMS

7.1

7.2

7.3

7.4

7.5

STRIPS-world problems
7.1.1 Operator representation

7.1.2 Implementation note
7.1,3 1Initial situation
7.1,4 Different versions of the STRIPS-world problems

Time comparisons =~ mainly on STRIPS-world problems

Variants of the STRIPS=-world run on INTERPLAN
7.3.1 Veriants with interactions
7.3.2 Vpriante with long solution paths

Comments on the time comparisons
7.4.1 Purpose of the time comparisons

7.4,2 Comparison with STRIPS

Problems run on INTERPLAN

OTHER PRCBLEMS IN WHICH INTERACTIONS OCCUR

8.1

8.2

2 Room problem

Swap the values of 2 registers

41

44

44

47

51

53

57

58

75

80

81

87
87
87
89
90
91
92
94
94
94
96
96
96

98

99

99

104

10.

11,

WARPLAN - A COMPARISON WITH INTERPLAN

9.1 Problem specification

9.2 Method used

9.3 An Example (the 3 block problem)

9.4 A »roblem with interleaving given operator sequences
9.5 The SHUNT problem

9.6 Goal ordering vs. operator reordering

NOAH - A COMPARISON WITH INTERPLAN
10,1 NOAH on the 4 block problem
10,2 The multiple effects table

10.3 Some limitations of the current version of NDAH

10,3,1 Choice of an operator if several are relevant
to one goal

10,.3.2 Restrictions on the legal linearizations to
correct for an interaction

10.3.3 Double interactions

10.3.4 Loop detection and correction

10.3.5 "Formal Object" problems

10.4 Beneficial side effects

KEYS AND BOXES PROBLEM SIMULATION

11.1 Representation of the Keys and Boxes problem to
INTERPLAN
11.1.1 Predicates
11.1.2 Operstor schemas
11.1.3 Initial situation and Rules (IFNEEDS)
11.1.4 Goal
11.1.5 ACHIEVES 1list

11.2 The Simulation
11.2,1 Set matching for the Keys and Boxes
11.2.2 Simulation
11.2.3 Notes on the simulation

11.3 The approaches used in the Keys and Boxes problem

CONCLUSIONS
12.1 Interaction problems

12,2 Extending the scope of linear problem solvers

109

110

111

112

114

119

123

130
133
133
134
137
139
139

140

141

142
142
143
146
146
147

148
148
149
155

157

159

159

160

12.3 Uce of goal structure
12,4 Use of Ticklists
12,5 Comparisons with other systems
12,6 Future considerations
12,6.1 A more flexible search strategy
12.6.2 Consideration of seversl goals simultaneously

for QA purposes
12,6.3 An improved problem solving philosophy

APPENDIX 1 PROGRAM IDENTIFIERS
I.1 The components of an OPSCHEMA

1.2 The components of TICKLIST, OP and LEVEL

APPENDIX II THE QUESTION ANSWERER (QA)

APPENDIX III OR~CHOICES

APPENDIX IV ACTOR RESTRICTIONS ON VARIABLES

ACKNOWLEDGEMENTS

REFERENCES

161

163

165

166
166

167
167

169

169

172

178

180

184

186

187

1, INTRODUCTION

For a robot device to be self-controlling, it will certainly
require a problem solving (planning) capability, Existing systems, such
as STRIPS for the SHAKEY robot at Stanford Research Institute (Fikes and
Nilsson, 1971), are severely restricted in that they take a long time
to produce even short and straightforward plans and operate only in

quite simple domains,

Michie (1974) describes a problem, the Keys and Boxes problem,
whose solution poses several difficulties for current problem solving
techniques and is beyond their capabilities, The work to be
described in this thesis results from an investigation of the
difficulties encountered by several existing problem solvers on the
Keys and Boxes problem. In the process of overcoming them we have

designed and tested a general and effective problem solving system.

1.1 Interaction problems

The Keys and Boxes problem, though it has other complications,
is a member of the specific class of problems considered in this work,
namely those in which interactions occur when plans to achieve
separate members of a set of simultaneous goals are concatenated in the
hope of achieving the whole goal. They will be termed
"interaction problems". Several well known problems fall into this

class. The problem of swapping the values of two computer registers

is a typical example.

Given that register 1 holds a value Cl and register 2 holds a
value C2, we wish register 1 to hold a value C2 and register 2 a value
Cl when an assignment operator is available. Either of the separate
parts of the simultaneous goal can easily be achieved using a single
assignment, However, after doing one of the assignments, the other will
not achieve the desired result, This is because conditions which must be
true for an assignment to achieve the expected result are altered by
the previous assignment. It is important to note thatthe achievement
of either goal in any order independently will not lead to a solution
to the problem. In this problem we must realize that an

intermediate register should be used to hold one of the values needed.

Until recently, systems which could cope with such interaction
problems did so in either a domain-dependent fashion (by knowing that
an intermediate register should be used in register swapping) or by
having a very much larger search space than would otherwise be
necessary. Our aim in this work has been to develop a problem solving
system which could deal with interaction problems but has neither

of the above limitations.

A problem which is simpler than the Keys and Boxes, the 3 block
problem, is used to illustrate more clearly the interaction difficulty.
It is used to describe how a simple method can be employed to derive
enough information from an interaction which has occurred to allow

problem solving to proceed in an effective way.

1.2 Goal structure

It would be inefficient merely to extend the search space of the
problem solver to allow different orderings of the achievement of
sub-goals, and hope to be able to search through these for a solution
using, for example, a backtracking algorithm to select between the
alternatives. Instead, INTERPLAN can open up its
search space selectively in view of information gleaned from any
interactions which occur during an initial attempt to solve the

problem.

The method used to detect interactions and derive information
from them, allowing problem solving to be re-directed, relies on an
analysis of the goal and subgoal structure being considered by the
problem solver. This goal structure will be called the "approach"”
taken by the system, It specifies the order in which individual goals
are being attempted as well as any precedence relationships which exist
between them (say because one goal is a precondition of an action to
achieve another). We will argue that the goal structure of a problem
contains information which is simpler and more meaningful than the
actual plan (sequence of actions) which is being constructed by the
problem solver during an attempt to solve a problem We will then show
how an analysis of the goal structure of a problem, and the correction
of such a structure in the light of any interactions, can direct the

search towards a successful solution,

Many current problem solvers achieve each part of a composite

goal independently and assume that the resulting plans can be

concatenated to achieve the overall goal. This assumption is
beneficial in that it can effect a drastic reduction in the search
necessary in many problems, However, it does also severely restrict
the range of problems which can be solved., In particular, interaction
problems cannot be coped with, We will describe a problem solver,
INTERPLAN, which also assumes that subgoals can be solved independently
and concatenated to achieve a composite goal, However, should this
prove to be invalid, INTERPLAN can perform an analysis of the goal
structure of the problem to derive a new "approach' which should be
tried to avoid interactions, INTERPLAN is an efficient system

which allows the class of interaction problems to be coped with,

The system makes productive use of the information available from

a failure., Some earlier systems, such as HACKER (Sussman, 1973) and
the LISP theorem prover of Boyer and Moore (1972), also used
information from the failure of some process to alter or guide further
problem solving efforts. INTERPLAN provides a particularily simple
method of detecting important information from its failures.

10

1.3 Ticklists

During the study of existing systems such as STRIPS (Fikes and
Nilsson, 1971) and HACKER (Sussman, 1973), Q_Siww\e method of
controlling the growth of the search tree of the problem solver using
a data structure called & "ticklist” was devised. The ticklist provides
a summery of the goal structure of the problem being tackled, It
allows a simple scheme to be used for growing the search tree and for
detecting any difficulties which occur during problem solving. Such a

search tree growth scheme using "ticklists'" has been used in INTERPLAN,

1.4 Other relevant work

While the present study was in progress, other workers have\
written problem solvers which are able to cope with interaction
problems. WARPLAN (Wsrren, 1974) and & program-synthesis system
written at SRI (Waldinger, 1975) assume, as earlier systems did, that
independent plans can be found to achieve sub-goals. However, instead
of assuming that these can be concatenated sequentially, they allow
the actions found for each sub-goal to be inserted at any point in
the existing partial plan for sub-goals already achieved. NOAH
(Sacerdoti, 1975) tekes a very different approach. It does not make
assumptions about the ordering of the individual actions within a
plan until such an ordering is constrained by the interactions which
occur, Both WARPLAN snd NOAH sre described and compared with

INTERPLAN later in this report.

11

2 ROBOT PROBLEM SOLVING

In order to introduce the terminology to be used throughout
this report and to briefly describe several problem solvers upon which
this work was based we will describe the control structures used by
problem solvers to keep track of the growth of the search tree. We
will argue that a ""backup'" type of goal control tree
allows a localization of search information which is important if
failures in a solution strategy are to be used to guide further problem

solving efforts.

12

2,1 Problem paradigm

By - - - - "o - -

Many problems can be formulated as a SEARCH task, This can be

represented as follows (e.g., as in Frnst and Newell, 1969):-

GIVEN: an initial state representation
a number of actions (operators) which transform one state to
another if applicability conditions are met
a definition of a desired (goal) state
FIND: a sequence of actions (a plan) which will transform the initial

state into a desired state.

This can be viewed as a graph search problem (see Nilsson, 1971, for

background and terminology):

GIVEN: a node of a graph
a set of operators (represented by arcs of the graph)
a set of nodes satisfying a goal condition
FIND: a sequence of operator applications (arcs) which will generate

a path leading from the initial node to a goal node.

13

2.2 Problem representation

For expository purposes let us assume that a problem state
(or problem situation) is described by a list of assertions about the
state, Operators can be described by giving the effects they have on a
state when applied and by giving the applicability conditions for the
operator, The effects of the operator can be specified by a list of
statements ADDED (those made true) and DELETED (those no longer true)
from the state., The applicaebility conditions can be specified by a
list of statements which must be true in the state to which the
operator is applied (often called the PRECONDITIONS). Goal states
can then be specified by giving a list of statements which are
required to be true in a state satisfying the goal.
This representation for a domain was proposed for STRIPS (Fikes and

Nilssom, 1971) and greatly simplifies the checks needed for relevance
and applicability of operators.

14

2.3 Forward search

Forward search can cope with a wide variety of problems
formulated in the state-space paradigm, especially when heuristic control
is used to guide'the search across the graph, for example, as in the
Graph Traverser (Doran and Michie, 1966 snd Michie and Ross, 1969). A node
of the graph (corresponding to the initial problem state) is identified
and APPLICABLE operators are applied to it to produce successor nodes.
Some node from the successors is chosen for expansion, typically the node
heuristically estimated to be closest to s goal node. APPLICABLE
operators are then used on this chosen node. This process continues

until a node satisfying the goal conditions is generated,

15

2.4 Means-end analysis

- . T - - -

In robot planning problems, the number of APPLICABLE operators
is typically large (or even infinite). There may, for instance, be an
action GOTO(x,y) which can move a robot between any two points, x and
y, on a 1000 X 1000 grid. Forward search is not appropriate for such
problems. It is necessary to use some method of restricting the number
of APPLICABLE operators which need to be used. A technique was
introduced in the General Problem Solver
(GPS ~ a full account is given in Ernst and Newell, 1969)
to cope with this difficulty. It is termed MEANS-END ANALYSIS since
it considers only those operators which are RELEVANT to achieving some
desired goal. Hayes (1973) found that he could not use Lorisard
searchh for a large scale journey planning system in which over 2000

We used means-end analysis €o auwide Ehe vearch of his sysbem,

different journey components could be used. x 'Tkem_ig good evidence

that means-end analysis is extensively used during human problem solving

(Newell and Simon, 1972).

Means-~end analysis has been employed by several robot planning
systems, e.g., STRIPS (Fikes and Nilsson, 1971), LAWALY (Siklossy and
Dreussi, 1973) and HACKER (Sussman, 1973). Such systems find which
statements must be true in a desired situation, but which are not true
initially. These statements become a "difference' and only operators
"relevant" to reducing this difference (typically operators which can
ADD one or more statements of the difference) can be considered. One of
the operators is chosen and, if applicable, is applied to produce a
new situation. The system then once again compares the desired situation

with the newly produced one to see if there is any remaining difference.

16

However, it is possible that a chosen operator may not be applicable in
the given situation.In this case the difference between the

preconditions and the given situation is constructed and means-end
analysis is again used to select from operators relevant to reducing this
new difference, Once its preconditions are met, an operator can be
applied. Such a process can recur to any depth if operators are chosen
which are not applicable in the given situation. Search is certainly
not ruled out in such a system, as often there will be more than one
"relevant' operator and the order in which preconditions are satisfied

may vary., Each choice must be capable of being explored if necessary.

Of course, just as forward search can be impractical when there are a
large number of APPLICABLE operators, means-end analysis can be impractical
when there are a large number of RELEVANT operators. A great deal of
research in robot problem solving has involved ways of cutting down the
number of RELEVANT operators, e,g., some way of considering individual
statements of a difference by putting priorities on them (as in GPS and

LAWALY).

For means-end analysis to be used, the problem must be described
in such a way as to allow the RELEVANT operators to be identified for
any goal. The representation of states as a list of assertions and
operators as ADD, DELETE and PRECONDITION lists (as mentioned in
section 2,2) fulfils this requirement and has been adopted by many
problem solvers, e.g., STRIPS and HACKER, Problems to be tackled by
forward search techniques can be described in different ways since only

APPLICABILITY conditions need be checked before the operator's use.

17

2,5 Search trees in means-end analysis driven problem solvers

We now describe a simple problem designed to illustrate means-end
analysis. The solution is found without any incorrect decisions being
taken, However, it does serve to explain the differences in the type of

control structures built by different problem solvers.

There are 2 operators:

(PICKUP ¥0OB) 10B is a variable with identifier OB,
ADD (HELD ?0B)
DELETE (HELD NOTHING)
PRECONDS (AT 0B TX) & (AT ROBOT {X)

(GOTO ?X)
ADD (AT ROBOT ?X)
DELETE (AT ROBOT == "z=" matches anything at all.
PRECONDS (HELD NOTHING) It can be interpreted as

a free variable.
’rlf\e DELETE S(‘cﬁ%amer\%squ:
Vx decetre (AT pobot)

In an initial situation: (AT BALL A)

(AT ROBOT B)
(HELD NOTHING).

Achieve a situation in which (HELD BALL) is true,

18

2.5.2 Means-end analysis on the example

A trace of a means-end analysis approach on the
example will be given below. Two types of arrows will be used:
a single shafted arrow indicates an operator considered relevant
to achieving a required goal, a double shafted arrow indicates an

operator application,

(HELD BALL) (HELD BALL) the top level goal is not true
in the present (initial) situation,
(PICKUP BALL) A (PICKUP BALL) is the only operator which
can ADD (HELD BALL). It can be applied if
its preconditions (AT BALL 7 X)&(AT ROBOT ?X)
are true,

(AT BALL ?X)&(AT ROBOT ?X) (AT BALL ?X) is true if X=A, See NOTE below,
However, all preconditions are not satisfied
until (AT ROBOT A) is also true.

(GOTO A) A (GOTO A) is the only relevant operator.
This can be applied if its precondition
(HELD NOTHING) is true,
(HELD NOTHING) (HELD NOTHING) is true in the initial situation
and so the (GOTO A) action can be applied

to produce a new situation, say S1, in which

(AT BALL A), (AT ROBOT A), and (HELD NOTHING)

% were true,

S1 Now, in S1, the preconditions of the

(PICKUP BALL) operator hold and so this

(PICKUP BALL) relevant action can be applied to produce

a new situation, say S2, in which

| (AT BALL A), (AT ROBOT A) and (HELD BALL)

s2 were true, (HELD BALL) the top level goal

now holds in S2 so the problem is solved with
the plan (GOTO A); (PICKUP BALL).

(GOTO A)

NOTE: (AT ROBOT %X) would be true if X=B, gso the preconditions of (PICKUP BALL)
could also be made true if (AT BALL B) was achieved. However, in
this simple example there is no way to achieve (AT BALL 7X).

19

2,5.3 Goal control trees

It is useful to consider the data structure generated by means-end

analysis as being composed of 2 parts.

1) There is the part of the structure which corresponds to the tree
grown over the state-space problem graph by a forward search algorithm.
We will term this part the STATE-SPACE TREE, The arcs of this tree are
operator applications, the nodes are problem states (or situations).
In the example of section 2.5.,2, the STATE-SPACE TREE is as below,
(AT BALL A)
Initial State (AT ROBOT B)

(HELD NOTHING)
apply (GOTO A)

i (AT BALL A)
s1 (AT ROBOT A)
(HELD NOTHING)
apply (PICKUP BALL)
z (AT BALL A)
s2 (AT ROBOT A)
(HELD BALL)

2) There is also the part of the structure which can be termed the

GOAL CONTROL TREE. This is used to record the goals being considered at
each point, The nodes of this tree represent the goals which are required
to be true in a particular situation. Such nodes are represented below
as a pair [situation, goall. The arcs of the tree are of two types:

a) they can be RELEVANT operators which if applied would help to
achieve a goal. A successor node below such an arc generally has a
different goal to be solved (the applicability conditions of the
relevant operator), but the situation the goal is to be considered
in remains unchanged.

b) Another type of arc is the APPLICATION of an operator. This causes
the situation the goals are being considered in to alter and causes

a resetting of the goal being considered to some earlier goal.

20

In the example in section 2,5,2 the GOAL CONTROL TREE is as follows:

Is gosl solved
in given situation

r~[Initial Sitn, (HELD BALL)) NO

(PICKUP BALL)

{Initial Sitn, (AT BALL ?X)&(AT RQBOT 9X)] NO
X=A
(GOTO A)

apply (GOTO A)
4
UlInitial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT 7X)] YES

|
|

l

[

1

! 1

! l

| {

t : [Initial Sitn, (HELD NOTHING)] YES
Lo

{ {

(x

t

{

! apply (PICKUP BALL)

[

2
L{Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)] YES

Note: The question answering within one particular situation is
separated from the search across a space of situations (by the
search for appropriate action sequences). Different mechanisms are
used for these widely differing tasks.

In the above diagram dotted lines link nodes which have the same GOALS,
Some means must be incorporated of knowing which goal is to be
considered at each stage. In the next section two possible ways to do

this will be described,

21

2.5.4 Push-down goal lists vs. Backup

As indicated in the diagram in section 2,5.3 the GOAL CONTROL TREE
generated by means-end enalysis has nodes in which we ask & question: is
a certain goal true in a given situationY If the answer is YES, typically
some operation is performed to generate a new situation. If the answer
is NO, relevant operators are found to try to achieve the goal. 1In the
latter case, the goal becomes the achievement of the applicability
conditions of a chosen operator.
Push~down goel lists - as used in STRIPS

STRIPS has a method of keeping track of the questions to be asked
in turn to solve some problem which involves the use of a push-down list
of the goals to be solved. Only the top element of the push-down list is
considered at any time. If the goal is solved in the given situation,
the top element of the push-down list is removed. If this was the only
entry the top-level goal is solved. If it is not the only entry, the
goal removed was the applicability conditions of some operator which was
considered relevant to achieving some earlier goal. This relevant and
applicable operator is then applied to produce a new situation. The
process is then repeated by asking if the top element of the push-down
goal list is true in the new given situation, If the goal is not true
some relevant operator is chosen and its applicability conditions are

pushed onto the goal list., The process is once again repeated.

22

For the GOAL CONTROL TREE shown in section 2.5.3, a STRIPS-like version
of this would be as follows,
Note: Push-down goal list has the top element to the left.
Is top goal in the
push-down goal list
solved in given sitn
[Initiel Sitn, ((HELD BALL))] NO
(PICKUP BALL) relevant
[Initial Sitn, ((AT BALL ?X)&(AT ROBOT ?X), (HELD BALL))] NO
X=A
(GOTO A)

[Initial Sitn, ((HELD NOTHING),(AT BALL 7X)&(AT ROBOT 1X),
(HELD BALL))] YES

apply (GOTO A)
[Initial Sitn;(GOTO A), ((AT BALL ?X)&(AT ROBOT 7X),(HELD BALL))] YES

apply (PICKUP BALL)

N
[Initial Sitn;(GOTO A);(PICKUP BALL), ((HELD BALL))] YES

Top element of push-down goal list removed, so goal solved.

Considering goals at the top level of the push-down gosl list only,

means that once an operator has been chosen as relevant, the algorithm

becomes single-minded in its attempts to achieve that goal. Earlier
and then

goals which were ocriainally achieved A made false by the efforts to

solve a later goal are not noticed,.

23

A different approach to the recording of goals and the situations
they are being considered in is suggested by the links in the goal
control tree diagram in section 2.5.,3 between nodes which have the same
goal., There is always a symmetry between two nodes which have the same

Note khal
goal, /\the operator relevant to achieving the goal has been applied
when the goal is reconsidered, It is therefore possible to substitute a
backward arrow up the goal control tree for APPLICATIONS of relevant

operators which in the push-down goal list tree caused entries lower in

the tree. For the goal control tree in section 2.5.3 the backup version

would be:
Is goal solved in

the given situation
[Initial Sitn, (HELD BALL)] NO
[Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)] YES

(PICKUP BALL) relevant apply (PICKUP BALL)
[Initial Sitn, (AT BALL ?X)&(AT ROBOT ?X)] NO, X=A
[Initial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT ?X)] YES
(GOTO A) relevant apply (GOTO A)

[Initial sitn, (HELD NOTHING)] YES

A NO answer to a question results in further subgoaling downwards, a YES
answer causes backup and the application of the operator. Such a backup
goal control tree allows goals which become false as a result of later

steps in a plan to be easily detected. This localization of information

about the search has been found veryuseful and is the basis of an idea to

be described later (TICKLISTS) which can provide a simple method of
checking that the search is being performed in the intended manner.
Ticklists are used as a simple method of implementing a backup goal

control tree in INTERPLAN,

24

25

2.6 HACKER snd goal protection

HACKER (Sussman, 1973) is a system which can write programs (make
plans) for the operation of a robot hand in the blocks world. It operates
by suggesting a simple program (plan) which may have the intended effect
on some problem, monitoring a simulation of the running of this program

and then making corrections for any "bugs" which occur.

The problem solving process used in HACKER is means-end analysis
with an important addition. Esach goal that is achieved is noted as
being PROTECTED up until the time it need no longer be kept true. If it
is a top level goal, once achieved it must remain true until the whole
conjunct of goals is solved, If it is a precondition it must remain
true until the action it is a precondition of is applied. Any violations
of this protection (i.e., en action deletes some protected goal whilst
achieving some other goal) is reported to HACKER, HACKER then examines
a trace of the simulation of the progrsm and compares this trace with
types of traces it knows can cause similar violations, If the trace is
of known type, an appropriate change in the program is made and the

program simulated again.

HACKER has many more features than the simple problem solving
part outlined above, It can remember traces which caused difficulties
but which were not of known type so that these can be avoided in future
problem solving. It also has the ability to generslize and remember
successful programs to be used as building blocks in future problem

solving,

26

It should be noted that protection schemes are straightforward
to implement using & backup goal control tree and such & scheme has been
incorporated in the TICKLISTS used in INTERPLAN., The goal control tree

of HACKER is of the backup type.

27

3 THE KEYS AND BOXES PROBLEM

The Keys and Boxes problem was devised by Michie (1974) as a
benchmark test for robot problem solvers, A robot, without any
capability of gathering further information than it is given at the

start of problem solving, must operate in the world shown below.

BOX1 BOX2 TABLE ROCM

DOOR

CUTSIDE

The problem is defined informally below: words in capitals are
special to this problem in the sense that the problem statement is
meant to define them. This problem formulation differs from
that given by Michie. 1In particular, sets of objects are used to
describe the problem. The changes were made in the light of several
people’s attempts to solve the problem themselves (4 protocols of this

sort were used to gain some insight into the methods humans may use on

the problem).

28

3.1 Statement of the Keys and Boxes problem

The world consists of: the PLACEs named BOX1, BOX2, DOOR, TABLE
and OUTSIDE; the OBJECTs, examples of which are named A, B and C; and
an agent named ROBOT, OBJECTs may have properties named RED and KEY,
PLACEs may have the property named INROOM, There are relations named
AT, HELD and ROBOTAT, There is a (possibly empty) set of GBJECTs AT any
PLACE, A set of OBJECTs (possibly empty) is HELD, NOTHING is equivalent to
the empty set of OBJECTs. If a set of OBJECTs has some property, then
any individual or non-empty subset of the OBJECTs has the property. The
property of OBJECTs being RED or KEYs cannot be changed. The property
of PLACEs being INROOM cannot be changed. The ROBOT can cause some

changes by executing actions named LETGO, PICKUP and GOTO,

The LETGO action causes the parameter of HELD to be changed to

NOTHING, There are no other effects of a LETGO action,

If there is a non-empty set of OBJECTs AT some PLACE and the
ROBOT(is)AT the PLACE, then the PICKUP action causes the set of OBJECTs
HELD to be changed to a non~empty subset of the set of OBJECTs AT the

PLACE, There are no other effects of a PICKUP action.

The GOTO action takes a parameter which is a PLACE, The GOTO
action primarily causes the PLACE the ROBOT(is)AT to be changed to the
PLACE which is the parameter of the GOTO action, If the set of OBJECTs
HELD is not empty, then the GOTO action also causes the PLACE the set of
HELD OBJECTs is AT to be changed to the PLACE which is the parameter of
the GOTO action. If the parameter of the GOTO action is OUTSIDE, then

the GOTO action can only be applied if there is an OBJECT (and possibly

29

others) AT the DOOR which has the property of being a KEY. Otherwise
the parameter of the GOTD action should have the property of being

INROOM, There are no other effects of a GOTO action,

In the initial situation there is A and possibly other OBJECTs

AT BOX1,

In the initial situation there is B and possibly other OBJECTs

AT BOX2,

In the initial situation there is C and possibly other OBJECTs

AT the DOOR,

In the initial situation there is NOTHING AT the TABLE,

In the initial situation the PLACE the ROBOT(is)AT is unknown.

In the initial situation, either all OBJECTs AT BOX1 have the

property of being KEYs or all OBJECTs AT BOX2 have the property of being

KEYs,

In the initial situation all OBJECTs AT the DOOR have the

property of being RED.

The PLACEs BOX1, BOX2, DOOR and TABLE all have the property of

being INROOM,

30

The goal of the problem is to produce an action sequence (plan)
which will convert the initial sjituation into a situation in which g

subset of the OBJECTs AT the OUTSIDE have the property of being RED,

Thus an action sequence such as:-

LETGO, GOTO(DOOR), PICKUP, GOTO(TABLE),

LETGO, GOTO(BOX1), PICKUP, GOTO(DOOR),

LETGO, GOTO(BOX2), PICKUP, GOTO(DOOR),

LETGO, GOTO(TABLE), PICKUP, GOTO(OUTSIDE) will achieve the goal.

31

3.2 What are the difficulties?

The PICKUP sction causes a SUBSET of the objects at the place
the robot is at to be held, Therefore, unless we are sure there is only
one object at any place, we cannot pick up particular objects. This
indicates, what seems to me to be, the principal difficulty of the Keys
and Boxes problem: that placing objects at any place may ruin our
ability to later PICKUP objects with known properties, Thus, slthough
we know in the initial situation that all the objects at the door are
red, and therefore a PICKUP at the door will result in only red things
being held, we cannot guarantee this in a situation resulting from
putting keys at the door, The uncertainty of the PICKUP gction gives
rise to a particular case of a more general problem which I will term
the INTERACTION PROBLEM. The robot is living in a "coupled world" where
there can be complex interactions between the effects of some actions
and the subsequent applicability of others. I will be mainly
concerned with such interaction problems throughout this report

(they are described in a more general way in section 4).

3.2,2 We do not know precisely which object is a key
A request to find a key will only produce the answer that either
any subset of the objects at boxl or any subset of the objects at box2

has the property of being keys.

32

3.2,3 Keeping track of the objects at each place

The Keys and Boxes problem requires information to be stored
about what objects are at certain places., We need to remember whether
no objects, some particular objects, s selection of some particular
objects, or an indefinite number of objects are at a place. The
formulstion of the problem (in section 3,1) in terms of sets of objects
is intended to clarify what is required. Simple data base methods of
storing a fact such as ""objects OBl, OB2 »nd possibly others are at
place BOX1" ag (AT OBl BOX1) & (AT OB2 BOX1) cannot reflect what is

required if an unknown selection of these is removed (by a PICKUP),

In the next section the interaction problem mentioned above will
be studied more generally. We will return to the Keys and Boxes
problem in section 11 gfter describing INTERPLAN, s system which we have

designed to deal with interaction problems.

33

4 INTERACTING GOALS AND THEIR USE

4.1 1Interacting goals

- - —— - - - -

A problem is given to a means-end analysis based problem solver,
such as STRIPS (Fikes and Nilsson, 1971) and the planning part of the
HACKER system (Sussman, 1973), ss a conjunction of goals, e.g.,

(G1 & G2)
which must be true for the problem to be solved. Since the individual
goals are solved sequentially, they must, once achieved, hold together
for a period of time. The time for which an achieved goal must remain
true will be called the goal” s "holding period”, I will illustrate this

as follows.

Initial Situation Problem Solved

Gl

G2————

Approach: G1; G2

The horizontal dimension of this ""holding period" diagram represents
time during which actions will be applied in a final plan to achieve
the given goals. APPROACH should be interpreted as: if Gl not true

achieve it using some operator sequence, then do likewise for G2.

34
STRIPS assumes, in the absence of other information, that it

can achieve the individual goals by relevant plan sequences, say, in the
order in which the goals are given (Sussman cslls this a linear
assumption). Thus, as shown in the previous diagram, STRIPS would
assume that Gl can be solved by some relevant plan sequence and then
that G2 can be solved by a plan sequence following on from the first,
If STRIPS can find no way to achieve the goals in the order given,
it is capable of reversing the order it has attempted to achieve goals,
which were initially not true, at the failure level (e.g., at the top
level G1 and G2 could be reversed to give an expected holding period

diagram as shown below).

Initial Situation Problem Solved
Gl———»
G2 »
Approach: G2 Gl

STRIPS further assumes that for the goals not already true at
the time required, the preconditions, which are required to be true for
some operator to be applied to achieve the goal, can all be made true
immediately before the time the goal is required to be true. Again,
reversals amongst these preconditions can be made on failure backup.
Thus, if the preconditions for some operator to achieve Gi are Gil and
Gi2, then STRIPS initially assumes an approach as in the diagram below

can be taken.

35

Initial Situation Problem Solved
Gill—
Gl
Gl2 —»
G21l—— . »
G2————»
G22—»

Approach: Gl1; G12; G1, G21; G22; G2

Note that the holding period diagram represents the goals to be worked
upon for SOME chosen operator sequence., There is really a third

dimension to the diagram representing different operator choices,

Reversals allow certain other orderings of these goals to be
attempted. However, limiting reversals to goals at a particular level
of the search tree hierarchy means that STRIPS (these arguments also
apply to HACKER) can only tackle certain problems. Specifically, those
in which interactions between top level goals can be avoided by suitable

ordering of the goals and the choice of suitable operator sequences.

Since STRIPS and HACKER also allow attempts to achieve goals to
be repeated if interactions have occurred, they can also handle those
problems in which the interactions leave the world in some situation
from which the interacted goals can be re-achieved. STRIPS will often
produce longer than necessary solutions if it repeats attempts to

achieve goals.

Even for very simple worlds, such as the blocks world used by

36

Sussman, interaction can occur. To be able to deal with all types of
interaction between a set of goals, we could consider the search space
as containing approaches with every interleaving of the goals and
subgoals needed to achieve those goals. Thus, a holding period diagram
and approach as shown below is necessary to resolve some types of

interaction,

Initial Situation Problem Solved

Gl1

b 4

Gl

Gl2 —mM»

Y

G21

G2——"

G22 —»

Approach: Gl1; G12; G21; G1; G22; G2

37

4.2 The 3 block problem

The 3 block problem is an example used by Sussman (1973) in hie
description of HACKER, It is regarded by HACKER as an ANOMALOUS
SITUATION. The problem is useful as it highlights the interaction

difficulty in a simple task.

A world is described by two predicates ON(x,y) and CL(x).

ON(x,y) asserts block x is on top of the (same size) block y.

Note that ON is NOT transitive,and oAg one block can e ON anskher

CL(x) asserts block x has a clear top.

There are two operators:-

PUTON(x,y) asserts ON(x,y) and deletes CL(y).
1f zau . ON(x,u) before the application of the operator
then assert CL(u) and delete ON(x,u).

It can be applied if CL(x) and CL(y) are true.

ACTCL(x) asserts CL(x).
If du . ON(u,x) before the application of the operator
then assert CL(u) and delete ON(u,x)
REPEAT if Av . ON(v,u) etc. (This operator therefore
and puks them somewhere 1n fhae space

clears all blocks from the top of block x). It can always

be applied.

38

Given an initial situation ON(C,A) & CL(C) & CL(B) as shown in (a) below

a goal of ON(A,B) & ON(B,C) is given as shown in (b) below.

(a) (b)
A

@)
e o)

>
oy
O

STRIPS can tackle (ON(A,B)&ON(B,C)) both parts of which are not true
initially., The goals may, at first, be attempted as shown in the

following holding period diagram,

Injitial Situation

CL(A) —> The expected holding
not true 0N(A,B)———————++period is broken by the
not true achievement of CL(B)
CL(B) —>
true
CL(B)y————— -~ =~ —
not true

Approach: CL(A); CL(B); ON(A,B); CL(B);

Plan ACTCL(A) PUTON(A,B) ACTCL(B)
Sequence: l B][c]

The earlier achieved goal (ON(A,B)) does not now hold (its expected
holding period is broken), but this is not noticed by STRIPS, and

problem solving proceeds as shown below.

39

Problem Solved

CL(A) >
The expected holding true
- period is broken by the ON(A, B)——p
achievement of CL(B) not true
CL(B) —
CL(B) > true
not true
ON(B,C)
not true
CL(C) —»
true
Approach

Continued... CL(C); ON(B,C); CL(A); CL(B); ON(A,B)

Plan sequence PUTON(B, C) B} PUTON(A,B)
Continued. .. B

So, STRIPS produces the longer than necessary solution:-

ACTCL(A), PUTON(A,B), ACTCL(B), PUTON(B,C), PUTON(A,B).
Attempting the initial goals in the opposite order would make the final
solution found longer still, though if the interactions in the first
ordering produced a world situation in which the interacted
goals could subsequently not be achieved, this would be attempted on
failure backup. STRIPS is incapable of producing a shorter plan for

this problem.

HACKER has a mechanism, called protection, which remembers
achieved goals and looks out for actions which violate them It would
notice that the previously achieved goal (ON(A,B)) ceased to hold (as =
protection violation) and would try to reverse the order of the top
level goals (to ON(B,C)&IN(A,B)) at that time. However, another
protection violation with the reversed approach will direct the HACKER
planner to allow the protection to be violated, and the result will be

the same as for STRIPS in this example.

The search space should have included
below. This approach is an ordering not a
within the hierarchic levels of the search
solution plan:=-

ACTCL(A), PUTON(B,C), PUTON(A,B).

Noke that CL(A>

Initial Situation

40

an approach as shown
llowed by reversals only

tree. It would have led to a

, & precordibion for OIO(A,&),

1§ qok befote anckher aoal, on(g)

Problem Solved

CL(A) >
not true
ON(A,B)—»
not true
CL(B)—>
true
CL(B) >
true
ON(B,C)
not true
CL(C) ————»
true
Approach: CL(B); CL(C); CL(A); ON(B,C); CL(B); ON(A,B)
Plan ACTCL(A) PUTON(B,C) (B PUTON(A, B)
Sequence:

STRIPS, by re-achieving the ON(A,B) goal,

can solve this problem with

a longer than necessary plan because the world situation produced

after interaction is such that the goals can still be achieved,

The

Keys and Boxes problem has interactions which would preclude @

STRIPS-like problem solver from finding any solution,

41

4.3 Using goal interactions to suggest new approaches to a problem

- G - 8 O G 0 gy T v D A Ay O D e O S ap P e L e T S A R Ay S S S W ey W B

Current means-end analysis problem solvers are not capable of
solving problems which have certain kinds of goal interaction, Also,
with the exception of some systems at MIT (e.g., HACKER), they do not
use interactions amongst goals to guide the search for a solution. 1
mentioned earlier that all interleavings of goals should have the
potential of being considered. Generally, only very few of the possible
interleavings need be considered. An assumption, such as is made by
many existing problem solvers, that goals can be achieved in the order
given without interaction (linearily) is a very powerful
heuristic., My own work in problem solving is based upon the powerful
heuristics used in STRIPS »nd other problem solvers, but I »m anxious
not to let these assumptions rule the types of problems which can be
dealt with. Proven contradictions of these assumptions during problem
solving can direct the search to consider appropriate interleavings of

plan parts to remove interactions,

The information gained from the discovery of an interaction can
be used to suggest appropriate continuations. As an example, the
interactions during attempts to solve the goals Gl & G2 linearily can lead
us to the point in the diagram below, where the expected holding period
for G1 is broken by the achievement of a subgoal G21 required for an

action to achieve G2,

42

Initial Situation

Gll——m—
The expected holding

Gl period is broken by the
achievement of G21
Gl2—»

Approach: G11; G12; G1; G21;

We have tried and found that Gl and G21 cannot both hold together
when they have been achieved by some operator sequences in the order
(Gl1, G21). We can either try an approach in which the goals at

the higher (here the top) level are reversed to stop the conflicting
goals holding periods overlapping altogether (by reversing Gl and G2)
or try to achieve the conflicting goals in the opposite order. It

is sufficient to try to achieve the conflicting goals in the other
order only once. This can be done whilst still preserving linearity
as far as possible by moving the precondition (G21) whose achievement
made a previously achieved goal (Gl) not hold, immediately in front of
the goal as shown in the following diagram, We shall say that we PROMOTE

the precondition,

Initial Situation

Gl1 »
Gl———— -~ —_—y
Gl12——mmm» e e e e e e e e
¢G2t——M™M8 M — —_—

Approach: Gl1; G12; G21; Gl1; e e e e e e e e

43

Moving it further back through the goals to be worked on would, of
course, still enable the conflicting goals to be achieved in the
reverse order but would, however, risk the possibility that other
intermediate goals would conflict with the precondition being

promoted, Following Sussman (1973) we will sometimes refer to the
promoted goal as a "setup' gosl. Note that the promoted precondition
(G21) may interact with earlier goals and may need to be shifted again
due to different interactions. Subgoals intermediate between G2 and G21

if they exist may need to be promoted also.

The details of the way in which information from such a goal
interaction is extracted and used to suggest new approaches to a problem
will be discussed in the next section, as will other goal interactions
from which information can be extracted to guide the search for a

solution,

44

5 INTERPLAN: THE PLAN GENERATOR

Ta s ceckion we wi\l dlesesibe e ‘)Po‘b\-efv\ So\\/ei‘, INTERPLAN.

5.1 Aims and assumptions

The plan generator is basically a STRIPS-like means-end
analysis driven (or subgoaling) problem solver with the additional
capability of deeling with interactions between goals. Problems are
given to it by specifying an initial world situation, a goal
situation, snd a set of operators (or actions) which can be
used to transform situations, INTERPLAN is required to find a
linear, fully ordered sequence of operator applications which will
transform the initial situation into a goal situation. It has been
designed to produce a single solution to the problem (if one exists),
It takes a suggested "approach" (usually the given order of a
conjunct of individual goals) and tries to produce an operator
sequence which is a concatenation of the operator sequences to
solve the individual goals in the order specified in the approach,
Checks are incorporated to ensure that each operator sequence does not
delete the goal achieved by some earlier part, If a difficulty is
encountered while pursuing the given approach, slternative approaches
based upon information gathered from the nature of the difficulty
itself, sre suggested by INTERPLAN, INTERPLAN tries to solve the
problem by showing that one such approach is valid, If the initial
approach is valid, INTERPLAN will merely try to find and check
appropriate operator sequences which will satisfy the individual

goals, no new approaches being suggested.

(a)

(b)

(c)

(d)

(e)

(f)

45

During problem solving INTERPLAN makes the following assumptions:

a conjunction of individual goals can be solved by tackling the

goals in some order individually.

a goal once solved must remain true until the other goals in the

conjunct are solved.

in the absence of other ordering information, the given order of
goals is a reasonable first order to try. INTERPLAN is, however,
capable of trying other orderings in those cases where it is proven
to be of possible use to do so (e.g., on Protection Violation

discoveries).

to achieve a given goal, only those operators which ADD the goal
directly are relevant, That is, only those operators in which the

goal appears on the operator’s ADD list,

A goal containing variables is considered solved if it has any

true instance in the required situation. No attempt is made to
achieve other non-true instances in this case. This is an important
restriction on the search space. However, section 5.7.3 mentions

how this assumption may be relaxed if needed.

Normally, the preconditions for some operator which will achieve a
goal can be made true immediately before the goal they are for is to
be made true. INTERPLAN is, however, capable of relaxing this
assumption in those cases where it is proved to be of possible use

to do so (e.g., on Protection Violation discoveries). Then, "setup"

46

goals can be inserted into the approach,

(g) changes to the world only occur through applications of the

operators given to the system,

The system separates the search across the space of world
situations (regarded as a graph whose nodes are situations and whose
arcs are operator applications) from the question answering about a
particular situation, INTERPLAN is an operational program written in
POP-2 (Burstall, Collins and Popplestone, 1971). The HBASE (Besrrow,
1975) data base system is used to store situations (as CONTEXTS) and the
facts known about each particular situation (as assertions). There are
special INTERPLAN data structures and processes (to be described later
in this chapter) which control the search across the space of world

situations,

Program identifiers and syntax will be introduced and used
along with the description below since this chapter is also intended

to serve as documentation of the INTERPLAN orogram.

47

5.2 Specification of a problem

The plan generation system is given a task by specifying:

(a) An initial situation specified by a set of assertions.
E.g., for the 3 block problem initial situation
ASSERT <<ON C A>>

<<CL C>>
<<CL B>>

’
The brackets << ... >> indicate an HBASE pattern (stored as s POP-2
strip). Patterns may be nested, ASSERT takes a list of patterns

and indicates that they are true in the current HBASE context

(CUCTXT) which is taken to be the initial situation by INTERPLAN,

(b) Descriptions of the actions which can transform situations.
These are basically specified similarily to STRIPS operator schemas
(whose instances are operators) with a list of facts to be DELETED
from a situation and a list of facts to be ADDED to a situation to
alter it, Also specified (as PRECONDITIONS) are those facts which

must hold in a situation for the operator to be applicable,

The ADD list of an operator schema is used to determine whether

it is relevant to achieving some goal (i.e., whether it ADDS a
statement required by the goal). However, an operator schema may make
changes to a situation other than those specified in the ADD/DELETE
lists since the system allows any function (the OPSCHFN) to be

applied when an operator is used to transform a situation (this

can be thought of as providing CONNIVER-1ike IFADD e#nd IFREM method

facilities - McDermott and Sussman, 1972), So, effects difficult to

48

express assertionally or requiring testing of the situation itself
can be made. However, these effects cannot be used to determine

whether the operator schema is relevant,

An operator is applied to a situation by

i) notionally making a copy of all facts true in the HBASE

context representing the old situation,

each
ii) deleting all patterns from this which match \DELETE list

entries,
iii) adding all ADD list entries, and then
iv) running the operator’s OPSCHFN.

An operator schema has further components mainly used by the
system itself, but some allow heuristic knowledge of a particular
domain to be incorporated. These will be mentioned in
appropriate places throughout the text, and are given in full in

appendix I.1,

A macro, OPSCHEMA, is available to construct simple operator
schemas. Ascignments can then be made to the empty components if
more complex operator schemas are required, that is, with functions

which cause side-effects, or with heuristic knowledge.

Thus for block stacking:-~

49

OPSCHEMA <<ACTCL *$*X>> *$*X is a variable local to this OPSCHEMA
ADD <<CL *$*X>>

DELETE no deletions

PRECONDS no preconditions

VARS X all local variables must be named
ENDSCHEMA -> S1; save OPSCHEMA in POP-2 variable S1,
OPSCHEMA <<PUTON *$*X *$*Y>>

ADD <<ON *$*X *$*V>>

DELETE <<CL *$*Y>>
PRECONDS <<CL *$*X>> <<CL *$*Y>>
VARS X Y
ENDSCHEMA -> S2;
There are further effects of these operator schemas as specified
in section 4,2. These effects are difficult to express merely in
ADD and DELETE lists (see Fikes, Hart and Nilsson, 1972a). They can
be written as functions in POP-2 which use HBASE primitives to

search, add to and delete from the current context (CUCTXT). See

section 6 for a listing of these functions,

Calling the functions CLFN and ONFN then
CLFN -> OPSCHFN(S1):
ONFN =-> OPSCHFN(S2);

(c) The present system also requires the user to state which operators
can be used to achieve patterns. This information is kept as an
association list of patterns and a list of relevant operator schemas
in a global program identifier, ACHIEVES,

For example, in block stacking:
[% <<CL == >> , (% s1 %],
<<ON == == >> , [% S2 %] %] -> ACHIEVES;
That is, the user should take each item in the ADD list of each
operator schema, replace all variables by == (& pattern which
matches "anything'" in HBASE), snd group the corresponding schems
with any others which can ADD the same pattern, This list could be

generated automatically.

50

All ADD list entries for all operator schemas need not be put

on the ACHIEVES list. The "primary additions" of STRIPS can then

be modelled (see Fikes, Hert and Nilscon, 1972b). For instance, 2
<<PUSHBOX BOX PLACE>> operator may add two facts <<AT BOX PLACE>>

and <<AT ROBOT PLACE>>. We may only want to consider using

PUSHBOX to achieve <<AT BOX PLACE~> goals and never merely to move
the ROBOT, We could then omit the PUSHBOX operator from the ACHIEVES

List associated with <<AT ROBOT == >> facts,

(d) A specification of a goal situation by giving the statements which

are all required to be true in a goal situation.

For example for the 3 block problem:

GOAL <<ON A B>> <<ON B C>>;

Variables are allowed in goal specifications.

51

5.3 Ticklists

The basic data structure used by the system is a TICKLIST.
See appendix 1.2 for its components. It forms the nodes of the goal
control tree which INTERPLAN constructs, Basically, a ticklist is a
2-dimensional array which has a column for each of a set of goals which
are all required to be true together in some situation. The root node
of the goal control tree for the goal of the 3 block problem would
consist of a ticklist with two columns headed <<ON A B>> and <<ON B C>>.
I will refer to the set of goals represented by the columns of a
ticklist as the TICKLIST HEADING. Rows of the array represent
situations in which it is hoped that all the goals will be true.
We thus start problem solving with a ticklist whose heading
consists of the individual statements specifying the goal situation
and whose single row represents the initial situation. This is shown

below for the 3 block problem.

<<ON A B>> <<ON B C>>

Initial
Situation

To fill in a ticklist, we scen the last row (in the example
above there is only one row initially) from left to right and for
eoch column ask i £ Ehe geal Weading is true in the situation
of the last row, We put a tick (v/) if it is, or a cross (X) if it
isn“t, stopping whenever a cross is entered. If the whole conjunct
of goals is true in the situation we get a complete

row of ticks and have thus found a goal situation. However, if a

52

column has a cross then this goal has to be achieved in some situation.

This occurs initially in the 3 block problem where it is found that the

first column has a cross entry (see diagram below).

<<ON A B>>

<<ON B C>>

Initial
Situation

X

53

5.4 INTERPLAN s search space

- - — - - " . -y W " -

The space which can be potentially searched by INTERPLAN
consists of all those approaches which can be obtained by using means-end
analysis on all given goals and the preconditions of actions to achieve
those goals (and so on for actions to achieve those preconditions, etc.)
in any order, so long as the preconditions for an action are achieved
before its application. For example, given two goals Gl and G2, there
is an action Al relevant to achieving Gl gnd an action A2 relevant to
achieving G2. Al has precondition G1l1 and A2 precondition G21, Both
preconditions can be achieved by actions which have no preconditions,.
The potential search space contains the approaches obtained by trying to
achieve the goals in any of the following orders,

Gl1 Gl G21 G2

G21 G2 Gl1 Gl

Gll G21 Gl G2

Gll G21 G2 G1

G21 Gl1 G1 G2

G21 G111 G2 Gl
A problem solver which makes and adheres to the linear assumption
would only have to consider the first two of the above six approaches
(with a corresponding decrease in the range of problems which could be
tackled), Simple schemes for considering alternative approaches when
a failure occurs, such as backtracking, can thus be used with such
systems, However, it would be very inefficient to represent the extended
search space to some problem solver and expect the system to

select a valid approach from this space using a simple backtrack

algorithm if failures occurred.

54

Since there may be no way to achieve some goals and because the
achievement of some goals may not in any way effect the achievement of
others (no interactions), several of the above approaches could be
equivalent. An initial approach is suggested to INTERPLAN by
giving an ordering on the top level goals, say Gl and then G2. Since
the preconditions are considered in the order in which they are found in
the PRECONDS list of each relevant CPSCHEMA, the ordering on top level

teduced
goals will specify a) numbec of the possible approaches. The ockual
teduvckion tov\\ Aecend on
whether there is one or more relevant operators for each top level

goal, Oﬂxn,manyof the approaches in the potential search space are

initially locked away from consideration by INTERPLAN,

If this initial approach is successful, no further
approaches are made available to INTERPLAN., However if
some interaction in the initial approach occurs, this may
indicate other orderings of the goals (other approaches) which may
remove the interaction. Such specific approaches are then indicated as
open for consideration (it depends upon the particular OR-CHOICE
mechanism being used when, and if, they are actually considered). The
information gleaned from an interaction thus provides "keys" to unlock
specific branches along the potential search space. Tightly restricting
the possible approaches in this way, and only allowing other approaches
to be tried if they are indicated as being probably useful in the light
of the interactions discovered, can significantly reduce the part of the

potential search space actually considered in many problems.

55

5,5 Ticklist levels -~ the goal control tree

- - - - o - O O — - —— W - W - -

When a goal has to be achieved, for each relevant operator (i.e.,
instance of an operator schema) a subgoal is set up of trying to find a
situation in which all the preconditions for the operator hold, A goal
control tree of the BACKUP type (described in section 2,5,4) is grown
by making new ticklists on a LEVEL lower to that containing the goal
to be achieved, These have as column headings the preconditions of each
operator, and thus represent subproblems of the higher LEVEL, They are
connected to the upper level ticklist by arcs representing the
particular instantiation of each relevant operator schema. For

example, to continue the block stacking example:-

<<ON A B>> <<ON B C>>

Initial ><
Situation

<<PUTON A B>> is only relevant
operator. It is derived from the
schema <<PUTON *$*x *$*y>>,
Branching would occur
<<CL A>> <<CL B>> if more operators were
relevant,

Initial C
Situation

All ticklists at the tips of the goal control tree being
constructed are suitable for further filling in, etc. Therefore, they
are held in a list of choices which can be heuristically ordered. See
appendix III for details of the scheme used to deal with choice points

in the current implementation of INTERPLAN, The choice list is a

56

list of pairs, each of which consists of a heuristic value and a
pointer to the ticklist on the tip of

the goal control tree (though 2 special entries are allowed on the
choices lists - see sections 5,7.1 s#nd 5.7.3). The choice list is
ordered so that pairs with a lower heuristic value are nearer the head

of the list and are considered "better" choices.

ADDCHOICE € <heuristic value>, <pointer to ticklist> => ():

splices a pair into the appropriate place in the list of choices.

MAKECHOICE removes the first (lowest value) pair from the choice
list and makes the ticklist from the pair, the one for consideration
next by INTERPLAN (by assigning the ticklist to GLOBTICK). It deals

with the special forms allowed in the choice lists.

57

5,6 Protection

When a goal has to be achieved after other goals have already
been achieved, there is a mechanism for ensuring that the previously
achieved goals are not deleted., We PROTECT the previously achieved
goals by adding them to the ticklist heading of all LEVELS of the goal
control tree which are grown below the LEVEL where the goals were
achieved, This is represented diagrammatically below, Global goals
(whose truth value is not changeable - see appendix I) are not

protected in this way.

Gl G2

c1 J X

G1 G21 G22

c1 v

In some situation, the protected goals must be true
simul taneously with all the other goals in the ticklist heading
(preconditions for some operator) for that situation
to be one in which the operator is applicable (in the
context of the previously achieved goals). It should become clear later
how information in the protected columns of a ticklist is used by the
system. For the moment, however, it will be useful to know that a
system using the protection facility will look for any VIOLATION of the
protection on a fact (PROTECTION VIOLATION). This is an implementation

of a feature in the HACKER planning system (Sussman, 1973),

58

5.7 Classifiers and Editors

ENTER THE SYSTEM WITH FIRST

TICKLIST AS CURRENT TICKLIST
(GLOBTICK). THE HEADING OF

THIS SPECIFIES THE GOAL.,

CLASSIFY THE CURRENT TICKLIST TO
FIND AN APPROPRIATE EDITOR,

EDIT THE TREE OF TICKLISTS,
POSSIBLY CHANGE THE CURRENT
TICKLIST (GLOBTICK),

The basic loop of the planning system is shown above. Many
different problem solvers could be written within this framework. A
system is specified as pairs of classifiers for a ticklist and an
editor for the tree of ticklists, See appendix I for information
available within a ticklist and the tree of ticklists for use by the
classifiers and editors. The following sections describe the claééfiers

and editors used to specify INTERPLAN,

As will be seen later, the classifiers are defined to look at
the patterns of ticks and crosses in a ticklist. These patterns provide
a simple language in which difficulties during problem solving can be
quickly identified (cf., the analysis of the teleological trace of the
problem solver s actions necessary to find bug types in HACKER -

Sussman, 1973).

59

Classifier: No entries have been made in the last row of a ticklist or
a tick appears in the last column of the last row of the

ticklist and some other column on the row has no entry,

(1'21 there remains o aoal foc which we have ask gueried
Ehe daka base ko see it 1k s %Tue),

Editor: (FILLIN)
Scan from left to right along the last row and for any
position not filled in, ask the question answerer whether
the pattern heading the position is true in the situation
of the last row. See appendix II for details of the
Question answerer (QA). A call to QA may instantiate
some variables local to the ticklist., If QA finds that a
pattern has more than one true instance in the given
situation the system asks the user if he would like to
pre-order the instances (given in a list POSSLIST), It
then hands back the first choice to FILLIN (which is thus
used to set varisbles), but adds a special node to the
choices 1list to be used to initialize the other choices,.
This special node is a STRIP of three items - see appendix
11,
Filling in continues either until all the row is filled in
in which case we can SUCCBACKUP, or until a cross entry is
is made, in which case we must ACHIEVELAST the appropriate

goal (unless it is a global goal - see appendix I1.1),

Classifier:

Editor:

60

(ALLTICKS)

A complete row of ticks exists in some row (or more
generally, the ticklist heading is satisfied by some row
representing a situation).

(1 e, o \\ 0)06\\9 Lo Ehic Licklist ace Sbl\ledk>.

(SUCCBACKUP)

Backup successfully to next higher node (ticklist) in the
goal control tree, applying the operator represented by
the arc of the tree which is now applicable in the
situation found. The new situation produced becomes a new
row in the higher ticklist and in this row a tick is
entered in the column of the goal the operator achieved.
The operator used to produce the new situation is
remembered by assigning its name to the VALUE of the item
"SITN" in the new situation (see HBASE -~ Barrow, 1975), An

example of the use of this editor is shown below.

P1 P2 P3 Pl P2 P3
1 | X ca | X
cz |/ | X after cz | / '

3 editing
—— | ca V4
gives
OPx

Pl Px1 Px2
cz |/ X
C3 V/ v/ \/ OPx applied to C3 gives situation C4,

61

Classifier: A cross appears for some column in the last row of a
ticklist (but excluding Chose
cases in which there are ticks further right in the row
too— See seckion 5.7 L4 £or bhis co\S‘Q>‘
(1 e , o goal temains to be o\c\/\\qveé\y,

Editor: (ACHIEVELAST)
Operators which could add the pattern represented by the
column with a cross to the world model in some situation
are sought for. This is the recursive use of the
means-end analysis technique. Before operators are found,
» check is made to see if the achieve request would cause
a LOOP, This is done by checking whether the achieve
request already exists on the CURRACHIEVES list (see
appendix I.2) and if so, whether the situation the present
request is for is the same as the one for the previous
request, If so, a LOOP is reported and the LOCP editor
called (see section 5.7,7).
The editor finds all RELEVAANT opesstors (i.e., those which

can ADD the sought-for pattern). A function
OPSCHMODIFY € <opschema>, <search pattern> => <opschema>,
is applied for each relevant operator when found, This

normally returns the <opschema> unchanged, but can be used

to change the order of preconditions etc,

The editor adds new choice points to
corresponding to new successor nodes
ticklist for each relevant operator,
are initialized when chosen from the
they are kept in a compact form, but

after this editor has been applied.

62

the goal control tree
to the original

The successor nodes
choices list, where
notionally they exist

See section 5.6 on

Protection for explanation of the symbols used in the

example of the operation of this edi
why the Pl protected goal is brought

of the goal control tree),

P1 P2

tor below (especially

down through levels

P1 P2

[ic1 4 X pfter a |V X

editing
i
gives

P1 Px1 Px2

P1 Pyl

caa |V

ct |V

If OPx and OPy are the only relevant operators.

63

Achieving goals which already have true instances

Normally, if INTERPLAN discovers some goal which is needed,
already is true at the time required, it makes no attempt to APPLY
operators to ACHIEVE the goal, If the goal is fully instantiated
(e.g., CL(B)) this is alright as it can only have one possible
instance and this is known to be true. If the goal was CL(x) and
CL(B) was true, the goal would hold if the variable x was set to "B".
However, another instance (e.g., CL(C)) may be required to resch a

solution.

A switch (turned on by assigning '"true" to the variable
COMPLETE) has been provided in YNTERPLAN so that goals which are not
fully instantiated and which in some instances are true can be
recognized and special extra choice points added to allow the non-true
instances to be ACHIEVED if the already true instances prove not to be

of use.

Classifier:

Editor:

64

A cross on some row (NOT a protected entry) is followed by
a tick in a later column. That is, the achievement of =

goal has made false a goal which was true previourly.

(ALTERLASTORDER)

An attempt is made to shuffle the pattern of the column
which was ticked, before the pattern of the column with
the cross. Checks are first made to ensure that the
columns to be swopped have not been swopped previously or
are now not allowed to be swopped (looking at the TREVS of
the ticklist for the reference numbers of the patterns -
see appendix 1.2) or to see if no more reversals are allowed
for this ticklist (TREVS is '""NOREVERSE"), An example of
the use of this editor is given below when the swap is
allowed. The order of goals already achieved by some
operator sequence is preserved by a shuffle, as this takes
into account any interactions which occurred between these

earlier goals.

P1 P2 | P3 P3 P1 P2
Cl X efter | C1

. V/ V/ >< editing

c3 >< \/ gives

65

Classifier: A cross in & PROTECTED column of some row is followed by
a tick in a later column. /erkfﬁl o QVo&QCQiom
Violakion Nos occurred. .

Editor: (PROTECTVIOLATION)
This is the editor which suggests an approach with
reversed top level goals (at the level protection was
placed upon the pattern which is now crossed -~ this is
found by looking at the reference for the protected entry)
or suggests an approach in which we promote the actual
goal we were considering to the level at which protection
was placed (see section 4.3). Before promoting a
pattern, a check is made to see if the promotion would
have altered the course of computation in the original
case, That is, we see if the promoted pattern would
already have been true at the point to which we wish to
promote it, If it would have been, the promotion is
attempted for the goal higher in the goal control tree
for which the current goal was a subgoal. If the same
applies to this we try higher still, unless the

%;tection level itgfelf is reached in which case no

promotion is made.

If some promotion can be made, snd goals higher in the

goal control tree exist between the level we promoted

from and the level at which protection was placed, we also

try to suggest approaches in which these intermediate

goals are promoted as above,

An example of the use of this editor is given below,

66

° ° P21 holding period
y % up until P2 achieved
< A
P1 P2 P21 P1 P2
after
c1 | X editing c1
—_
c2 v/ >< gives
P1 P21 P22 P2 P1
c2 v/ 7< c1
a | X |V

See appendix I,2 for details of how a
goal with a restricted holding period
is represented to INTERPLAN,

Restrictions on instances of a promoted goal

- - - - - e G e v — e s S M g S e S e G . e -

The test for rejecting promoted goals on the basis

of their truth at the point required was intended to cut out those

approaches which would be exactly the same as the approach before a

protection violation. For example, in the 3 block problem:

CN(A, B) Protection Violation

CL(B)—/——— »ON(B,C)———»

The above protection violation suggests two approaches, one of which is

67

ON(A,B)

CL(B) - ON(B,C)——»

However, this approach is disallowed as CL(B) is true at the point
required (initial situation in the problem) and thus the approach would
be exactly as in the case when the protection violation was

discovered,

When the promoted goal has a variable (or variables) in it, as
can often happen during promotions attempted by the LOOP editor
(section 5.7.7), but is true in some particular instance, we should not
reject the promoted goal outright, but should modify it to exclude the
true instance (or instances). For example, in the "swap the value of

two registers" example (section 8.2):

(REG 1 IS C2)

(REG == IS C1)————— »(REG 2 IS Cl)—>

should be allowed as an approach, even though (REG 2 IS Cl) is true in
the initial situation. However, the promoted goal should exclude this
instance to ensure that the protection violation which this approach

is being suggested to avoid is not encountered again,

68

A scheme has been experimented with to provide variable
restrictions using HBASE actors (Barrow, 1975). This scheme is outlined
in appendix IV, If such actor restrictions on variables were

allowed the goal to be promoted for the example above could be written:

(REG <:NON 1:> IS C1).

No promotions for an slready promoted goal

All goals in a ticklist heading are given a reference number as
described in Appendix I.2, When a '"setup" goal is promoted it is
given a reference number:

- (reference number of the goal it is a precondition of),
This simple referencing scheme disallows promotions for a goal which
Te ¢ Fhor oo teskrickion on Ehe

is itself a promoted goal.

‘SQV\QFA\;ELD ol bhe progrom.

69

Classifier: A cross appears in some column for which there is no means

to achieve the relevant pattern (or no further means if
some have been tried),

(ile.) no mebhod. con be Loond ok axhimﬁag an uakroe 9bq“

Editor: (FAILBACKUP)

Try to alter the order of the pattern which has a cross in
its column with some earlier pattern in the ticklist
heading (using ALTERPREV). The earlier goal's achievement
may have rendered the goal on which we failed unsolvable
(e.g., by wrong choice of a variable instance), in reverse
order they may both be solvable. The varisbles of the

ticklist are reset using INITVARS (see appendix 1.2).

If the reversal cannot be made with any other pattern
earlier in the ticklist heading (e.g., reversals already
tried or this is the first pattern we are trying to
achieve) then FAILBACKUP to the parent ticklist of the
current one., This editor is also used when other editors

have failed to do their job (e.g., cannot ALTERLASTORDER),

This backup process is mainly intended to clear the
problem solvers goal control tree of useless approaches
after a failure has occurred. As soon as some point is
backed-up to at which there is a way to attempt to
achieve the outstanding goal, backup stops and the
OR-CHOICE mechanism is used to select from ANY of the

outstanding choice points (which include the one just

backed-up to),

70
5.7.7 The LOOP classifier and editor

S . W . 4ot e TN M S O S v e S S . -

The planning system may try to pursue an approach which causes

it to loop in some way (i.e., left to itself, it may never terminate).

The loop can be treated as a failure, and information extrascted from the

failure to suggest new problem approaches to try to avoid the loop.

However, the loop must be detectable to be able to do this. At present

INTERPLAN detects two types of loops.

(a) It prevents goal reversals which have already been tried from being
suggested again as approaches to circumvent goal interactions (see
section §5.7.4).

(b) During subgoaling, s list of all achieve requests which we are
planning to satisfy (along one path through the goal control tree)
are kept, together with the situation we required each one to be
achieved in, This list is kept in the CURRACHIEVES of a level (see
appendix I.2), If, to satisfy some lower subgoal, sn achieve request
is issued which is the same as some higher request and the situation
both are required in is the same, a loop is reported (as mentioned

in the editor in section 5.7.3).

However, for instance, the generation of similar non-linear approaches
(ones with a promoted subgoal) is not detected in INTERPLAN es it is
presently implemented. 1If a loop is not detected, as well as not
providing information on which to suggest possibly useful approaches

to a problem, redundancy can occur in the section of the search space
looked at by the planning system (the same branch may be tried more than
once), With certain OR-CHOICE mechanisms (especially those which are

mainly depth-first) it would then be possible to loop without producing

any solution.

71
The full loop editor

- g - " o - - o

If a looping achieve request is detected in some situation, we
have available:
(a) the pattern causing the loop (lower occurrence)
(b) the ticklist this was required from (the lower ticklist)
(c) the pattern on CURRACHIEVES we detected loop on (the upper
occurrence)

(d) the ticklist this was required from (the upper ticklist),

The editor is intended to modify the approasch in the heading of
the upper ticklist to try to avoid the loop. The approach being

considered when a loop is detected can be typified in the holding period

diagram below:

Gl———————— -~~~ —

G‘Z'———-VGZI—»-G‘Z-——D-
t i
‘---1roop----/

Where G2 is the looping achieve request. It should be noted that the
goals may contain variables, snd thus the two occurrences of the loop
pattern may not be IDENTICAL, but one will be an instance of the other -

hence the use of G2° for the second (lower) occurrence.

We may be able to find a successful approach if some subgoal in
the loop (above, G2, G21 end G2°) had already been true at the point
required and need not have been achieved then. We have tried to
achieve G2, G21 and G2° after a goal Gl has been solved (Gl was thus

protected) and found that a loop is generated with some operator

72
sequence, As in the case of a protection violation, two courses are
available to us. We could try to reorder goals at the upper ticklist
containing the loop pattern, Removing the need to keep Gl true at that
point may enable G2 to be solved without looping (say using facts in the
initial sitpation altered when Gl was solved first, This occurs in the
(REG 1 IS C2) & (REG 3 IS Cl) example described in a note to the

section on "swap the value of 2 registers" (section 8,2).

Gl—»

G2

The alternative is to suggest some "'setup'’" goal which would aid in the

solution of G2. Any goal which would break the loop would be

appropriate. For example,

Gl———»

G2l——— C-Z-—-D-I

Gl

G2 — »G2

Besides the normal test of checking the promoted goal would change the
actual approach being tried (by seeing if it was already true at the
time required - but see NOTE), a further check must be made in those
cases where the subgoal being promoted is the lower occurrence of the

loop pattern (i.e., G2°). 1I1f G2° was IDENTICAL to G2, no promotion

NOTE It can often happen that the goals to be promoted during loop
correction may contain variables, and in some instances these may
already be true at the point required, See note on "restrictions
on the instances of a promoted goal" for how this can be handled

(section 5.7.5).

73

should be made since

Gl Gl1—™
is equivalent to

G2————» G2 G2——>

The approach specifies the order in which the goals can be achieved and
then kept true for the period required, the second G2 in the first

holding period diagram shown is therefore superfluous,

In keeping with the above, if the lower occurrence of the loop
pattern (G2°) is more general than the upper occurrence (G2 is an
instance of G2°), we should disallow the promoted goal from taking an
instance such that it becomes IDENTICAL to the upper occurrence (i,e.,
G2° should be modified to exclude G2). If this were not done, once

again an approach equivalent to G2 followed by Gl would result.

This problem occurs in the "swap the values of 2 registers"
example, where the upper loop occurrence is (REG 2 IS Cl) and the
lower loop occurrence is (REG == IS Cl1l). We should modify the goal to
be promoted to exclude the number of the register being 2. If actor
restrictions on variables were allowed (see appendix IV), this could be

done by: <<REG <:NON 2:> IS Cl>>,

74
The loop editor in the current implementation of INTERPLAN

The loop editor in the current implementation reports a loop to
the user by printing on the console:

LOOP ON <lower occurrence of the loop pattern>
If a variable LOOPEDIT is set true it also prints:

WHAT SHALL I PROMOTE :

Left to itself the editor would attempt to promote subgoals being
considered when the loop occurred. These would include the lower loop
occurrence, If this contains variables and some instance of the pattern
is true at the point to which promotion is being attempted, no
promotion is made, To alleviate the defect of not having restriction
facilities on variables at present, the editor can ask the user to

suggest an instance of a pattern to try to promote on loop detection.

The user may go into POP-2 READY (interrupt) mode and ask such
questions as what instances of the loop pattern are true at the point to
which promotion will be attempted, or ask what the upper occurrence of
the loop pattern is. The trace of the problem also provides

information about useful instances to suggest for promotion,

The user may either type "FALSE" to indicate he does not think

that correcting the loop would help, or he may suggest a goal for

promotion. Normal checks for the usefulness of the suggested approaches

are performed by the system. -J

An example of the use of this editor is given in the "swap the

values of 2 registers'" problem in section 8.2,

75

5.8 1Inclusion of heuristic guidance information in INTERPLAN

. . - - " . " Y . Wl Wy oy W D Oy A0 B et IS e N S e B S By TS S G G B W e O

The points in the current implementation of INTERPLAN at which

domain-dependent knowledge can be incorporated are summarized below.

1, The ordering of preconditions in each operator schema and the
ordering of the individual goals in the problem to be solved is
important. This ordering is used by INTERPLAN ss the approach to be

considered first in each case.

2, The choice of which operators are considered "relevant" for
achieving goals is important. Normally all ADD list entries of every
operator should appear on the ACHIEVES 1list together with all those
operators which can achieve them, If there is a heuristic restriction
on the choice of operators for some goals this can be reflected in the
ACHIEVES list. This can be used to give the same effect as the "primary
additions" of. STRIPS (Fikes, Hart and Nilsson, 1972b). See section

5.2(c) for more detail,

3. If there is more than one operator for any goal entry on ACHIEVES
the operators can be ordered, the first being tried before others

with the standard OR-CHOICE mechanism,

4. The CR-CHOICES can be made in a different order to the standard
scheme by the resetting of the OR~-CHOICE control parameters (see
appendix III). This may be useful for example if we wish to

incorporate knowledge about the probabilities of interactions in the

problem domain,

76
@or fome c)xvma'mj
5 IfJPredicates can be put into hierarchies for achievement (see
Siklossy and Dreussi, 1973) we can specify that reversals between
members of the hierarchies should not be attempted by assigning to the
SCHREVS of the operator schemas. Known hierarchies of predicates will
enable us to order goals as mentioned in 1 sbove. Heuristic knowledge
that certain orderings are equivalent may also be incorporated by
assignment to SCHREVS,

"NOREVERSE" -~ SCHREVS(<opschema>); stops any reordering attempt.

[01.27(1.31] -> SCHREVS(<opschema>): stops reversals between the
l1st and 2nd or the 1st and 3rd preconditions.

6. A function

OPSCHMODIFY € <opschema>, <achieve pattern> => <opschema>;
is provided. Initially this is defined to merely return the <opschema>
unchanged. However, it may be redefined to allow OPSCHEMAs to be
modified in the light of the environment in which they are to be used.
Information can be used from the <achieve pattern> or from the ticklist
this <achieve pattern> is being requested from (GLOBTICK). Schemes
which reorder preconditions or set certain variables may be implemented,
In particular it is possible to construct a maze-running algorithm for
transfering a robot between rooms in a STRIPS-like world by assigning to
certain variables in appropriate OPSCHEMAs when they are chosen (this

was done for the LAWALY superworld examples run on INTERPLAN)

Operator schema withdrawal

This process allows a high degree of flexibility. For example,
consider the Keys and Boxes problem where the operator GOTO(y) has

different outcomes and applicability conditions depending on

]
whether y=OUTSIDE or not, and on whether anything is HELD (see section
11.1.2). We could cause OPSCHMODIFY to select appropriate ADDs, DELETEs
and PRECONDs from some data structure put in the ACHIEVES 1list to
produce an OPSCHEMA in the light of the goal pattern required. This
would alleviate the need to write out explicitly beforehand an
operator schema with conditionals in its definition into the appropriate

condition free DPSCHEMA structures.

7. A function

VALIDATE € <ticklist heading> => <ticklist heading> "INVALID";
is provided., 1Initially this is defined to return the <ticklist
heading> unchanged. However, it may be redefined to allow domain-
dependent knowledge of what conjuncts of goals are invalid to be used to
check the proposed heading, It may also be written to remove repeat
occurrences of goals etc. If an invalid ticklist heading is discovered
"INVALID" should be returned, otherwise the valid <ticklist heading>
(possibly modified) should be returned. Since the initial goal and all
precondition lists of OPSCHEMAs are validated beforehand, the only way
in which a heading can become invalid is if protected goals are added
to a set of already valid goals or if a promoted entry is added to a set
of already valid goals. If a set of protected goals are being added to
a heading, the global variasble NPROTECT holds the number added (they are
at the front of the heading). This information can be used to cut down
the amount of checking necessary to ensure validity. A useful example

of how this facility may be used is decribed below,

78

Full expansion of search tree branches doomed to fail

INTERPLAN tries to solve a problem by TRYING OUT the problem
approach it is provided with initially (the given order of goals)., It
solves goals in some sequence checking that previously achieved goals
remain true. In many cases the system will try to achieve a goal which
from the outset (if we had the information available) we could say
would fail always because of the context we are trying to achieve it in,
Such a problem occurs during block stacking in trying to achieve CL(B)
when ON(A,B) is already true and has to be kept true. A great deal of
effort may be wasted in trying different ways of achieving CL(B) when
none can work if ON(A,B) must be kept true. WARPLAN (Wrrren, 1974) uses
information about what conjunctions of facts cannot be true together to
reject certain branches of its search tree. In this case an
instruction such as IMPOSS{CL(y)&0ON(x,y)) would be given to the
planning system, A similar idea has been proposed for STRIPS (Fikes,
Hart and Nilsson, 19722, nage 419). The same process could be
incorporated into INTERPLAN using the VALIDATE ticklist heading
facility., Whenever a new ticklist was generated, the ticklist heading

would be validated using IMPOSS(...) information to reject invalid

headings.

8. Any precondition of an OPSCHEMA can be preceeded by "G" to indicate
that no means of achievement should be used upon it, This is intended
to gain efficiency in handling global facts which are not altered by

the robot’s actions (e.g., <<TYPE Bl BOX>>). However, we can use the
same facility to indicate preconditions which must be true but for which
we do not wish actions to be applied to achieve them (even though such

actions may exist in ACHIEVES),

79

9, Whenever the QA-system is asked a question to which it can return
more than one reply (each reply causes a different choice point for

planning) the system asks the user if he would like to alter the list

of possibilities,

** MULTIPLE INSTANCES is printed on the console and the system goes
into POP-2 READY (interrupt) mode. The instances are in the list
POSSLIST vhich can then be examined or altered before continuing,
Possibilities can be totally removed if required, or others sdded, This

provides a usefol facliky €o enable o user to guide problem

solving.

10. When a loop is reported to the system, INTERPLAN indicates what the
cause of the loop was by printing

LOOP ON <loop pattern>.

1f a variable LOOPEDIT is set true, it also prints

WHAT SHALL I PROMOTE :

The user may examine the state of the search and ask questions. The
user is then expected to indicate whether any attempt should be made to
correct the loop. If no attempt is to be made, type FALSE (or 0),
otherwise the user can indicate what goal may be worth promoting to give
a new approach. The goal will usually be an instance of the loop

pattern (see section on the full loop editor - section 5.7.7).

80

5,9 The Approach - successful Ticklist headings

. . - — " . o S P .y . - A WD S S A g S T A e A e

The ticklist heading specifies the "approach” (the sequence

chosen to attempt to achieve a =et of goals) to be taken by the planning
system, Any unforeseen difficulties in using this approach lead to it
being discontinued, failure information being extracted as appropriate,
and, possibly, new approaches being suggested. New approaches may
involve reorderings of the original goals or the suggestion of certain
"setup" goals in appropriate places, A successful approach fully
specifies the order in which goals can be achieved and kept true

without interaction, The aim of INTERPLAN is to discover such s

successful approach, Successful ticklist headings contain information

over which learning schemes may be devised,

Debugging the Approach

- S D O I e S B B D Sy S D Sn S e T e e

The continuous cycle of classifying the "bug" in a current
ticklist and editing the tree of ticklists in the light of this can be
seen as debugging the initial approach (i.e., the original goal order)
to one which will in fact lead to the goals achievement, Bugs are
detected by looking at the patterns of ticks and crosses in a ticklist,
and alterations (edits) to the tree of ticklists (the goal control tree)
are made to account for these bugs, The method used here on declarative
data representations has much in common with that used in HACKER

(Sussman, 1973) on more procedural representations, WAWKER and

INTERPLAN are examples ok cuckems which make @ro&QcElVﬁ

use of bhe infermaSion oavalable frem a Lailore |

81

6 HOW INTERPLAN SOLVES THE 3 BLOCK PROBLEM

e G A S G O " T O o o . S Ny S e S G Y —

The 3 block problem was described in section 4.2, and was used
to illustrate the problem specification to INTERPLAN in section 5.2, A
listing of the problem specification is given below to bring this
information together. OPSCHFN functions are included. The purpose of

the functions CLFN and ONFN is explained in section 5.2 (b).

- - .. T " - - - W B 8 S WD W O T - S " . G S D WP D N . B - o G G T S > TR o S e W S o oS00 o B

COMMENT® BLOCK STACKING PROBLEM FOR INTERPLAN ;
VARS S1 S2;

FUNCTION CLFN; VARS Bl BZ;
INSTACT(*$*X) ~-> Bl
LOOPIF GETITEM(<<ON $>B2 $$Bl>>,TRUE) THEN
1 -> VALUE(<<CL $$B2>>);
0 -> VALUE(<<ON $$B2 $$B1>>); B2 -> Bl; CLOSE
END:

FUNCTION ONFN; VARS Bl B2,
INSTACT(*$*X) -> Bl; INSTACT(*$*Y) -> B2,
IF GETITEM(<<ON $$B1l <:ET <:NON $$B2:> $>B2:> >>, TRUE)
THEN 1 -> VALUE(<<CL $$B2>>):
0 -> VALUE(<<ON $$B1 $$B2>>) CLOSE-
END:

OPSCHEMA <<ACTCL *$*X>>
ADD <<CL *$*X>>
DELETE
PRECONDS
VARS X

ENDSCHEMA -> S1;

OPSCHEMA <<PUTON *$*X *$*xY>>
ADD <<ON *$*X *$*Y>>
DELETE <<CL *$*Y>>
PRECONDS <<CL *$*X>> <<CL *$*xY>>
VARS X Y

ENDSCHEMA -> S2;

CLFN -> OPSCHFN(S1):
ONFN -> OPSCHFN(S2);

[% <<CL == >> , [%Sl%],
<<ON == == >> , [%S2%] %] -> ACHIEVES;

ASSERT <<ON C A>>
<<CL C>>
<<CL B>>;

82

No special syntax is provided for their construction in the present
program, They use HBASE primitives, e.g., GETITEM, INSTACT, VALUE and
the actors ET and NON (see Berrow, 1975). Many interesting problems can
be specified without the need of OPSCHFNs, e.g., the STRIPS robot world
and the Keys and Boxes problem. In this case the OPSCHFNs are used to
allow the operator schema’s effects to be dependent on some condition

of the situation it is applied to. HBASE contexts have reference

numbers. The current context (CUCTXT) in which the 3 facts are asserted

has reference number 1, This will be taken as the initial situation by

INTERPLAN. A trace of INTERPLAN on the 3 block problem is given below.

: GOAL <<ON A B>> <<ON B C»>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << ON A B >> IN 1

**¥ ACHIEVE << CL A >> IN 1

** APPLY << ACTCL A >> TO 1 TO GIVE 2 e ¢« s+ 4 ¢« o s« « « o note 1
** APPLY << PUTON A B >> TO 2 TO GIVE 3

** ACHIEVE << ON B C >> IN 3

** ACHIEVE << CL B >> IN 3

** APPLY << ACTCL B >> TO 3 TO GIVE 4

PROTECTION VIOLATION REORDER e « o « ¢ ¢ « s s s e+ . « note 2
** ACHIEVE << GON B C >> IN 1

** APPLY << PUTON B C >> TO 1 TO GIVE 5

** ACHIEVE << ON A B >> IN 5

** ACHIEVE << CL A >> IN 5

** APPLY << ACTCL A >> TO 5 TO GIVE 6

PROTECTION VIOLATION PROMOTE W v v e e 4 e e s e e e s . note 3
** ACHIEVE << CL A >> IN 1

**% APPLY << ACTCL A >> TO 1 TO GIVE 7

** ACHIEVE << ON B C >> IN 7

¥* APPLY << PUTON B C >> TO 7 TO GIVE 8

¥ ACHIEVE << ON A B >> IN 8

*¥ APPLY << PUTON A B >> TC 8 TO GIVE 9
** CPU TIME = 2.109 SECS

NOw

<< ACTCL A >> e e 4 e e 4 e 4 4 e e s e e e s e e e+ . . note 4

<< PUTON B C >>
<< PUTON A B »>>

83

2 is the reference number of the new context got by applying the

operator with name <<ACTCL A>> to 1,

The tree of ticklists (the goal control tree) is as below, Please note
that the individual ticklists expand downwards (new rows) only as needed,

The index numbers indicate the order in which the tick and cross entries

were made,

ON(A, B) ON(B, C)
[
1 X
5 6
3 4 X
only PUTON(A, B) only PUTON(B,C)
relevant relevant
Protected
CL(A) | CL(B) ON(A,B) CL(B) CL(C)

1 2)< 3 7/ 8><
2 @MEE|Y | % | t@EE] °X ||

PROTECTION VIOLATION

only ACTCL(A) Attempt to achieve CL(B) only ACTCL(B)
relevant made ON(A,B) false, relevant
No preconditions No preconditions

The protection violation occurs when we are taking an approach as

shown in the holding period diagram below.

84

Initial Situation

ON(A, B)

CL(B)—»ON(B,C) ——+

Approach: ON(A,B); CL(B); ON(B,C)

So as indicated in section 4,3, the violation mey be resolved by trying

one of the approaches shown below.

Initial Situation Problem Solved

ON(A,B)———

ON(B, C)
Approach: ON(B,C); ON(A,B)
Initial Situation Problem Solved
ON(A, B)
CL(B) —»ON(B,C) ———»
Approach: CL(B); ON(A,B); ON(B,C)

The latter cannot be used as CL(B) is already true initially and hence

85
this approach is no different to the original which caused the violation.
So, problem solving proceeds with the first (and only) suggested approach

shown above, '"REORDER" is printed to signify that such an approach has

been suggested.

Again a protection violation occurs while persuing this approach. The

tree of ticklists then is shown below.

ON(B, C) ON(A, B)

C] "
1 [a] [B] X

)
'y
5

only PUTON(B,C)

X

only PUTON(A,B)

relevant relevant
Protecte
CL(B) CL(C) ON(B,C) CL(A) CL(B)
V2% 3 B E 1A 7
1 [aA] [B] v / C| X

5 [A]
6 @EE "X
PROTECTION VICOLATION

Attempt to achieve CL(A)
made ON(B,C) false.

\8\/

only ACTCL(A)
relevant

No preconditions

- - — - . - - . - - - . G Dy Sy S - .. W = . -y T S v . W - o P

The approaches suggested for overcoming the violation are similar

to before. However, since the top level reversal of goals has

already been done, only the approach with a promoted precondition can be

tried. '"PROMOTE" is printed to signify this. This approach shown below

is tried next as it is the only choice.

Initial Situation Problem Solved

CL(A)

-»0ON(A,B) —»

ON(B, C) »

Approach: CL(A); ON(B,C); ON(A, B)

The approach shown above is successful and produces the optimal plan

<<ACTCL A>>;

<<PUTON B C>>; <<PUTON A B>>

The tree of ticklists after successful backup is shown below,

CL(A) must be true

(////”"'*—a~““\\\\::>here

CL(A) ON(B,C) ON(A, B)

' Cl 20
1 X

22
7 2/ X
27 26 28

8 \/ / X

13 3,

B / /
9
only ACTCL(A) only only PUTON(A, B)
relevant PUTON(B, C) relevant

relevant
No preconditions
Protected
CL(A) CL(B) CL(C)
23 2 25
7 / Al a4
Protected
DN(B, C) CL(A) CL(B)

g [a][c]

v

30v/

3\/

86

87

7 EXAMPLE PROBLEMS

INTERPLAN has been tried out on a variety of problems. Besides
the 3-block problem (described in section 6) and a 5-block example
used by Warren (1974, as described in section 9.4), the STRIPS robot
world in particular was used to give some comparison between the
performance of different problem solvers. The STRIPS-world is useful
for comparison purposes since almost every problem solver written
to date has been test run on these examples, STRIPS used this type of
world to form plans for an actual robot (SHAKEY), However, it is a very
simple world in which there are few serious interaction problems and in
which the maximum length of a plan needed to solve any problem is
limited (to 15 steps at maximum - Siklossy and Dreussi, 1973 p. 426). In
view of these restrictions, problem solvers which have been written
to cope with a wider class of problems than STRIPS have often extended
the basic STRIPS~world by adding more actions or by changing the

configuration of rooms the robot is to operate in, etc.

7.1 STRIPS-world problems

To give a background against which many of the example problems
described throughout this report can be understood, the
representation of the STRIPS-world actions (operators) to INTERPLAN is
given below. See section 5.2 for details of how this representation
specifies the problem - in particular the reason for having the ACHIEVES

list of relevant operators.

VARS S1 S2 S3 S33 sS4 S5 S6 S7

OPSCHEMA <<GOTOl *$*M>>
ADD <<ATROBOT *$*M>>
DELETE <<ATROBOT == >> <<NEXTTO ROBOT == >>
PRECONDS G <<LOCINROCOM *$*M *$*X>>
<<INROOM ROBOT *$*X >> <<ONFLOOR>>
VARS M X
ENDSCHEMA -> S1;

OPSCHEMA <<GOTO2 *$*M>>
ADD <<NEXTTO ROBOT *$*M>>
DELETE <<ATROBOT == >> <<NEXTTO ROROT == >>
PRECONDS <<INROOM ROBOT *$*X >> <<INROOM *$*M *$*X >> <<ONFLOOR>>

VARS M X
ENDSCHEMA -> S2;

OPSCHEMA <<PUSHTO *$*M *$*N>>
ADD <<NEXTTO *$*M *$*N>> <<NEXTTO *$*N *$*¥M>>
DELETE <<ATROBOT == >> <<NEXTTO ROBOT <: NON *$*M :> >>
<<NEXTTO < :NON ROBOT:> *$*M>>
<<AT *$*M == >> <<NEXTTO *$*M == >>
PRECONDS G <<PUSHABLE *$*M>> <<INRCOM *$*M *$*X >>
<<INROOM *$*N *$*X >> <<NEXTTO ROBOT *$*M>> <<ONFLOOR>>
VARS M N X
ENDSCHEMA -> S3;

COPY(S3) -> $33; REV(ADDLIST(S3)) =-> ADDLIST(S33);

OPSCHEMA <<TURNONLIGHT *$*M >>
ADD <<STATUS *$*M ON>>
DELETE <<STATUS *$*M OFF>>
PRECONDS G <<TYPE *$*M LIGHTSWITCH>> G <<TYPE *$*N BOX>>
<<NEXTTO *$*N *$*M>> <<ON ROBOT *$*N>>
VARS M N
ENDSCHEMA -> $4;

OPSCHEMA <<CLIMBONBOX *$*M >>
ADD <<ON ROBOT *$*M >>
DELETE <<ATROBOT == >> <<ONFLOOR>>
PRECONDS G <<TYPE *$*M BOX>> <<NEXTTO ROBOT *$*M >> <<ONFLOOR>>
VARS M
ENDSCHEMA ~-> S5,

OPSCHEMA <<CLIMBOFFBOX *$*M »>
ADD <<ONFLOOR>>
DELETE <<ON ROBOT *$*M >>
PRECONDS <<ON ROBOT *$*M>>
VARS M

ENDSCHEMA -> S$6;

OPSCHEMA <<GOTHRUDOOR *$*K *$*L *$*M>>
ADD <<INROOM ROBOT *$*M>>
DELETE <<ATROBOT == >> <<NEXTTO ROBOT == >> <<INROOM ROBOT == >>
PRECONDS <<INROOM ROBOT *$*L>> G <<CONNECTS *$*¥K *$*L *$*M>>
<<NEXTTO ROBOT *$*K>> <<ONFLOOR>>
VARS L M K
ENDSCHEMA -> S7;

88

89

[% <<ATROBOT == >> , [%S1%],
<<NEXTTO ROBOT == >> , [%S2%],
<<NEXTTO == == >> , [%S3,533%],
<<STATUS == ON>> , [%584%],
<<ON ROBOT == >> , [%S5%],
<<ONFLOOR>> , [%S6%],
<<INROOM ROBOT == >> , [%57%] %] -> ACHIEVES;

7.1.2 Implementation note

There are 7 operators, 6 of which are straightforward in that
they only have one statement on their ADD list., However, operator
schema S3, (PUSHTO m n), can add (NEXTTO m n) and (NEXTTO n m). So
there are 2 ways to achieve e.g. (NEXTTO Bl B2), by using a
(PUSHTO Bl B2) or a (PUSHTO B2 Bl)., 1In the current implementation of
INTERPLAN, the variables of an OPSCHEMA are instantiated to make it
relevant by matching the statement the operator is to achieve
against the ADD 1list entries in turn from left to right until a match
succeeds, the variables being set by this successful match.

Normally, if it will match more than one entry in the ADD list, the 2nd
and later occurrences can never be reached by the left to right
matching. In the (PUSHTO m n) OPSCHEMA the achieve statement will
always match the 1st entry in the ADD list (NEXTTO m n) and so to

achieve, for instance, (NEXTTO Bl B2) only (PUSHTD Bl B2) would be tried

whereas (PUSHTO B2 Bl) is also relevant,

To overcome this implementation restriction, one must make a
copy of the OPSCHEMA in which the ADD liest entry which would not
normally be reached in the left to right scan is put in s position in
the copied ADD list such that it will be. In the STRIPS-world
representation this is done by simply reversing the ADD list of

OPSCHEMA S3 to give a new OPSCHEMA S33.

7.1,3 Initial situation

- - > -

The initial situation used for the problems given to STRIPS is

shown in the diagram below.

ROBOTA
o1
b [B2]
¢ [B3]

ROOM1

d t%

RGOM2

Ls1
off

L

DOOR1

DOOR2

ROOM5

ROOM3

DOOR3

ROOM4

DOOR4

The following assertions represent this initial situation to

INTERPLAN,

ASSERT
<<TYPE
<<TYPE
<<TYPE
<<TYPE
<<TYPE
<<TYPE
<<TYPE
<<TYPE
<<INROOM
<<INROOM
<<INROOM
<<INROOM
<<INROOM
<<INRCOM
<<INROOM
<<INROOM
<<CONNECTS
<<CONNECTS
<<CONNECTS
<<CONNECTS
<<CONNECTS
<<CONNECTS
<<CONNECTS
<<CONNECTS

DOOR1 DOOR>>
DOORZ2 DOOR>>
DOOR3 DOOR>>
DOOR4 DOOR>>
Bl BOX>>

B2 BOX>»>

B3 BOX>»>

LS1 LIGHTSWITCH>>
DCOR2
DOOR2
DOOR3
DOOR3
DCOOR4
DOOR1
DOOR4
DOOCR1

ROOM2>>
ROOM5> >
ROOM3> >
ROOMS> >
ROOM5> >
ROOM5> >
ROOM4>>
ROOM1>>
ROOM5
ROOM4
ROOM2
ROOM5
ROOM3
ROOM5
ROOM1
ROOM5

DOOR1
DOOR4
DOOR2
DOOR2
DOOR3
DOOR3
DOOR1
DOOR4

ROOM1»>>
ROOMS> >
ROOM5> >
ROOMZ2> >
ROOM5> >
ROOM3> >
ROOMS5 >>
ROOM4>>

90

91

<<LOCINROOM F ROOM4>>
<<AT Bl A>>

<<AT B2 B»>>

<<AT B3 C>>

<<AT LS1 D>>
<<ATROBOT E>>
<<INROOM Bl ROOM1>>
<<INROOM B2 ROOM1>>
<<INROOM B3 ROOM1>>
<<INROOM ROBOT ROOM1>>
<<INROOM LS1 ROOM1>>
<<PUSHABLE Bl »>>
<<PUSHABLE B2 >>
<<PUSHABLE B3 »>>
<<ONFLOOR >>

<<STATUS LS1 OFF>>

»

3

7.1.4 Different versions of the STRIPS-world problems

The time comparisons of problem solvers on STRIPS-world problems
given in the literature are a little confusing since severasl versions
of the problem domain have been used on STRIPS, The version
described in sections 7.1,1 and 7.1.3 is as given in Fikes and Nilsson
(1971). This version appeared in volume 2 of the journal Artificial
Intelligence and will thus be refered to as version AIVol2. An
earlier version of this paper was presented at the Second International
Joint Conference on Artificial Intelligence and will be refered to as
version IJCAI2, The main difference in this formulation is that only
box Bl instead of any box may be used to stand ON to TURNON a
lightswitch., Different operators, different initial situations and
different problems were used in a paper by Fikes, Hart and Nilsson
(1972b) to compare normal STRIPS and STRIPS with a plan saving device
called MACROPS, This was publiched in volume 3 of the Jjournal of

Artificial Intelligence and will thus be refered to as version AIVol3.

92

7.2 Time comparisons - mainly on STRIPS-world problems
In the table which follows six problem solvers are compared

where possible,.

INTERPLAN: A program run in POP-2 (Burstall, Collins and Popplestone,
1971) and HBASE (Barrow, 1975 - a CONNIVER-like data base
package written in POP-2). The times were obtained in a
single session without change of any search ¢aroameters
(see appendix II1)., The times include garbage collection
and any operating system overheads when run on the
Edinburgh DEC10, INTERPLAN occupies under 5K words of

core on the DEC10.

STRIPS and ABSTRIPS: all forms were run in partially compiled LISP
on the Stanford DEC10,
STRIPS =~ Fikes and Nilsson (1971),.
STRIPS with MACROPS - Fikes, Hart and Nilsson (1972b).

ABSTRIPS - Sacerdoti (1974).

LAWALY: is run in interpreted LISP on s CDC-6600C and the
times include garbage collection., (CDC~-6600 is

reputedly approx, 8 times faster than the DEC10).

WARPLAN: is interpreted in PROLOG (see Wsrren, 1974), vhich is

implemented in FORTRAN »nd is run on the Edinburgh DEC10,

93

*owTl N1dD 3O

sajnuIWw (7 u9AT3 ueym wolqoad sTIYl SATOS JOoU PIP SAIYIS x

o)/
0°8

waTqoxd Ho07d-¢
wa1qoxd ooigd-¢

ONIZOVLS HD01d

81
€L

%8

8°8

61
L°L
11
7L
71

1"y

o1

10%
791
Tt
711
0S1

6ve
81¢
971
001
081

*ooz1<
VA
VAL
001
L8S

(44!

TAS
59

€Tl
€11

VA
(4!

11

4!

1°2
S°1

VAR
€1

01

81

1°¢C
9°1

¢Ivor

I

g1oATY

C10ATY

g1oATv

£10ATY

€ 10ATV

CIVOIlI

[ANY

£10ATV

CIVOlI

CTIATV

74 €4 OLIXIN®ZH 19 OLLXAN

£€HO0Y L0909 WOOINI

€HO0Y 10909 WOOCUNI®RET 7d OLLXEAN
TROOY 1090d WOOINIRZI 19 OLLXIN
€d ¢9 OLLX3AN®Zd 19 OLIXEN

4 LOFOELVRed ¢4 OLLXAN®
¢4 19 OLILXANTNO 1IST SAILVIS

d 10dCdLv®
IST ¢4 OLIXMN®Zd Td OLIXHUNR
TI00d 79 OLLXHINBNO 1IST SALVIS

ZWO0d LO90d WOOANIR
¢4 19 OLLXINZNO TST SOLVIS®
T400d €9 OLIXIN®Ed 79 OLIXIN

4 1L0¥0dLV
NO 1ST SQALYLS

dTIOM LO90¥ S4I¥LS

Z«Amm<xm

ATVMVI

dIdLSgV

meMHw
dOJO VY

SdI¥LS

NVIdddINT

soan313y juedIgyTudIs g O
SPuUOd®S UT SIWT],

94

7.3 Variants of the STRIPS~-world run on INTERPLAN

0 - - o 0 2 - S e W)y W S Y A s W o -

7.3.1 Variants with interactions

Two variants of the STRIPS-world which are similar to one
another were made to introduce interaction problems. These are the
2-room problem from Siklossy and Dreussi (1973) described in gection
8.1, and the SHUNT problem from Warren (1974) described in section 9.5,
Both problems were used to point out shortcomings of the problem
solvers described in the respective references. The action of

INTERPLAN on these problems is described in the gections indicated.

7.3.2 Variants with long solution paths

Another variant of the STRIPS-world was introduced to test the
effect of LAWALY (Siklossy and Dreussi, 1973) on problems requiring long
sequences of individual operators to achieve some goals. A "superworld”,
es they termed it, was invented with 7 rooms in which a robot janitor
was asked to sweep rooms, empty rubbich bins, water plants, etc. The
domain has 26 operator schemas and an initial situation described by 120

assertions.

However, in this domain for any given goal, only one operator
schema is relevant so eliminating branching in the search tree for
operator choices. There are no serious interaction problems in the
domain, snd there are no interactions at all when priorities are given
for the order of achievement of the individual goals and preconditions
(as is done in LAWALY). Problems in this domain, though requiring long

operator sequences, need only minimal problem solving capabilities in

95

that there is only one operator relevant to each goal and the
preconditions of such operators can always be satisfied, Backtracking
is thus not needed for the solution of the problems in this domain, This
fact is used by LAWALY so that in between partial searches to solve

each component of a conjunct of goals, any choices generated are cleared
leaving only the successful partial plan for earlier components of the

conjunct,

Perhaps the only complexity of the LAWALY "superworld" for
means-end analysis driven problem solvers is the lack of guidance
available when a choice of intermediate rooms must be made to go from
one room to another when these are not directly connected. LAWALY uses
a maze-running algorithm to cope with this problem The maze~running
algorithm computes an optimal path between any two rooms in the

domain.

A listing of the "superworld" input to LAWALY was obtained and
run on INTERPLAN in a similar form. The original axiomatization
contained several errors which would not enable certain problems to be
solved, Therefore, the version run on INTERPLAN was only changed as
necescary to enable some search timings to be found. A maze~running
capability was given to INTERPLAN using the OPSCHMODIFY facility (see
section 5,8(6)). LAWALY solved some very long problems in this domain,
A 198 step plan being found in 348 cseconds and a 275 step plan being
found in 433 seconds, Giving an average time per step of the fingl
plan of 1,65 seconds. A problem in this domain was given to INTERPLAN,
It was to water plants in all 7 rooms of the world. This required a
151 step plan which was found by INTERPLAN in 306 seconds, an average of

Jjust over 2 seconds per step of the final plan.

96

7.4 Comments on the time comparisons

. . - - G - S S -

- - - - - . " - " -

The time comparisons of INTERPLAN on a variety of problems
against other problem solvers are intended to show thét it has been
possible to incorporate the mechanism of protecting achieved goals and
monitoring any interactions which occur to allow corrections to be made
without ruining the performance of a problem solver. The range of
problems which can be solved by INTERPLAN is greater than the range
which can be dealt with by all the variants of STRIPS and LAWALY,
yet INTERPLAN performs favourably in relation to them. The test of
INTERPLAN on a single problem requiring a long plan in the LAWALY

"cuperworld" was made for a similar reason,

Time comparisons of different systems on different computers
are always difficult to make since the problem solvers are intended
to cope with different aspects of planning and may have additional
facilities to those being compared, Such comparisons can only be

used to get a rough estimate of relative performance.

7.4.2 Comparison with STRIPS

- o " o - -

The significant improvement of search times of INTERPLAN over
STRIPS must be explained since INTERPLAN is based on many of the ideas

in STRIPS but has extra abilities and mechanisms.

(a) A major factor is the use in INTERPLAN of a very simple language

for performing the storage and retrieval of facts about

(b)

97

situations in the world (the Question-snswering system). INTERPLAN
uses HBASE (Bsrrow, 1975) primitives to perform this task whereas
STRIPS uses a modification of the QA3 theorem prover (Green, 1969),
QA3 provides a richer language in which a situation of the world can
be described (allowing implications to be used), but this power is
not required for the simple problems tackled by STRIPS and the QA3

system is therefore cumbersome in this use.

INTERPLAN also has a particularily straightforward method of
building up its search tree using a simple iterative process of
classifying and editing the structure being constructed. Ticklists
provide a very simple method of allowing the appropriate edit to

be chosen.

98

7.5 Problems run on INTERPLAN
This section lists the different problem domains given to
INTERPLAN at present. Where problems in these domains are described in

this report, section references are given.

Block stacking problems: especially 3 block problem (section 6) and

5 block problem (section 9.4),

STRIPS~world problems: see earlier in this chapter.

STRIPS-world variants: 2 Room problem (from Siklossy and Dreussi,
1973) see section 8.1,
SHUNT problem (from Wsrren, 1974) see
section 9.5,
LAWALY superworld (from Siklossy and Dreussi,

1973) see section 7.3,2

A simple machine code programming task (from Warren, 1974)

including the swap the values of 2 registers

problem (see section 8.,2),

A model car assembly task.

A simplified version of the Keys and Boxes problem (from Warren, 1974).

A train movement task using a common section of line,

99

8 OTHER PROBLEMS IN WHICH INTERACTIONS OCCUR

- — - - - W - . " - (" W s o o S - -

Interactions occur in many problems, Several of these have been
mentioned previously in the literature on problem solving and have
usually been dealt with in a domain specific fashion. Two of these
problems will be outlined here and an interaction discovery and correction
approach given for them., Such an approach does not rely upon certain
domain specific facts being known before problem solving commences.
Both examples have been chosen because they have inf{luenced
the design of INTERPLAN, showing the different conditions under which

interactions occur.

8.1 2 Room problem

Initial Situation Goal Situation

ROOM1 ROOM2 ROOM1 ROOM2

N

ROBOT | —

| 4 ROBOT
'DOOR1

" DOOR1

<<STATUS DOOR1 CLOSED>>&<<NEXTTO ROBOT Bi>>

This problem is based upon the operators available in the

STRIPS~AIVol3 world (see section 7.1.4)., The world consists of 2 rooms

connected by DOOR1 which is initially closed.

and a box in the other,

at the same time as the door being closed.

as an example of a failure of LAWALY,
at the University of Texas at Austin proposed the problem,

typical interaction problem.

The problem was described by Siklossy and Dreussi (1973,

goals in either order will not achieve the goal.

SHUNT problem, is described in section 9.5).

100

The robot is in one room

The goal is to get the robot NEXTTO the box

sec.8)
Though I understand that J. Roach
It is a
Concentrating on each of the component

A similar problem, the

An annotated trace of INTERPLAN on the problem is given below,

ENTERING INTERPLAN WITH INITIAL SITUATION 1

* %
* %
* %
* %
* %
* %
* %

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %k
* %
* %
* %
* %

** ACHIEVE << STATUS DOOR1 OPEN »>> IN 1

ACHIEVE
ACHIEVE
ACHIEVE
ACHIEVE
ACHIEVE

<<
<<
<<
<<
<<

¢ GOAL <<STATUS DOOR1 CLOSED>> <<NEXTTO ROBOT Bl>>;

NEXTTO ROBOT Bl >> IN 1 cteceacettsen et eans

INROOM ROBOT ROOM2 »>> IN 1
STATUS DOOR1 OPEN >> IN 1
NEXTTO ROBOT DOOR1 >> IN 1
TYPE DOOR1 OBJECT >> IN 1

APPLY << GOTOD DODR1 >> TO 1 TO GIVE 2
APPLY << OPEN DOOR1l »>> TO 2 TO GIVE 3
PROTECTION VIOLATION PROMOTE PROMOTE REORDER

ACHIEVE
ACHIEVE
ACHIEVE
ACHIEVE
ACHIEVE
ACHIEVE

<<
<<
<<
<<
<<
<<

TYPE Bl DOOR >> IN 1 P R S

NEXTTO ROBOT Bl >> IN 1

INROOM ROBOT ROOM2 »>> IN 1
STATUS DOOR1 OPEN >> IN 1
NEXTTO ROBOT DOOR1 >> IN 1
TYPE DOCR1 OBJECT >> IN 1

APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 4
APPLY << OPEN DOOR1 >> TO 4 TO GIVE 5
APPLY << GOTHRUDR DOOR1 ROOM2 »> TO 5 TO GIVE 6
APPLY << GOTOB Bl »>> TO 6 TO GIVE 7
ACHIEVE << STATUS DOCR1 CLOSED >> IN 7
ACHIEVE << NEXTTO ROBOT DOOR1 »>> IN 7
ACHIEVE << TYPE DOOR1 OBJECT >> IN 7
APPLY << GOTOD DOOR1 >> TO 7 TO GIVE 8
PROTECTION VIOLATION PROMOTE

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1
** ACHIEVE << TYPE DOCR1 OBJECT »> IN 1
** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 9

approach 1

approach 2

approach 3

* %
* %k
* %

101

APPLY << OPEN DOOR1 »>> TO 9 TO GIVE 10
ACHIEVE << STATUS DOOR1 CLOSED >> IN 10
APPLY << CLOSE DOOR1 »>> TO 10 TO GIVE 11

SETUP REVERSE STOPPED

* ok
* %
*k
* %
* %
*%
* %
* %
* %
*k
*k
*k
* %
* %

* %

ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 ceceveasssesesess Bpproach 4
ACHIEVE << STATUS DOOR1 OPEN >> IN 1

ACHIEVE << NEXTTO ROBOT DOOR1l >> IN 1

ACHIEVE << TYPE DOOR1 OBJECT »>> IN 1

APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 12

APPLY << OPEN DOOR1 >> TO 12 TO GIVE 13

APPLY << GOTHRUDR DOOR1 ROOMZ2 »> TO 13 TO GIVE 14
ACHIEVE << STATUS DOOR1 CLOSED »>> IN 14

ACHIEVE << NEXTTO ROBOT DOOR1l >> IN 14

ACHIEVE << TYPE DOOR1 OBJECT >> IN 14

APPLY << GOTOD DOOR1 >> TO 14 TC GIVE 15

APPLY << CLOSE DOOR1 »> TO 15 TO GIVE 16

ACHIEVE << NEXTTO ROBOT Bl >> IN 16

APPLY << GOTOB Bl >> TO 16 TO GIVE 17

CPU TIME = 6.102 SECS

NOw

<<
<<
<<
<<
<<
<<

GOTCD DOOR1 >>»

OPEN DOOR1 >>

GOTHRUDR DOOR1 ROOM2 >>
GOTOD DOOR1 »>>

CLOSE DOOR1 >>

GOTOB Bl >>

s+ APPROACH

~-1002 << INROOM ROBOT ROOM2 >> -1002 indicates thet the goal is
1 << ESTATUS DOOR1 CLOSED >> a precondition for a goal ref, 2,
2 << NEXTTO ROBOT Bl »>»>

Remember that preconditions of an action to achieve a goal are written

PRECOND ——~GOAL in the diagram below. Look back at the trace to

find the preconditions used,

Approach 1:

holding period is broken
STATUS DOOR1 CLOSED by the achievement of
STATUS DCOR1 OPEN

STATUS DOOR1 OPEN-—»INROOM ROBOT ROOMZ2 — NEXTTO ROBOT Bl—¥»

102

Note that the contradictory nature of the 2 goals <<STATUS DOOR1 OPEN>>
and <<STATUS DOOR1 CLOSED>> is not detected as no information is known
about this (IMPOSS(...) assertions could be used to save on search

effort here - see section 5.8(7)). All that is known when the interaction
occurs is that the achievement of the second goal deletes the first,
However, INTERPLAN can still cope. The interaction suggests a

REORDERING to approach 2 snd 2 PROMOTIONS to approaches 3 snd 4. 2
promotions are suggested as there are 2 subgoals being considered
(<<STATUS DOCR1 OPEN>> and <<INROCM ROBOT ROOM2>>) when the

interaction occurs, and both goals are not already true at the point

at which they are being promoted to.

Anproach 2:

v

NEXTTO ROBOT Bl

NEXTTO ROBOT DOOR1—» STATUS DOOR1 CLOSED —»

No REORDERING can be tried to correct for this interaction as it has
been performed once already in response to the first interaction,
However, s PROMOTION of <<NEXTTO ROBOT DOOR1>> can be made. This

latter approach does not figure in the solution of the problem.

Approach 3:

STATUS DOCR1 CLOSED >

STATUS DOCR1 OPEN NEXTTO ROBOT Bl—>

103
Feversal of the "setup'" goal (<<STATUS DOOR1 OPEN>>) is not allowed
since this would place it in a position from which it had been
promoted by some earlier intersction., "SETUP REVERSE STOPPED" is
printed to signify this. Again note that use of IMPOSS (...)

assertions could have declared the above gpproach INVALID,

Approach 4:

STATUS DOOR1 CLOSED »

INROOM ROBOT ROOM2 * NEXTTO ROBOT Bl —»

This approach is successful, Siklossy and Dreus<i (1973) suggest that
the problem should have been specified more exactly to a problem solver
by including <<INROOM ROBOT ROOM2>> in the goal, or that this could have
been done by some "transitivity of location" program, However,
INTERPLAN can deal with this problem in a straightforward way using
general techniques and does not rely upon domain specific knowledge
which for other similar problems might not be available, It also
realizes why the <<INROCM ROBOT ROOM2>> goal is needed - as a "setup"
goal for <<NEXTTO RCBCT B1>> (in the context of another goal

<<STATUS DOOR1 CLOSED>>)., This is in contrast to its treatment as a

separate top level goal in the suggestion of Siklossy and Dreussi,

104

8.2 Swap the values of 2 registers

A common problem in computer programming is: given 2 registers

with certain valuer, swap their values.

Initial Situation Goal Situation
REG 1 IS C1 _ REG 1 Is C2
REG 2 IS C2 REG 2 1S C1

The solution involves saving one of the values in some other register
before altering the two registers. This can be dealt with in a domain
specific fashion by ensuring a value in one of the registers to be
swapped is always saved. However below I will indicate how a general
interaction detection and correction approach may be used to solve this

problem,

The actions possible in this simple programming world (note) are
<<STORE x / val>> which puts the value in an accumulator into REG x.
<<LOAD x / val>> which loads the value in REG x into the accumulator.
The entry after the "/" gives the value of the register refered to after

being accesced or updated. It can be considered as s comment.

This problem requires the facilities of the full LOOP editor
(see section 5.7.7). This is not available in the current
implementation of INTERPLAN, However, a trace is given of the
operation of INTERPLAN on this problem using the present LOOP editor
which asks the user for an instance of a goal to be PROMOTED on &
1.0OP detection. The approaches used are described in terms of the FULL

LOOP editor,.

- - - - . " . o - oy . Y o, - Ss W ay 0 UR Bp E B T S S g O P b T W S T M W T e e U map M S s SO B s R A

(note) This formulation of the problem was suggested by an application
given to WARPLAN (see Warren, 1974) and also run on INTERPLAN in
which ADD and SUBTRACT rctions were also permitted, The "/"
comment is needed by WARPLAN to correctly associate the ADD,

gELETE snd PRECOND entries for each action - these being kept in
separate lists (see section 9,1). It is not required by
INTERPLAN,

105

: GOAL <<REG 1 IS C2>> <<REG 2 IS Cl>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

* ok
* ok
*k
*%
*k
*%
* %

* ¥
* ¥
* ¥
* %
* ¥
* ¥
* %

ACHIEVE << REG
ACHIEVE << ACC I

1 ISC2 %> IN 1
S C2 > IN1

et et sertseseescssssesses @pproach 1

APPLY << LOAD 2 / C2 >> TO 1 TO GIVE 2

APPLY << STORE
ACHIEVE << REG
ACHIEVE << ACC I

1 /C2»> 102
2 IS C1 > IN 3
S C1 > IN 3

ACHIEVE << REG == IS Cl >> IN 3
LOOP ON << REG ==
WHAT SHALL I PROMOTE: <<REG 3 IS Cl>>

PROMOTE PROMOTE REORDER

ACHIEVE << REG
ACHIEVE << ACC 1

IS C1 >»>

2 ISCl > 1IN1
S Cl»> IN1

TO GIVE 3

cecensersessesssseeseses approach 2

APPLY << LOAD 1 / C1 >> TO 1 TO GIVE 4

APPLY << STORE
ACHIEVE << REG
ACHIEVE << ACC I
ACHIEVE << REG =

LOOP ON << REG ==
WHAT SHALL I PROMOTE: <<REG 3 IS
PROMOTE PROMOTE

* %
* %k
* %k
* %
* %
* ¥
* %
* %
* %
* %k
* ¥

ACHIEVE << REG
ACHIEVE << ACC I

2/ C1l s> TO 4
1 IS C2 > IN S5
S C2 >> IN 5

= IS C2 »> IN 5
IS C2 >>

3ISCl>»IN1
SC1> IN1

TO GIVE 5

The approaches suggested
here are not used in the
C2>> search for a solution.

cteessessssesasessssees, gpproach 3

APPLY << LOAD 1 / C1 »>> TO 1 TO GIVE 6

APPLY << STORE
ACHIEVE << REG
ACHIEVE << ACC I

3/Cl>» TOG®6
1 IS C2 >> IN 7
S C2 > IN 7

TO GIVE 7

APPLY << LOAD 2 / C2 >> TO 7 TO GIVE 8

APPLY << STORE
ACHIEVE << REG
ACHIEVE << ACC I

1/C2> T08
2 1ISCl1l > IN9
S Cl> INY9

TO GIVE 9

APPLY << LOAD 3 / C1 >> TO 9 TO GIVE 10

2/ Cl> TO 10

TO GIVE 11

A user could have asked what instances
of loop pattern were currently true
and what the upper loop occurrence
was to decide what to promote,

** APPLY << STORE

** CPU TIME = 2.312 SECS
NOw

<< LOAD 1 / C1 >>

<< STORE 3 / C1 >>

<< LOAD 2 / C2 >>

<< STORE 1 / C2 >>

<< LOAD 3 / C1 >>

<< STORE 2 / C1l >>

: APPROACH

-1002 << REG 3 IS C1 >>
1 << REG 1 IS C2 >>
2 << REG 2 IS C1 >>

106

Remember that preconditions of an action to achieve a goal are written
PRECOND —*GOAL in the diagrams below. ILook back at the trace to
find the preconditions used.

Anproach 1:

REGl1lIsC2———---vvm- —_—

REG x*IS Cl—ACC 1S C1—»REG 2 I+S Cl—»

o 1OoP- — — — —

A LOOP is detected on <<REG x IS Cl>> as a higher level goal at that
time is <<REG 2 IS Cl>>, As indicated in the description of the full
LOOP editor (see section 5.7.7), we may try to reorder the concurrent
goals at the upper loop level (<<REG 1 IS C2>> and <<REG 2 IS Cl1l>>).
This would give approach 2 (note)., Alternative approaches of
suggesting a PROMOTION which would aid the solution of the upper loop
occurrence of the pattern (<<REG 2 IS C1>>) while avoiding the loop are
tried. PROMOTION of <<ACC IS Cl>> for this purpose is straightforward,
but the promotion is not used in the search for a solution. Promotion

of <<REG x IS Cl>> gives approach 3.

Avnproach 2:

—— — —LOP— — — —

\ 4 +
REG x IS C2—»ACC IS C2—®»REG 1 IS C2—»

REG 2 IS C1 .

- o > > iy S N G O W " - ASh i N O N W0 S S g S N > SO oy S S S 00 T S o W

Note: 1If a goal of, for example, <<REG 1 IS C2>> & <<REG 3 IS Cl>> is
given in the same initial situation as the present problem, s
straightforward reversal of the goals at the upper loop level
would enable the problem to be solved,

107

Again a LOOP is detected. A cimilar process to the above is performed,
but the approaches which are suggested are not used in the search for a

solution.

Avproach 3:

REG 1 IS C2
REG x IS C1 »REG 2 IS C1———
x/=2 (a)
x/=1 (b) Notes are to the text below.

The promoted goal in approach 3 can only be promoted after a LOOP has

occured if

(a) the promoted goal is not IDENTICAL to the upper loop occurence of
the pattern. As explained in the description of the full loop

editor, this is because the approach

Gl——» Gl—>
is equivalent to

G2 ——» G2 —» G2 —————»

Thus x must not be 2,

(b) The promoted goal is not already true at the point to which it is
being promoted. Since <<REG 1 IS Cl1%> is true initially, the goal
must be restricted to exclude this instance (as explained in
"restrictions on the instances of a promoted goal” - section 5.7.5).

Thus x must not be 1,

108

A method of placing restrictions on variables has been experimented with
and is outlined in Appendix IV, However, as can be seen in the

trace of INTERPLAN on the swap the values of 2 registers example, the
user is given the responsibility for choosing an gppropriste instance of

a goal to be promoted in the current implementgtion of the LOOP editor.

Similarity to the Keys and Boxes problem
It is interesting to note the close similarity between the
approaches needed to solve the "swap the value of 2 registers' problem

and those needed to solve the Keys and Boxes problem (see section 11.3),

109

9 WARPLAN ~ A COMPARISON WITH INTERPLAN

-y - -y D Y - - - W T - -

WARPLAN (Warren, 1974) is a means-end analysis driven problem
solver which has been designed to solve problems described in terms
similar to those used in STRIPS (initial world situation, operator
schemas and the goal specification). It is intended as a method of
relaxing the "linear" assumption made by earlier systems, such as STRIPS
and HACKER, in which they hope that operator sequences for each
individual goal can be combined end~on-end given some suitable ordering
of the individuals, end that the combination of sub-plans will achieve
the whole conjunct, WARPLAN, therefore, can cope with problems in which
this assumption is not valid, such as the 3-block problem. Since its
aims are similar to those of INTERPLAN (it being motivated to some
extent by the same problem - the Keys and Boxes) it may be instructive

to compare the two systems.

Before considering the detail of the method used in WARPLAN, a
little background information may be useful. WARPLAN is written as 46
predicate calculus clauses which are interpreted by the PROLOG system
(see appendix III of Waerren, 1974). Though the program is very concise,

it can cope with a wide variety of problems,.

110

9.1 Problem specification

Operator schemas are described using 3 nredicates which state
which facts can be added by some operator (ADD(x,op)), what facts are
deleted by some operator (DELETE(x,op)) and the preconditions
required of a situation for the operator to be applicable (CAN(op,x)).
Since the specification of the operator =chema is in 3 different clauses,
the name of the schema must contain all the variables used in its

specification,

An initial situation is described using a predicate
GIVEN(sitn,x) which states that the fact x is true in the situation,
Facts true in all situations (global facts) can be given using a
predicate ALWAYS(x). An additional predicate, IMPOSS(x), is used to
state that a conjunction of facts in unat-tainable in any situation,
This is provided for efficiency to stop fruitless goals being

investigated,

9.2

111

Method used

The goals in a conjunct are tackled from left to right. For

each goal in turn:

(a)

(b)

(c)

(d)

(e)

if the goal is solved in the current situation (the initial
situation for the first goal), no action is taken and we proceed to
the next goal. A choice is actually being made here, it is

equivalent to choosing a "do-nothing" operator at stage (b),

If the goal is not solved, we seek operators which will achieve it

(by looking at what operators ADD the fact).

For one of the relevant operators (the others are set up by PROLOG
processes as backtracking choice points in case of failure) we check
if the application of the operator will delete any earlier achieved

goal,

If the operator is inconsistent with earlier goals, we trace back
through the plan part already produced trying to find a suitable
point to insert the operator. Care is taken that, at any point
considered, the goal this operator is to achieve will not be deleted

by actions later in the plan,

Once a point of insertion for the operator is found (either after
the last step of the existing plan part or some intermediate point
as found in (d)), we check that the preconditions of the operator

hold in the situation in which the operator will be applied.

112

(f) If the preconditions do not hold, a subgoal is set up of attempting

to find a situation in which the operator can be applied.

NOTE: Recent work on coping with interacting goals in progrsm synthesis
is reported in Wsldinger (1975), The method employed is
essentially similar to that used in WARPLAN, though the two
systems are not based upon one another. The discussion of WARPLAN

here also applies in most part to Wﬂldinger's system,

113

9,3 An Example (the 3 block problem)

- " T . - - . A - -

Additional to the operator schemas and initial situation which

are similar to those used on INTERPLAN, a fact IMPOSS(ON(x,y)&CL(y)) is

given, The plan parts inserted by each step of the trace below are put

in capitals in the Plan Generated column,

Goals Considered

Plan Generated

Commente

none

ON(A, B)

ON(A, B)&ON(B, C)

now

now; ACTCL(A);
PUTON(A, B)

now;actcl(a);
PUTON(B,C);
puton(s,b)

Actcl(a) inserted to achieve a pre-~
condition for Puton(a,b) which
achieves the given goal,

Puton(b,c) to achieve ON(B,C) cannot
be put on the end of the seguence
since a precondition, CL(B) is incon-
sistent with an earlier achieved
goal, ON(A,B), using IMPOSS(ON(x,y)&
CL(y)). A suitable point of
insertion is found just before
Puton(a,b).

The partial plan generated holds enough information to enable

the system to compute from the ADD and DELETE entries what facts hold in

the situations produced by application of each operator along the plan

sequence.

114

9.4 A problem with interleaving given operator sequences

- N s 10 o o B G U o, - 0 . T Wy R T ey S S o " -

Consider an example problem run on WARPLAN snd based upon the
3 block problem. It is a 5 block problem For a detailed description
of the method WARPLAN uses on this see Warren (1974), A trace of the

important steps is given here. The problem is

Initial Situation A Gosl Situstion
B
C
— —_
C E D
A B D E

The trace is for the first solution generated to this problem when using
a depth-first search strategy. Other choice points could be used by

backtracking.

Goals Concsidered | Plan Generated |Comments

ON(A,B)&ON(B,C) | now;actcl(a); found as explained previously.
puton(b,c);
puton(a,b)

ON(A,B)&ON(B,C) now*actcl(a); Puton(c,d) requires CL(C) which cannot
&ON(C,D) ACTCL(D); be true if ON(B,C) is, using
PUTON(C,D) ; | IMPOSS(ON(x,y)&CL(y)) once again.
puton(b,c); [Therefore the operator must be put
puton(a,b) |[before Puton(b,c). 1In this
position a precondition, CL(D) does
not hold. It can be achieved by an
Actcl(d).

DN(A,B)&ON(B,C) now;actcl(a); Final goal achieved by insertion of
&ON(C,D)&0ON(D,E) actcl(d); [Puton(d,e) operator.

PUTON(D, E);
puton(c,d);
puton(b,c);
puton(a, b)

r

115

Note in the above that the constraint to use the already existing

plan sequence in the =olution to subsequent goals results in a redundant
step, ACTCL(A), being left in the final plan. This is due to the fact
that an operator is chosen with regard to the facts which must be made
to hold in a particular situation. If the operastor is later shifted to
a different position so that it is applied in a different situation, it

may become redundant.

INTERPLAN modifies the order of goals it is to consider when
interactions are discovered. The sequence of approaches suggested as
each interaction is discovered follows similar lines to the sequence of
partial plans generated by WARPLAN (as in the block stacking domain
there is only one operator to achieve each goal). However, since at
any point at which a goal is already true when it is tackled, no
operators are applied, no redundant steps are inserted. See the trace
below which shows INTERPLAN working on the 5 block problem annotsted

with the approaches being considered at each phase.

116

: GOAL <<ON A B>> <<ON B C>> <<ON C D>> <<ON D E>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

*% ACHIEVE << ON A B >> IN 1 cesteseattrsssseseasesssss BPPTOoach 1
**% ACHIEVE << CL A >> IN 1

**% APPLY << ACTCL A >> TO 1 TO GIVE 2

** APPLY << PUTON A B >> TO 2 TO GIVE 3

** ACHIEVE << ON B C »>> IN 3

**% ACHIEVE << CL B >> IN 3

** APPLY << ACTCL B >> TO 3 TO GIVE 4

PROTECTION VIOLATION REORDER

¥¥ ACHIEVE << ON B C >> IN 1 cecesesvssessssssssssssss 2pproach 2
** APPLY << PUTON B C >> TO 1 TO GIVE 5

** ACHIEVE << ON A B >> IN 5

**% ACHIEVE << CL A >> IN 5

** APPLY << ACTCL A >> TO 5 TO GIVE 6

PROTECTION VIOLATION PROMOTE

*% ACHIEVE << CL A >> IN 1 tessssessssssssssssssssssss BPproach 3
** APPLY << ACTCL A >> TO 1 TO GIVE 7

** ACHIEVE << ON B C >> IN 7

** APPLY << PUTON B C >> TO 7 TO GIVE 8

** ACHIEVE << ON A B >> IN 8

** APPLY << PUTON A B >> TO 8 TO GIVE 9

**%¥ ACHIEVE << CN C D >> IN 9

** ACHIEVE << CL C >> IN 9

¥ APPLY << ACTCL C >> TO 9 TO GIVE 10

PROTECTION VIOLATION REORDER

** ACHIEVE << ON C D >> IN 1 tessssssssssrssssessesses Bpproach 4
**% ACHIEVE << CL D >> IN 1

**x APPLY << ACTCL D >> TO 1 TO GIVE 11

*% APPLY << PUTON C D »> TO 11 TO GIVE 12

** ACHIEVE << ON B C »> IN 12

** APPLY << PUTCN B C >> TO 12 TO GIVE 13

**¥ ACHIEVE << ON A B >> IN 13

** APPLY << PUTON A B >> TO 13 TO GIVE 14

**% ACHIEVE << ON D E >> IN 14

** ACHIEVE << CL D >> IN 14

**% APPLY << ACTCL D »>> TO 14 TO GIVE 15

PROTECTION VIOLATION PROMOTE REORDER

** ACHIEVE << ON D E »> IN 1 ceeecsssssssasesssessesss BPPTroach 5
**% ACHIEVE << CL D »>> IN 1 2 choices -~ Reorder
*% APPLY << ACTCL D »> TO 1 TO GIVE 16 is prefered.

** APPLY << PUTON D E >> TO 16 TO GIVE 17
** ACHIEVE << ON C D »>> IN 17
** APPLY << PUTON C D »>> TO 17 TO GIVE 18
** ACHIEVE << ON B C >> IN 18
** APPLY << PUTON B C »> TO 18 TO GIVE 19
**% ACHIEVE << ON A B »> IN 19
**x APPLY << PUTON A B >> TO 19 TO GIVE 20

** CPU TIME = 7.712 SECS

117
NOow
<< ACTCL D >>
<< PUTON D E >>
<< PUTON C D >>
<< PUTON B C >>
<< PUTON A B >>

: APPROACH

4 << CN D E >>
3 << ONCD>>

-1001 << CL A >> -1001 indicates that the gosl is a

2 << ON B C >> precondition for the goal ref. 1.
1 << ON A B >

Approach 1:

CL(A)—>0N(A,B)——-»’

CL(B)—»CN(B,C) ——»

Approach 2:

CL(A)—»ON(A,B) — —»

ON(B,C)—.’

The first part of this problem proceeds exactly as for the 3-block

problem (see section 6),.

Anproach 3:

CL(A)———»ON(A,B)—————~----- —_—

ON(B, C)

N SN

CL(C) —»ON(C,D) ———»

118

Interaction suggests a REORDERING to approach 4., PROMOTION is not
allowed as CL(C), the goal to be promoted, is true before ON(B,C) (the

point to which promotion is attempted).

Approach 4:
CL(A) —» ON(A,B) —— ----- —
ON(B, C) I
CL(C)— ON(C,D) =|J
CL(D) —» ON(D, E)—»

The interaction suggests a REORDERING to approach 5 and a PROMOTION of
CL(D) to before ON(C,D). This latter approach is not used in the search

for a solution.

Anproach 5

CL(A) —»ON(A, B)—®™

ON(B, C) >

ON(C,D) >

CL(D) —ON(D, E) >

119

9.5 The SHUNT problem

The SHUNT problem is an extension to the STRIPS-world (see
section 7.1) proposed by Warren (1974) to illustrate the difficulty,
outlined above of having to use a previously discovered subplan for
earlier goals in the solution of further goals in a conjunct. It is

similar to the 2 ROOM problem of Siklossy and Dreussi (1973).

There is one additional operator to those given in the STRIPS-
world, It is <<SHUNTTHRU bx dxy rx ry>> which shunts the robot into
box bx in room rx and both box and robot go through door dxy into room
ry. However, the robot is not left NEXTTO the box bx, Therefore there
are two ways to achieve <<INROOM ROBOT == >> using the normal GOTHRUDR
or using a SHUNTTHRU, Also, sdditionally to the STRIPS world there is a
way that a box may change the room it is in, using SHUNTTHRU. A goal of

<<INROOM ROBCT ROOM2>> & <<NEXTTO ROBOT B1>> is given in the

following world situation:

—
ROOM1 ROOM2
Bl B2 L
W'DOORI
B3 éix
ROBOT

120
Warren noted that the most obvious way to achieve

<<INROOM ROBOT ROOM2>> using a GOTHRUDR would not contribute to the
solution of the whole goal. Since WARPLAN relies on straightforward
backtracking to select continuation points after a failure, WARPLAN may
have to search through many possibilities before the correct SHUNT on Bl
was chosen and the correct box "accidently'" shunted into ROOM2 in an
attempt just to move the robot. Then this partial plan could be used to

go on to achieve both goals by executing a <<GOTO2 Bl>>,

Systems, such as WARPLAN, which reorder the chosen operators in
the light of interactions are really most suited to tasks in which there
is only one or few ways in which a goal can be achieved. If the choice
of operator was inappropriate for some goal, or becomes inappropriate
because of a change of position of the operator in a plan, no information
is available from the resulting failure to guide the choice of another
operator. This argument also eapplies to Sacerdoti s NOAH system (see

section 10).

A trace of INTERPLAN on the SHUNT problem is given below with

an annotation of the approaches being considered at each point.

: GOAL <<INROOM ROBOT ROOM2>> <<NEXTTO ROBOT Bl>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 e «..... 8pproach 1
** ACHIEVE << NEXTTC ROBOT DOOR1 >> IN 1

** APPLY << GOTO2 DOOR1 > TO 1 TO GIVE 2

** APPLY << GOTHRUDO DOOR1 ROOM1 ROOM2 >> TO 2 TO GIVE 3
** ACHIEVE << NEXTTO ROBOT Bl >> IN 3

** ACHIEVE << INROOM Bl ROOM2 >> IN 3

**% ACHIEVE << INROOM ROBOT ROOM1 >> IN 3

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 3

** APPLY << GOTO2 DOOR1 >> TO 3 TO GIVE 4

** APPLY << GOTHRUDO DCOR1 ROOM2 ROOM1 >> TO 4 TO GIVE 5
PROTECTION VIOLATION PROMOTE RECRDER

121

** ACHIEVE << NEXTTO ROBCT Bl >> IN 1 ceencecssesssseess BPProach 2
** APPLY << GOTOZ Bl >> TO 1 TO GIVE 6

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 6

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 6

** APPLY << GOTO2 DOOR1 >> TG 6 TO GIVE 7

PROTECTION VIOLATION PROMOTE

MULTIPLE INSTANCES Trying a different way to achieve
READY <<INROOM ROBOT ROOM2>> IN 6 using a
:: GOON SHUNTTHRU, This allows a choice of box,

B3 happens to be chosen first,

**% ACHIEVE << NEXTTO ROBOT B3 >> IN 6

** APPLY << GOTO2 B3 >> TO 6 TO GIVE 8

PROTECTION VIOLATION PROMOTE

** ACHIEVE << INROOM Bl ROOM2 »>> IN 1 etseceacssvessss.. opproach 3
** ACHIEVE << NEXTTO ROBOT Bl »>> IN 1

** APPLY << GOTO2 Bl »>> TO 1 TO GIVE 9

** APPLY << SHUNTTHR Bl DOOR1 ROOM1 ROOM2 >> TO 9 TO GIVE 10

** ACHIEVE << NEXTTO RCBOT Bl »>> IN 10

*% APPLY << GOTO2 Bl >> TO 10 TO GIVE 11

** CPU TIME = 6.164 SECS

Now

<< GOTCZ2 Bl >>

<< SHUNTTHR Bl DOOR1 ROOM1 ROOM2 >>
<< GOTG2 Bl >>

+ APPROACH

~1002 << INROOM Bl ROOM2 >>
1 << INROOM ROBOT ROOM2Z2 >>
2 << NEXTTO ROBOT Bl >>

Remember that preconditions for an action to achieve a goal are written
PRECOND——»GOAL in the diagrams below, Look back at the trace to
find the preconditions used.

Approach 1:

Holding period of this goal is

INROOM ROBOT ROOM2 broken by the achievement of
INROCM ROBOT ROOM1

INRCOM ROBOT ROOM1—»INROOM Bl ROOM2 —=NEXTTO ROBOT Bl-—»

122

The approaches suggested to remove the interaction are a REORDERING

to approach 2 and a PROMOTION to approach 3. The latter approach proves
successful, the choice of the SHUNTTHRU on Bl then being constrained.

It is chosen to achieve INROOM Bl ROOMZ on purpose and not as a

fortunate accident,

Approach 2:

NEXTTO ROBOT DOOR1~—»INROOM ROBOT ROOM2 ——»

NEXTTO ROBOT B1 ?{

Aoproach 3:

INROOM ROBOT ROOM2 >

INROOM B1 ROOM2 »NEXTTO ROBOT Bl—¥%

Using "primary additions" only

To make this point clear, if we disallowed SHUNTTHRU ss an
operator relevant to achieving <<INROOM ROBOT == >>, using SHUNTTHRU
only to achieve <<INROOM box == >> and GOTHRUDR to achieve
<<INROOM ROBOT == >> (i,e., primary additions only are on the ACHIEVES
list given to INTERPLAN - see section 5.8(2)), the problem would still

be solved by INTERPLAN,

123

9,6 Goal Ordering vs. operator reordering

WARPLAN has taken the extreme of considering the goals in a
fixed order and re-arranging the operators of suggested partial plans
for each goal to form the plan for the conjunct of goals. This has led
to the difficulty discussed above. However, INTERPLAN takes another
extreme position., It considers some ordering of the goals in the
conjunct and tries to form operator sequences to solve the individual
goals and combine these in THE ORDER GIVEN. Any interactions are
corrected for by discontinuing the former approach and suggesting a
reordering of the goals or some promotion of a subgoal to try to
remove the cause of interaction. INTERPLAN then tries to find
operator sequences for the individual goals to be combined in the new
order. Interactions may be localised and so not require a restart on
the top level goals. Since some of the operator sequences may be
virtually the same regardless of the position in the plan, this can lead
to a serious duplication of effort., For example, a2 long operator
sequence is needed to ensure a key is taken to the door in the Keys and
Boxes problem (see section 11.,2.2). After the discovery of this sequence
an interaction occurs and planning with a different goal ordering

requires virtually the same long operator sequence to be found.

124

Operator recommendations

- o . - WV . . -

Early designs for INTERPLAN considered the notion of keeping an
association list of all relevant operators for each goal in an operator’s
precondition with the operator dats structure (see appendix I.2) which
is kept at the appropriate Levels of the goal control tree. When
a goal was first to be attempted, the relevant operators would be
found by the normal process by looking for all operators which could ADD
the goal. The association list entry for relevant operators for a goal
would have 3 components:

(a) previously successful operators

(b) untried operators

(c) previously failed operators.

On initialization only component b would have any entries, If the goal
was Gl and 2 operators were relevant, after initialization the
association pair would be:

(Gl , < nil , [% opl , op2 %] , nil >),
Whenever a choice of an operator is to be made for Gl, it is then done
in the following way:

i) get relevant operator's association value for the goal,

ii) if not yet initialized, do so as above.

iii) Set up choice points for the alternative operators available,
heuristically ordered so that relevant operators from the
previously successful list are chosen first, untried operators
next and previously failed operators last.

INTERPLAN normally performs step iii) by finding the operators which can
ADD the given goal, end it orders them according to the order they are

put in by the user.

125

Whenever backup occurs to a ticklist (whose heading represents
the precondition of some operator) then:

ON SUCCESS: if the successful operator is not on the previously
successful operators list of the operator whose precondition
is represented by the successful ticklist, remove it from
its present list and add it to the previously successful
operators list,

ON FAILURE: do likewise for the failed operator to the previously
failed operators list.

Now, whenever a re-arrangement of goals is made on an interaction, the

relevant operator's recommendations can be passed from the failed

approach to the new one.

This scheme only accounts for the outcome of the last use of
an operator. Instead a count of the number of successful and failed
uses could be used to order operators within one list (+1 for
success, -1 for failure). A disadvantage of the operator recommendation
notion would be that much of the data structures generated during

problem solving would be retained after use while the recommendations

were kept.

126

10 NOAH - A COMPARISON WITH INTERPLAN

- o - - o T - o o - — - - - - . D -y -

It is qbvious that many interaction problems arise because the goals
are tackled in a linear way. Given a suitable ordering of the components
of a conjunct of goals many interactions can be avoided. The techniques
of this report allow interactions to be found, and corrected for, under the
assumption that we wish to tackle the goals linearily. This is because

efficient problem solvers can be written which tackle goals linearily.

Sacerdoti (1975) has described a non-linear spproach to problem
solving embedded in NOAH (Nets of Action Hierarchies), s program written
in QLISP (Bobrows and Raphael, 1974). The system is intended only to
make assumptions about the ordering of individual actions when this is

necessary to the solution of the problem at hand.

Problem actions are described to the system as QLISP functions
which embed the ADD, DELETE and PRECOND entries of an OPSCHEMA, When
some goal is given, the system works by progressively refining a
"procedural net" for the problem. Refinement occurs by finding
actions to achieve the goals, then running the QLISP code for the chosen
action which in turn asks for the achievement of the action’s preconditions,

and when this is done updates the world model to reflect the effects of the

action,

Generally there are two steps which are performed in turn until the
net is fully refined (the problem solved).
(a) Choice of an action to achieve an unsolved goal. This

choice may in turn introduce new precondition goals.

127

(b) "Criticism”" of the structure of the net to look for interactions

between suggested actions etc.

Sacerdoti (1975) shows how the procedural net is

used within a particular problem solver (NOAH) to handle block stacking

problems. An example will be used to show the operation of the system,

It is a 4 block problem,

included in this.

the 3 block problem described in section 4.2 is

The problem is chosen as it shows more features of the

system than the 3 block problem would.

10.1 NOAH on the 4 block problem

A
B
D ————> C
B D

The following notation is used in the diagrams below:

Achieve

A goal which is not satisfied in the situation
it is required in,

A goal which is satisfied in the situation it is
required in,

An action to achieve a goal,
A special "split" node for parallel branches,
A special " join'" node for parallel branches,

An action labelled -x deletes some precondition
x (labelled +x) for a parallel action,

An arc specifying an ordering constraint
between a pair of nodes.

128

Levels in the
Procedural Net
(Fefinements)

1, Achieve (AND (ON A B) (ON B C) (ON C D))

The function for Achieve (AND ...) suggests parallel branches for
the components.

2.
Achieve (ON A B)
Achieve (ON B C) \
Achieve (CN C D)
The function for Achieve (ON x y) suggests a PUTON x y with
preconditions (CL x) and (CL y). N,B, If there was more than one
relevant operator, different procedural nets would have to be made
available for consideration at this point,
3.

Achieve (CL A
Achieve (CL B)

[puTON € D]

The System notices that in 2 cases a precondition (+x) is deleted by a
parallel operation (-x). The recognition is done by building a structure
called the "table of multiple effects" and allowing several critics to
look for interactions indicated in the table (see later). These
critics suggest appropriate linearizations when interactions are found.
The plan is thus partially linearized to put the goal which hsgs
a deleted precondition before the negating action,

Redundant preconditions in parallel branches are eliminated,

129
3° (after criticism)

Achieve (CL Ai}—~

[PuTon 4 o

Achieve (CL B)

ANQED
(@)

(CL D)

[puron & d

The function for Achieve (CL x) suggests moving a block y which
is (ON y x). A PUTON y 2z for some z is used. This is different
from the block stacking problems run on INTERPLAN but the same
interactions occur,

2 preconditions are again deleted by parallel operations. Further
linearization takes place as a result of criticism.

4° (after 1st stage of criticism)

v

—{|PUTON C ?objl

(CL Qi)*ﬂPUTON D ?obj2 y JP{putoN B c[}[puToN A B]

»1J PUTON C D

The system tries to make actions with unspecified arguments redundant

by trying to unify them with a parallel action using a suitable choice of
variable specification (i.e. here fobjl="D"). The 2 merged operations
are ticked (v/) in the diagram

Final criticism removes redundant preconditions in parsllel branches.

4’ (after criticism)

(CL D))#{[PUTON D ?obj

(CL C)

|5 [-»lpuToN c Df}+{jpuToN B c[}-»{]puTON A B]

130
10.2 The multiple effects table

At each stage of plan expansion after new nodes have been added to
the procedural net, various "critics" are allowed to look at the net and
make appropriate changes if they see fit. One of these critics

(called Resolve Conflicts) looks for interactions between parallel branches,

It behaves thus:

1. A table of multiple effects is built by making an entry for each
expression (goal) that is asserted or denied by more than one node
in the current net,

E.g. At level 3 of the example block stacking problem given in the
previous section we had the following situation (nodes are

numbered for use in the explanation to follow),

1
Achieve (CL A)

3
[poroN a5 |

PUTON B C

(CL C)
. (CL D) l
The table of multiple effects would initially be:

CL B: asserted at node 2
deleted at node 3
asserted at node 4

CL C: asserted at node 5
deleted at node 6
ssserted at node 7

CL D: asserted at node 8
deleted at node 9

131
Eliminate from the table those expresrsions which are deleted at the node
they are a precondition for,.
E.g. CL B st node 2 is a precondition for the action PUTON A B st node
3 and is deleted at node 3. No interaction is involved in such a
deletion, Drop any expression from the table which only has one
entry left after this elimination of preconditions. The table above

then becomes:

CL B: deleted at node 3
ascerted at node 4

CL C: deleted at node 6
ascerted at node 7

The Resolve Conflicts critic then uses the interaction information in

the table to partially linearize the procedural net being considered

as shown in the previous section.

132

Ticklists and the table of multiple effects

The table of multiple effects performs a similar function to the
ticklists of INTERPLAN (and indeed were based upon ticklists and the notion
of looking for interactions by the simple examination of a table of the

effects of different actions upon the goals required - Sacerdoti, 1975 p.29).

Such tabular formets provide a simple means of detecting
interactions between subgoals and allows the locality of the interaction to
be identified. The discovery of an interaction can thus be a constructive
thing in that suitable corrections can easily be made when definite
information as to what goals are interacting and how they interact is
available., This is quite different from the procedure in many existing
problem solvers which would simply backtrack to other choice points on

discovering an interaction, or worse still, fail to detect the interaction

at all.

133

10,3 Some limitations of the current version of NOAH

- > - - O - g AR e Y WD G0 S ey B e S S Ny e - S S WD WD WD A S = BB e WS WD O

10.3.1 Choice of an operator if several are relevant to one goal

- e T - - D G En L T WD TS . b e GBS . W e N S e R WD S G G WP R W e D S D ey G o e e - -

Actions are only put into the procedural net of a problem if they are
relevant to the achievement of a goal being considered. If there is more
than one relevant operator, <ome single action must be chosen from
those available. The other choices giving rise to different nets which are
kept as backup possibilities. If it turns out that the choice was
incompatible with the other parallel goals being considered, the net
currently being worked upon cannot lead to a solution and a failure
is reported to the problem solver. However, as in WARPLAN (see section 9),
no information as to the cause of the failure is given and blind
backtracking is used to select a new alternative net from the backup
possibilities available. Thus in those problems where the choice of the
obvious relevant operator will not lead to a solution, the procedural net
will not perform well, An example in which this would arise is
the SHUNT problem detailed earlier in the comparison with WARPLAN (see
section 9.5). The difficulty is explained there and the action of

INTERPLAN on such problems described.

134

10.3.2 Restrictions on the legal linearizations to correct for an interaction

- . - D e e Gt n e S Gt R D WO T R e Y e S Y e e T e Y AR S S Y e Y . T e S W o e S G M T M A O T e

If 2 goals are given, Gl and G2, and there are relevant actions Al
and A2 with preconditions Gl1 and G22 respectively, the net may be refined

thus:

level 1: |Achieve (AND G1 G2)]

level 2:

level 3:

Say there are interactions as indicated in the final diagram where
Al deletes G22, a precondition for a parsllel action A2. Then the
current version of NOAH has the critic described in section 10,2 to resolve

the indicated conflict and it suggests the following linearization.

Achieve Gll]

1]

Achieve G22[+]A2]

Let us consider the holding period diagrams of the approach which
lead to interaction and the suggested linearization. Remember that in a
holding period diagram the time at which a goal is achieved is indicated

from left to right (see section 4,1).

The approach before linearization specifies any of the following

linear approaches (where Al achieves Gl snd A2 schieves G2):

135

(a) Gl11—»G1 » (b) Gl1l—» Gl——p
G22—» G2 —¥ G22 —»G2
(c) G1l1 ‘%Gl"—ﬂ (d) G1l1 »G1l »-
G22 —»G2————¥ G22——————» G2—»
(e) Gl1—»Gl———» (f) Gll— 3Gl —p
G22 —» G2 —> G22 > G2 »

The indicated interaction says that: if G22 is true and Al (to
achieve Gl1) is applied, G22 will be made false. So any approach which
requires that G22 be true while Al is applied (Gl achieved) is illegal,
This should reject approaches (d) and (e) only (i.e. those cases where

Al intersects the holding period of G22),

However, the linearization suggested by the resolve conflicts
critic in NOAH -pecifies the linear approaches (b), (c) and (f). However,
as indicated, spproach (a) should also be allowed for consideration but is
excluded by the linearization suggested. Now, since approach (a) is the
simple linear sequence of trying to achieve Gl first and G2 second (the sort
of approach attempted first by most problem solvers), we must be wary of

excluding the possible use of this approach.

Accepting Sscerdoti’s thesis that decisions about ordering choices

136

should be made only as is necessary to remove interactions, the

information available in the interaction

Achieve Gl1

Achieve G22

only specifies the ordering

constraint that Al chould not be applied after G22 has been achieved and
before A2 is applied (G22 is a precondition of A2), This constraint

cannot be expressed within a single procedural net diagram by incorporating
ordering lines between goals and actions, Thus either a new type of
ordering constraint which excluded actions from appearing between some

pair of nodes must be allowed or alternatively, 2 or more separate
procedural nets should be suggested as appropriate linearizations for the
interaction described. In the case above 2 separate nets would suffice, the

one already suggested by the critics of NOAH

Achieve G11

Achieve G22][A2]]

[A1]]

specifying approaches (b),(c), (f)

and the alternative

| Achieve c11}—+]]a1l—+{achieve caz}—{[a2]]

which specifies approach (a).

The addition of more backup possibilities as separate nets to be
considered on failure makes the lack of guidance as to a suitable choice

after failure (described in section 10.3.1) even more critical.

137

10.3.3 Double interactions

The problem solving routines in the version of NOAH described in

Sacerdoti (1975) are not capable of dealing with problems in which there are

"double interactions”. The general case is given below:
bl 12
Achieve G11]

X

Achieve G22

A typical STRIPS-world problem which fits this case is:

Achieve (AND (NEXTTO Bl B2) (NEXTTO B3 B4))
when the robot is initially not NEXTTO any of Bl, B2, B3 or B4,
An action (PUSH bx by) exists with definition

PRECONDS (NEXTTO ROBOT bx)

DELETE (NEXTTO ROBOT ==) (NEXTTO bx ==
ADD (NEXTTO bx by) (NEXTTO ROBOT by)

This problem generates at some stage the procedural net:

-

+1
Achieve (NEXTTO ROBOT B1)|—||PUSH Bl B2

+2 ~1
Achieve (NEXTTO ROBOT Bs)_,[EUSH B3 Bzi]

We can thus see that very straightforward problems fall into this category.
It is possible to make 2 simple linearizations which may resolve the

conflict,

|Achieve(NEXTTO ROBOT B1)-[PUsH Bl B2-*{Achieve(NEXTTO ROBOT B3)#{PUsH B3 B4

or

|Achieve (NEXTTO ROBOT B3)#PUSH B3 B4|—*Achieve(NEXTTO ROBOT B1)M{pusH B1 B2

138

Once again (as in section 10.3.2) the generation of the 2 different nets for
consideration may be avoided if some "restriction" ordering was allowed
in the net to disallow an action from appearing between 2 nodes. Such a
method would be more in line with the procedural net philosophy of only

meking linearizations as necessary.

N.B.

In the criticism contained in sections 10.3.2 and 10.3.3 it can be
seen that the present NOAH system is not considering those linear approaches

most frequently considered first by existing problem solvers,

Sections 10.3.1,1n.3.2 »nd 10.3.3 outline cases under which several
nets may have to be generated, only one of which can be considered at any
one time, Choice mechanisms between these nets would have to be considered
and the use of failure information for this. Also duplication of effort on

several similar nets could arise in these cases.

139

10.3.4 Loop detection and correction

o o O - - — - - W B -

Loops generated in the procedural net are not

detected, e.g.

Achieve Gl az—{[a1 where Al is inserted to achieve GI.
L) A
e — —1Loop— — -/

As detailed in section 5.7.7 in the description of INTERPLAN, loop detection
can be as important as many forms of interaction in outlining a defect in
the approach on some problems. If corrected for it may enable a solution to
be found, as for example, in the "Swap the values of 2 Registers" and the
"Keys and Boxes' problems., Both these problems would be coped with by

other mechanisms in NODAH,

10.3.5 '"Formal object'" problems

For example, in block stacking if ?70B1 or T0B2 (see section
10.1 (4)) were set to any of the blocks for which (CL x) was later needed
in a plan, nroblems would occur. There is really an implicit exclusion
of any instance causing an interaction from the values any "formal
object" may take., Some sort of variable restriction scheme
(possibly as outlined in appendix IV) would be necessary to ENSURE that

this was done in longer and more difficult problems.

140

10.4 Beneficial side effects

A rrecondition for some action may be achieved as a side effect of
a parallel action as shown below where Al schieves some main goal Gl but

also achieves G22 (a precondition for A2) as well,.

Achieve G11

Achieve G22

Then we could suggest a linearization to make the achievement of G22

unnecessary as follows:

[Achi eve Gﬂ——.ﬂﬂﬂ—@

Achieved Goal

which is equivalent to

Achieve G11—| A1/—»{[A2]

Though, it should be remembered that the other linearizations are not
illegal (no interaction prevents them being used) and for some problems

explicit achievement of G22 may be necessary.

The table of multiple effects provides the information which

would enable a critic to be written to look for beneficial side effects.

141

11 KEYS AND BOXES PROBLEM SIMULATION

As mentioned earlier in this report, an aim of the work was to
discover the reasons why existing problem solvers could not cope with
a particular problem, the Keys and Boxes. The work on interacting
goals stemmed directly from this investigation. We will now return to
this problem to illustrate how it could be represented to INTERPLAN
and to simulate the action of the program on the problem, To actually
run the problem on the current implementation of INTERPLAN would
require, in particular, the matcher to be extended to cope with sets,
and the full loop editor to be used (section 5.7.7). The provision of
set matching would be tedious and would not aid our understanding of the
processes involved, However, to make clear what would actually be
required of the matcher, all set matches have been noted in the
simulation and are listed in section 11,2,1,

A Sim‘)\‘r@'\ea\ vetlion o€ E&he \/<Q\/$ and\ goxgs ?Vo\o\er\r\
which Aoces nok CequitTe the use of a sebt makcher s

Aescribed in Warren (\0\‘114_3, This was sovccessfolly roa
on INTERPLAN.

142

11.1 Representation of the Keys and Boxes problem to INTERPLAN

- S e e S = G S e G Y e W T G A G e R e T S TR G0 s A G W e e A e b W e e e W T

This representation closely follows the English statement of the

problem given in section 3,1,

11.1.1 Predicates

- - - -

There are 3 predicates which can be altered by the robot’s
actions. With the parameter types they take they are:

AT(<set of objects>,<place>) Noke there il be 0AL7 one

AT st Lo W plac

ROBOTAT(<place>) abement for each place.

HELD(<set of objects>).
There are 3 global predicates:

RED(<set of objects>)

KEY(<set of objects>)

INROOM(<place>),
"NOTHING" is equivalent to Ez the empty set of objects, f...x%
represents a particular set of objects, nossibly empty, whose
individuals are not explicitly known. The value of x distinguishes
different such sets, it may be omitted if no distinction is required.
The statement in the Keys and Boxes problem description im section 3.1
which says that in the initial situation there is A nnd possibly other
objects at BOX1 can be represented as << AT fA, ...li BOX1 »>>,
A ig a particular object and ...1 represents the other elements which
may be at BOX1 initially. The other elements, if they exist are treated
as unique. We assume a limited set matching facility is available to
the system as specified in the following sections.

<<SUBSET x>> can mean the set x itself or else represents a non-empty
set of objects from x,

<<UNION x y>> means the set union of sets x and y,
<<SETMINUS x y>> means the set y with the elements of set x removed.

N.B, <<SUBSET x>> <<UNION x y>> and <<SETNINUS x y>> are patterns which
are to be matched against others and do not behave as set functions,

143

11,1,2 Operator schemas

There are 3 actions, LETGO, PICKUP and GOTO(<place>). LETGO and
PICKUP are straightforward and each convert to an operator schema as

follows:

OPSCHEMA LETGO
ADD <<HELD NOTHING>>
DELETE <<HELD == >> "=z=" matches any item (HBASE),
PRECONDS
VARS
ENDSCHEMA

OPSCHEMA PICKUP
ADD <<HELD <<SUBSET *$*X>> >>
DELETE <<HELD == >>
PRECONDS <<AT <<SUBSET *$*X>> *$*Y>> <<ROBOTAT *$*Y>>
VARS X Y
ENDSCHEMA

N.B, 1t is only necessary to have a SUBSET of the set x at the place to
be able to hold a SUBSET of x after a PICKUP, This is the weakest
precondition which will specify the PICKUP effects and should be used
to emsure the PICKUP is useful in as many cases as possible,

The GOTO(<place>) action is a little more involved since it has
several conditions in its definition, It therefore expands out to
several operator schemas (though ways of withdrawing appropriate
operator schemas as needed from a single representation of GOTO(<place>)

can be provided - see section 5.8(6)). Following our English

statement of the problem we can write:

GOTO(Y) is defined as follows 144

I1F y="OUTSIDE"™
THEN precoadition is KEY(t) & AT(UNION(SUBSET(t), §...5), DOOR)

ELSE precondition is INRODM(y) CLOSE;
deletes ROBOTAT(%) and adds ROBOTAT(y).
IF HELD(x); x/="NOTHING"
THEN deletes AT(w,z) and deletes AT(v,y)
adds AT(UNION(x,v),y) and adds AT(SETMINUS(x,w),z)
CLOSE;

Since there are 2 conditionals in this definition, we obtain 4 different
operator schemas all with the same name, GOTO(y). To aid the explanation
to follow we shall, however, rename them - though this is not necessary

for the operation of the program. TAKE(y) will describe the actions

in which we do a GOTO(y) with something HELD,

OPSCHEMA <<GOTO *$*Y>>
ADD <<ROBOTAT *$*Y>>
DELETE <<ROBOTAT == >>
PRECONDS G <<INROOM *$*Y>> <<HELD NOTHING>>
VARS Y

ENDSCHEMA

OPSCHEMA <<GOTO OQUTSIDE>>
ADD <<ROBOTAT OUTSIDE>>
DELETE <<ROBOTAT == >>
PRECONDS G <<KEY *$*T>> <<AT <<UNION <<SUBSET *$*T>> §. .3 >> DOOR>>
<<HELD NOTHING>>
VARS T
ENDSCHEMA

OPSCHEMA <<TAKE *$*Y>>
ADD <<ROBOTAT *$*Y>> <<AT <<UNION *$*X *$*V>> *$*Y>>
<<AT <<SETMINUS *$*X *$xW>> *$*Z>>
DELETE <<ROBOTAT *$*Z>> <<AT *$*W *$*7>> <<AT *$*V *$*Y>>
PRECONDS G <<INROOM *$*Y>> <<AT *$*V *x$*Y>> <<HELD *$*X>>
VARS VWX Y Z
ENDSCHEMA

OPSCHEMA <<TAKE OUTSIDE>>
ADD <<ROBOTAT OUTSIDE>> <<AT <<UNION <<SUBSET *$*X>> *$*V>> OUTSIDE>>

<<AT <<SETMINUS *$*X *$¥W>> *$*Z>>
DELETE <<ROBOTAT *$*Z>> <<AT *$*W *$*Z>> <<AT *$*V OUTSIDE>>
PRECONDS G <<KEY *$#T>> <<AT *$*V OUTSIDE>>
<<AT <<UNION <<SUBSET *$*T>> ...} >> DOOR>>
<<HELD *$*X>>
VARS TV W X Z
ENDSCHEMA

The ADD/DELETE lists fully specify the effects of the actions, so

OPSCHFNs are not needed.

145

The changeable predicates (AT, ROBOTAT and HELD) may have a
definite order of priority put upon them. This does not always indicate
which goals are easier to solve, but gives information about the
interactions possible in the domain. If the ROBOT(is=)AT » place, we
cannot go on to achieve an already untrue AT statement without first
deleting the ROBOTAT fact. So, AT must have greater priority than
ROBOTAT, Also, if we achieve some HELD goal and require it to be kept
true we may not be able to solve some AT goal, but it is usually
possible in the other order. Using such domain specific information we
can order the predicates by priority thus:

1. AT 2, HELD 3. ROBOTAT,
The ordering can be seen in the operator schemas given earlier.
It can be used to disallow reversals of goals of different priorities
by setting SCHREVS of each OPSCHEMA appropriately (see appendix I1.1).
Theoretically, predicates of the same priority can be solved in any
order. So, the system accepts whatever order it is given, but is

prepared to alter this if an approach fails,

In fact the preconditions for the TAKE operator schemas are
insufficient if <<AT <<SETMANUS x w>> 2z>> is allowed as an achieve
request to them. However, the modifiation would be to add two
preconditions to them (<<AT *$*W *$*2Z>> and <<ROBOTAT *$*Z>>)., We will
ignore this request knowing that it will not arise in the Keys and

Boxes problem

146

11.1,3 Initial situation and Rules (IFNEEDS)

D R e e R e e e]

We assert in the initial sitaution (CUCTXT):

<<AT fA,...18% BOX1>>
<<AT §B,...2} BOX2>>
<<AT fC,...S% DOOR>>
<<AT NOTHING TABLE>>
<<INROOM BOX1>>
<<INROOM BOX2>>
<<INROOM DOOR>>
<<INROOM TABLE>>

N.B. There are no assertions for <<AT x OUTSIDE>> or <<ROBOTAT x>>,

The following rules are available to compute true instances of an
weould be

achieve request (these A stored as IFNEEDED methods - McDermott and
Sussman, 1972), \FNEEDED metheds Canob be oiven to the daka
Yoas e S%JQQN\ used in the CUWQAb'iw@\Qmeaquﬁom o & \WTERPLAA .
true ==> <<AT §..3 y>> .

i.e., there is a possibly empty set of objects at any place
(<<AT u BOX1>> & <<AT v BOX2>>) in context NOW

==> <<KEY <<EITHEROF u v>> >>,
<<AT u DOOR>> in context NOW ==> <<RED uw>,

g % 5> ==> KPP KSUBSET 5> >, TL aseb of obyecks has some
RfoperEy Dy then « sobset of the et alse

has Lhe P°°PQ“‘—“’)-
11.1.4 Gosal

- - -

The goal, following the English statement in section 3,1, can be

expressed as:

<<RED x>> & <<AT <<UNION <<SUBSET x>> f{...}>> OUTSIDE>>.

147

11.1.5 ACHIEVES 1list

{% <<HELD NOTHING>>, [% LETGO %],
<<HELD <<SUBSET == >> >>, [% PICKUP %],
<<ROBOTAT <:NON OUTSIDE:> >>, [% GOTO(y) %],
<<ROBOTAT OUTSIDE>>, [% GOTO(OUTSIDE) %],
<<AT <<UNION == == >> <:NON OUTSIDE:> >>, (% TAKE(y) %],
<<AT <<UNION == == >> OUTSIDE>>, [9 TAKE(OUTSIDE) %] %] ~-> ACHIEVES;
N.B. (a) <:NON OUTSIDE:> is an HBASE actor which will not match OUTSIDE,
<:NON OUTSIDE:> instances are put first so that attempts to
achieve AT(x,y) where y="==" (i.e., put some objects anywhere)
only attempt to put x AT places INROOM, not OUTSIDE,

(b) TAKE(y) and TAKE(OUTSIDE) also achieve ROBOTAT goals. Also in
the ACHIEVES list above <<AT << SETMiNUS == == >> == >>
achievements are ignored. So, only the important achieve
requests with their primary method of achievement are on

ACHIEVES (i.e., the primary additions of STRIPS - Fikes, Hart

and Nilsson, 1972b).

148

11.2 The Simulation

11.2.1 Set matching for the Keys and Boxes

- M - - - - T - - - a P W S WS 4 S e

A matcher, <ay MATCH1, is required which behaves thus:

MATCH1 = MATCH (normal HBASE matcher) excerkin the case where both amyuments ot setr,

The set matcher must have the following minimal properties to solve the
Keys and Boxes problem. Matches are one only,
i) NOTHING oy ﬁ matches only NOTHING or l
11) §...3 matches amy set.
11i) a set matches another if each element of the set matches each element
of the other in some order.
iv) <<SUBSET x>> matches y if x matches y. I.,e. <<SUBSET x>> can be
equal to the set x itself.
v) ...x only matches ...x. for any number x. I.e. ret remainders are
considered as unique.

The letters in brackets refer to points in the figures to follow in
section 11.2,2 vhich explain the action of INTERPLAN on the

Keys and Boxes problem.

(a) MATCHI(<<UNION <<SUBSET {C,...3}>> f..3>>,§..3) = undelirea,

(b) MATCH1({..J3,£..3) => true.

(c) MATCH1(<<UNION <<SUBSET <<EITHEROF fA,...1} §B,...2}>> > §..3>>,
C,...3) => uadefined.
or
MATCH1 (<<UNION <<SUBSET £A,...1} >>

<<UNION <<SUBSET {B,...2}>> §...3>> >>,
£€,...33) => Undefined,
(d) MATCH1(<<UNION <<SUBSET {B,...2}>> §...3>>,§C,...3}) => undelired.
(e) MATCH1(¢...} ,ﬁc,...si) => true,
(f) MATCH1(<<SUBSET {B,...2§>>,§%) => unde fined .

(g) MATCH1(<<SUBSET ¢B,...2}>>, {B,...2}) => true.

149

(g”) MATCHI(<<SUBSET §A,...1}>>, fA,...1}) => true,
(8") MATCHI(<<SUBSET iC,...3}>>, {C,...3}) => true,

(h) MATCH1(<<SUBSET {cC,...3}>>,
<<UNION <<SUBSET {A,...1}>>
<<UNION <<SUBSET EB,...2}>> §C,...3§>> >>) => Undekined

MATCH1 (<< SUBSET éc,...3}>>,§3) =>undelined .

MATCH1 (<<SUBSET {C,...3}>>,
<<INTERSECT <<SUBSET fA,...l)s» éA,...lg») => vndefined.

MATCH1 (<<SUBSET £C,...3}>>,
<<INTERSECT <<SUBSET §B,...2}>> §B,...2}>>) => unde&ined .

(i) MATCH1($}, §3) => true.

11.2,2 Simulation

We present the simulation of the action of INTERPLAN on the
Keys and Boxes problem by giving a series of 4 "snapshots" of the
state of the goal control tree of the system at interesting points on

the way to a solution.

STATE 1: Search has proceeded in a straightforward way to this point,
To achieve the goal, » red thing must be outside, This can be
achieved using a TAKE(DUTSIDE) operator. To take anything
outside, a key must be at the door. We can be sure of getting
a key outside if we get a subset of the things now at Boxl to
the door, and a subset of the things now at Box2 to the door.

We plan to take a subset of the things at Box2 to the door
first., State 1 is the stage at which operators have been
chosen to get a subset of the things at Box2 to the door.

Successful backup is about to take place.

150

STATE 2: The successful backup from state 1 is shown giving entries
up to index number 35. We then have a subset of the objects
from Box2 st the door. Now a subset of the objects from Boxl
must be taken to the door. State 2 chows the goal control tree
after this sub-plan is found and after successful backup has
teken place. By the time entry 61 is made we have planned to

get a key at the door,

STATE 3: Now we have a key at the door, we could achieve our top level goal
goal of getting a red thing outside by holding a red thing and
executing a TAKE(OUTSIDE)., However, in this state we have
tried to hold a red thing and have run into a LOOP. Information
is available within the goal control tree upon which to suggest

a new approach (see section 11.2,3),

STATE 4: The new suggested approach is tried and proves successful,
The stage shown is Jjust after planning to remove a red thing
from the door to the table for "safe-keeping'". When this
approach has been fully expanded the optimal plan is
generated:

LETGO, GOTO(DOOR), PICKUP, TAKE(TABLE),
LETGO, GOTO(BOX2), PICKUP, TAKE(DOOR),

LETGO, GOTO(BOX1), PICKUP, TAKE(DOOR),
LETGO, GOTO(TABLE), PICKUP, TAKE(OUTSIDE).

151

GimyLATION Srace 13
GOAL
FIN'SH
GLORAL
RED x | AT (UN1on(SUBSET x) §..3) OUTSIDE
]
2
TTAKE(OUTS\D E) opesaber chosen by,
makching against ACREVES \ist ankry
(AT (UnioN =z =2) OUTSIDE)
GLORAL
KEY £ | ATS.. 3 outsive | AT (Onion (SuaseT £)§.. 3)vooR | RELD (SurseTic, .. 3)
3 }
vow | ° J (b) * % ()
E- (EYTREROF §A, {8, .2}) A

NoTE | (see seckion 1 2 3)

NAAAASAA

Qﬁo.‘msk ACKIEYES \ist

s

TAKE (B MR} oparaker chosen by makdning
(& (omion (susseTéh, B)(onioy(sudserd s, 5. 3) de)

enkr
(a7 (UNIER == =2) < Non BUTSDE)

NoTE 2. (see section 11.2.3)
NAA AN

W= ROXRY

GLOBAL
AT £ J0UTSWE || 1nacom ook | AT (Uion GurseTeB,.. 23)E.3) poor | HEW (utser{a,...)
6 N
NOW / J Y
/A\AE(D&R} operakor chesen by mlka,c,g
agatask POMEVES \ist enkry
R (AT (UntoN == 22) {1 NOA CUTSIDE :>)
DBAL,
AT £ J0UTSIDE || wroom Dok | AT £...3 DovR | Hew (SeseTy, .23)
q 1o i V2
Now| 1Y/ J V@) X (8)
QlQ\AdeﬁoeqrmEnr chasen
ACKIEVES \;)i?el“é?, .(llz\?él?(;‘uqéseé’r =3))
AT § 300TsiDE| AT § .3 DooR|| AT (SURSET £8,..23) | ROBSTAT o)
13 L 15 6
NOW J/ J J (s) *X

Goto (Box2) opember
chosen ‘9-9 Ma\‘c\'ﬂ'\j qu‘mst'
AchieveS Bist enkry (RoboTAT ==

AT¢..3 OUTS\DE

ATE. I dmR

GLoRnl.

AT(SURSET §8 . 23)80x2. || INRGM Box,

WELD NOTHING

NOW

l7\/

\‘3\/

\ﬂ\/ 20\/

Z\X

NOW RACKUP OCCURS

L ETEO operator chosen by

ma ki
st en!:% (FELD AsTHIRS

oy ext a5 £ PERHLEVES

NO PRECONDVTIONS

GOAL

FINISH

AT (union (sudseT) §..3) OUTSIDE

' X

hadd

TTAKE(ouTs\nE)

NT 4. 3 cuTsive| A (union surser £)§.. 1)00R| Hewd (Sueset £, .39
“/ X
63 61 64
/ /o] X
c 8, 363, 1)
TAKE (omR)
o¢ || IR Dok AT (UNioN (SuRSETS B,..20)§..) dmR | wewd (SusseT A, . 3)
Y * X
Y */ X
S‘\\/ 611/ $"7\/
 Take (PR)
< “TAE (poR) Rekup
£ C o bek | AT £.. 3 vasR | wew (usser§s,.3) AT § 3 outewt [aT(ONIoNEURSETER . B)$. 3 Devk [| AT (SusseT §A,.
lo\/ \\\/ \'LX E"&%‘*&Dg;'f“dp 3“\\/ .o \/ l(-—:/ (91
33 34 2 Now, LETG, S o Tt
v 4 / %m&&c \/ V4 /
‘-5:%07(\
fLcKee
0| ATE. DR | AT Guasetés,..)y, ROROTAT o, AT § Jouws e [AT (Unon Gorserfs, .25 2)var| AT(Sueserta, .. 8)
g
‘H—\/ ‘5J ‘é>< g:f%f:; 43\/ Lw\/ L»/
29 3¢ 1 Now, LeTeo,) I P
4 / / H e | Y v /
u): LOX2,
Gro (Rox)
DE|ATE,. 30mR | AT (rrserfR, . 2)rox2 || INREa B | RED NOTHING,
\8/ 19 \/ ?.e\/ 21 ><
‘L\LV ?.5/ ‘2.6\/ 27_,\/
LETE®

NG PRECDADMIONS

153
S\MULP«T\OM STAC-E 3:

GOAL
FINISH
G
RED x| AT (onion (SUBSET) §.. 3) OUTSIDE
Now V4 Y
x=§¢, 3
TTPKE(OUTSWE)
GloraL
KEY €] ATS. Joursioe | At{onion (surseT €) §..3) ook | WELD (sveseie, . 3)
Now | Y/ ~/ 5 X
Now 62 63 61 v S o
Pt VA / VARG X

t=(eimror fA/ '"‘gisl 7'3) /
Piewap

AT § Joutsive| AT(omion(surser). 3)Door|| AT (SurseT fc,. 33y | RopaTATy)

ke Y *V R

NOTE 3
TaWE (Lg (sm seckion \\ 2.3)

aré 3 outside | AT(UNIoN (SuBSETE)E.. 3)Doo || AT 8 oy | HELD (SusseT e, ..33)

e YV “/ VR TX

W= TABLE T

ACKIEYE REQUEST CAUSES
L. OOP

The LOOP detected editor now acts. It suggests a new approach at the
level where we are trying to find a situation in which the
preconditions of TAKE(OUTSIDE) are satisfied, See the notes on how
the full loop editor works (section 5.7.7). Reversal of goals at the
upper loop level is not possible since PRIORITY(AT) > PRIORITY(HELD).

154
Qwmutation Stace bg

GOAL
Finase
“RED x| AT (omon (sursera)f..) outsiog
now |/ Y
*= 8653 TAKE (O UTS\DE)

f

RackuP £rom YTQV\\DOS m&hmpt
€o e\-.'\s cheie Qo'u\t

GLoRAL

KEY AT(wmfcgﬁgR AT£. Joutswe | AT(union(Sueser . 3)dar | wew Gurserie,. %)
T2 13

Now / X

€= (Ermeror §5,..3 88, .3)

NOTE 3
TFW(E(")) 5# baoR (SQQ sectian \\.’L.%)

AT £3
> ek | NEW (sueseT $c,..33)
Now '““\/ 15 X
Y = TABLE

PiwexuvfP

AT $ TaLe || AT (sveseT {e, .23))| RogoTaT o

.Now ‘TQ\/ *—m\/ ((5..) vsx

= DOOR

Goto (DooR)

CoRAL
AT {3 TasLe| AT (ueser{c,.. 33)boR || Inrmn book | HED NoTHNG

NowW 70\\/ 8o J/ 8\\/ 22 %

BACKUP now takes place. We have succeeded LETGO

in isolating some red things at the table.

The process of filling in the ticklists NO PRECOAD MO AS
then proceeds without further interaction

to produce the successful plan,

155

11.2.3 Notes on the simulation
1. <<KEY t>> = <<KEY <<EITHERCF {A,...13 {B,...2}>> >>

t is expected to be the set of all possible objects which are keys,

2. The question answerer and the operator selector perform appropriate
matching and transformation of set descriptions to obtain a match, A
cpecial facility must be provided additionally to deal with EITHEROF
goals or facts.

Using: RELATION ON x & RELATION CON y ==> RELATION ON (EITHEROF x y)
the question answerer should transform
<<AT <<UNION <<SUBSET <<EITHEROF fA,...1} {B,...2}>> >> §...} >> DOOR>>
to 2 questions both of which must be true:-
<<AT <<UNION <<SUBSET {A,...1}>> §...3>> DOOR>>
<<AT <<UNION <<SUBSET {B,...2}>> §{...}>> DOOR>>,
I.e., If both of above are true, the relation on EITHEROF is also
true, But, note that the above is
<<AT <<UNION <<SUBSET £A,...1}>>

<<UNION <<SUBSET {B,...2}>> §...}>> >> DOOR>>

AT ((SUBSET §A,...13) U (SUBSET §B,...2}) U {...3) DOOR.

"

Also if a relation on an EITHEROF is required to be ACHIEVED, we can
try to achieve the relation on both parts, as this is the only way of
being sure that the EITHEROF is satisfied if testing of a state of

the robot’s world is not allowed. So, an achieve request should also

be transformed as above.

156

3, <<AT <<SUBSET €C,...3%>> y>> can only match
<<AT <<UNION == == >> == >> in the ACHIEVES list (see section 11.1.5).
Since we are trying to ACHIEVE the pattern, we require:
<<AT <<UNION <<SUBSET $C,...3}>>§} >> y>>. Only other instance of
<<AT <<UNION <<SUBSET £C,...3}>> <<SUBSET §{C,...3}>> >> y>> would
merely cause a LOOP, This is a general heuristic principle which

could be incorporated into the set match routines.

157

11.3 The approaches used in the Keys and Boxes problem
We can describe the approaches used and tried during the

simulation of the Keys and Boxes problem using the "holding period"
diagram. I will abbreviate

<<UNION <<SUBSET £C,...3}>> §...3>> as "RED" and

<<UNION <<SUBSET {A,...13>> <<UNION <<SUBSET $B,...23>> {...3>> >> as
"KEY". The approach (the initial approach) being considered when the
important LOOP detection occurs is shown below.
Remember that preconditions of an action to achieve a goal are written

PRECOND —» GOAL in the diagrams below.

AT KEY DOCR >

AT RED OUTSIDE —»

HELI% RED —» AT RED y —» HELD‘ RED ——»

As indicated in the description of the full loop editor (section 5.7.7),
we may try to reorder the concurrent goals at the upper loop level
(AT KEY DOOR and HELD RED) to avoid the loop. This would give an

approach as shown below.

AT KEY DOOR————»

AT RED OUTSIDE—"

HELD RED »

However, if knowledge of the predicate priorities has been incorporsted

into the operator schemas (as mentioned in cection 11,1.2), this ordering

158

would not be allowed as priority(AT) > priority(HELD),

The alternative of suggesting some ''setup'" goal to aid the
solution of HELD RED vwhile avoiding the loop is also tried. The pattern
we looped upon (HELD RED) contains no variables and thus, the two loop
occurrences of the pattern are IDENTICAL, Using some instance of
the loop pattern as a "<etup" goal is thus equivalent to the approach
with goals at the upper loop level reordered (as shown in the
previous diagram). This is fully explained in section 5.7.7., However,
the intermediate subgoal between the loop patterns in the approach
(AT RED y) could be used as a setup goal if it had no true instance in
the initial situation (the point to which it is to be promoted), Since
(AT RED DOOR) is true initially, we must restrict y to not be the DOOR
to allow its promotion, The approach suggested by this promotion is the

one which allows us to go on to solve the problem, It is shown below,

A 4

AT KEY DOOR

AT RED OUTSIDE—W

AT RED y —»HELD RED —»
y /=DOCR

Similarity to the swap the values of 2 registers problem

B e R R R e R e Ll T ey ey

It is interesting to note the close similarity between the
approaches needed to solve the swap the values of 2 registers problem
(see section 8.2) and those needed to solve the Keys and Boxes

problem,

159

12 CONCLUSIONS

12,1 Interaction problems

We have dec<cribed a class of problems in which the solution of
individual goals in sequence will not lead to a solution of a conjunct
of goals. The Keys and Boxes problem falls into this class, ss do other
well known problems, such as swapping the values of two computer
registers. Such problems have been termed interaction problems. A very
simple block stacking problem was used to point out the interaction
difficulties encountered by linear problem solvers and to describe our

approach to overcome these difficulties,

Several problems which previously have been dealt with using
special domain-dependent facts can be tackled in a natural fashion
without this information if dealt with as interaction problems. We have
shown our system, INTERPLAN, coping in a general way with the problem of
swapping the values of two computer registers and with other problems
which have been considered anomalous by other problem solvers. These
have included the 2-room problem of Siklossy and Dreussi (1973), see

section 8.1, and the Shunt problem of Warren (1974), see cection 9.5,

160

12,2 Extending the scope of linear problem solvers
Linear problem solvers which assume that plans to achieve

individual goals can be concatenated to =solve a conjunct of goals have
been studied extensively. For example, in STRIPS (Fikes and Nilsson,
1971), LAWALY (Siklossy and Dreussi, 1973) and HACKER (Sussman, 1973).
Such systems often gain their efficiency by being able to restrict the
operators which need be considered as relevant because goals which are
true in the initial or intermediate situations can be used to restrict

the instantiations of the relevant operators,

A process has been described which allows the use of linear
problem solving techniques on the class of interaction problems, The
process provides a monitoring system which looks out for interactions
in the plan being built up in a linear fashion, and provides the ability
to make simple corrections if interactions occur to ellow linear problem
solving to resume., A problem solver which incorporates this process,

INTERPLAN, has been programmed and tested.

The provision of an ability to deal with interaction problems by
& problem solver has extended the scope of linear means~-end
analysis driven systems to an inportant class of problems. This ability
provides the mechanism which could be used to solve the Keys and Boxes
problem (Michie, 1974), We have given a simulation of the action of

INTERPLAN on this problem,

161

12.3 Use of goal structure

The monitoring system which checks for interactions does not
consider the individual sequences of actions which comprise the plan,
but rather considers the effects these plan sequences have on the

goals being achieved.

Initially some order of the top level goals is chosen as an
"approach'" to the problem. If the conjunct of top level goals can be
achieved by the concatenation of operator sequences for the individual
goals in the order specified in the approach, the problem is solved
normally by the system. However, the monitoring system keeps a
check that the approach is being strictly followed. If the chosen
operator sequence for some individual goal deletes some previously
achieved goal a violation of the approach is reported by the
monitor, Corrections are made to the approach which will probably
remove the difficulty (for example, by reordering the goals in the
approach or the insertion of some necessary intermediate step). An
attempt is then made to =solve the individual goals by plan sequences in
the order specified in the new approach and to concatenate these in that
order, Many other legal approaches to the problem are not tried since

they are not indicated as useful,

This process can be seen as "debugging' an initial approach
suggested to achieve some conjunct of goals to an approach which does in
fact allow the achievement of the conjunct. The method used here on
declarative data representations (operators represented basically as
ADD, DELETE and PRECONDITION 'ists) has much in common with that used in

HACKER (Sussman, 1973) on more procedural representations.

The aim of the INTERPLAN system can be interpreted as finding
a successful aprroach which fully specifies the order in which gosals
can be achieved by some operator secuence and kept true (without
interaction) whilst the other goals are achieved., Such s successful
approach provides much information over which learning schemes

can be devised,

162

163

12.4 Use of Ticklists

The goal control tree of INTERPLAN is of the "backup"
type described in the introductory section on robot problem solving
(see section 2,5.4). This structure allows the localization of the
information about which goals are effected by the operator sequences
which are used to achieve some individual goal. This localization led
to the use of a straightforward tabular form for keeping track of the
interactions between plan =sequences to achieve individual goals. This
tabular structure is called a "ticklist" =ince goals which are asserted
by some plan sequence are ticked in the table and goals which are

deleted are crossed.

1t has been found possible to define a set of classifiers which
look for certain patterns of ticks and erosses in the ticklist currently
being considered and a set of editors each of which is paired with a
classifier and which perform the appropriate actions on the tree of
ticklists (which is the goal control tree of INTERPLAN). An iterative
process of classifying and editing the tree of ticklists can therefore

be used to solve a problem.

The tabular format of ticklists and the pattern of ticks and
crosses within a ticklist provides a simple means of detecting interactions
between subgoals and allows the locality of an interaction to be identified.
Compare this with the analysis of the teleological trace of the problem
solver s actions neces<ary to find the cause of an interaction in HACKER

(Sussman, 1973). The discovery of an interaction can be constructive in

164

that suitable corrections to the approach being tried by the problem solver
can easily be made when definite information is available as to what

goals are interacting and how that interact. This is quite different

from the procedure in many existing problem solver=s which would simply
backtrack to other choice points on discovering an interaction, or

worse still, fail to detect the interaction at all.

165

12,5 Comparisons with other systems

During the course of this project two other research workers
designed problem solvers which are capable of dealing with interaction
problems. The methods employed by these problem solvers, WARPLAN
(W~-rren, 1974) and NOAH (Sacerdoti, 1975), have been compared with
INTERPLAN. NOAH is particularily interesting since it is probably
the first robot problem solver to use a non-linear approach to
solving the components of a conjunct of goals. NOAH uses a table in
which the effects of plan sequences on the GOALS being achieved are
recorded and this table is used to decide on the action to be taken by
the problem solver, This tabular form was based upon a description of

ticklists given in an earlier paper (Tate, 1974),

Time comparisons of several problem solvers against INTERPLAN,
particularily on problems in the STRIPS robot world and variants of this,
show that INTERPLAN performs better even though it can cope with a wider

class of problems than most,

INTERPLAN has been written in such a way as to be easily
modifiable to allow its use in further problem solving research., In
this context it has been used in a study on the usefulness of pre-

processing routines on STRIPS-world problems (Davis, 1975),

166

12.6 Future considerations

The work presented in this report has concentrated upon the
development of a problem solver which can use a means-end analysis
(or problem reduction) approach to solving a problem. It was argued in
section 2.4 that means-end analysis was useful, and in some problems
necessary, when a large number of operators were APPLICABLE to a current
situation. However, in some problems there may be a large number of
RELEVANT operators, but only a few which are APPLICABLE, Normal
forward search procedures would then be most useful. Such an alternative
strategy is not open to INTERPLAN end other means-end analysis driven
systems. What is required is a problem solver which can exploit the most
restrictive kind of search technique at EACH choice point during the

search for a problem solution.

Kowalski (1974) describes a means of representing a problem to =
theorem prover called '"connection graphs". In theory, this representation
provides information upon which a decision could be based as to what is
the most restrictive operation which can be performed to aid the solution
of a problem at each choice point. Investigations would be needed to
find technigques to enable the information contained within such a
representation of the problem to be used to guide a problem solver s
search without the need to fully analyse the potentially very large

structure.

167

12,6.2 Consideration of several goals simultaneously for QA purposes

- O . O S A A (o T By S SO iy Sy WD TS AR 0 STy D 6 e R Gy SO D G e D WD SIS S e W O G W S D O o 4 A e

Consider a question such as (AT X ?Y) & (AT ROBOT <Y). 1If the

two parts were asked separately in the order given when the data base

contained
(AT BALL A)
(AT BLOCK B)

EAT ROBOT B)
we could instantiate such that (AT ¢X {Y) matched (AT BALL A) setting
Y=A. Then the question (AT ROBOT A) would be asked sand would not be
true. It would thus require achievement, If a different instance had
been chosen for Y we could have avoided making such an achievement. We
would like to obtain matching instances for the WHOLE goal first, »nd
only as a second best, matches for part of the goal. We would need to
have the other goals available when asking some question and extend the
Question Answerer to take these other goals into consideration when
ordering the possibility list of true instances of some individual question,
A better method may be to still ask the questions singly, but allow the
possibility lists of answers (e.g., sbove the QA system returns (AT BALL A),
(AT BLOCK B), etc, in reply to the question (AT X ?7Y)) to RESTRICT the
values of the variables X and Y as appropriate. Further questions would
then contain enough information to enable the QA system to order their

possibility lists,

12,6.3 An improved problem solving philosophy

v o - - - - . g - e - Y W S o . - = . - - =

Many interaction problems arise because of the linear way in

which most current problem solvers tackle individual goals of a conjunct

168

of goals. The work of Sacerdoti (1975) makes the point that
linearization of components of a plan should only be made when
interactions actually dictate that they must be made. Sacerdoti
demonstrated the usefulness of such an approach on block stacking
problems. The question answering strategy outlined in section 12,6.2
is a special case of such a relaxation of the linear problem solving

approach.

Linear problem solvers generate a plan which can be represented
very simply. This report shows that it is also straightforward to
represent the structure of the goals being considered in a linear
system, such structure being important to help guide problem solving.
However, except in the simplest problems, the same cannot be said of
the problem solvers of the type advocated by Sacerdoti. This is because
there are many instances when restrictions on legal linearizations of
the non-linear plan representation must be made. This cannot be done by
simple orderings of actions within the representation (e.g., see section

10.3.2).

Search problems, similar to ‘hose which occur in linear systems,
arise in non-linear problem solvers because operator choices have to be
made and the alternatives must be kept available as backup choices.
Decisions must be made as to whether to continue working with the
constraints of some particular operstor choice or whether to choose
another operator. The search problem is particularly scute in
non-linear systems because alternative choices can be generated
in more cases than for linear problem solvers (e.g., see
sections 10.3,1, 10.3.2 end 10.3.3). It would be valuable now to
investigate the use of goal structure to direct alternative choices in

a problem solver which used a non-linear approach,

169

APPENDIX 1 PROGRAM IDENTIFIERS

An OPSCHEMA can be constructed using a function CONOPSCHEMA. The macro

OPSCHEMA makes default settings for most components, <ee example later,

(a) OPSCHNAME

(b) ADDLIST

(c) DELETELIST

(d) OPSCHFN

(e) PRECONDS

A pattern (possibly with variables local to the OPSCHEMA)

which is used as the name of the operator for output,

A list of patterns (possibly with local variables) which
when an operator from this CPSCHEMA can be applied

in some situation, can be instantiated from the values
of variables local to this OPSCHEMA and asserted (made

true) in the successor situation,

A list of patterns as above which are ne Vonger Knswn o
be keve in the socesor sikoakion AL palbkerns which
mokch o DEUETELST enkry are marked as haviag an
unde £med Erakh valoe,

A function to be applied to the successor situation
after the additions and deletions have been made.
Generally, this may act like the IFADD snd IFREM

theorems of CONNIVER (McDermott and Sussman, 1972),

A list of pairs
[<REF NUMBER> . <PATTERN>]

where <REF NUMBER> will usually be a positive integer

(f) SCHREVS

(g) VARSLIST

(h) MAXREVS

170
(see Appendix 1.2 (b)). The PRECONDS are joined onto

any PROTECTED patterns to become the ticklist heading of
ticklists for operators which are instances of this
OPSCHEMA. The PRECONDS specify the applicability

conditions of the OPSCHEMA,

This is a list of pairs of the reference numbers of
preconditions for which reversals should never be
attempted. It will generally be left null, but can be
used to incorporate heuristic knowledge of a problem
domain, For instance, = scheme preventing reversals
between groups of goals arranged in a precedence
ordering (see Siklossy and Dreussi, 1973) can be
implemented using this feature. SCHREVS can be
""NOREVERSE" if it is known that no reversals should be

attempted.

An association list ('"ALIST") which contains all the
local variables of this OPSCHEMA, Usually their values
will be UNDEF initially,

e.g., L X UNDEF Y UNDEF 1].

This component is used to initialize the TICKVARS of

each ticklist generated from this OPSCHEMA.

Specifies the maximum number of pairwise reversals which
can be made for ticklists generated from this

OPSCHEMA. A function, NUMREVS(n), is provided to give
this number. MAXREVS is used only for computational

convenience in checking if all reversals have been tried,

171

The macro OPSCHEMA

When the macro OPSCHEMA is used, default settings are provided for many

components, e.g.,

— -
OPSCHEMA <NAME> maps to <NAME>,
ADD <Al> <A2> [% <Al> , <A2> %],
DELETE <D1> <D2> [% <D1> , <D2~ %],
(lambda: end), no action OPSCHFN
PRECONDS <P1> <P2> > Jr% [1. <P1>] [2 ., <P2>] %],
rl, null SCHREVS
VARS X Y [X UNDEF Y UNDEF],
NUMREVS(2) MAXREVS
ENDSCHEMA _ |_. CONOPSCHEMA ;

If "G" proceeds any precondition, the pattern is given a reference
number 0 to indicate it is a GLOBAL nrecondition with no means of

achievement (see Appendix I1,2),

1.2 The components of TICKLIST, OP and LEVEL

(2) TICKARR

(b) TICKPATTS

The actual 2-dimensional array represented as a
STRIP of 2 bit elements (initiator INIT2, access
doublet SUBSCR2). The entries are initially O,

but can also be a cross (2) or a tick (3). The
strip is initially given a length appropriate to

4 rows (i.e. 4*COLMBOUND - see (i) later) but can be

expanded as needed.

Is a 1list, COLMBOUND 1ong.
Its entries are pairs [<REF NUMBER> . <PATTERN> 1].
It is accessed using the doublets:
PATTREF(i,ticklist) and PATT(i,ticklist).
<PATTERN> ::= goal pattern which may have variables.
<REF NUMBER> ::= INTEGER >= 1
A goal which must be true when the whole ticklist
heading is satisfied.

0

172

A goal for which there are no means of achievement

(a global goal). This is provided for efficiency in

some problems. It can also be used to indicate that

no means of achievement should be used for a goal

INTEGER =< -1 but >= =-1000

A goal which need only be true until the goal with

reference number equivalent to the absolute value of

this goals reference number is satisfied. Typically

(c) TICKSITNS

(d) CPOF

173
these goals are ones found to be generally required
to be true before another harder to achieve goal can
be satisfied, These are often called SETUP goals,
as they SETUP the facts in some situation to make it
easier to solve a later goal.
INTEGER =< -1000

A setup goal as above whose corresponding main goal
is already true. -1000 is added to such a setup
reference number,

[<TICKLIST . <COLUMN NUMBER>]

A reference number which is a pair indicates that
the corresponding pattern is a PROTECTED entry. In
the pair, the ticklist is the one at which the
PROTECTION was placed and to which any PROTECTION
VIOLATIONS should be reported. The column number is
the column in which the fact on which PROTECTION was

placed is in the ticklist.

Accessed by the doublet SITN(i,ticklist).
It is a list of contexts which represent the headings of

ocach row of the ticklist,

A pointer to the operator which will be applied

to some situation which satisfies the heading of this
ticklist., Via OPOF the system can gain access to
nodes (ticklists) higher in the search tree. The
intermediate data structures between a ticklist and its

parent ticklist can be thought of as an arc of the goal

OPOF

174

control tree of INTERPLAN., There are two such
connecting structures which are both always used to

specify an arc as shown below.

<TICKLIST>1

PARENTTICK ‘K\\\

<LEVEL>

OPLEVEL OPLEVEL T .l
<0p>1

<0P> 2 L]

~
~
~

OPOF OPOF

<TICKLIST>2 <TICKLIST>3 <TICKLIST>4 o e e

(e) TICKVARS

(f) TREVS

See later for components of OPs other than OPLEVEL and
components of LEVELs other than PARENTTICK.
An association list ("ALIST") of variable names local to
the OP being used, with their values (values gre UNDEF
if not set).
E.g., if X="BOX1" and Y is not set, TICKVARS is

[X BOX1 Y UNDEF 1.
When a ticklist is created, ite TICKVARS is

initialized from the VARSLIST of the OPSCHEMA,

A 1ist of pairs of reference numbers of major goals
(ones which initially have reference numbers >= 1) for
which column reversals at this ticklist have been
attempted., E.g., if there were 3 goals initially with
reference numbers 1, 2 and 3 and reversals have been
tried between 1 and 2, and between 1 and 3, TREVS

would be [{ 1., 2 1 [1, 31]. This component is

(g) LASTROW

(h) LASTCOLM

(i) COLMBOUND

175

used to check that repeat reversals are not tried.

TREVS can also be '"NOREVERSE". The system assigns
"NOREVERSE" to TREVS when all reversals have been tried.
TREVS is initialized from the SCHREVS component of the
OPSCHEMA of the OPOF this ticklist, Heuristic knowledge
as to what reversals are not useful can be incorporated

into the SCHREVS of OPSCHEMAg.

The row number corresponding to the context in which we

are trying to see if the ticklist heading is satisfied,

The column number we last made an entry in. It will

point to a column with no entry (value of entry=0) if

the ticklist has no entries yet.

The total number of columns in the ticklist heading.

(j) NUMPROTECTEDS The number of columns of the ticklist occupied by

PROTECTED entries. For convenience PROTECTED entries
are always put in the first NUMPROTECTED columns of the

ticklist,

176

The components of an OP (constructor CONOP) are :-

(b) OPLEVEL

(c) ACHPATT

(d) INITVARS

A pointer to the OPSCHEMA data structure from which this
OP is descended (i.e. this OP is an instance of the

OPSCHEMA) .

A pointer to the LEVEL data structure (see later) to

connect with the parent ticklist as shown in the diagram

above,

The pattern (which usually refers to local variables in
this OP) which will be used to match against the pattern
in the parent ticklist which we are trying to achieve.

This match transfers the values of variables between the

two ticklists,

This is a copy of the ALIST from the appropriate
OPSCHEMA efter instantiation by matching the pattern we
expect to be achieved against the appropriate ADDLIST
entry (to set some variables). INITVARS is used to
PESET the TICKVARS of ticklists in certain cases if
column reversals etc. have been performed and a search

for some satisfactory situation is begun again.

177

The components of a LEVEL (constructor CONSLEVEL) are:-
(a) PARENTTICK A pointer to a ticklist in which some goal is

desired to be true (see the previous diagram).

(b) CURRACHIEVES A list used in LOOP detection which holds information
on what patterns have been asked to be achieved in what
contexts, the entries being notionally grouped into
three components:-

1. An instance of the pattern we have asked to be
achieved (any unset variables are "==" - see Barrow,
1975).

2., The context we asked for the pattern to be achieved
in.

3. The ticklist in which it was found necessary to make

this pattern true,

(c) CHOICES Used to hold a list of the different ways to achieve the
achieve pattern of the LEVEL. See Appendix III on the

Or-choice mechanism,

178

APPENDIX II THE QUESTION ANSWERER (Qa)

The Question Answerer is used to gain access to facts about a
particular situation. It is given a pattern and a context, and is
expected to find all instances of the pattern which are true in the
context. If there are none, it return "cross", if there is a least one

it returns "tick".

QA € <pattern> , <context> => <tick or cross>.

If there is more than one instance
** MULTIPLE INSTANCES is printed out and the system goes into POP-2
READY (interrupt) mode. The instances are in the list POSSLIST which
can then be examined or altered before continuing. The first (or only)
possibility is matched against the input pattern to cause instantiation
of variables. Any other possibilities are kept as choice points in the
goal control tree by adding a special node to the CHOICES lists, this
holds:
1. the rest of the possibility list (other than the first item),
2, the ticklist the call to QA was made for, and
3. the input pattern (to be used to instantiate variables when the
other possibilities are used).

The instances of a given pattern are found using a function

FETCHALL £ <pattern> => <possibility list of instances of patterns>

This is simply defined at present to find all patterns in the context

179

CUCTXT which have VALUE true, using APPITEMS (see HBASE - Barrow, 1975).

The deduction of facts which may be true in some context is not
at present allowed in the QA module. Simple extensions have been
experimented with to provide this facility by the use of a restricted
type of IFNEEDED theorem a&s provided in CONNIVER (McDermott and
Sussman, 1972). But, in the present implementation of INTERPLAN, the
incorporation of rules such as

AT(x,y) & ON(z,x) ==> AT(z,y) is not possible.

180

APPENDIX III OR ~CHOICES

The mechanisms provided within the classifier/editor framework
describing INTERPLAN are intended to cope intelligently with the
generation of a solution to a problem composed of a conjunct of goals.
When the planner is confronted with a choice of several ways to proceed
to achieve a goal pattern, it uses the information it is given (e.g.,
the given ordering of different operator schemas which can be used to
achieve a given request) to make a reasonable first choice, then
proceeds, The alternative choices (OR-CHOICES) must be stored in some
way which will enable them to be chosen if the first choices are poor.

The mechanism presently used in INTERPLAN will be described here.

Or-choices occur when there are several ways in which a goal
pattern can be made true. These occur mainly when:
(a) there are several true instances of a goal, or,
(b) there are several different operator schemas which can be
be used to achieve instances of the goal.
Other or-choices can occur if INTERPLAN, in discovering some goal
interaction, has suggested alternative approaches to the main problem

(the original conjunct of goals) or to subproblems of it.

The basic way in which or-choices are ordered is that when
interactions occur, en alternative way to proceed is taken from the
or-choice point which was most recently used. That is, we use

depth-first backtracking to find an alternative way

181
to proceed. Alternative choices are taken from the immediate vicinity

of some interaction discovered in the goal control tree.

We could just use a list, like a backtrack trail, in which all
choices were added to the front of the list when they were generated,
and alternative choices could be made by removing the first choice in
the list, However, INTERPLAN generates some choices (e.g., alternative
choices to avoid a protection violation) which are alternative ways to
proceed at different points in the search tree to the point at which an
interaction occurred. If these were merely added onto the front of a

choices list, they would be chosen at inappropriate times,

We therefore keep or-choices with the points in the goal control
tree at which they are intended to be used. The "LEVEL" data structure
(see Anpendix I.2) provides the point to which or-~choices can be
anchored, When an interaction occurs, a failure causes a choice to be
made from the appropriate alternatives at this LEVEL. When success
reaches some choice point, the untried choices are not forgotten, but are
released to a global list of untried choice points (called

CHOI CES (TOPLEVEL)).

Ordering schemes may be used to order choices at any choice
point including the global CHOICES(TOPLEVEL) list. Each choice is
inserted into the appropriate choice list by comparing a heuristic value
it may have with others on the list. The lists are ordered so that
lower values are considered "better" and are earlier in the lists.

Choices are made from the head of the appropriate list. Whenever a

choice is made from the global CHOICES(TOPLEVEL) list "GLOBAL CHOICE

USED" is printed. This signifies that a choice has had to be made which

182

May not be immediately relevant to the interactions which have Just
occurred - there being no choices left in this position., The
ordering scheme can easily be altered by setting parameters but is
arranged at present to prefer in order:

(a) alternative operators to achieve a goal,

(b) suggested re-orderings of goals (new approach),

(c) suggested promotion of a precondition (new approach), then

(d) alternative instantiation choice for a goal with variables,
If a first choice of an instance of g goal which is true in some context
proves to be of no value, we have no cause to believe that merely
substituting alternative instantiations will work (e.g., if it did not
work with BOX1, vhy should it work with BOX2 - BOX99 7). Different
operators or approaches suggested in the light of interactions provide
a more definite way to reconsider the problem Therefore choices of
type (d) need not be chosen immediately at the point at which
interactions occur. We therefore put alternative instantiation choices
(type (d)) immediately on the global CHOICES(TOPLEVEL) list. Once again

this scheme can easily be altered by a change of parameter,

183

Or-Choice Control Parameters

(a) There are parameters which give the heuristic values of different

(b)

choice types. These are used for inserting the choices into the
list held in the CHOICES of the appropriate level, or in the global

CHOICES(TOPLEVEL) list if this is indicated.

type (a) OPCHOICE default is 10
(b) REVCHOICE 11
(c) EXTCHOICE 12
(d) INSTCHOICE 20

A parameter CHOICELEVEL (default is 15) can be set to give the value
below which choices are routed to the CHOICES 1list of the
appropriate LEVEL, ~nd above which are routed to the global

CHOICES(TOPLEVEL) 1list,

An additional choice point type may be generated when the switch
COMPLETE is set to true. These are choices which indicate attempts
to achieve instances of a goal which has some true instance in the
context required., They have a parameter giving their heuristic
value:

type (e) COMPCHOICE default is 50,

Thus with CHOICELEVEL »s given they are routed immediately to the

global CHOICES(TOPLEVEL) 1list.

184

APPENDIX IV ACTOR RESTRICTIONS ON VARIABLES

As mentioned in "restrictions on instances of a promoted goal"
(section 5.7.5) and "The loop classifier and editor"
(section 5.7.7) it is sometimes necessary to give a precondition or goal
which, though it contains variables, has certain restrictions on the
instances these variables can take. It was mentioned in the sections
indicated how this could be done if actor restrictions on variables were

allowed. A scheme has been tested which allows this process.

Normally, when a value is being matched against a variable used
in INTERPLAN (i.e., a variable prefixed by *$*), this is done using a
function

QAGIVEN(s,x) where s is the value being matched, »nd

X 15 a variable name.

(a) the value of x is found in the appropriate TICKVARS(TICKLIST).
IF the value=UNDEF THEN the variable has no value. So s can be
assigned to x and the match succeeds,
ELSE we match the present value of x against s.
(b) Within the outer call of the MATCH function, =sny variable set
(i.e., match made against some variable with value UNDEF) are
remembered on a list SETVARS, If the match fails at top level,

these variables are reset to their UNDEFined values.

185

We could modify this process to provide actor restrictions on variables
thus:

(a) the value of x is found in the appropriate TICKVARS{TICKLIST).
IF the value is an actor AND the actor matches s (note)

THEN < can be assigned to the value of x and the match succeeds
ELSE proceed as before,.

(b) Since some variables when they are first set may have values
which were not UNDEF (i.e., ACTORS), we must save not only the
variables set as before in SETVARS, but also the values they
had before being set. If the outer level MATCH fails,

variables are reset to their UNDEFined or actor values as

appropriate,

Useful additional facility

It is useful to allow the initial value of an OPSCHEMA's
VARSLIST to be set with actor values as well as UNDEF, For example, if
a precondition was ON(x,y) & CL(x) where y/:FLOOR we could restrict y
to not be the FLOOR in the initial VARSLIST. The macro CPSCHEMA can
easily be modified to allow optional actor values to be given to

variables initially.

Note: an actor is a facility provided in HBASE (Barrow, 1975) and is a
function which can be run on any item to determine if it matches
the item,

186

ACKNOWLEDGEMENTS

In the course of 3 years study many people have contributed
towards the theme and content of this thesis. It would be impractical
to name all those people here but I would like to offer my thanks to

2ll who have taken an interest in the work,

The work has been financially supported by a Research
Studentship from the Science Research Council of Great Britain,
Professor Donald Michie supervised the work and offered encouragement

when it was needed.

The work has developed through discussions with Harlyn Bsker,
Chris Brown, John Darlington, Alistair Duncan, Bill Scherlis, Jerry

Schwarz, Rodney Topor and Dave Warren,

I would particularily like to express my thanks to Harry
Barrow and Earl Sacerdoti, both at the Stanford Research Institute,
Robert Ross of the Mechine Intelligence Research Unit at Edinburgh
read through a draft of the thesis and has managed to remove most of
the expressions which betray my Yorkshire up-bringing, but a few may

have managed to squeeze through his scrutiny,

187

REFERENCES

%0\“0@, 0 G-./ and QQ?\I\&Q\/ R, (\Qﬂh—\ New Prcsramm}f\ﬁ LD«\SUQQQS (‘N
Artitida) Takeligqence . Qompokiag 9orwe93 Vol b Ne. 3, Sept. \AT Lt
Barrow, H.G, (1975) HBASE POP-2 library documentation.

Edinburgh: Dept. of Artificial Intelligence, Univ. of Edinburgh,
also a LISP version is documented in:
HBASE: A fast, clean and efficient database. Draft report from

Stanford Research Institute AI Center.

%oxyzr/R,S oan A N\%TQ, B (lﬁ7'l> ?rwlmb theorems a\oco% LSP Fone Eilone
DCL memo A 0. BQQJC o OomeoEc\Ho«ex) chic, Unlv ot gé\:a\ourgh,
Burstall, R.M,, Collins, J.S. and Pcpplestone, R.J., (1971)

Programming in POP-2, Edinburgh: Edinburgh University Press.

Davis, M. (1975) On constructing a pre-processor for STRIPS-world
problem solvers. Research Memorandum MIP-R-111, Edinburgh:

Machine Intelligence Research Unit, University of Edinburgh,

Doran, J. and Michie, D. (1966) Experiments with the Graph Traverser

program, Proc. Roy. Soec., (A), 294, pp 235-259,

Ernst, G.W. and Newell, E, (1969) GPS: A case study in generality and

problem-<olving. New York: Academic Press,

Fikes, R.E., Hort, P.E, and Nilsson, N.J. (1972r) Some new directions
in robot problem-solving., In Machine Intelligence 7, (eds,

Meltzer, B. and Michie, D.) pp 413-438, Edinburgh: Edinburgh

University Press,

188

Fikes, R.E,, Hsrt, P,E, »nd Nilsson, N.J. (1972b) Learning and
executing generalised robot plans. Artificial Intelligence,

3, pp 251-288,

Fikes, R.E, end Nilsson, N.J. (1971) STRIPS: a new approach to the
application of theorem proving to problem-solving.

Artificial Intelligence, 2, pp 189-208,

Green, C.C, (1969) Application of theorem proving to problem solving.

Advance papers of IJCAI1l, pp 219-240. Washington DC, USA,

Hayes, P,J, (1973) Structuring of robot plans by successive refinement

and decision dependency. M.Phil, Thesis, Univ. of Edinburgh,

Kowalski, R. (1974) Logic for problem solving, DCL memo 75.

Edinburgh: Dept. of Computational Logic, Univ, of Edinburgh,

McDermott, D.V. and Sussman, G,J. (1972) The CONNIVER reference manual,

MIT AI Memo No,259,

Michie, D, (1974) On M-chine Intelligence pp 149-151, Edinburgh:

Edinburgh University Press,

Michie, D, and Ross, R. (1969) Experiments with the adaptive Graph
Traverser. In Machine Intelligence 5, (eds. Meltzer, B,

and Michie, D.), pp 301-318, Edinburgh: Edinburgh Univ. Press,

Newell, A, and Simon, H.A, (1972) Human Problem Solving pp 808.

New Jersey: Prentice Hall Inc.

189

Nilsson, N.J. (1971) Problem solving methods in Artificial

Intelligence. New York: McGraw-Hill.

Sacerdoti, E.D, (1974) Planning in a hierarchy of abstraction spaces.

In Artificial Intelligence, 5, »np 115-135,

Sacerdoti, E.D. (1975) The nonlinear nature of plans. SRI Al Group

Technical Note 101,

Siklossy, L. and Dreussi, J. (1973) An efficient robot planner which
generates its own procedures. In Advance Pspers of IJCAI3,

Stanford, USA, pp 423-430.

Sussman, G.J. (1973) A computational model of skill aquisition. MIT

Technical Report AI TR-297,

Tate, A. (1974) INTERPLAN: a plan generation system which can deal with
interactions between goals. Research memorandum MIP-R-109,
Edinburgh: Machine Intelligence Research Unit, University of

Edinburgh,

Weldinger, R, (1975) Achieving several goals simultaneously.
Stanford Research Institute Al Center Technical Note 107.

May, 1975.

Warren, D,H.D. (1974) Warplan: g system for generating plans.
DCL Memo No, 76, Edinburgh: Dept. of Computational Logic,

University of Edinburgh.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-75-004

