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ABSTRACT 

This thesis describes a class of problems in which interactions 
occur when plans to achieve members of a set of simultaneous goals are 
concatenated in the hope of achieving the whole goal. They will be 
termed "interaction problems". Several well known problems fall 
into this class. Swapping the values of two computer registers 
is a typical example. 

A very simple 3 block problem is used to illustrate the 
interaction difficulty. It is used to describe how a simple 
method can be employed to derive enough information from an 
interaction which has occurred to allow problem solving to proceed 
effectively. 

The method used to detect interactions and derive information 
from them, allowing problem solving to be re-directed, relies on an 
analysis of the goal and subgoal structure being considered by the 
problem solver. This goal structure will be called the "approach" 
taken by the system. It specifies the order in which individual 
goals are being attempted and any precedence relationships between them 
(say because one goal is a precondition of an action to achieve 
another). We argue that the goal structure of a problem contains 
information which is simpler and more meaningful than the actual plan 
(sequence of actions) being considered. We then show how an 
analysis of the goal structure of a problem, and the correction of such 
a structure in the light of any interaction, can direct the search 
towards a successful solution. 

Interaction problems pose particular difficulties for most 
current problem solvers because they achieve each part of a composite 
goal independently and assume that the resulting plans 
can be concatenated to achieve the overall goal. This assumption is 
beneficial in that it can drastically reduce the search necessary in 
many problems. However, it does restrict the range of problems which 
can be tackled. The problem solver, INTERPLAN, to be described as a 
result of this investigation, also assumes that subgoals can be solved 
independently, but when an interaction is detected it performs an 
analysis of the goal structure of the problem to re-direct the search. 
INTERPLAN is an efficient system which allows the class of 
interaction problems to be coped with. 

INTERPLAN uses a data structure called a "ticklist" as the basis 
of its mechanism for keeping track of the search it performs. The 
ticklist allows a very simple method to be employed for detecting and 
correcting for interactions by providing a summary of the goal structure 
of the problem being tried. 
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1. INTRODUCTION 

For a robot device to be self-controlling, it will certainly 

require a problem solving (planning) capability. Existing systems, such 

as STRIPS for the SHAKEY robot at Stanford Research Institute (Fikes and 

Nilsson, 1971), are severely restricted in that they take a long time 

to produce even short and straightforward plans and operate only in 

quite simple domains. 

Michie (1974) describes a problem, the Keys and Boxes problem, 

whose solution poses several difficulties for current problem solving 

techniques and is beyond their capabilities. The work to be 

described in this thesis results from an investigation of the 

difficulties encountered by several existing problem solvers on the 

Keys and Boxes problem. In the process of overcoming them we have 

designed and tested a general and effective problem solving system. 

1.1 Interaction problems -------------------- 

The Keys and Boxes problem, though it has other complications, 

is a member of the specific class of problems considered in this work, 

namely those in which interactions occur when plans to achieve 

separate members of a set of simultaneous goals are concatenated in the 

hope of achieving the whole goal. They will be termed 

"interaction problems". Several well known problems fall into this 
class. The problem of swapping the values of two computer registers 
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is a typical example. 

Given that register 1 holds a value Cl and register 2 holds a 

value C2, we wish register 1 to hold. a value C2 and register 2 a value 

Cl when an assignment operator is available. Either of the separate 

parts of the simultaneous goal can easily be achieved using a single 

assignment. However, after doing one of the assignments, the other will 

not achieve the desired result. This is because conditions which must be 

true for an assignment to achieve the expected result are altered by 

the previous assignment. It is important to note thatthe achievement 

of either goal in any order independently will not lead to a solution 

to the problem. In this problem we must realize that an 

intermediate register should be used to hold one of the values needed. 

Until recently, systems which could cope with such interaction 

problems did so in either a domain-dependent fashion (by knowing that 

an intermediate register should be used in register swapping) or by 

having a very much larger search space than would otherwise be 

necessary. Our aim in this work has been to develop a problem solving 

system which could deal with interaction problems but has neither 

of the above limitations. 

A problem which is simpler than the Keys and Boxes, the 3 block 

problem, is used to illustrate more clearly the interaction difficulty. 

It is used to describe how a simple method can be employed to derive 

enough information from an interaction which has occurred to allow 

problem solving to proceed in an effective way. 
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1.2 Goal structure 

It would be inefficient merely to extend the search space of the 

problem solver to allow different orderings of the achievement of 

sub-goals, and hope to be able to search through these for a solution 

using, for example, a backtracking algorithm to select between the 

alternatives. Instead, INTERPLAN can open up its 

search space selectively in view of information gleaned from any 

interactions which occur during an initial attempt to solve the 

problem. 

The method used to detect interactions and derive information 

from them, allowing problem solving to be re-directed, relies on an 

analysis of the goal and subgoal structure being considered by the 

problem solver. This goal structure will be called the "approach" 

taken by the system. It specifies the order in which individual goals 

are being attempted as well as any precedence relationships which exist 

between them (say because one goal is a precondition of an action to 

achieve another). We will argue that the goal structure of a problem 

contains information which is simpler and more meaningful than the 

actual plan (sequence of actions) which is being constructed by the 

problem solver during an attempt to solve a problem We will then show 

how an analysis of the goal structure of a problem, and the correction 

of such a structure in the light of any interactions, can direct the 

search towards a successful solution. 

Many current problem solvers achieve each part of a composite 

goal independently and assume that the resulting plans can be 
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concatenated to achieve the overall goal. This assumption is 

beneficial in that it can effect a drastic reduction in the search 

necessary in many problems. However, it does also severely restrict 

the range of problems which can be solved. In particular, interaction 

problems cannot be coped with. We will describe a problem solver, 

INTERPLAN, which also assumes that subgoals can be solved independently 

and concatenated to achieve a composite goal. However, should this 

prove to be invalid, INTERPLAN can perform an analysis of the goal 

structure of the problem to derive a new "approach" which should be 

tried to avoid interactions. INTERPLAN is an efficient system 

which allows the class of interaction problems to be coped with. 

The system makes productive use of the informatioa available from 
a failure. Some earlier systems, such as HACKER (Sussmaa, 1973) and 
the LISP theorem prover of Boyer and Moore (1972), also used 
information from the failure of nose process to alter or guide further 
problem solving efforts. INTERPLAN provides a particularily simple 
method of detecting important information from its failures. 
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1.3 Ticklists 

During the study of existing systems such as STRIPS (Fikes and 

Nilsson, 1971) and HACKER (Sussman, 1973), a, sMple method of 

controlling the growth of the search tree of the problem solver using 

a data structure called a "ticklist" was devised. The ticklist provides 

a summary of the goal structure of the problem being tackled. It 
allows a simple scheme to be used for growing the search tree and for 

detecting any difficulties which occur during problem solving. Such a 

search tree growth scheme using "ticklists" has been used in INTERPLAN. 

1.4 Other relevant work 

While the present study was in progress, other workers have 

written problem solvers which are able to cope with interaction 

problems. WARPLAN (Warren, 1974) and a program-synthesis system 

written at SRI (Waldinger, 1975) assume, as earlier systems did, that 

independent plans can be found to achieve sub-goals. However, instead 

of assuming that these can be concatenated sequentially, they allow 

the actions found for each sub-goal to be inserted at any point in 

the existing partial plan for sub-goals already achieved. NOAH 

(Sacerdoti, 1975) takes a very different approach. It does not make 

assumptions about the ordering of the individual actions within a 

plan until such an ordering is constrained by the interactions which 

occur. Both WARPLAN and NOAH acre described and compared with 

INTERPLAN later in this report. 
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2 ROBOT PROBLEM SOLVING 
--------------------- 

In order to introduce the terminology to be used throughout 

this report and to briefly describe several problem solvers upon which 

this work was based we will describe the control structures used by 

problem solvers to keep track of the growth of the search tree. We 

will argue that a "backup" type of goal control tree 

allows a localization of search information which is important if 
failures in a solution strategy are to be used to guide further problem 

solving efforts. 
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2.1 Problem paradigm 

Many problems can be formulated as a SEARCH task. This can be 

represented as follows (e.g., as in Frnst and Newell, 1969):- 

GIVEN: an initial state representation 

a number of actions (operators) which transform one state to 

another if applicability conditions are met 

a definition of a desired (goal) state 

FIND: a sequence of actions (a plan) which will transform the initial 

state into a desired state. 

This can be viewed as a graph search problem (see Nilsson, 1971, for 

background and terminology): 

GIVEN: a node of a graph 

a set of operators (represented by arcs of the graph) 

a set of nodes satisfying a goal condition 

FIND: a sequence of operator applications (arcs) which will generate 

a path leading from the initial node to a goal node. 
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2.2 Problem representation 

For expository purposes let us assume that a problem state 

(or problem situation) is described by a list of assertions about the 

state. Operators can be described by giving the effects they have on a 

state when applied and by giving the applicability conditions for the 

operator. The effects of the operator can be specified by a list of 

statements ADDED (those made true) and DELETED (those no longer true) 

from the state. The applicability conditions can be specified by a 

list of statements which must be true in the state to which the 

operator is applied (often called the PRECONDITIONS). Goal states 

can then be specified by giving a list of statements which are 

required to be true in a state satisfying the goal. 

This representation for a domain was proposed for STRIPS (Pikes and 
Nilssoa, 1971) and greatly simplifies the checks needed for relevance 
and applicability of operators. 
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2.3 Forward search 

Forward search can cope with a wide variety of problems 

formulated in the state-space paradigm, especially when heuristic control 

is used to guide the search across the graph, for example, as in the 

Graph Traverser (Doran and Michie, 1966 pnd Michie and Ross, 1969). A node 

of the graph (corresponding to the initial problem state) is identified 

and APPLICABLE operators are applied to it to produce successor nodes. 

Some node from the successors is chosen for expansion, typically the node 

heuristically estimated to be closest to a goal node. APPLICABLE 

operators are then used on this chosen node. This process continues 

until a node satisfying the goal conditions is generated. 
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2.4 Means-end analysis 

In robot planning problems, the number of APPLICABLE operators 

is typically large (or even infinite). There may, for instance, be an 

action GOTO(x,y) which can move a robot between any two points, x and 

y, on a 1000 X 1000 grid. Forward search is not appropriate for such 

problems. It is necessary to use some method of restricting the number 

of APPLICABLE operators which need to be used. A technique was 

introduced in the General Problem Solver 

(GPS - a full account is given in Ernst and Newell, 1969) 

to cope with this difficulty. It is termed MEANS-END ANALYSIS since 

it considers only those operators which are RELEVANT to achieving some 

desired goal. Hayes (1973) found that he co X c noe use -f ocwcor 

e &cc\' for a large scale journey planning system in which over 2000 
`*e Vs'-o' mk'ans-Q-d Q^aS'iS Eo o ciKQ EL S'2o('cL, 6-//kis svJS-eii 

different journey components could be used. ;here i$ good evidence 

that means-end analysis is extensively used during human problem solving 

(Newell and Simon, 1972). 

Means-end analysis has been employed by several robot planning 

systems, e.g., STRIPS (Fikes and Nilsson, 1971), LAWALY (Siklossy and 

Dreussi, 1973) and HACKER (Sussman, 1973). Such systems find which 

statements must be true in a desired situation, but which are not true 

initially. These statements become a "difference" and only operators 

"relevant" to reducing this difference (typically operators which can 

ADD one or more statements of the difference) can be considered. One of 

the operators is chosen and, if applicable, is applied to produce a 

new situation. The system then once again compares the desired situation 

with the newly produced one to see if there is any remaining difference. 
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However, it is possible that a chosen operator may not be applicable in 

the given situation. In this case the difference between the 

preconditions and the given situation is constructed and means-end 

analysis is again used to select from operators relevant to reducing this 

new difference. Once its preconditions are met, an operator can be 

applied. Such a process can recur to any depth if operators are chosen 

which are not applicable in the given situation. Search is certainly 

not ruled out in such a system, as often there will be more than one 

"relevant" operator and the order in which preconditions are satisfied 

may vary. Each choice must be capable of being explored if necessary. 

Of course, just as forward search can be impractical when there are a 

large number of APPLICABLE operators, means-end analysis can be impractical 

when there are a large number of RELEVANT operators. A great deal of 

research in robot problem solving has involved ways of cutting down the 

number of RELEVANT operators, e.g., some way of considering individual 

statements of a difference by putting priorities on them (as in GPS and 

LAWALY). 

For means-end analysis to be used, the problem must be described 

in such a way as to allow the RELEVANT operators to be identified for 

any goal. The representation of states as a list of assertions and 

operators as ADD, DELETE and PRECONDITION lists (as mentioned in 

section 2.2) fulfils this requirement and has been adopted by many 

problem solvers, e.g., STRIPS and HACKER. Problems to be tackled by 

forward search techniques can be described in different ways since only 

APPLICABILITY conditions need be checked before the operators use. 
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2.5 Search trees in means-end analysis driven problem solvers 
--------------------------------------------------------- 

2.5.1 An example 

We now describe a simple problem designed to illustrate means-end 

analysis. The solution is found without any incorrect decisions being 

taken. However, it does serve to explain the differences in the type of 

control structures built by different problem solvers. 

There are 2 operators: 

(PICKUP ? OB) Z OB is a variable with identifier OB. 
ADD (HELD ?OB) . 

DELETE (HELD NOTHING) 
PRECONDS (AT ?OB +3X) & (AT ROBOT ?X) 

(GOTO ?X) 
ADD (AT ROBOT 3X) 
DELETE (AT ROBOT == ) 
PRECONDS (HELD NOTHING) 

"__" matches anything at all. 
It can be interpreted as 
a free variable. e DC"LFi SFEeMe,sa ys 

x 'b FLE1 (i r Rogat x) 

In an initial situation: (AT BALL A) 
(AT ROBOT B) 
(HELD NOTHING). 

Achieve a situation in which (HELD BALL) is true. 
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2.5.2 Means-end analysis on the example --------------------------------- 

A trace of a means-end analysis approach on the 

example will be given below. Two types of arrows will be used: 

a single shafted arrow indicates an operator considered relevant 

to achieving a required goal, a double shafted arrow indicates an 

operator application. 

(HELD BALL) (HELD BALL) the top level goal is not true 
in the present (initial) situation. 

(PICKUP BALL) A (PICKUP BALL) is the only operator which 
can ADD (HELD BALL). It can be applied if 
its preconditions (AT BALL ? X)&(AT ROBOT ? X) 
are true. 

(AT BALL ?X)&(AT ROBOT ?X) (AT BALL ?X) is true if X=A. See NOTE below. 
However, all preconditions are not satisfied 
until (AT ROBOT A) is also true. 

(GOTO A) A (GOTO A) is the only relevant operator. 
This can be applied if its precondition 
(HELD NOTHING) is true. 

(HELD NOTHING) (HELD NOTHING) is true in the initial situation 
and so the (GOTO A) action can be applied 
to produce a new situation, say Si, in which 

(GOTO A) (AT BALL A), (AT ROBOT A), and (HELD NOTHING) 
were true. 

Si Now, in Si, the preconditions of the 
(PICKUP BALL) operator hold and so this 

(PICKUP BALL) relevant action can be applied to produce 
a new situation, say S2, in which 
(AT BALL A), (AT ROBOT A) and (HELD BALL) 

S2 were true. (HELD BALL) the top level goal 
now holds in S2 so the problem is solved with 
the plan (GOTO A); (PICKUP BALL). 

NOTE: (AT ROBOT ?X) would be true if X=B, so the preconditions of (PICKUP BALL) 
could also be made true if (AT BALL B) was achieved. However, in 
this simple example there is no way to achieve (AT BALL ?X). 
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2.5.3 Goal control trees 
------------------ 

It is useful to consider the data structure generated by means-end 

analysis as being composed of 2 parts. 

1) There is the part of the structure which corresponds to the tree 

grown over the state-space problem graph by a forward search algorithm. 

We will term this part the STATE-SPACE TREE. The arcs of this tree are 

operator applications, the nodes are problem states (or situations). 

In the example of section 2.5.2, the STATE-SPACE TREE is as below. 

(AT BALL A) 
Initial State (AT ROBOT B) 

11 (HELD NOTHING) 
apply (GOTO A) 

apply (PICKUP BALL) 

V (AT BALL A) 
S1 (AT ROBOT A) 
II (HELD NOTHING) 

V 

S2 

(AT BALL A) 
(AT ROBOT A) 
(HELD BALL) 

2) There is also the part of the structure which can be termed the 

GOAL CONTROL TREE. This is used to record the goals being considered at 

each point. The nodes of this tree represent the goals which are required 

to be true in a particular situation. Such nodes are represented below 

as a pair (situation, goal]. The arcs of the tree are of two types: 

a) they can be RELEVANT operators which if applied would help to 

achieve a goal. A successor node below such an arc generally has a 

different goal to be solved (the applicability conditions of the 

relevant operator), but the situation the goal is to be considered 

in remains unchanged. 

b) Another type of arc is the APPLICATION of an operator. This causes 

the situation the goals are being considered in to alter and causes 

a resetting of the goal being considered to some earlier goal. 
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In the example in section 2.5.2 the GOAL CONTROL TREE is as follows: 

Is goal solved 
in given situation 

r-[Initial Sitn, (HELD BALL)] 

(PICKUP BALL) 

r-(Initial Sitn, (AT BALL ?X)&(AT ROBOT ?X)] 

f 

apply (GOTO A) 

f L-[Initial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT ?X)] 

[Initial Sitn, (HELD NOTHING)] 

apply (PICKUP BALL) 

(-[Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)] 

NO 

NO 
X=A 

YES 

YES 

YES 

Note: The question answering within one particular situation is 
separated from the search across a space of situations (by the 
search for appropriate action sequences). Different mechanisms are 
used for these widely differing tasks. 

In the above diagram dotted lines link nodes which have the same GOALS. 

Some means must be incorporated of knowing which goal is to be 

considered at each stage. In the next section two possible ways to do 

this will be described. 
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2.5.4 Push-down goal lists vs. Backup ------------------------------- 

As indicated in the diagram in section 2.5.3 the GOAL CONTROL TREE 

generated by means-end analysis has nodes in which we ask a question: is 

a certain goal true in a given situation? If the answer is YES, typically 

some operation is performed to generate a new situation. If the answer 

is NO, relevant operators are found to try to achieve the goal. In the 

latter case, the goal becomes the achievement of the applicability 

conditions of a chosen operator. 

Push-down goal lists - as used in STRIPS 
---------------------------------------- 

STRIPS has a method of keeping track of the questions to be asked 

in turn to solve some problem which involves the use of a push-down list 
of the goals to be solved. Only the top element of the push-down list is 

considered at any time. If the goal is solved in the given situation, 

the top element of the push-down list is removed. If this was the only 

entry the top-level goal is solved. If it is not the only entry, the 

goal removed was the applicability conditions of some operator which was 

considered relevant to achieving some earlier goal. This relevant and 

applicable operator is *hen applied to produce a new situation. The 

process is then repeated by asking if the top element of the push-down 

goal list is true in the new given situation. If the goal is not true 

some relevant operator is chosen and its applicability conditions are 

pushed onto the goal list. The process is once again repeated. 
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For the GOAL CONTROL TREE shown in section 2.5.3, a STRIPS-like version 

of this would be as follows. 

Note: Push-down goal list has the top element to the left. 

Is top goal in the 
push-down goal list 
solved in given sitn 

[Initial Sitn, ((HELD BALL))] 

(PICKUP BALL) relevant 

[Initial Sitn, ((AT BALL ?X)&(AT ROBOT ?X),(HELD BALL))] 

(GOTO A) 

[Initial Sitn, ((HELD NOTHING),(AT BALL ?X)&(AT ROBOT ?X), 

11 
(HELD BALL))] 

apply (GOTO A) 

[Initial Sitn;(GOTO A), ((AT BALL ?X)&(AT ROBOT ? X),(HELD BALL))] 

apply (PICKUP BALL) 

(Initial Sitn;(GOTO A);(PICKUP BALL), ((HELD BALL))] 

NO 

NO 

X=A 

YES 

YES 

YES 

Top element of push-down goal list removed, so goal solved. 

Considering goals at the top level of the push-down goal list only, 

means that once an operator has been chosen as relevant, the algorithm 

becomes single-minded in its attempts to achieve that goal. Earlier 

goals which were ori,;nakiy achieved n made false by the efforts to 

solve a later goal are not noticed. 
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Backup 

A different approach to the recording of goals and the situations 

they are being considered in is suggested by the links in the goal 

control tree diagram in section 2.5.3 between nodes which have the same 

goal. There is always a symmetry between two nodes which have the same 
NoEe L4no - 

goal. /,,,the operator relevant to achieving the goal has been applied 

when the goal is reconsidered. It is therefore possible to substitute a 

backward arrow up the goal control tree for APPLICATIONS of relevant 

operators which in the push-down goal list tree caused entries lower in 

the tree. For the goal control tree in section 2.5.3 the backup version 

would be: 

Is goal solved in 
the given situation 

[Initial Sitn, (HELD BALL)] 
[Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)] 

(PICKUP BALL) relevant apply (PICKUP BALL) 

[Initial Sitn, (AT BALL ?X)&(AT ROBOT ? X) ] 
[Initial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT ?X)] 

(GOTO A) relevant apply (GOTO A) 

[Initial Sitn, (HELD NOTHING)] 

NO 

YES 

NO, X=A 
YES 

YES 

A NO answer to a question results in further subgoaling downwards, a YES 

answer causes backup and the application of the operator. Such a backup 

goal control tree allows goals which become false as a result of later 

steps in a plan to be easily detected. This localization of information 

about the search has been found veryuseful and is the basis of an idea to 
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be described later (TICKLISTS) which can provide a simple method of 

checking that the search is being performed in the intended manner. 

Ticklists are used as a simple method of implementing a backup goal 

control tree in INTERPLAN. 
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2.6 HACKER end goal protection 
-------------------------- 

HACKER (Sussman, 1973) is a system which can write programs (make 

plans) for the operation of a robot hand in the blocks world. It operates 

by suggesting a simple program (plan) which may have the intended effect 

on some problem, monitoring a simulation of the running of this program 

and then making corrections for any "bugs" which occur. 

The problem solving process used in HACKER is means-end analysis 

with an important addition. Each goal that is achieved is noted as 

being PROTECTED up until the time it need no longer be kept true. If it 

is a top level goal, once achieved it must remain true until the whole 

conjunct of goals is solved. If it is a precondition it must remain 

true until the action it is a precondition of is applied. Any violations 

of this protection (i.e., en action deletes some protected goal whilst 

achieving some other goal) is reported to HACKER. HACKER then examines 

a trace of the simulation of the program and compares this trace with 

types of traces it knows can cause similar violations. If the trace is 

of known type, an appropriate change in the program is made and the 

program simulated again. 

HACKER has many more features than the simple problem solving 

part outlined above. It can remember traces which caused difficulties 

but which were not of known type so that these can be avoided in future 

problem solving. It also has the ability to generalize and remember 

successful programs to be used as building blocks in future problem 

solving. 
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It should be noted that protection schemes are straightforward 

to implement using a backup goal control tree and such a scheme has been 

incorporated in the TICKLISTS used in INTERPLAN. The goal control tree 

of HACKER is of the backup type. 
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3 THE KEYS AND BOXES PROBLEM -------------------------- 

The Keys and Boxes problem was devised by Michie (1974) as a 

benchmark test for robot problem solvers. A robot, without any 

capability of gathering further information than it is given at the 

start of problem solving, must operate in the world shown below. 

BOX1 BOX2 

DOOR 

OUTSIDE 

TABLE ROOM 

The problem is defined informally below: words in capitals are 

special to this problem in the sense that the problem statement is 

meant to define them. This problem formulation differs from 

that given by Michie. In particular, sets of objects are used to 

describe the problem. The changes were made in the light of several 

peoples attempts to solve the problem themselves (4 protocols of this 

sort were used to gain some insight into the methods humans may use on 

the problem). 
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3.1 Statement of the Keys and Boxes problem --------------------------------------- 

The world consists of: the PLACES named BOX1, BOX2, DOOR, TABLE 

and OUTSIDE; the OBJECTs, examples of which are named A, B and C; and 

an agent named ROBOT. OBJECTs may have properties named RED and KEY. 

PLACEs may have the property named INROOM. There are relations named 

AT, HELD and ROBOTAT. There is a (possibly empty) set of OBJECTs AT any 

PLACE. A set of OBJECTs (possibly empty) is HELD. NOTHING is equivalent to 

the empty set of OBJECTs. If a set of OBJECTs has some property, then 

any individual or non-empty subset of the OBJECTs has the property. The 

property of OBJECTs being RED or KEYs cannot be changed. The property 

of PLACEs being INROOM cannot be changed. The ROBOT can cause some 

changes by executing actions named LETGO, PICKUP and GOTO. 

The LETGO action causes the parameter of HELD to be changed to 

NOTHING. There are no other effects of a LETGO action. 

if there is a non-empty set of OBJECTs AT some PLACE and the 

ROBOT(is)AT the PLACE, then the PICKUP action causes the set of OBJECTs 

HELD to be changed to a non-empty subset of the set of OBJECTs AT the 

PLACE. There are no other effects of a PICKUP action. 

The GOTO action takes a parameter which is a PLACE. The GOTO 

action primarily causes the PLACE the ROBOT(is)AT to be changed to the 

PLACE which is the parameter of the GOTO action. If the set of OBJECTs 

HELD is not empty, then the GOTO action also causes the PLACE the set of 

HELD OBJECTs is AT to be changed to the PLACE which is the parameter of 

the GOTO action. If the parameter of the GOTO action is OUTSIDE, then 

the GOTO action can only be applied if there is an OBJECT (and possibly 
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others) AT the DOOR which has the property of being a KEY. Otherwise 

the parameter of the GOTO action should have the property of being 

INROOM. There are no other effects of a GOTO action. 

In the initial situation there is A and possibly other OBJECTs 

AT BOX1. 

In the initial situation there is B and possibly other OBJECTs 

AT BOX2. 

In the initial situation there is C and possibly other OBJECTs 

AT the DOOR. 

In the initial situation there is NOTHING AT the TABLE. 

In the initial situation the PLACE the ROBOT(is)AT is unknown. 

In the initial situation, either all OBJECTs AT BOX1 have the 

property of being KEYs or all OBJECTs AT BOX2 have the property of being 

KEYS. 

In the initial situation all OBJECTs AT the DOOR have the 

property of being RED. 

The PLACEs BOX1, BOX2, DOOR and TABLE all have the property of 

being INROOM. 
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The goal of the problem is to produce an action sequence (plan) 

which will convert the initial situation into a situation in which a 

subset of the OBJECTs AT the OUTSIDE have the property of being RED. 

Thus an action sequence such as:- 

LETGO, GOTO(DOOR), PICKUP, GOTO(TABLE), 
LETGO, GOTO(BOX1), PICKUP, GOTO(DOOR), 
LETGO, GOTO(BOX2), PICKUP, GOTO(DOOR), 
LETGO, GOTO(TABLE), PICKUP, GOTO(OUTSIDE) will achieve the goal. 
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3.2 What are the difficulties? 

3.2.1 There are actions with imprecisely defined outcomes. 

The PICKUP action causes a SUBSET of the objects at the place 

the robot is at to be held. Therefore, unless we are sure there is only 

one object at any place, we cannot pick up particular objects. This 

indicates, what seems to me to be, the principal difficulty of the Keys 

and Boxes problem: that placing objects at any place may ruin our 

ability to later PICKUP objects with known properties. Thus, although 

we know in the initial situation that all the objects at the door are 

red, and therefore a PICKUP at the door will result in only red things 

being held, we cannot guarantee this in a situation resulting from 

putting keys at the door. The uncertainty of the PICKUP action gives 

rise to a particular case of a more general problem which I will term 

the INTERACTION PROBLEM. The robot is living in a "coupled world" where 

there can be complex interactions between the effects of some actions 

and the subsequent applicability of others. I will be mainly 

concerned with such interaction problems throughout this report 

(they are described in a more general way in section 4). 

3.2.2 We do not know precisely which object is a key 

A request to find a key will only produce the answer that either 

any subset of the objects at boxl or any subset of the objects at box2 

has the property of being keys. 
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3.2.3 Keeping track of the objects at each place ------------------------------------------ 

The Keys and Boxes problem requires information to be stored 

about what objects are at certain places. We need to remember whether 

no objects, some particular objects, a selection of some particular 

objects, or an indefinite number of objects are at a place. The 

formulation of the problem (in section 3.1) in terms of sets of objects 

is intended to clarify what is required. Simple data base methods of 

storing a fact such as "objects OB1, OB2 Rnd possibly others are at 

place BOX1" as (AT OB1 BOX1) & (AT OB2 BOX1) cannot reflect what is 

required if an unknown selection of these is removed (by a PICKUP). 

In the next section the interaction problem mentioned above will 

be studied more generally. We will return to the Keys and Boxes 

problem in section 11 after describing INTERPLAN, a system which we have 

designed to deal with interaction problems. 
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4 INTERACTING GOALS AND THEIR USE 

4.1 Interacting goals 

A problem is given to a means-end analysis based problem solver, 

such as STRIPS (Fikes and Nilsson, 1971) and the planning part of the 

HACKER system (Sussman, 1973), as a conjunction of goals, e.g., 

(G1 & G2) 

which must be true for the problem to be solved. Since the individual 

goals are solved sequentially, they must, once achieved, hold together 

for a period of time. The time for which an achieved goal must remain 

true will be called the goals "holding period". I will illustrate this 

as follows. 

Initial Situation Problem Solved 

G1 

Approach: G1; 

G2 

G2 

The horizontal dimension of this "holding period" diagram represents 

time during which actions will be applied in a final plan to achieve 

the given goals. APPROACH should be interpreted as: if G1 not true 

achieve it using some operator sequence, then do likewise for G2. 



34 

STRIPS assumes, in the absence of other information, that it 
can achieve the individual goals by relevant plan sequences, say, in the 

order in which the goals are given (Sussman calls this a linear 

assumption). Thus, as shown in the previous diagram, STRIPS would 

assume that G1 can be solved by some relevant plan sequence and then 

that G2 can be solved by a plan sequence following on from the first. 
If STRIPS can find no way to achieve the goals in the order given, 

it is capable of reversing the order it has attempted to achieve goals, 

which were initially not true, at the failure level (e.g., at the top 

level G1 and G2 could be reversed to give an expected holding period 

diagram as shown below). 

Initial Situation Problem Solved 

G1 0 

G2 

Approach: G2; Gi 

STRIPS further assumes that for the goals not already true at 

the time required, the preconditions, which are required to be true for 

some operator to be applied to achieve the goal, can all be made true 

immediately before the time the goal is required to be true. Again, 

reversals amongst these preconditions can be made on failure backup. 

Thus, if the preconditions for some operator to achieve Gi are Gil and 

Gi2, then STRIPS initially assumes an approach as in the diagram below 

can be taken. 
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Initial Situation 

Gll 

G1 

G12 

Problem Solved 

G21 

G2 10 

G22 0- 

Approach: Gll; G12; G1; G21; G22; G2 

Note that the holding period diagram represents the goals to be worked 

upon for SOME chosen operator sequence. There is really a third 

dimension to the diagram representing different operator choices. 

Reversals allow certain other orderings of these goals to be 

attempted. However, limiting reversals to goals at a particular level 

of the search tree hierarchy means that STRIPS (these arguments also 

apply to HACKER) can only tackle certain problems. Specifically, those 

in which interactions between top level goals can be avoided by suitable 

ordering of the goals and the choice of suitable operator sequences. 

Since STRIPS and HACKER also allow attempts to achieve goals to 

be repeated if interactions have occurred, they can also handle those 

problems in which the interactions leave the world in some situation 

from which the interacted goals can be re-achieved. STRIPS will often 

produce longer than necessary solutions if it repeats attempts to 

achieve goals. 

Even for very simple worlds, such as the blocks world used by 
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Sussman, interaction can occur. To be able to deal with all types of 

interaction between a set of goals, we could consider the search space 

as containing approaches with every interleaving of the goals and 

subgoals needed to achieve those goals. Thus, a holding period diagram 

and approach as shown below is necessary to resolve some types of 

interaction. 

Initial Situation 

Gil 

G1 

G12 00. 

G21 

G2 

G22 --i - 

Problem Solved 

Approach: Gii; G12; G21; Gi; G22; G2 
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4.2 The 3 block problem 

The 3 block problem is an example used by Sussman (1973) in hie 

description of HACKER. It is regarded by HACKER as an ANOMALOUS 

SITUATION. The problem is useful as it highlights the interaction 

difficulty in a simple task. 

A world is described by two predicates ON(x,y) and CL(x). 

ON(x,y) asserts block x is on top of the (same size) block y. 

Note that ON is NOT transitive, x oAl-) on-Q block con \0e ON a,\,Ckes 

CL(x) asserts block x has a clear top. 

There are two operators:- 

PUTON(x,y) asserts ON(x,y) and deletes CL(y). 

If 3u . ON(x,u) before the application of the operator 

then assert CL(u) and delete ON(x,u). 

It can be applied if CL(x) and CL(y) are true. 

ACTCL(x) asserts CL(x). 

If 3u . ON(u,x) before the application of the operator 

then assert CL(u) and delete ON(u,x) 

REPEAT if 3 v . ON(v,u) etc. (This operator therefore 
O-A \ QJL-s tieM so.\Zwkec'e +'l -" space 

clears all blocks from the top of block xj. It can always 

be applied. ^ 
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Given an initial situation ON(C,A) & CL(C) & CL(B) as shown in (a) below 

a goal of ON(A,B) & ON(B,C) is given as shown in (b) below. 

(a) (b) 
A 

C 

A B 

STRIPS can tackle (ON(A,B)&ON(B,C)) both parts of which are not true 

initially. The goals may, at first, be attempted as shown in the 

following holding period diagram. 

Initi al Situation 

CL(A) T he e ected holdin 
not t ru e ON(A B)- 

x 
eriod 

g p 
the is broken b , 

not true 
p 
a chiev 

y 
ement of CL(B) 

CL ( 
tru 

B) --- 
e 

CL(B) ----- 
not t rue 

Approach: 

Pl n C 

CL(A) 

AC 

; 

TC 

CL( 

L(A) 

B); ON(A,B); 

PUTON(A B) J AI 

CL(B) 

ACTC 

; 

L(B) a , 

Sequence: A B . d o n BB n- r A an 

The earlier achieved goal (ON(A,B)) does not now hold (its expected 

holding period is broken), but this is not noticed by STRIPS, and 

problem solving proceeds as shown below. 
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Problem Solved 

CL(A) 01 

The expected holding true 
--- period is broken by the ON(A,B) 

achievement of CL(B) not true 
CL(B) 

CL(B) true 
not true 

ON(B,C)- 
not true 

CL (C) ---10- 
true 

Approach 
Continued... CL(C); ON(B,C); CL(A); CL(B); ON(A,B) 

Plan sequence PUTON(B,C) 

Continued... 1T B A C 

PUTON(A,B) 
A 

C 

So, STRIPS produces the longer than necessary solution:- 

ACTCL(A), PUTON(A,B), ACTCL(B), PUTON(B,C), PUTON(A,B). 

Attempting the initial goals in the opposite order would make the final 

solution found longer still, though if the interactions in the first 

ordering produced a world situation in which the interacted 

goals could subsequently not be achieved, this would be attempted on 

failure backup. STRIPS is incapable of producing a shorter plan for 

this problem. 

HACKER has a mechanism, called protection, which remembers 

achieved goals and looks out for actions which violate them It would 

notice that the previously achieved goal (ON(A,B)) ceased to hold (as a 

protection violation) and would try to reverse the order of the top 

level goals (to ON(B,C)&ON(A,B)) at that time. However, another 

protection violation with the reversed approach will direct the HACKER 

planner to allow the protection to be violated, and the result will be 

the same as for STRIPS in this example. 



40 

The search space should have included an approach as shown 

below. This approach is an ordering not allowed by reversals only 

within the hierarchic levels of the search tree. It would have led to a 

solution plan:- 

ACTCL(A), PUTON(B,C), PUTON(A,B). 

NOE-2 z \o c- CL(A), a pV'eccAAi-t ors a OrJ(/, g), / 1S V0 \0 e'FoS2 alnb& e 0,04 ` , o N 3 C 

Initial Situation Problem Solved 

CL(A) 
not true) 

ON B)-- 1 A ( , 

L(B) 

not true 
CL(B)--Y 
true 

true 
ON(B,C)- 
not true 

CL(C) 

true 

Anproach: CL(B); CL 

Plan 

(C 

C 

) ; CL(A); 

ACTCL(A) 

ON(B,C); CL(B) 

PUTON(B,C) 

; 

B 

ON(A,B) 

PUTON(A,B) 
A 
B 

Sequence: A B A C C 

STRIPS, by re-achieving the ON(A,B) goal, can solve this problem with 

a longer than necessary plan because the world situation produced 

after interaction is such that the goals can still be achieved. The 

Keys and Boxes problem has interactions which would preclude a 

STRIPS-like problem solver from finding any solution. 
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4.3 Using goal interactions to suggest new approaches to a problem -------------------------------------------------------------- 

Current means-end analysis problem solvers are not capable of 

solving problems which have certain kinds of goal interaction. Also, 

with the exception of some systems at MIT (e.g., HACKER), they do not 

use interactions amongst goals to guide the search for a solution. I 

mentioned earlier that all interleavings of goals should have the 

potential of being considered. Generally, only very few of the possible 

interleavings need be considered. An assumption, such as is made by 

many existing problem solvers, that goals can be achieved in the order 

given without interaction (linearily) is a very powerful 

heuristic. My own work in problem solving is based upon the powerful 

heuristics used in STRIPS and other problem solvers, but I Rm anxious 

not to let these assumptions rule the types of problems which can be 

dealt with. Proven contradictions of these assumptions during problem 

solving can direct the search to consider appropriate interleavings of 

plan parts to remove interactions. 

The information gained from the discovery of an interaction can 

be used to suggest appropriate continuations. As an example, the 

interactions during attempts to solve the goals G1 & G2 linearily can lead 

us to the point in the diagram below, where the expected holding period 

for G1 is broken by the achievement of a subgoal G21 required for an 

action to achieve G2. 
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Initial Situation 

G11 

The expected holding 
G1 period is broken by the 

achievement of G21 
G12--4 

G21 

Approach: G11; G12; G1; G21; 

We have tried and found that G1 and G21 cannot both hold together 

when they have been achieved by some operator sequences in the order 

(G1, G21). We can either try an approach in which the goals at 

the higher (here the top) level are reversed to stop the conflicting 

goals holding periods overlapping altogether (by reversing G1 and G2) 

or try to achieve the conflicting goals in the opposite order. It 

is sufficient to try to achieve the conflicting goals in the other 

order only once. This can be done whilst still preserving linearity 

as far as possible by moving the precondition (G21) whose achievement 

made a previously achieved goal (G1) not hold, immediately in front of 

the goal as shown in the following diagram. We shall say that we PROMOTE 

the precondition. 

Initial Situation 

G11 

G1 

G12 

G21 

Approach: G11; G12; G21; G1; . . . . . . . . . 
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Moving it further back through the goals to be worked on would, of 

course, still enable the conflicting goals to be achieved in the 

reverse order but would, however, risk the possibility that other 

intermediate goals would conflict with the precondition being 

promoted. Following Sussman (1973) we will sometimes refer to the 

promoted goal as a "setup" goal. Note that the promoted precondition 

(G21) may interact with earlier goals and may need to be shifted again 

due to different interactions. Subgoals intermediate between G2 and G21 

if they exist may need to be promoted also. 

The details of the way in which information from such a goal 

interaction is extracted and used to suggest new approaches to a problem 

will be discussed in the next section, as will other goal interactions 

from which information can be extracted to guide the search for a 

solution. 
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5 INTERPLANT THE PLAN GENERATOR 

cr\ 0\1S seck;oi L'50, W:\\ descz;\oe W hf Prob.m S o\v r, 

5,1 Aims and assumptions 

The plan generator is basically a STRIPS-like means-end 

analysis driven (or subgoaling) problem solver with the additional 

capability of dealing with interactions between goals. Problems are 

given to it by specifying an initial world situation, a goal 

situation, and a set of operators (or actions) which can be 

used to transform situations. INTERPLAN is required to find a 

linear, fully ordered sequence of operator applications which will 

transform the initial situation into a goal situation. It has been 

designed to produce a single solution to the problem (if one exists). 

It takes a suggested "approach" (usually the given order of a 

conjunct of individual goals) and tries to produce an operator 

sequence which is a concatenation of the operator sequences to 

solve the individual goals in the order specified in the approach. 

Checks are incorporated to ensure that each operator sequence does not 

delete the goal achieved by some earlier part. If a difficulty is 

encountered while pursuing the given approach, alternative approaches 

based upon information gathered from the nature of the difficulty 

itself, are suggested by INTERPLAN. INTERPLAN tries to solve the 

problem by showing that one such approach is valid. If the initial 
approach is valid, INTERPLAN will merely try to find and check 

appropriate operator sequences which will satisfy the individual 

goals, no new approaches being suggested. 
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During problem solving INTERPLAN makes the following assumptions: 

(a) a conjunction of individual goals can be solved by tackling the 

goals in some order individually. 

(b) a goal once solved must remain true until the other goals in the 

conjunct are solved. 

(c) in the absence of other ordering information, the given order of 

goals is a reasonable first order to try. INTERPLAN is, however, 

capable of trying other orderings in those cases where it is proven 

to be of possible use to do so (e.g., on Protection Violation 

discoveries). 

(d) to achieve a given goal, only those operators which ADD the goal 

directly are relevant. That is, only those operators in which the 

goal appears on the operators ADD list. 

(e) A goal containing variables is considered solved if it has any 

true instance in the required situation. No attempt is made to 

achieve other non-true instances in this case. This is an important 

restriction on the search space. However, section 5.7.3 mentions 

how this assumption may be relaxed if needed. 

(f) Normally, the preconditions for some operator which will achieve a 

goal can be made true immediately before the goal they are for is to 

be made true. INTERPLAN is, however, capable of relaxing this 

assumption in those cases where it is proved to be of possible use 

to do so (e.g., on Protection Violation discoveries). Then, "setup" 
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goals can be inserted into the approach. 

(g) changes to the world only occur through applications of the 

operators given to the system. 

The system separates the search across the space of world 

situations (regarded as a graph whose nodes are situations and whose 

arcs are operator applications) from the question answering about a 

particular situation. INTERPLAN is an operational program written in 

POP-2 (Burstall, Collins and Popplestone, 1971). The HBASE (Barrow, 

1975) data base system is used to store situations (as CONTEXTS) and the 

facts known about each particular situation (as assertions). There are 

special INTERPLAN data structures and processes (to be described later 

in this chapter) which control the search across the space of world 

situations. 

Program identifiers and syntax will be introduced and used 

along with the description below since this chapter is also intended 

to serve as documentation of the INTERPLAN program. 
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5.2 Specification of a problem 

The plan generation system is given a task by specifying: 

(a) An initial situation specified by a set of assertions. 

E.g., for the 3 block problem initial situation 

ASSERT <<ON C A>> 
<<CL C>> 
<<CL B5.> 

The brackets << ... > indicate an HBASE pattern (stored as a POP-2 

strip). Patterns may be nested. ASSERT takes a list of patterns 

and indicates that they are true in the,current HBASE context 

(CUCTXT) which is taken to be the initial situation by INTERPLAN. 

(b) Descriptions of the actions which can transform situations. 

These are basically specified similarily to STRIPS operator schemas 

(whose instances are operators) with a list of facts to be DELETED 

from a situation and a list of facts to be ADDED to a situation to 

alter it. Also specified (as PRECONDITIONS) are those facts which 

must hold in a situation for the operator to be applicable. 

The ADD list of an operator schema is used to determine whether 

it is relevant to achieving some goal (i.e., whether it ADDS a 

statement required by the goal). However, an operator schema may make 

changes to a situation other than those specified in the ADD/DELETE 

lists since the system allows any function (the OPSCHFN) to be 

applied when an operator is used to transform a situation (this 

can be thought of as providing CONNIVER-like IFADD Rnd IFREM method 

facilities - McDermott and Sussman, 1972). So, effects difficult to 
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express assertionally or requiring testing of the situation itself 
can be made. However, these effects cannot be used to determine 

whether the operator schema is relevant. 

An operator is applied to a situation by 

i) notionally making a copy of all facts true in the HBASE 

context representing the old situation, 

eac1n 

ii) deleting all patterns from this which match DELETE list 
entries, 

iii) adding all ADD list entries, and then 

iv) running the operators OPSCHFN. 

An operator schema has further components mainly used by the 

system itself, but some allow heuristic knowledge of a particular 

domain to be incorporated. These will be mentioned in 

appropriate places throughout the text, and are given in full in 

appendix I,1. 

A macro, OPSCHEMA, is available to construct simple operator 

schemas. Assignments can then be made to the empty components if 
more complex operator schemas are required, that is, with functions 

which cause side-effects, or with heuristic knowledge. 

Thus for block stacking:- 



49 

OPSCHEMA <<ACTCL *$*X>> *$*X is a variable local to this OPSCHEMA 
ADD <<CL *$*X>> 
DELETE no deletions 
PRECONDS no preconditions 
VARS X all local variables must be named 

ENDSCHEMA -> Si; save OPSCHEMA in POP-2 variable S1. 

OPSCHEMA <<PUTON *$*X *$*Y» 
ADD <<ON *$*X *$*Y>> 
DELETE <<CL *$*Y>> 
PRECONDS <<CL *$*X>> <<CL *$*Y>> 
VARS X Y 

ENDSCHEMA -> S2; 

There are further effects of these operator schemas as specified 

in section 4.2. These effects are difficult to express merely in 

ADD and DELETE lists (see Fikes, Hart and Nilsson, 1972a). They can 

be written as functions in POP-2 which use HBASE primitives to 

search, add to and delete from the current context (CUCTXT). See 

section 6 for a listing of these functions. 

Calling the functions CLFN and ONFN then 

CLFN -> OPSCHFN(S1); 
ONFN -> OPSCHFN(S2); 

(c) The present system also requires the user to state which operators 

can be used to achieve patterns. This information is kept as an 

association list of patterns and a list of relevant operator schemas 

in a global program identifier, ACHIEVES. 

For example, in block stacking: 

[% <<CL == >> , [% S1 %] , 

<<ON ,_ == >> , [% S2 %,] %] -> ACHIEVES; 

That is, the user should take each item in the ADD list of each 

operator schema, replace all variables by == (a pattern which 

matches "anything" in HBASE), And group the corresponding schema 

with any others which can ADD the same pattern. This list could be 

generated automatically. 
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All ADD list entries for all operator schemas need not be put 

on the ACHIEVES list. The "primary additions" of STRIPS can then 

be modelled (see Fikes, Hrrt and NilsFon, 1972b). For instance, a 

<<PUSHBOX BOX PLACE ,,> operator may add two facts <<AT BOX PLACE>> 

and <<AT ROBOT PLACE>>. We may only want to consider using 

PUSHBOX to achieve <<AT BOX PLACE'> goals and never merely to move 

the ROBOT. We could then omit the PUSHBOX operator from the ACHIEVES 

List associated with <<AT ROBOT -_ >> facts. 

(d) A specification of a goal situation by giving the statements which 

are all required to be true in a goal situation. 

For example for the 3 block problem: 

GOAL <<ON A B>> <<ON B C>>; 

Variables are allowed in goal specifications. 
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5.3 Ticklists 

The basic data structure used by the system is a TICKLIST. 

See appendix 1.2 for its components. It forms the nodes of the goal 

control tree which INTERPLAN constructs. Basically, a ticklist is a 

2-dimensional array which has a column for each of a set of goals which 

are all required to be true together in some situation. The root node 

of the goal control tree for the goal of the 3 block problem would 

consist of a ticklist with two columns headed <<ON A B>> and <<ON B C>>. 

I will refer to the set of goals represented by the columns of a 

ticklist as the TICKLIST HEADING. Rows of the array represent 

situations in which it is hoped that all the goals will be true. 

We thus start problem solving with a ticklist whose heading 

consists of the individual statements specifying the goal situation 

and whose single row represents the initial situation. This is shown 

below for the 3 block problem. 

<<ON A B>> <<ON B C>> 

Initial 
Situation 

C 

A 

To fill in a ticklist, we scan the last row (in the example 

above there is only one row initially) from left to right and for 

eo.ch Co\u A o,c< ;-f- lne Coa1 \ ocX n9 is true in the situation 

of the last row. We put a tick (./) if it is, or a cross (X) if it 
isn't, stopping whenever a cross is entered. If the whole conjunct 

of goals is true in the situation we get a complete 

row of ticks and have thus found a goal situation. However, if a 
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column has a cross then this goal has to be achieved in some situation. 

This occurs initially in the 3 block problem where it is found that the 

first column has a cross entry (see diagram below). 

<<ONAB> <<ON B C>> 

Initial 
Situation 

C 

A 
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5.4 INTERPLAN's search space 

The space which can be potentially searched by INTERPLAN 

consists of all those approaches which can be obtained by using means-end 

analysis on all given goals and the preconditions of actions to achieve 

those goals (and so on for actions to achieve those preconditions, etc.) 

in any order, so long as the preconditions for an action are achieved 

before its application. For example, given two goals G1 and G2, there 

is an action Al relevant to achieving G1 and an action A2 relevant to 

achieving G2. Al has precondition G11 and A2 precondition G21. Both 

preconditions can be achieved by actions which have no preconditions. 

The potential search space contains the approaches obtained by trying to 

achieve the goals in any of the following orders. 

G11 G1 G21 G2 

G21 G2 G11 G1 

G11 G21 G1 G2 

G11 G21 G2 G1 

G21 G11 G1 G2 

G21 G11 G2 G1 

A problem solver which makes and adheres to the linear assumption 

would only have to consider the first two of the above six approaches 

(with a corresponding decrease in the range of problems which could be 

tackled). Simple schemes for considering alternative approaches when 

a failure occurs, such as backtracking, can thus be used with such 

systems. However, it would be very inefficient to represent the extended 

search space to some problem solver and expect the system to 

select a valid approach from this space using a simple backtrack 

algorithm if failures occurred. 
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Since there may be no way to achieve some goals and because the 

achievement of some goals may not in any way effect the achievement of 

others (no interactions), several of the above approaches could be 

equivalent. An initial approach is suggested to INTERPLAN by 

giving an ordering on the top level goals, say G1 and then G2. Since 

the preconditions are considered in the order in which they are found in 

the PRECONDS list of each relevant CPSCHEMA, the ordering on top level 
ced\oced. 

goals will specify c \ombe of the possible approaches. Tie 
ceJvckon w;11 dePenAon 
whether there is one or more relevant operators for each top level 

goal. OCen, v\o,,\y of the approaches in the potential search space are 

initially locked away from consideration by INTERPLAN. 

If this initial approach is successful, no further 

approaches are made available to INTERPLAN. However if 
some interaction in the initial approach occurs, this may 

indicate other orderings of the goals (other approaches) which may 

remove the interaction. Such specific approaches are then indicated as 

open for consideration (it depends upon the particular OR-CHOICE 

mechanism being used when, and if, they are actually considered). The 

information gleaned from an interaction thus provides "keys" to unlock 

specific branches along the potential search space. Tightly restricting 

the possible approaches in this way, and only allowing other approaches 

to be tried if they are indicated as being probably useful in the light 

of the interactions discovered, can significantly reduce the part of the 

potential search space actually considered in many problems. 
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5.5 Ticklist levels - the goal control tree 

When a goal has to be achieved, for each relevant operator (i.e., 

instance of an operator schema) a subgoal is set up of trying to find a 

situation in which all the preconditions for the operator hold. A goal 

control tree of the BACKUP type (described in section 2.5.4) is grown 

by making new ticklists on a LEVEL lower to that containing the goal 

to be achieved. These have as column headings the preconditions of each 

operator, and thus represent subproblems of the higher LEVEL. They are 

connected to the upper level ticklist by arcs representing the 

particular instantiation of each relevant operator schema. For 

example, to continue the block stacking example:- 

<<ON A B>-> <<ON B C>> 

Initial 

Situation 
Crl 

A 

7<<PUTON A B» is only relevant 
operator. It is derived from the 
schema <<PUTON *$*x *$*y>>. 

<<CL A>> <<CL B>> 

Initial 
Situation 

C 

A [B] 

Branching would occur if more operators were 
relevant. 

All ticklists at the tips of the goal control tree being 

constructed are suitable for further filling in, etc. Therefore, they 

are held in a list of choices which can be heuristically ordered. See 

appendix III for details of the scheme used to deal with choice points 

in the current implementation of INTERPLAN. The choice list is a 
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list of pairs, each of which consists of a heuristic value and a 

pointer to the ticklist on the tip of 

the goal control tree (though 2 special entries are allowed on the 

choices lists - see sections 5.7.1 and 5.7.3). The choice list is 

ordered so that pairs with a lower heuristic value are nearer the head 

of the list and are considered "better" choices. 

ADDCHOICE F <heuristic value>, <pointer to ticklist> _> ( ); 

splices a pair into the appropriate place in the list of choices. 

MAKECHOICE removes the first (lowest value) pair from the choice 

list and makes the ticklist from the pair, the one for consideration 

next by INTERPLAN (by assigning the ticklist to GLOBTICK). It deals 

with the special forms allowed in the choice lists. 
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5.6 Protection 

When a goal has to be achieved after other goals have already 

been achieved, there is a mechanism for ensuring that the previously 

achieved goals are not deleted. We PROTECT the previously achieved 

goals by adding them to the ticklist heading of all LEVELS of the goal 

control tree which are grown below the LEVEL where the goals were 

achieved. This is represented diagrammatically below. Global goals 

(whose truth value is not changeable - see appendix I) are not 

protected in this way. 

G1 G22 

C1 / 
G1 G21 G22 

In some situation, the protected goals must be true 

simultaneously with all the other goals in the ticklist heading 

(preconditions for some operator) for that situation 

to be one in which the operator is applicable (in the 

context of the previously achieved goals). It should become clear later 

how information in the protected columns of a ticklist is used by the 

system. For the moment, however, it will be useful to know that a 

system using the protection facility will look for any VIOLATION of the 

protection on a fact (PROTECTION VIOLATION). This is an implementation 

of a feature in the HACKER planning system (Sussman, 1973). 



58 

5.7 Classifiers and Editors 

CENTER THE SYSTEM WITH FIRST 
TICKLIST AS CURRENT TICKLIST 
(GLOBTICK). THE HEADING OF 
THIS SPECIFIES THE GOAL. 

CLASSIFY THE CURRENT TICKLIST TO 
FIND AN APPROPRIATE EDITOR. 

V 

EDIT THE TREE OF TICKLISTS. 
POSSIBLY CHANGE THE CURRENT 
TICKLIST (GLOBTICK). 

The basic loop of the planning system is shown above. Many 

different problem solvers could be written within this framework. A 

system is specified as pairs of classifiers for a ticklist and an 

editor for the tree of ticklists. See appendix I for information 

available within a ticklist and the tree of ticklists for use by the 

classifiers and editors. The following sections describe the clas{ifiers 

and editors used to specify INTERPLAN. 

As will be seen later, the classifiers are defined to look at 

the patterns of ticks and crosses in a ticklist. These patterns provide 

a simple language in which difficulties during problem solving can be 

quickly identified (cf. the analysis of the teleological trace of the 

problem solver's actions necessary to find bug types in HACKER - 

Sussman, 1973). 
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5.7.1 

Classifier: No entries have been made in the last row of a ticklist or 

a tick appears in the last column of the last row of the 

ticklist and some other column on the row has no entry. 
Cs.e , '\ec'e_ -eM& AS . oa 1 - ,c iski can we ave A cvUer eO e 0 0.10 &se u see i cue 

Editor: (FILLIN) 

Scan from left to right along the last row and for any 

position not filled in, ask the question answerer whether 

the pattern heading the position is true in the situation 

of the last row. See appendix II for details of the 

Question answerer (QA). A call to QA may instantiate 

some variables local to the ticklist. If QA finds that a 

pattern has more than one true instance in the given 

situation the system asks the user if he would like to 

pre-order the instances (given in a list POSSLIST). It 

then hands back the first choice to FILLIN (which is thus 

used to set variables), but adds a special node to the 

choices list to be used to initialize the other choices. 

This special node is a STRIP of three items - see appendix 

II. 

Filling in continues either until all the row is filled in 

in which case we can SUCCBACKUP, or until a cross entry is 

is made, in which case we must ACHIEVELAST the appropriate 

goal (unless it is a global goal - see appendix I.1). 
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5.7.2 

Classifier: (ALLTICKS) 

A complete row of ticks exists in some row (or more 

generally, the ticklist heading is satisfied by some row 

representing a situation). 
(S e o.\\ ooa.\c Elms cks ace solvek 

Editor: (SUCCBACKUP) 

Backup successfully to next higher node (ticklist) in the 

goal control tree, applying the operator represented by 

the arc of the tree which is now applicable in the 

situation found. The new situation produced becomes a new 

row in the higher ticklist and in this row a tick is 

entered in the column of the goal the operator achieved. 

The operator used to produce the new situation is 

remembered by assigning its name to the VALUE of the item 

"SITN" in the new situation (see HBASE - Barrow, 1975). An 

example of the use of this editor is shown below. 

P1 

Cl 

C2 

P1 

C2 J 

P2 

X 

P3 

OPx 

Pxl Px2 

I 

after 
editing 

gives 

Cl 

C2 

C4 

P2 

X 

P3 

OPx applied to C3 gives situation C4. 

P1 

X. 
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5.7.3 

Classifier: A cross appears for some column in the last row of a 

ticklist (but exC1,)c c\o) 0)wQ 

cases in which there are ticks further right in the row 

too- see sec6' oc\ S.`1 4 case, 

is e ) 0. goo.\ r2rna,;ns _D be OCln,Pv-- `) 

Editor: (ACHIEVELAST) 

Operators which could add the pattern represented by the 

column with a cross to the world model in some situation 

are sought for. This is the recursive use of the 

means-end analysis technique. Before operators are found, 

a check is made to see if the achieve request would cause 

a LOOP. This is done by checking whether the achieve 

request already exists on the CURRACHIEVES list (see 

appendix 1.2) and if so, whether the situation the present 

request is for is the same as the one for the previous 

request. If so, a LOOP is reported and the LOOP editor 

called (see section 5.7.7). 

The editor finds all RELEVRnT oea c'c (i. e. , those which 

can ADD the sought-for pattern). A function 

OPSCHMODIFY E <opschema>, <search pattern> => <opschema>, 

is applied for each relevant operator when found. This 

normally returns the <opschema> unchanged, but can be used 

to change the order of preconditions etc. 
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The editor adds new choice points to the goal control tree 

corresponding to new successor nodes to the original 

ticklist for each relevant operator. The successor nodes 

are initialized when chosen from the choices list, where 

they are kept in a compact form, but notionally they exist 

after this editor has been applied. See section 5.6 on 

Protection for explanation of the symbols used in the 

example of the operation of this editor below (especially 

why the P1 protected goal is brought down through levels 

of the goal control tree). 

Cl 

P1 P2 

Cl 

Cl 

P1 

P1 

J 

P2 

Pyl 

If OPx and OPy are the only relevant operators. 
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Achieving goals which already have true instances 

Normally, if INTERPLAN discovers some goal which is needed, 

already is true at the time required, it makes no attempt to APPLY 

operators to ACHIEVE the goal. If the goal is fully instantiated 

(e.g., CL(B) ) this is alright as it can only have one possible 

instance and this is known to be true. If the goal was CL(x) and 

CL(B) was true, the goal would hold if the variable x was set to "B". 

However, another instance (e.g., CL(C) ) may be required to reach a 

solution. 

A switch (turned on by assigning "true" to the variable 

COMPLETE) has been provided in INTERPLAN so that goals which are not 

fully instantiated and which in some instances are true can be 

recognized and special extra choice points added to allow the non-true 

instances to be ACHIEVED if the already true instances prove not to be 

of use. 
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5.7.4 

Classifier: A cross on some row (NOT a protected entry) is followed by 

a tick in a later column. That is, the achievement of a 

goal has made false a goal which was true previously. 

Editor: (ALTERLASTORDER) 

An attempt is made to shuffle the pattern of the column 

which was ticked, before the pattern of the column with 

the cross. Checks are first made to ensure that the 

columns to be swopped have not been swopped previously or 

are now not allowed to be swopped (looking at the TREVS of 

the ticklist for the reference numbers of the patterns - 

see appendix I.2), or to see if no more reversals are allowed 

for this ticklist (TREVS is "NOREVERSE"). An example of 

the use of this editor is given below when the swap is 

allowed. The order of goals already achieved by some 

operator sequence is preserved by a shuffle, as this takes 

into account any interactions which occurred between these 

earlier goals. 

P1 P2 P3 

- 
P3 P1 P2 

Cl x after F U 
C2 

editing 

C3 
gives 
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Classifier: A cross in a PROTECTED column of some row is followed by 

a tick in a later column. ;S) a oecion 
Vlolo*ion \\os occJrCQA- 

Editor: (PROTECTVIOLATION) 

This is the editor which suggests an approach with 

reversed top level goals (at the level protection was 

placed upon the pattern which is now crossed - this is 

found by looking at the reference for the protected entry) 

or suggests an approach in which we promote the actual 

goal we were considering to the level at which protection 

was placed (see section 4.3). Before promoting a 

pattern, a check is made to see if the promotion would 

have altered the course of computation in the original 

case. That is, we see if the promoted pattern would 

already have been true at the point to which we wish to 

promote it. If it would have been, the promotion is 

attempted for the goal higher in the goal control tree 

for which the current goal was a subgoal. If the same 

applies to this we try higher still, unless the 
r 

protection level itself is reached in which case no 

promotion is made. 

If some promotion can be made, and goals higher in the 

goal control tree exist between the level we promoted 

from and the level at which protection was placed, we also 

try to suggest approaches in which these intermediate 

goals are promoted as above. 

An example of the use of this editor is given below. 
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C1 

C2 

C2 

C3 

P1 

J 

P1 

P21 holding period 
+ up until P2 achieved 

P2 

X 

P21 

a 
ed 

g 

P22 

fter 
iting 

ves 

P2 P1 

Il x C1 

See appendix 1.2 for details of how a 
goal with a restricted holding period 
is represented to INTERPLAN. 

Restrictions on instances of a promoted goal 
-------------------------------------------- 

The test for rejecting promoted goals on the basis 

of their truth at the point required was intended to cut out those 

approaches which would be exactly the same as the approach before a 

protection violation. For example, in the 3 block problem: 

ON(A,B) Protection Violation 

CL(B) oo- ON(B,C);01 

The above protection violation suggests two approaches, one of which is 
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ON (A, B) 

CL(B) T ON(B, C) --- l 

However, this approach is disallowed as CL(B) is true at the point 

required (initial situation in the problem) and thus the approach would 

be exactly as in the case when the protection violation was 

discovered. 

When the promoted goal has a variable (or variables) in it, as 

can often happen during promotions attempted by the LOOP editor 

(section 5.7.7), but is true in some particular instance, we should not 

reject the promoted goal outright, but should modify it to exclude the 

true instance (or instances). For example, in the "swap the value of 

two registers" example (section 8.2): 

(REG 1 IS C2)- 

(REG == IS Cl) 0.-(REG 2 IS Cl) 

4 

should be allowed as an approach, even though (REG 2 IS Cl) is true in 

the initial situation. However, the promoted goal should exclude this 

instance to ensure that the protection violation which this approach 

is being suggested to avoid is not encountered again. 
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A scheme has been experimented with to provide variable 

restrictions using HBASE actors (Barrow, 1975). This scheme is outlined 

in appendix IV. If such actor restrictions on variables were 

allowed the goal to be promoted for the example above could be written: 

(REG <:NON 1:> IS Cl). 

No promotions for an already promoted goal 

All goals in a ticklist heading are given a reference number as 

described in Appendix 1.2. When a "setup" goal is promoted it is 

given a reference number: 

- (reference number of the goal it is a precondition of). 

This simple referencing scheme disallows promotions for a goal which 

is itself a promoted goal. o- Cesrric-; C, n 
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Classifier: A cross appears in some column for which there is no means 

to achieve the relevant pattern (or no further means if 
some have been tried). 
(S. e 

) 
no VAC-_10n,& co,n b2 -oon& c4- acevno an uncue goal, 

Editor: (FAILBACKUP) 

Try to alter the order of the pattern which has a cross in 

its column with some earlier pattern in the ticklist 

heading (using ALTERPREV). The earlier goal's achievement 

may have rendered the goal on which we failed unsolvable 

(e.g., by wrong choice of a variable instance), in reverse 

order they may both be solvable. The variables of the 

ticklist are reset using INITVARS (see appendix 1.2). 

If the reversal cannot be made with any other pattern 

earlier in the ticklist heading (e.g., reversals already 

tried or this is the first pattern we are trying to 

achieve) then FAILBACKUP to the parent ticklist of the 

current one. This editor is also used when other editors 

have failed to do their job (e.g., cannot ALTERLASTORDER). 

This backup process is mainly intended to clear the 

problem solvers goal control tree of useless approaches 

after a failure has occurred. As soon as some point is 

backed-up to at which there is a way to attempt to 

achieve the outstanding goal, backup stops and the 

OR-CHOICE mechanism is used to select from ANY of the 

outstanding choice points (which include the one just 

backed-up to). 
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The planning system may try to pursue an approach which causes 

it to loop in some way (i.e., left to itself, it may never terminate). 

The loop can be treated as a failure, and information extracted from the 

failure to suggest new problem approaches to try to avoid the loop. 

However, the loop must be detectable to be able to do this. At present 

INTERPLAN detects two types of loops. 

(a) It prevents goal reversals which have already been tried from being 

suggested again as approaches to circumvent goal interactions (see 

section 5.7.4). 

(b) During subgoaling, a list of all achieve requests which we are 

planning to satisfy (along one path through the goal control tree) 

are kept, together with the situation we required each one to be 

achieved in. This list is kept in the CURRACHIEVES of a level (see 

appendix 1.2). If, to satisfy some lower subgoal, an achieve request 

is issued which is the same as some higher request and the situation 

both are required in is the same, a loop is reported (as mentioned 

in the editor in section 5.7.3). 

However, for instance, the generation of similar non-linear approaches 

(ones with a promoted subgoal) is not detected in INTERPLAN as it is 

presently implemented. If a loop is not detected, as well as not 

providing information on which to suggest possibly useful approaches 

to a problem, redundancy can occur in the section of the search space 

looked at by the planning system (the same branch may be tried more than 

once). With certain OR-CHOICE mechanisms (especially those which are 

mainly depth-first) it would then be possible to loop without producing 

any solution. 



The full loop editor 

If a looping achieve request is detected in some situation, we 

have available: 

(a) the pattern causing the loop (lower occurrence) 

(b) the ticklist this was required from (the lower ticklist) 
(c) the pattern on CURRACHIEVES we detected loop on (the upper 

occurrence) 

(d) the ticklist this was required from (the upper ticklist). 
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The editor is intended to modify the approach in the heading of 

the upper ticklist to try to avoid the loop. The approach being 

considered when a loop is detected can be typified in the holding period 

diagram below: 

G1 

G2' ow G21---G2--r 
LOOP--- J 

Where G2 is the looping achieve request. It should be noted that the 

goals may contain variables, and thus the two occurrences of the loop 

pattern may not be IDENTICAL, but one will be an instance of the other - 

hence the use of G2' for the second (lower) occurrence. 

We may be able to find a successful approach if some subgoal in 

the loop (above, G2, G21 and G2') had already been true at the point 

required and need not have been achieved then. We have tried to 

achieve G2, G21 and G2' after a goal G1 has been solved (G1 was thus 

protected) and found that a loop is generated with some operator 
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sequence. As in the case of a protection violation, two courses are 

available to us. We could try to reorder goals at the upperticklist 

containing the loop pattern. Removing the need to keep G1 true at that 

point may enable G2 to be solved without looping (say using facts in the 

initial situation altered when G1 was solved first. This occurs in the 

(REG 1 IS C2) & (REG 3 IS Cl) example described in a note to the 

section on "swap the value of 2 registers" (section 8.2). 

G1----1 

G2 10 

The alternative is to suggest some "setup" goal which would aid in the 

solution of G2. Any goal which would break the loop would be 

appropriate. For example, 

G2 . G2 - 
Besides the normal test of checking the promoted goal would change the 

actual approach being tried (by seeing if it was already true at the 

time required - but see NOTE), a further check must be made in those 

cases where the subgoal being promoted is the lower occurrence of the 

loop pattern (i.e., G2'). If G2' was IDENTICAL to G2, no promotion 

NOTE It can often happen that the goals to be promoted during loop 
correction may contain variables, and in some instances these may 
already be true at the point required. See note on "restrictions 
on the instances of a promoted goal" for how this can be handled 
(section 5.7.5). 
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should be made since 

G1 

G2 G2 

is equivalent to 

GI --41 

G2 -- i 
The approach specifies the order in which the goals can be achieved and 

then kept true for the period required, the second G2 in the first 

holding period diagram shown is therefore superfluous. 

In keeping with the above, if the lower occurrence of the loop 

pattern (G2') is more general than the upper occurrence (G2 is an 

instance of G2'), we should disallow the promoted goal from taking an 

instance such that it becomes IDENTICAL to the upper occurrence (i.e., 

G2' should be modified to exclude G2). If this were not done, once 

again an approach equivalent to G2 followed by G1 would result. 

This problem occurs in the "swap the values of 2 registers" 

example, where the upper loop occurrence is (REG 2 IS Cl) and the 

lower loop occurrence is (REG == IS Cl). We should modify the goal to 

be promoted to exclude the number of the register being 2. If actor 

restrictions on variables were allowed (see appendix IV), this could be 

done by: <<REG <:NON 2:> IS C1>>. 
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The loop editor in the current implementation of INTERPLAN 

The loop editor in the current implementation reports a loop to 

the user by printing on the console: 

LOOP ON <lower occurrence of the loop pattern> 

If a variable LOOPEDIT is set true it also prints: 

WHAT SHALL I PROMOTE : 

Left to itself the editor would attempt to promote subgoals being 

considered when the loop occurred. These would include the lower loop 

occurrence. If this contains variables and some instance of the pattern 

is true at the point Lo which promotion is being attempted, no 

promotion is made. To alleviate the defect of not having restriction 

facilities on variables at present, the editor can ask the user to 

suggest an instance of a pattern to try to promote on loop detection. 

The user may go into POP-2 READY (interrupt) mode and ask such 

questions as what instances of the loop pattern are true at the point to 

which promotion will be attempted, or ask what the upper occurrence of 

the loop pattern is. The trace of the problem also provides 

information about useful instances to suggest for promotion. 

The user may either type "FALSE" to indicate he does not think 

that correcting the loop would help, or he may suggest a goal for 

promotion. Normal checks for the usefulness of the suggested approaches 

are performed by the system. 

An example of the use of this editor is given in the "swap the 

J 

values of 2 registers" problem in section 8.2. 
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5.8 Inclusion of heuristic 9uiAonce information in INTERPLAN 

The points in the current implementation of INTERPLAN at which 

domain-dependent knowledge can be incorporated are summarized below. 

1. The ordering of preconditions in each operator schema and the 

ordering of the individual goals in the problem to be solved is 

important. This ordering is used by INTERPLAN as the approach to be 

considered first in each case. 

2. The choice of which operators are considered "relevant" for 

achieving goals is important. Normally all ADD list entries of every 

operator should appear on the ACHIEVES list together with all those 

operators which can achieve them. If there is a heuristic restriction 

on the choice of operators for some goals this can be reflected in the 

ACHIEVES list. This can be used to give the same effect as the "primary 

additions" of. STRIPS (Fikes, Hart and Nilsson, 1972b). See section 

5.2(c) for more detail. 

3. If there is more than one operator for any goal entry on ACHIEVES 

the operators can be ordered, the first being tried before others 

with the standard OR-CHOICE mechanism. 

4. The OR-CHOICES can be made in a different order to the standard 

scheme by the resetting of the OR-CHOICE control parameters (see 

appendix III). This may be useful for example if we wish to 

incorporate knowledge about the probabilities of interactions in the 

problem domain. 
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5. If,)predicates can be put into hierarchies for achievement (see 

Siklossy and Dreussi, 1973) we can specify that reversals between 

members of the hierarchies should not be attempted by assigning to the 

SCHREVS of the operator schemas. Known hierarchies of predicates will 
enable us to order goals as mentioned in 1 above. Heuristic knowledge 

that certain orderings are equivalent may also be incorporated by 

assignment to SCHREVS. 

"NOREVERSE" - SCHREVS(<opschema>); stops any reordering attempt. 

[[1.2x[1.3]] -> SCHREVS(<opschema>); stops reversals between the 
1st and 2nd or the 1st and 3rd preconditions. 

6. A function- 

OPSCHMODIFY £ <opschema>, <achieve pattern> => <opschema>; 

is provided. Initially this is defined to merely return the <opschema> 

unchanged. However, it may be redefined to allow OPSCHEMAs to be 

modified in the light of the environment in which they are to be used. 

Information can be used from the <achieve pattern- or from the ticklist 

this <achieve pattern> is being requested from (GLOBTICK). Schemes 

which reorder preconditions or set certain variables may be implemented. 

In particular it is possible to construct a maze-running algorithm for 

transfering a robot between rooms in a STRIPS-like world by assigning to 

certain variables in appropriate OPSCHEMAs when they are chosen (this 

was done for the LAWALY superworld examples run on INTERPLAN). 

Operator schema withdrawal 

This process allows a high degree of flexibility. For example, 

consider the Keys and Boxes problem where the operator GOTO(y) has 

different outcomes and applicability conditions depending on 
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whether y--OUTSIDE or not, and on whether anything is HELD (see section 

11.1.2). We could cause OPSCHMODIFY to select appropriate ADDS. DELETES 

and PRECONDs from some data structure put in the ACHIEVES list to 

produce an OPSCHEMA in the light of the goal pattern required. This 

would alleviate the need to write out explicitly beforehand an 

operator schema with conditionals in its definition into the appropriate 

condition free OPSCHEMA structures. 

7. A function 

VALIDATE E <ticklist heading> => <ticklist heading*- I "INVALID"; 

is provided. Initially this is defined to return the <ticklist 

heading> unchanged. However, it may be redefined to allow domain- 

dependent knowledge of what conjuncts of goals are invalid to be used to 

check the proposed heading. It may also be written to remove repeat 

occurrences of goals etc. If an invalid ticklist heading is discovered 

"INVALID" should be returned, otherwise the valid <ticklist heading> 

(possibly modified) should be returned. Since the initial goal and all 

precondition lists of OPSCHEMAs are validated beforehand, the only way 

in which a heading can become invalid is if protected goals are added 

to a set of already valid goals or if a promoted entry is added to a set 

of already valid goals. If a set of protected goals are being added to 

a heading, the global variable NPROTECT holds the number added (they are 

at the front of the heading). This information can be used to cut down 

the amount of checking necessary to ensure validity. A useful example 

of how this facility may be used is decribed below. 
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Full expansion of search tree branches doomed to fail 

INTERPLAN tries to solve a problem by TRYING OUT the problem 

approach it is provided with initially (the given order of goals), It 
solves goals in some sequence checking that previously achieved goals 

remain true. In many cases the system will try to achieve a goal which 

from the outset (if we had the information available) we could say 

would fail always because of the context we are trying to achieve it in. 

Such a problem occurs during block stacking in trying to achieve CL(B) 

when ON(A,B) is already true and has to be kept true. A great deal of 

effort may be wasted in trying different ways of achieving CL(B) when 

none can work if ON(A,B) must be kept true. WARPLAN (Wrrren, 1974) uses 

information about what conjunctions of facts cannot be true together to 

reject certain branches of its search tree. In this case an 

instruction such as IMPOSS(CL(y)&ON(x,y)) would be given to the 

planning system. A similar idea has been proposed for STRIPS (Fikes, 

Hart and Nilsson, 1972p, ',age 419). The same process could be 

incorporated into INTERPLAN using the VALIDATE ticklist heading 

facility. Whenever a new ticklist was generated, the ticklist heading 

would be validated using IMPOSS( ... ) information to reject invalid 

headings. 

8. Any precondition of an OPSCHEMA can be preceeded by "G" to indicate 

that no means of achievement should be used upon it. This is intended 

to gain efficiency in handling global facts which are not altered by 

the robots actions (e. g. , <<TYPE B1 BOX»). However, we can use the 

same facility to indicate preconditions which must be true but for which 

we do not wish actions to be applied to achieve them (even though such 

actions may exist in ACHIEVES). 
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9. Whenever the QA-system is asked a question to which it can return 

more than one reply (each reply causes a different choice point for 

planning) the system asks the user if he would like to alter the list 
of possibilities. 

** MULTIPLE INSTANCES is printed on the console and the system goes 

into POP-2 READY (interrupt) mode. The instances are in the list 
POSSLIST which can then be examined or altered before continuing. 

Possibilities can be totally removed if required, or others added. This 

provides a usQcv\ Fac 1y Eo erNG\e o user 

solving. 

to guide problem 

10. When a loop is reported to the system, INTERPLAN indicates what the 

cause of the loop was by printing 

LOOP ON <loop pattern>. 

If a variable LOOPEDIT is set true, it also prints 

WHAT SHALL I PROMOTE 

The user may examine the state of the search and ask questions. The 

user is then expected to indicate whether any attempt should be made to 

correct the loop. If no attempt is to be made, type FALSE (or 0), 

otherwise the user can indicate what goal may be worth promoting to give 

a new approach. The goal will usually be an instance of the loop 

pattern (see section on the full loop editor - section 5.7.7). 
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5.9 The Approach - successful Ticklist headings ------------------------------------------- 

The ticklist heading specifies the "approach" (the sequence 

chosen to attempt to achieve a set of goals) to be taken by the planning 

system. Any unforeseen difficulties in using this approach lead to it 
being discontinued, failure information being extracted as appropriate, 

and, possibly, new approaches being suggested. New approaches may 

involve reorderings of the original goals or the suggestion of certain 

"setup" goals in appropriate places. A successful approach fully 

specifies the order in which goals can be achieved and kept true 

without interaction. The aim of INTERPLAN is to discover such a 

successful approach. Successful ticklist headings contain information 

over which learning schemes may be devised. 

Debugging the Approach 
---------------------- 

The continuous cycle of classifying the "bug" in a current 

ticklist and editing the tree of ticklists in the light of this can be 

seen as debugging the initial approach (i.e., the original goal order) 

to one which will in fact lead to the goals achievement. Bugs are 

detected by looking at the patterns of ticks and crosses in a ticklist, 

and alterations (edits) to the tree of ticklists (the goal control tree) 

are made to account for these bugs. The method used here on declarative 

data representations has much in common with that used in HACKER 

(Sussman, 1973) on more procedural representations. \ARQIKGR -\A k 
tJERParJ cY-e exaMV`es 04 S,)re.V\s w cl VP OA") c-'ive 
Use o 1e Ft c\ , on 0.\0.bQ f oN, o. F0. \e . 
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6 HOW INTERPLAN SOLVES THE 3 BLOCK PROBLEM 
---------------------------------------- 

The 3 block problem was described in section 4.2, and was used 

to illustrate the problem specification to INTERPLAN in section 5.2. A 

listing of the problem specification is given below to bring this 

information together. OPSCHFN functions are included. The purpose of 

the functions CLFN and ONFN is explained in section 5.2 (b). 

-------------------------------------------------------------------- 
COMMENT" BLOCK STACKING PROBLEM FOR INTERPLAN'; 
VARS S1 S2; 

FUNCTION CLFN; VARS B1 B2; 
INSTACT(*$*X) -> B1 

LOOPIF GETITEM(<<ON $>B2 $$B1>>,TRUE) THEN 
1 -> VALUE(<<CL $$B2,>>); 
0 -> VALUE(<<ON $$B2 $$B1'>); B2 -> B1; CLOSE 

END; 

FUNCTION ONFN; VARS B1 B2; 
INSTACT(*$*X) -> B1; INSTACT(*$*Y) -> B2; 
IF GETITEM(<<ON $$B1 <:ET <:NON $$B2:> $>B2:> >>,TRUE) 
THEN 1 -> VALUE(<<CL $$B2-->); 

0 -> VALUE(<<ON $$B1 $$B2>>) CLOSE- 
END ; 

OPSCHEMA <<ACTCL *$*X>> 
ADD <<CL *$*X>> 
DELETE 
PRECONDS 

VARS X 
ENDSCHEMA -> S1; 

OPSCHEMA <<PUTON *$*X *$*Y>> 
ADD <<ON *$*x *$*Y>> 
DELETE <<CL *$*Y>> 
PRECONDS <<CL *$*X» <<CL *$*Y>> 
VARS X Y 

ENDSCHEMA -> S2; 

CLFN -> OPSCHFN(S1); 
ONFN -> OPSCHFN(S2); 

[% <<CL = > , [%S1%], 
<<ON >> , t%S2%] %] -> ACHIEVES; 

ASSERT <<ON C A>> 
<<CL C>> 
<<CL B>>; 
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No special syntax is provided for their construction in the present 

program. They use HBASE primitives, e.g., GETITEM, INSTACT, VALUE and 

the actors ET and NON (see Bprrow, 1975). Many interesting problems can 

be specified without the need of OPSCHFNs, e.g., the STRIPS robot world 

and the Keys and Boxes problem. In this case the OPSCHFNs are used to 

allow the operator schema's effects to be dependent on some condition 

of the situation it is applied to. HBASE contexts have reference 

numbers. The current context (CUCTXT) in which the 3 facts are asserted 

has reference number 1. This will be taken as the initial situation by 

INTERPLAN. A trace of INTERPLAN on the 3 block problem is given below. 

------------------------------------------------------------------------ 

: GOAL <<ON A B>> <<ON B C>>; 

ENTERING INTERPLAN WITH INITIAL SITUATION 1 

** ACHIEVE << ON A B >> IN 1 

** ACHIEVE << CL A >> IN 1 

** APPLY << ACTCL A >> TO 1 TO GIVE 2 . . . . . . . . . . note 1 

** APPLY << PUTON A B > TO 2 TO GIVE 3 
** ACHIEVE << ON B C >> IN 3 
** ACHIEVE << CL B >> IN 3 
** APPLY << ACTCL B >> TO 3 TO GIVE 4 
PROTECTION VIOLATION REORDER . . . . . . . . . . . . . . note 2 

** ACHIEVE << ON B C >> IN 1 

** APPLY << PUTON B C >> TO 1 TO GIVE 5 
** ACHIEVE << ON A B >> IN 5 

** ACHIEVE << CL A >> IN 5 

** APPLY << ACTCL A >> TO 5 TO GIVE 6 
PROTECTION VIOLATION PROMOTE . . . . . . . . . . . . . . note 3 

** ACHIEVE << CL A >> IN 1 

** APPLY << ACTCL A >> TO 1 TO GIVE 7 
** 

** 

** 

** 

ACHIEVE << ON B C >> IN 7 

APPLY << PUTON B C >> TO 7 TO GIVE 8 
ACHIEVE << ON A B >> IN 8 

APPLY << PUTON A B >> TO 8 TO GIVE 9 

** CPU TIME = 2.109 SECS 

NOW 

<< ACTCL A >> . . . . . . . . . . . . . . . . . . . . . . note 4 

<< PUTON B C >> 
<< PUTON A B >> 



Note 1 

2 is the reference number of the new context got by applying the 

operator with name <<ACTCL A>> to 1. 

Note 2 
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The tree of ticklists (the goal control tree) is as below. Please note 

that the individual ticklists expand downwards (new rows) only as needed. 

The index numbers indicate the order in which the tick and cross entries 

were made. 

ON(A,B) ON(B,C) 

1 A [B] 
`/ 

NB 3 C4 

/ V v 
X 

only PUTON(A,B) 
relevant 

CL(A) CL(B) 

2\/ 
1 AA B 

2 A B lcl 
3 / 

only ACTCL(A) 
relevant 

No preconditions 

only PUTON(B,C) 

CL(B) CL(C) 

only ACTCL(B) 
relevant 

No preconditions 

-------------------------------------------------------------------------- 

The protection violation occurs when we are taking an approach as 

Protected 

ON(A,B) 

J AI 

3 B 

lo 
4 A pQ x 

PROTECTION VIOLATION 
Attempt to achieve CL(B) 
made ON(A,B) false. 

relevant 

shown in the holding period diagram below. 
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Initial Situation 

ON(A, B)--1 

CL(B)---ON(B, C)1 

Approach: ON(A,B); CL(B); ON(B,C) 

So as indicated in section 4.3, the violation may be resolved by trying 

one of the approaches shown below. 

Initial Situation Problem Solved 

ON(A,B) 

ON (B, C) 

Approach: ON(B,C); ON(A,B) 

Initial Situation Problem Solved 

ON(A,B) 

CL(B) P. ON(B,C) 

Approach: CL(B); ON(A,B); ON(B,C) 

The latter cannot be used as CL(B) is already true initially and hence 
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this approach is no different to the original which caused the violation. 

So, problem solving proceeds with the first (and only) suggested approach 

shown above. "REORDER" is printed to signify that such an approach has 

been suggested. 

Note 3 

Again a protection violation occurs while persuing this approach. The 

tree of ticklists then is shown below. 

ON(B,C) ON(A,B) 

1 A ® 
x 

5 

v/ 

only PUTON(B,C) 
relevant 

CL(B) CL(C) 

C 

A ® 
t9 / i3 

ON (B, C) 

5 

6 

C 
A A 

A Ii 

16 

xckx 

PROTECTION VIOLATION 
Attempt to achieve CL(A) 
made ON(B,C) false. 

CL(A) 

1-T 

X 
18 / 

CL(B) 

only ACTCL(A) 
relevant 

No preconditions 

-------------------------------------------------------------------------- 

The approaches suggested for overcoming the violation are similar 

to before. However, since the top level reversal of goals has 

already been done, only the approach with a promoted precondition can be 

tried. "PROMOTE" is printed to signify this. This approach shown below 

is tried next as it is the only choice. 
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Initial Situation Problem Solved 

CL (A) ON (A, B) 

ON(B,C) 

Approach: CL(A); ON(B,C); ON(A,B) 

Note 4 

The approach shown above is successful and produces the optimal plan 

<<ACTCL A>>; <<PUTON B Cs>; <<PUTON A B>> 

The tree of ticklists after successful backup is shown below. 

CL(A) must be true 
to here 

CL(A) ON(B,C) ON(A,B) 

C 

1 A ® 
Ilo 
X 

7 Q ® © "',// 22 \/ 

B ,ti / ,b 28 

B 
9 

33 3Z 
V/ 

only ACTCL(A) 
relevant 

No preconditions 

Protected 

only only PUTON(A,B) 
PUTON(B,C) relevant 
relevant 

CL(A) CL(B) CL (C) 

7 ® © 3/ 24V 
/ 

ASV 

Protected 

ON(B,C) CL(A) CL(B) 

8 

B 2,9 / 30 / 3 
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7 EXAMPLE PROBLEMS 

INTERPLAN has been tried out on a variety of problems. Besides 

the 3-block problem (described in section 6) and a 5-block example 

used by Warren (1974, as described in section 9.4), the STRIPS robot 

world in particular was used to give some comparison between the 

performance of different problem solvers. The STRIPS-world is useful 

for comparison purposes since almost every problem solver written 

to date has been test run on these examples. STRIPS used this type of 

world to form plans for an actual robot (SHAKEY), However, it is a very 

simple world in which there are few serious interaction problems and in 

which the maximum length of a plan needed to solve any problem is 

limited (to 15 steps at maximum - Siklossy and Dreussi, 1973 p. 426). In 

view of these restrictions, problem solvers which have been written 

to cope with a wider class of problems than STRIPS have often extended 

the basic STRIPS-world by adding more actions or by changing the 

configuration of rooms the robot is to operate in, etc. 

7.1 STRIPS-world problems 

7.1.1 Operator representation 

To give a background against which many of the example problems 

described throughout this report can be understood, the 

representation of the STRIPS-world actions (operators) to INTERPLAN is 

given below. See section 5.2 for details of how this representation 

specifies the problem - in particular the reason for having the ACHIEVES 

list of relevant operators. 
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VARS Si S2 S3 S33 S4 S5 S6 S7 ; 

OPSCHEMA <<GOTO1 *$*M>7 
ADD <<ATROBOT *$*M.> 
DELETE <<ATROBOT == >> <<NEXTTO ROBOT == >> 
PRECONDS G <<LOCINROOM *$*M *$*X>> 

<<INROOM ROBOT *$*X >> <<ONFLOOR>> 
VARS M X 

ENDSCHEMA -> Si; 

OPSCHEMA <<GOTO2 *$*M>> 
ADD <<NEXTTO ROBOT *$*M>> 
DELETE <<ATROBOT == >> <<NEXTTO ROBOT >> 
PRECONDS <<INROOM ROBOT *$*X >> <<INROOM *$*M *$*X >> <<ONFLOOR>> 
VARS M X 

ENDSCHEMA -> S2; 

OPSCHEMA <<PUSHTO *$*M *$*N>> 
ADD <<NEXTTO *$*M *$*N>> <<NEXTTO *$*N *$*M>> 
DELETE <<ATROBOT =_ >> <<NEXTTO ROBOT <: NON *$*M :> >> 

<<NEXTTO <:NON ROBOT:> *$*M>> 
<<AT *$*M == >> <<NEXTTO *$*M _-- >> 

PRECONDS G <<PUSHABLE *$*M>> <<INROOM *$*M *$*X >> 
<<INROOM *$*N *$*X > <<NEXTTO ROBOT *$*M>> <<ONFLOOR>> 

VARS M N X 

ENDSCHEMA -> S3; 

COPY(S3) -> S33; REV(ADDLIST(S3)) -> ADDLIST(S33); 

OPSCHEMA <<TURNONLIGHT *$*M >> 
ADD <<STATUS *$*M ON>> 
DELETE <<STATUS *$*M OFF>> 
PRECONDS G <<TYPE *$*M LIGHTSWITCH > G <<TYPE *$*N BOX>> 

<<NEXTTO *$*N *$*M>> <<ON ROBOT *$*N>> 
VARS M N 

ENDSCHEMA -> S4; 

OPSCHEMA <<CLIMBONBOX *$*M >> 
ADD <<ON ROBOT *$*M >> 
DELETE <<ATROBOT >> <<ONFLOOR > 

PRECONDS G <<TYPE *$*M BOX>> <<NEXTTO ROBOT *$*M >> <<ONFLOOR>> 
VARS M 

ENDSCHEMA -> S5; 

OPSCHEMA <<CLIMBOFFBOX *$*M >> 
ADD <<ONFLOOR>> 
DELETE <<ON ROBOT *$*M >> 
PRECONDS <<ON ROBOT *$*M>> 
VARS M 

ENDSCHEMA -> S6; 

OPSCHEMA <<GOTHRUDOOR *$*K *$*L *$*M>> 
ADD <<INROOM ROBOT *$*M)> 
DELETE <<ATROBOT =_ >> <<NEXTTO ROBOT == > <<INROOM ROBOT =_ >> 

PRECONDS <<INROOM ROBOT *$*L>> G <<CONNECTS *$*K *$*L *$*M>> 
<<NEXTTO ROBOT *$*K>> <<ONFLOOR>> 

VARS L M K 
ENDSCHEMA -> S7; 
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<<ATROBOT c_ >> , [%oSl%], 
<<NEXTTO ROBOT = » , [%S2%], 
<<NEXTTO =_ [%S3,S33%), 
<<STATUS == ON>> , [%S4%], 
<<ON ROBOT >> , [%S5%], 
<<ONFLOOR>> , [%S6%] , 

<<INROOM ROBOT >> , [%S7%] %) -> ACHIEVES; 

7.1.2 Implementation note 

There are 7 operators, 6 of which are straightforward in that 

they only have one statement on their ADD list. However, operator 

schema S3, (PUSHTO m n), can add (NEXTTO m n) and (NEXTTO n m). So 

there are 2 ways to achieve e.g. (NEXTTO B1 B2), by using a 

(PUSHTO B1 B2) or a (PUSHTO B2 B1). In the current implementation of 

INTERPLAN, the variables of an OPSCHEMA are instantiated to make it 
relevant by matching the statement the operator is to achieve 

against the ADD list entries in turn from left to right until a match 

succeeds, the variables being set by this successful match. 

Normally, if it will match more than one entry in the ADD list, the 2nd 

and later occurrences can never be reached by the left to right 

matching. In the (PUSHTO m n) OPSCHEMA the achieve statement will 

always match the 1st entry in the ADD list (NEXTTO m n) and so to 

achieve, for instance, (NEXTTO B1 B2) only (PUSHTO B1 B2) would be tried 

whereas (PUSHTO B2 B1) is also relevant. 

To overcome this implementation restriction, one must make a 

copy of the OPSCHEMA in which the ADD list entry which would not 

normally be reached in the left to right scan is put in a position in 

the copied ADD list such that it will be. In the STRIPS-arorld 

representation this is done by simply reversing the ADD list of 

OPSCHEMA S3 to give a new OPSCHEMA S33. 
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7.1.3 Initial situation 

The initial situation used for the problems given to STRIPS is 

shown in the diagram below. 

ROOM1 

c B3 

b B2 d 

ROOM2 

f 

ROOM3 ROOM4 

LS1 
off 

DOOR1 
{ f 

DOOR2 DOOR3 DOOR4 

ROOMS 

The following assertions represent this initial situation to 

INTERPLAN. 

ASSERT 
<<TYPE DOOR1 DOOR>> 

<<TYPE DOOR2 DOOR>> 

<<TYPE DOOR3 DOOR>> 

<<TYPE DOOR4 DOOR>> 
<<TYPE B1 BOX>> 
<<TYPE B2 BOX>> 
<<TYPE B3 BOX>> 
<<TYPE LS1 LIGHTSWITCH>> 
<<INROOM DOOR2 ROOM2>> 

<<INROOM DOOR2 ROOMS > 

<<INROOM DOOR3 ROOM3>> 

<<INROOM DOOR3 ROOMS» 
<<INROOM DOOR4 ROOMS>> 

<<INROOM DOOR1 ROOM5>> 
<<INROOM DOOR4 ROOM4>> 

<<INROOM DOOR1 ROOM1> 
<<CONNECTS DOOR1 ROOMS ROOM1>> 

<<CONNECTS DOOR4 ROOM4 ROOMS>> 

<<CONNECTS DOOR2 ROOM2 ROOM5>> 

<<CONNECTS DOOR2 ROOMS ROOM2a> 

<<CONNECTS DOOR3 ROOM3 ROOMS» 
<<CONNECTS DOOR3 ROOMS ROOM3>> 

<<CONNECTS DOOR1 ROOM1 ROOM5>> 

<<CONNECTS DOOR4 ROOMS ROOM4>> 
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<<LOCINROOM F ROOM4>> 
<<AT B1 A>> 
<<AT B2 B» 
<<AT B3 C>> 
<<AT LS1 D>> 
<<ATROBOT E>> 
<<INROOM B1 ROOM1>> 
<<INROOM B2 ROOM1>> 

<<INROOM B3 ROOM1>> 
<<INROOM ROBOT ROOM1>> 

<<INROOM LS1 ROOM1>> 

<<PUSHABLE B1 >> 
«PUSHABLE B2 >> 
<<PUSHABLE B3 >> 
<<ONFLOOR >> 
<<STATUS LS1 OFF>> 

7.1.4 Different versions of the STRIPS-world problems 

The time comparisons of problem solvers on STRIPS-world problems 

given in the literature are a little confusing since several versions 

of the problem domain have been used on STRIPS. The version 

described in sections 7.1.1 and 7.1.3 is as given in Fikes and Nilsson 

(1971). This version appeared in volume 2 of the journal Artificial 

Intelligence and will thus be refered to as version AIVol2. An 

earlier version of this paper was presented at the Second International 

Joint Conference on Artificial Intelligence and will be refered to as 

version IJCAI2. The main difference in this formulation is that only 

box B1 instead of any box may be used to stand ON to TURNON a 

lightswitch. Different operators, different initial situations and 

different problems were used in a paper by Fikes, Hart and Nilsson 

(1972b) to compare normal STRIPS and STRIPS with a plan saving device 

called MACROPS. This was published in volume 3 of the journal of 

Artificial Intelligence and will thus be refered to as version AIVol3. 
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7.2 Time comparisons - mainly on STRIPS-world problems 

In the table which follows six problem solvers are compared 

where possible. 

INTERPLAN: A program run in POP-2 (Burstall, Collins and Popplestone, 

1971) and HBASE (Barrow, 1975 - a, CONNIVER-like data base 

package written in POP-2). The times were obtained in a 

single session without change of any search eorometers 

(see appendix III). The times include garbage collection 

and any operating system overheads when run on the 

Edinburgh DEC10. INTERPLAN occupies under 5K words of 

core on the DEC10. 

STRIPS and ABSTRIPS: all forms were run in partially compiled LISP 

on the Stanford DEC10. 

STRIPS - Fikes and Nilsson (1971). 

STRIPS with MACROPS - Fikes, Hart and Nilsson (1972b). 

ABSTRIPS - Sacerdoti (1974). 

LAWALY: is run in interpreted LISP on a CDC-6600 and the 

times include garbage collection. (CDC-6600 is 

reputedly approx. 8 times faster than the DEC10). 

WARPLAN: is interpreted in PROLOG (see Warren, 1974), 1='hich is 

implemented in FORTRAN 'nd is run on the Edinburgh DEC10. 
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7.3 Variants of the STRIPS-world run on INTERPLAN 
--------------------------------------------- 

7.3.1 Variants with interactions -------------------------- 

Two variants of the STRIPS-world which are similar to one 

another were made to introduce interaction problems. These are the 

2-room problem from Siklossy and Dreussi (1973) described in section 

8.1, and the SHUNT problem from Warren (1974) described in section 9.5. 

Both problems were used to point out shortcomings of the problem 

solvers described in the respective references. The action of 

INTERPLAN on these problems is described in the sections indicated. 

7.3.2 Variants with long solution paths 

Another variant of the STRIPS-world was introduced to test the 

effect of LAWALY (Siklossy and Dreussi, 1973) on problems requiring long 

sequences of individual operators to achieve some goals. A "superworld", 

as they termed it, was invented with 7 rooms in which a robot janitor 

was asked to sweep rooms, empty rubbish bins, water plants, etc. The 

domain has 26 operator schemas and an initial situation described by 120 

assertions. 

However, in this domain for any given goal, only one operator 

schema is relevant so eliminating branching in the search tree for 

operator choices. There are no serious interaction problems in the 

domain, and there are no interactions at all when priorities are given 

for the order of achievement of the individual goals and preconditions 

(as is done in LAWALY). Problems in this domain, though requiring long 

operator sequences, need only minimal problem solving capabilities in 
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that there is only one operator relevant to each goal and the 

preconditions of such operators can always be satisfied. Backtracking 

is thus not needed for the solution of the problems in this domain. This 

fact is used by LAWALY so that in between partial searches to solve 

each component of a conjunct of goals, any choices generated are cleared 

leaving only the successful partial plan for earlier components of the 

conjunct. 

Perhaps the only complexity of the LAWALY "superworld" for 

means-end analysis driven problem solvers is the lack of guidance 

available when a choice of intermediate rooms must be made to go from 

one room to another when these are not directly connected, LAWALY uses 

a maze-running algorithm to cope with this problem The maze-running 

algorithm computes an optimal path between any two rooms in the 

domain. 

A listing of the "superworld" input to LAWALY was obtained and 

run on INTERPLAN in a similar form. The original axiomatization 

contained several errors which would not enable certain problems to be 

solved. Therefore, the version run on INTERPLAN was only changed as 

necessary to enable some search timings to be found. A maze-running 

capability was given to INTERPLAN using the OPSCHMODIFY facility (see 

section 5.8(6)). LAWALY solved some very long problems in this domain. 

A 198 step plan being found in 348 seconds and a 275 Step plan being 

found in 433 seconds. Giving an average time per step of the final 

plan of 1.65 seconds. A problem in this domain was given to INTERPLAN. 

It was to water plants in all 7 rooms of the world. This required a 

151 step plan which was found by INTERPLAN in 306 seconds, an average of 

just over 2 seconds per step of the final plan. 
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7.4 Comments on the time comparisons 

7.4.1 Purpose of the time comparisons 
-------------------------------- 

The time comparisons of INTERPLAN on a variety of problems 

against other problem solvers are intended to show that it has been 

possible to incorporate the mechanism of protecting achieved goals and 

monitoring any interactions which occur to allow corrections to be made 

without ruining the performance of a problem solver. The range of 

problems which can be solved by INTERPLAN is greater than the range 

which can be dealt with by all the variants of STRIPS and LAWALY, 

yet INTERPLAN performs favourably in relation to them. The test of 

INTERPLAN on a single problem requiring a long plan in the LAWALY 

"superworld" was made for a similar reason. 

Time comparisons of different systems on different computers 

are always difficult to make since the problem solvers are intended 

to cope with different aspects of planning and may have additional 

facilities to those being compared. Such comparisons can only be 

used to get a rough estimate of relative performance. 

7.4.2 Comparison with STRIPS 

The significant improvement of search times of INTERPLAN over 

STRIPS must be explained since INTERPLAN is based on many of the ideas 

in STRIPS but has extra abilities and mechanisms. 

(a) A major factor is the use in INTERPLAN of a very simple language 

for performing the storage and retrieval of facts about 
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situations in the world (the Question-answering system). INTERPLAN 

uses HBASE (Barrow, 1975) primitives to perform this task whereas 

STRIPS uses a modification of the QA3 theorem prover (Green, 1969). 

QA3 provides a richer language in which a situation of the world can 

be described (allowing implications to be used), but this power is 

not required for the simple problems tackled by STRIPS and the QA3 

system is therefore cumbersome in this use. 

(b) INTERPLAN also has a particularily straightforward method of 

building up its search tree using a simple iterative process of 

classifying and editing the structure being constructed. Ticklists 

provide a very simple method of allowing the appropriate edit to 

be chosen. 
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7.5 Problems run on INTERPLAN 

This section lists the different problem domains given to 

INTERPLAN at present. Where problems in these domains are described in 

this report, section references are given. 

Block stacking problems: especially 3 block problem (section 6) and 

5 block problem (section 9.4). 

STRIPS-world problems: see earlier in this chapter. 

STRIPS-world variants: 2 Room problem (from Siklossy and Dreussi, 

1973) see section 8.1. 

SHUNT problem (from Warren, 1974) see 

section 9.5. 

LAWALY superworld (from Siklossy and Dreussi, 

1973) see section 7.3.2 

A simple machine code programming task (from Warren, 1974) 

including the swap the values of 2 registers 

problem (see section 8.2). 

A model car assembly task. 

A simplified version of the Keys and Boxes problem (from Warren, 1974). 

A train movement task using a common section of line. 
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8 OTHER PROBLEMS IN WHICH INTERACTIONS OCCUR 
------------------------------------------ 

Interactions occur in many problems, Several of these have been 

mentioned previously in the literature on problem solving and have 

usually been dealt with in a domain specific fashion. Two of these 

problems will be outlined here and an interaction discovery and correction 

approach given for them. Such an approach does not rely upon certain 

domain specific facts being known before problem solving commences. 

Both examples have been chosen because they have invenced 

the design of INTERPLAN, showing the different conditions under which 

interactions occur. 

8.1 2 Room problem 

Initial Situation 

ROOM1 

ROBOT 

ROOM2 

TDOORl 

Goal Situation 

ROOM1 ROOM2 

ROBOT 
DOOR1 A 

<<STATUS DOOR1 CLOSED>>&<<NEXTTO ROBOT B1» 

This problem is based upon the operators available in the 

STRIPS-AIVo13 world (see section 7.1.4), The world consists of 2 rooms 
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connected by DOOR1 which is initially closed. The robot is in one room 

and a box in the other. The goal is to get the robot NEXTTO the box 

at the same time as the door being closed. 

The problem was described by Siklossy and Dreussi (1973, sec.8) 

as an example of a failure of LAWALY. Though I understand that J. Roach 

at the University of Texas at Austin proposed the problem. It is a 

typical interaction problem. Concentrating on each of the component 

goals in either order will not achieve the goal. A similar problem, the 

SHUNT problem, is described in section 9.5). 

An annotated trace of INTERPLAN on the problem is given below. 

GOAL <<STATUS DOOR1 CLOSED>> <<NEXTTO ROBOT B1>>; 

ENTERING INTERPLAN WITH INITIAL SITUATION 1 

** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 ..................... approach 1 

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 

** ACHIEVE << STATUS DOOR1 OPEN » IN 1 

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1 

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1 

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 2 
** APPLY << OPEN DOOR1 >> TO 2 TO GIVE 3 
PROTECTION VIOLATION PROMOTE PROMOTE REORDER 

** ACHIEVE << TYPE B1 DOOR >> IN 1 ........................ approach 2 
** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 

** ACHIEVE << STATUS DOOR1 OPEN » IN 1 

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1 

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1 

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 4 
** APPLY << OPEN DOOR1 >> TO 4 TO GIVE 5 
** APPLY << GOTHRUDR DOOR1 ROOM-9 >> TO 5 TO GIVE 6 
** APPLY << GOTOB B1 >> TO 6 TO GIVE 7 
** ACHIEVE << STATUS DOOR1 CLOSED >> IN 7 
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 7 
** ACHIEVE << TYPE DOOR1 OBJECT >> IN 7 
** APPLY << GOTOD DOOR1 » TO 7 TO GIVE 8 
PROTECTION VIOLATION PROMOTE 

** ACHIEVE << STATUS DOOR1 OPEN >> IN 1 .................. approach 3 

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1 

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1 

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 9 
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** APPLY << OPEN DOOR1 >> TO 9 TO GIVE 10 
** ACHIEVE << STATUS DOOR1 CLOSED >> IN 10 

** APPLY << CLOSE DOOR1 >> TO 10 TO GIVE 11 

SETUP REVERSE STOPPED 
ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 approach 4 
ACHIEVE << STATUS DOOR1 OPEN >> IN 1 

ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1 

ACHIEVE << TYPE DOOR1 OBJECT >> IN 1 

APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 12 
APPLY << OPEN DOOR1 >> TO 12 TO GIVE 13 
APPLY << GOTHRUDR DOOR1 ROOM2 > TO 13 TO GIVE 14 
ACHIEVE << STATUS DOOR1 CLOSED >> IN 14 
ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 14 
ACHIEVE << TYPE DOOR1 OBJECT > IN 14 

APPLY << GOTOD DOOR1 >> TO 14 TO GIVE 15 
APPLY << CLOSE DOOR1 > TO 15 TO GIVE 16 
ACHIEVE << NEXTTO ROBOT B1 >> IN 16 
APPLY << GOTOB B1 >> TO 16 TO GIVE 17 

** CPU TIME = 6.102 SECS 

NOW 

<< GOTOD DOOR1 >> 
<< OPEN DOOR1 >> 
<< GOTHRUDR DOOR1 ROOM2 >> 
<< GOTOD DOOR1 >> 
<< CLOSE DOOR1 >> 
<< GOTOB B1 >> 

: APPROACH 

-1002 << INROOM ROBOT ROOM2 > -1002 indicates that the goal is 
1 << STATUS DOOR1 CLOSED » a precondition for a goal ref. 2. 
2 << NEXTTO ROBOT B1 > 

---------------------------------------------------------------------- 

Remember that preconditions of an action to achieve a goal are written 
PRECOND P GOAL in the diagram below. Look back at the trace to 

find the preconditions used. 

Approach 1: 

STATUS DOOR1 CLOSED go. 

holding period is broken 
by the achievement of 
STATUS DOOR1 OPEN 

STATUS DOOR1 OPEN- INROOM ROBOT ROOM2 --b' NEXTTO ROBOT B1-0 
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Note that the contradictory nature of the 2 goals <<STATUS DOOR1 OPEN>> 

and <<STATUS DOOR1 CLOSED'> is not detected as no information is known 

about this (IMPOSS(...) assertions could be used to save on search 

effort here - see section 5.8(7)). All that is known when the interaction 

occurs is that the achievement of the second goal deletes the first. 
However, INTERPLAN can still cope. The interaction suggests a 

REORDERING to approach 2 Rnd 2 PROMOTIONS to approaches 3 and 4. 2 

promotions are suggested as there are 2 Fubgoals being considered 

(<<STATUS DOOR1 OPEN>> and <<INROOM ROBOT ROOM2>>) when the 

interaction occurs, and both goals are not already true at the point 

at which they are being promoted to. 

Approach 2: 

NEXTTO ROBOT B1 

NEXTTO ROBOT DOOR1- O STATUS DOOR1 CLOSED10 

No REORDERING can be tried to correct for this interaction as it has 

been performed once already in response to the first interaction. 

However, a PROMOTION of <<NEXTTO ROBOT DOOR1>> can be made. This 

latter approach does not figure in the solution of the problem. 

Approach 3: 

STATUS DOOR1 CLOSED 

STATUS DOOR1 OPEN NEXTTO ROBOT B1--0 - 
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Reversal of the "setup" goal (<<STATUS DOOR1 OPEN'>) is not allowed 

since this would place it in a position from which it had been 

promoted by some earlier interaction. "SETUP REVERSE STOPPED" is 

printed to signify this. Again note that use of IMPOSS (...) 

assertions could have declared the above approach INVALID. 

Approach 4: 

STATUS DOOR1 CLOSED 

INROOM ROBOT ROOM2 " NEXTTO ROBOT B1 --I 

This approach is successful. Siklossy and Dreus-i (1973) suggest that 

the problem should have been specified more exactly to a problem solver 

by including <<INROOM ROBOT ROOM2>> in the goal, or that this could have 

been done by some "transitivity of location" program. However, 

INTERPLAN can deal with this problem in a straightforward way using 

general techniques and does not rely upon domain specific knowledge 

which for other similar problems might not be available. It also 

realizes why the <<INROOM ROBOT ROOM2>> goal is needed - as a "setup" 

goal for <<NEXTTO ROBOT B1>> (in the context of another goal 

<<STATUS DOOR1 CLOSED >). This is in contrast to its treatment as a 

separate top level goal in the suggestion of Siklossy and Dreussi. 
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8.2 Swap the values of 2 registers 

A common problem in computer programming is: given 2 registers 

with certain values, swap their values. 

Initial Situation Goal Situation 

REG 1 IS Cl REG 1 IS C2 
REG 2 IS C2 REG 2 IS C1 

The solution involves saving one of the values in some other register 

before altering the two registers. This can be dealt with in a domain 

specific fashion by ensuring a value in one of the registers to be 

swapped is always saved. However below I will indicate how a general 

interaction detection and correction approach may be used to solve this 

problem. 

The actions possible in this simple programming world (note) are 

<<STORE x / val>> which puts the value in an accumulator into REG x. 

<<LOAD x / val>> which loads the value in REG x into the accumulator. 

The entry after the "/" gives the value of the register refered to after 

being accessed or updated. It can be considered as a comment. 

This problem requires the facilities of the full LOOP editor 

(see section 5.7.7). This is not available in the current 

implementation of INTERPLAN. However, a trace is given of the 

operation of INTERPLAN on this problem using the present LOOP editor 

which asks the user for an instance of a goal to be PROMOTED on a 

LOOP detection. The approaches used are described in terms of the FULL 

LOOP editor. 

------------------------------------------------------------------------ 
(note) This formulation of the problem was suggested by an application 

given to WARPLAN (see Warren, 1974) and also run on INTERPLAN in 
which ADD and SUBTRACT actions were also permitted, The "/" 

comment is needed by WARPLAN to correctly associate the ADD, 
DELETE n d pRECOND entries for each action - these being kept in 
3 separate lists (see section 9.1). It is not required by 
INTERPLAN. 
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: GOAL <<REG 1 I S C2>> <<REG 2 I S C1>>; 

ENTERING INTERPLAN WITH INITIAL SITUATION 1 

** ACHIEVE << REG 1 IS C2 >> IN 1 approach 1 
** ACHIEVE << ACC IS C2 >> IN 1 
** APPLY << LOAD 2 / C2 >> TO 1 TO GIVE 2 
** APPLY << STORE 1 / C2 > TO 2 TO GIVE 3 
** ACHIEVE << REG 2 IS Cl >> IN 3 
** ACHIEVE << ACC IS Cl >> IN 3 
** ACHIEVE << REG IS Cl >> IN 3 

LOOP ON << REG == I S Cl >> 
WHAT SHALL I PROMOTE: <<REG 3 IS C1» 

PROMOTE PROMOTE REORDER 
** ACHIEVE << REG 2 IS Cl >> IN 1 ..., approach 2 
** ACHIEVE << ACC IS Cl >> IN 1 
** APPLY << LOAD 1 / Cl >> TO 1 TO GIVE 4 
** APPLY << STORE 2 / Cl 5> TO 4 TO GIVE 5 
** ACHIEVE << REG 1 IS C2 >> IN 5 
** ACHIEVE << ACC IS C2 > IN 5 
** ACHIEVE << REG == IS C2 » IN 5 The approaches suggested 

LOOP ON << REG == IS C2 >> here are not used in the 
WHAT SHALL I PROMOTE: <<REG 3 IS C2>>f` search for a solution. 

PROMOTE PROMOTE 

** ACHIEVE << REG 3 IS Cl > IN 1 ........ approach 3 
** ACHIEVE << ACC IS Cl >> IN 1 
** APPLY << LOAD 1 / Cl >> TO 1 TO GIVE 6 
** APPLY << STORE 3 / Cl >> TO 6 TO GIVE 7 
** ACHIEVE << REG 1 IS C2 >> IN 7 
** ACHIEVE << ACC IS C2 » IN 7 
** APPLY << LOAD 2 / C2 >> TO 7 TO GIVE 8 
** APPLY << STORE 1 / C2 >> TO 8 TO GIVE 9 
** ACHIEVE << REG 2 IS Cl >> IN 9 
** ACHIEVE << ACC IS Cl >> IN 9 
** APPLY << LOAD 3 / Cl >> TO 9 TO GIVE 10 
** APPLY << STORE 2 / Cl >> TO 10 TO GIVE 11 

** CPU TIME = 2.312 SECS 

NOW 

<< LOAD 1 / Cl >> 
<< STORE 3 / Cl >-- 

<< LOAD 2 / C2 > 
<< STORE 1 / C2 >> 
<< LOAD 3 / Cl >> 
<< STORE 2 / Cl >> 

: APPROACH 

A user could have asked what instances 
of loop pattern were currently true 
and what the upper loop occurrence 
was to decide what to promote. 

-1002 << REG 3 IS Cl >> 
1 << REG 1 IS C2 >> 
2 << REG 2 IS Cl >> 
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Remember that preconditions of an action to achieve a goal are written 
PRECOND ---P GOAL in the diagrams below. Look back at the trace to 

find the preconditions used. 

Approach 1: 

REG 1 IS C2 

REG xI S C 1--* ACC I S C1- REG 2 IS C1-- 
------LOOP -------J 

A LOOP is detected on <<REG x IS C1» as a higher level goal at that 

time is <<REG 2 IS C1». As indicated in the description of the full 

LOOP editor (see section 5.7.7), we may try to reorder the concurrent 

goals at the upper loop level (<<REG 1 IS C2>> and <<REG 2 IS Cl>>). 

This would give approach 2 (note). Alternative approaches of 

suggesting a PROMOTION which would aid the solution of the upper loop 

occurrence of the pattern (<<REG 2 IS C1») while avoiding the loop are 

tried. PROMOTION of <<ACC IS Cl>> for this purpose is straightforward, 

but the promotion is not used in the search for a solution. Promotion 

of <<REG x IS Cl>> gives approach 3. 

Anproach 2: 

--- - - - LOOP - - - - 
REG x IS C2 ACC IS C2-REG 1 IS C2 0 

REG 2 IS C1 

------------------------------------------------------------------------ 
Note: If a goal of, for example, <<REG 1 IS C2>> & <<REG 3 IS C1» is 

given in the same initial situation as the present problem, s 

straightforward reversal of the goals at the upper loop level 
would enable the problem to be solved. 
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Again a LOOP is detected. A similar process to the above is performed, 

but the approaches which are suggested are not used in the search for a 

solution. 

Approach 3: 

REG 1 I S C2 

REG x IS Cl REG 2 IS Cl 

x/=2 (a) 
x/=1 (b) Notes are to the text below. 

The promoted goal in approach 3 can only be promoted after a LOOP has 

occured if 
(a) the promoted goal is not IDENTICAL to the upper loop occurence of 

the pattern. As explained in the description of the full loop 

editor, this is because the approach 

G1 I 

is equivalent to 

G1---'p 

G2 P. G2 --*I I G2 I{ 

Thus x must not be 2. 

(b) The promoted goal is not already true at the point to which it is 

being promoted. Since <<REG 1 IS C1.> is true initially, the goal 

must be restricted to exclude this instance (as explained in 

"restrictions on the instances of a promoted goal" - section 5.7.5). 

Thus x must not be 1. 
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A method of placing restrictions on variables has been experimented with 

and is outlined in Appendix IV. However, as can be seen in the 

trace of INTERPLAN on the swap the values of 2 registers example, the 

user is given the responsibility for choosing an appropriate instance of 

a goal to be promoted in the current implementation of the LOOP editor. 

Similarity to the Keys and Boxes problem 

It is interesting to note the close similarity between the 

approaches needed to solve the "swap the value of 2 registers" problem 

and those needed to solve the Keys and Boxes problem (see section 11.3). 
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9 WARPLAN - A COMPARISON WITH INTERPLAN 
------------------------------------- 

WARPLAN (Warren, 1974) is a means-end analysis driven problem 

solver which has been designed to solve problems described in terms 

similar to those used in STRIPS (initial world situation, operator 

schemas and the goal specification). It is intended as a method of 

relaxing the "linear" assumption made by earlier systems, such as STRIPS 

and HACKER, in which they hope that operator sequences for each 

individual goal can be combined end-on-end given some suitable ordering 

of the individuals, Qnd that the combination of sub-plans will achieve 

the whole conjunct. WARPLAN, therefore, can cope with problems in which 

this assumption is not valid, such as the 3-block problem. Since its 

aims are similar to those of INTERPLAN (it being motivated to some 

extent by the same problem - the Keys and Boxes) it may be instructive 

to compare the two systems. 

Before considering the detail of the method used in WARPLAN, a 

little background information may be useful. WARPLAN is written as 46 

predicate calculus clauses which are interpreted by the PROLOG system 

(see appendix III of Warren, 1974). Though the program is very concise, 

it can cope with a wide variety of problems. 
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9.1 Problem specification 

Operator schemas are described using 3 nredicates which state 

which facts can be added by some operator (ADD(x,op)), what facts are 

deleted by some operator (DELETE(x,op)) m.nd the preconditions 

required of a situation for the operator to be applicable (CAN(op,x)). 

Since the specification of the operator schema is in 3 different clauses, 

the name of the schema must contain all the variables used in its 

specification. 

An initial situation is described using a predicate 

GIVEN(sitn,x) which states that the fact x is true in the situation. 

Facts true in all situations (global facts) can be given using a 

predicate ALPWAYS(x). An additional predicate, IMPOSS(x), is used to 

state that a conjunction of facts in unat=tainable in any situation. 

This is provided for efficiency to stop fruitless goals being 

investigated. 
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9.2 Method used 

The goals in a conjunct are tackled from left to right. For 

each goal in turn: 

(a) if the goal is solved in the current situation (the initial 
situation for the first goal), no action is taken and we proceed to 

the next goal. A choice is actually being made here, it is 
equivalent to choosing a "do-nothing" operator at stage (b). 

(b) If the goal is not solved, we seek operators which will achieve it 
(by looking at what operators ADD the fact). 

(c) For one of the relevant operators (the others are set up by PROLOG 

processes as backtracking choice points in case of failure) we check 

if the application of the operator will delete any earlier achieved 

goal. 

(d) If the operator is inconsistent with earlier goals, we trace back 

through the plan part already produced trying to find a suitable 

point to insert the operator. Care is taken that, at any point 

considered, the goal this operator is to achieve will not be deleted 

by actions later in the plan. 

(e) Once a point of insertion for the operator is found (either after 

the last step of the existing plan part or some intermediate point 

as found in (d)), we check that the preconditions of the operator 

hold in the situation in which the operator will be applied. 
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(f) If the preconditions do not hold, a subgoal is set up of attempting 

to find a situation in which the operator can be applied. 

NOTE: Recent work on coping with interacting goals in program synthesis 

is reported in Waldinger (1975). The method employed is 

essentially similar to that used in WARPLAN, though the two 

systems are not based upon one another. The discussion of WARPLAN 

here also applies in most part to Waldinger's system. 
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9.3 An Example (the 3 block problem) 
-------------------------------- 

Additional to the operator schemas and initial situation which 

are similar to those used on INTERPLAN, a fact IMPOSS(ON(x,y)&CL(y)) is 

given. The plan parts inserted by each step of the trace below are put 

in capitals in the Plan Generated column. 

Goals Considered Plan Generated Comments 

none now 

ON(A,B) now;ACTCL(A); Actcl(a) inserted to achieve a pre- 
PUTON(A,B) condition for Puton(a,b) which 

achieves the given goal. 

ON(A,B)&ON(B,C) now;actcl(a); Puton(b,c) to achieve ON(B,C) cannot 
PUTON(B,C); be put on the end of the sequence 
puton(a,b) since a precondition, CL(B) is incon- 

sistent with an earlier achieved 
goal, ON(A,B), using IMPOSS(ON(x,y)& 
CL(y)). A suitable point of 
insertion is found just before 
Puton(a,b). 

The partial plan generated holds enough information to enable 

the system to compute from the ADD and DELETE entries what facts hold in 

the situations produced by application of each operator along the plan 

sequence. 
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9.4 A problem with interleaving given operator sequences 
----------------------------------------------------- 

Consider an example problem run on WARPLAN and based upon the 

3 block problem. It is a 5 block problem For a detailed description 

of the method WARPLAN uses on this see Warren (1974). A trace of the 

important steps is given here. The problem is 

Initial Situation A 

B 

C 

C 

A B 

E 

D 

D 

E 

Goal Situation 

The trace is for the first solution generated to this problem when using 

a depth-first search strategy. Other choice points could be used by 

backtracking. 

Goals Considered Plan Generated Comments 

ON(A,B)&ON(B,C) now;actcl(a); found as explained previously, 
puton(b,c); 
puton(a,b) 

ON(A,B)&ON(B,C) nowactcl(a); Puton(c,d) requires CL(C) which cannot 
&ON(C,D) ACTCL(D); be true if CN(B,C) is, using 

PUTON(C,D); IMPOSS(ON(x,y)&CL(y)) once again. 
puton(b,c); Therefore the operator must be put 
puton(a,b) before Puton(b,c). In this 

position a precondition, CL(D) does 

not hold. It can be achieved by an 
Actcl(d). 

ON(A,B)&ON(B,C) now;actcl(a); Final goal achieved by insertion of 
&ON(C,D)&ON(D,E) actcl(d); Puton(d,e) operator. 

PUTON(D,E); 
puton(c,d); 
puton(b,c); 
puton(a,b) 
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Note in the above that the constraint to use the already existing 

plan sequence in the solution to subsequent goals results in a redundant 

step, ACTCL(A), being left in the final plan. This is due to the fact 

that an operator is chosen with regard to the facts which must be made 

to hold in a particular situation. If the operator is later shifted to 

a different position so that it is applied in a different situation, it 
may become redundant. 

INTERPLAN modifies the order of goals it is to consider when 

interactions are discovered. The sequence of approaches suggested as 

each interaction is discovered follows similar lines to the sequence of 

partial plans generated by WARPLAN (as in the block stacking domain 

there is only one operator to achieve each goal). However, since at 

any point at which a goal is already true when it is tackled, no 

operators are applied, no redundant steps are inserted. See the trace 

below which shows INTERPLAN working on the 5 block problem annotated 

with the approaches being considered at each phase. 
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: GOAL <<ON A B'> <<ON B C>> <<ON C D>> <<ON D E>,>; 

ENTERING INTERPLAN WITH INITIAL SITUATION 1 

** ACHIEVE << ON A B >> IN 1 ..........................approach 1 

** ACHIEVE << CL A >> IN 1 

** APPLY << ACTCL A » TO 1 TO GIVE 2 
** APPLY << PUTON A B '> TO 2 TO GIVE 3 
** ACHIEVE << ON B C » IN 3 
** ACHIEVE << CL B >> IN 3 
** APPLY << ACTCL B >> TO 3 TO GIVE 4 
PROTECTION VIOLATION REORDER 

** ACHIEVE << ON B C >> IN 1 approach 2 
** APPLY << PUTON B C » TO 1 TO GIVE 5 
** ACHIEVE << ON A B >> IN 5 
** ACHIEVE << CL A » IN 5 
** APPLY << ACTCL A » TO 5 TO GIVE 6 
PROTECTION VIOLATION PROMOTE 
** ACHIEVE << CL A > IN 1 ........................... ppproach 3 
** APPLY << ACTCL A >> TO 1 TO GIVE 7 
** ACHIEVE << ON B C > IN 7 
** APPLY << PUTON B C >> TO 7 TO GIVE 8 
** ACHIEVE << ON A B >> IN 8 
** APPLY << PUTON A B >> TO 8 TO GIVE 9 
** ACHIEVE << ON C D >> IN 9 
** ACHIEVE << CL C >> IN 9 
** APPLY << ACTCL C >> TO 9 TO GIVE 10 
PROTECTION VIOLATION REORDER 

** ACHIEVE << ON C D >> IN 1 ......................... approach 4 
** ACHIEVE << CL D >> IN 1 
** APPLY << ACTCL D >> TO 1 TO GIVE 11 
** APPLY << PUTON C D >> TO 11 TO GIVE 12 
** ACHIEVE << ON B C >> IN 12 
** APPLY << PUTON B C >> TO 12 TO GIVE 13 
** ACHIEVE << ON A B >> IN 13 
** APPLY << PUTON A B >> TO 13 TO GIVE 14 
** ACHIEVE << ON D E >> IN 14 
** ACHIEVE << CL D '> IN 14 
** APPLY << ACTCL D >> TO 14 TO GIVE 15 
PROTECTION VIOLATION PROMOTE REORDER 

** ACHIEVE << ON D E >> IN 1 ......................... approach 5 
** ACHIEVE << CL D >> IN 1 2 choices - Reorder 
** APPLY << ACTCL D » TO 1 TO GIVE 16 is prefered. 
** APPLY << PUTON D E >> TO 16 TO GIVE 17 
** ACHIEVE << ON C D >> IN 17 

** APPLY << PUTON C D » TO 17 TO GIVE 18 
** ACHIEVE << ON B C >> IN 18 

** APPLY << PUTON B C >> TO 18 TO GIVE 19 
** ACHIEVE << ON A B > IN 19 
** APPLY << PUTON A B >> TO 19 TO GIVE 20 

** CPU TIME = 7.712 SECS 



NOW 
<< ACTCL D >> 
<< PUTON D E >> 
<< PUTON C D >> 
<< PUTON B C >> 
<< PUTON A B >> 

APPROACH 

4 << ON D E >> 
3 << ON C D >> 

-1001 << CL A >> 
2 << ON B C >> 
1 << ON AB» 

-1001 indicates that the goal is a 
precondition for the goal ref. 1. 
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------------------------------------------------------------------------ 
Approach 1: 

CL(A) 0 ON (A, B) 

Approach 2: 

CL(B)- .ON(B,C) P. 

CL(A) o ON (A, B) 01 

ON(B, C) 

The first part of this problem proceeds exactly as for the 3-block 

problem (see section 6). 

Anproach 3: 

CL(A) T ON(A,B) 

ON (B, C) - 

CL(C)--0 ON(C,D) 
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Interaction suggests a REORDERING to approach 4. PROMOTION is not 

allowed as CL(C), the goal to be promoted, is true before ON(B,C) (the 

point to which promotion is attempted). 

Approach 4: 

CL(A) ON(A,B) ----------10 

ON(B,C) -------0 

CL(C)-i ON(C,D) 
1 

CL(D)-r ON(D, E)-p. 

The interaction suggests a REORDERING to approach 5 and a PROMOTION of 

CL(D) to before ON(C,D). This latter approach is not used in the search 

for a solution. 

Approach 5: 

CL(A) 0 ON(A, B) 

ON(B,C) 

ON (C, D) 

CL(D)---0 ON (D, E) 
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9.5 The SHUNT problem 

The SHUNT problem is an extension to the STRIPS-world (see 

section 7.1) proposed by Warren (1974) to illustrate the difficulty, 

outlined above of having to use a previously discovered subplan for 

earlier goals in the solution of further goals in a conjunct. It is 

similar to the 2 ROOM problem of Siklossy and Dreussi (1973). 

There is one additional operator to those given in the STRIPS- 

world. It is <<SHUNTTHRU bx dxy rx ry>> which shunts the robot into 

box bx in room rx and both box and robot go through door dxy into room 

ry. However, the robot is not left NEXTTO the box bx. Therefore there 

are two ways to achieve <<INROOM ROBOT =_ » using the normal GOTHRUDR 

or using a SHUNTTHRU. Also, additionally to the STRIPS world there is a 

way that a box may change the room it is in, using SHUNTTHRU. A goal of 

<<INROOM ROBOT ROOM2>> & <<NEXTTO ROBOT B1>> is given in the 

following world situation: 

ROOM1 

B1 

B3 0 

ROOM2 

T DOOR1 

ROBOT 



120 

Warren noted that the most obvious way to achieve 

<<INROOM ROBOT ROOM2>> using a GOTHRUDR would not contribute to the 

solution of the whole goal. Since WARPLAN relies on straightforward 

backtracking to select continuation points after a failure, WARPLAN may 

have to search through many possibilities before the correct SHUNT on B1 

was chosen and the correct box "accidently" shunted into ROOM2 in an 

attempt just to move the robot. Then this partial plan could be used to 

go on to achieve both goals by executing a <<GOT02 B1>>. 

Systems, such as WARPLAN, which reorder the chosen operators in 

the light of interactions are really most suited to tasks in which there 

is only one or few ways in which a goal can be achieved. If the choice 

of operator was inappropriate for some goal, or becomes inappropriate 

because of a change of position of the operator in a plan, no information 

is available from the resulting failure to guide the choice of another 

operator. This argument also applies to Sacerdoti's NOAH system (see 

section 10). 

A trace of INTERPLAN on the SHUNT problem is given below with 

an annotation of the approaches being considered at each point. 

: GOAL <<INROOM ROBOT ROOM2'> <<NEXTTO ROBOT B1>>; 

ENTERING INTERPLAN WITH INITIAL SITUATION 1 

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 ............... approach 1 

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1 

** APPLY << GOT02 DOOR1 >> TO 1 TO GIVE 2 
** APPLY << GOTHRUDO DOOR1 ROOM1 ROOM2 > TO 2 TO GIVE 3 
** ACHIEVE << NEXTTO ROBOT B1 >> IN 3 
** ACHIEVE << INROOM B1 ROOM2 >> IN 3 
** ACHIEVE << INROOM ROBOT ROOM1 » IN 3 
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 3 
** APPLY << GOT02 DOOR1 '> TO 3 TO GIVE 4 
** APPLY << GOTHRUDO DOOR1 ROOM2 ROOM1 >> TO 4 TO GIVE 5 
PROTECTION VIOLATION PROMOTE REORDER 
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** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 .................. approach 2 
** APPLY << GOT02 B1 >> TO 1 TO GIVE 6 
** ACHIEVE << INROOM ROBOT ROOM2 >> IN 6 
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 6 

** APPLY << GOT02 DOOR1 > TO 6 TO GIVE 7 
PROTECTION VIOLATION PROMOTE 
MULTIPLE INSTANCES Trying a different way to achieve 

READY <<INROOM ROBOT ROOM2>> IN 6 using a 
:: GOON SHUNTTHRU. This allows a choice of box. 

B3 happens to be chosen first. 

** ACHIEVE << NEXTTO ROBOT B3 > IN 6 
** APPLY << GOT02 B3 >> TO 6 TO GIVE 8 
PROTECTION VIOLATION PROMOTE 
** ACHIEVE << INROOM B1 ROOM2 >> IN 1 ................. approach 3 
** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 
** APPLY << GOT02 B1 >> TO 1 TO GIVE 9 
** APPLY << SHUNTTHR B1 DOOR1 ROOM1 ROOM2 >> TO 9 TO GIVE 10 

** ACHIEVE << NEXTTO ROBOT B1 "> IN 10 
** APPLY << GOT02 B1 >> TO 10 TO GIVE 11 

** CPU TIME = 6.164 SECS 

NOW 
<< GOT02 B1 » 
<< SHUNTTHR B1 DOOR1 ROOM1 ROOM2 >> 
<< GOT02 B1 >> 

: APPROACH 

-1002 << INROOM B1 ROOM2 >> 
1 << INROOM ROBOT ROOM2 >> 
2 << NEXTTO ROBOT B1 >> 

------------------------------------------------------------------------ 

Remember that preconditions for an action to achieve a goal are written 
PRECOND PGOAL in the diagrams below. Look back at the trace to 

find the preconditions used. 

Approach 1: 

Holding period of this goal is 

INROOM ROBOT ROOM2 broken by the achievement of 
INROOM ROBOT ROOM1 

INROOM ROBOT ROOM1-rINROOM B1 ROOM2 --p- NEXTTO ROBOT B1-- 
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The approaches suggested to remove the interaction are a REORDERING 

to approach 2 and a PROMOTION to approach 3. The latter approach proves 

successful, the choice of the SHUNTTHRU on B1 then being constrained. 

It is chosen to achieve INROOM B1 ROOM2 on purpose and not as a 

fortunate accident. 

Approach 2: 

NEXTTO ROBOT DOOR1- sINROOM ROBOT ROOM2 f 

NEXTTO ROBOT B1 

Approach 3: 

INROOM ROBOT ROOM2 

INROOM B1 ROOM2 NEXTTO ROBOT B1-') 

Using "primary additions" only 

To make this point clear, if we disallowed SHUNTTHRU rs an 

operator relevant to achieving <<INROOM ROBOT =_ >>, using SHUNTTHRU 

only to achieve <<INROOM box == >> and GOTHRUDR to achieve 

<<INROOM ROBOT =_ >> (i.e., primary additions only are on the ACHIEVES 

list given to INTERPLAN - see section 5.8(2)). the problem would still 

be solved by INTERPLAN. 



123 

9.6 Goal Ordering vs. operator reordering ---------------------------------------- 

WARPLAN has taken the extreme of considering the goals in a 

fixed order and re-arranging the operators of suggested partial plans 

for each goal to form the plan for the conjunct of goals. This has led 

to the difficulty discussed above. However, INTERPLAN takes another 

extreme position. It considers some ordering of the goals in the 

conjunct and tries to form operator sequences to solve the individual 

goals and combine these in THE ORDER GIVEN. Any interactions are 

corrected for by discontinuing the former approach and suggesting a 

reordering of the goals or some promotion of a subgoal to try to 

remove the cause of interaction. INTERPLAN then tries to find 

operator sequences for the individual goals to be combined in the new 

order. Interactions may be localised and so not require a restart on 

the top level goals. Since some of the operator sequences may be 

virtually the same regardless of the position in the plan, this can lead 

to a serious duplication of effort. For example, a long operator 

sequence is needed to ensure a key is taken to the door in the Keys and 

Boxes problem (see section 11.2.2). After the discovery of this sequence 

an interaction occurs and planning with a different goal ordering 

requires virtually the same long operator sequence to be found. 
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Operator recommendations 

Early designs for INTERPLAN considered the notion of keeping an 

association list of all relevant operators for each goal in an operators 

precondition with the operator data structure (see appendix 1.2) which 

is kept at the appropriate Levels of the goal control tree. When 

a goal was first to be attempted, the relevant operators would be 

found by the normal process by looking for all operators which could ADD 

the goal. The association list entry for relevant operators for a goal 

would have 3 components: 

(a) previously successful operators 

(b) untried operators 

(c) previously failed operators. 

On initialization only component b would have any entries. If the goal 

was G1 and 2 operators were relevant, after initialization the 

association pair would be: 

(Gi , < nil , [% op1 , opt %] , nil >). 

Whenever a choice of an operator is to be made for G1, it is then done 

in the following way: 

i) get relevant operators association value for the goal. 

ii) if not yet initialized, do so as above. 

iii) Set up choice points for the alternative operators available, 

heuristically ordered so that relevant operators from the 

previously successful list are chosen first, untried operators 

next and previously failed operators last. 

INTERPLAN normally performs step iii) by finding the operators which can 

ADD the given goal, and it orders them according to the order they are 

put in by the user. 
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Whenever backup occurs to a ticklist (whose heading represents 

the precondition of some operator) then: 

ON SUCCESS: if the successful operator is not on the previously 

successful operators list of the operator whose precondition 

is represented by the successful ticklist, remove it from 

its present list and add it to the previously successful 

operators list. 

ON FAILURE: do likewise for the failed operator to the previously 

failed operators list. 

Now, whenever a re-arrangement of goals is made on an interaction, the 

relevant operators recommendations can be passed from the failed 

approach to the new one. 

This scheme only accounts for the outcome of the last use of 

an operator. Instead a count of the number of successful and failed 

uses could be used to order operators within one list (+1 for 

success, -1 for failure). A disadvantage of the operator recommendation 

notion would be that much of the data structures generated during 

problem solving would be retained after use while the recommendations 

were kept. 
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10 NOAH - A COMPARISON WITH INTERPLAN 

It is obvious that many interaction problems arise because the goals 

are tackled in a linear way. Given a suitable ordering of the components 

of a conjunct of goals many interactions can be avoided. The techniques 

of this report allow interactions to be found, and corrected for, under the 

assumption that we wish to tackle the goals linearily. This is because 

efficient problem solvers can be written which tackle goals linearily. 

Sacerdoti (1975) has described a non-linear approach to problem 

solving embedded in NOAH (Nets of Action Hierarchies), a program written 

in QLISP (,obrow o.nd. 9, hqQ\, I'll 4-). The system is intended only to 

make assumptions about the ordering of individual actions when this is 

necessary to the solution of the problem at hand. 

Problem actions are described to the system as QLISP functions 

which embed the ADD, DELETE and PRECOND entries of an OPSCHEMA. When 

some goal is given, the system works by progressively refining a 

"procedural net" for the problem. Refinement occurs by finding 

actions to achieve the goals, then running the QLISP code for the chosen 

action which in turn asks for the achievement of the actions preconditions, 

and when this is done updates the world model to reflect the effects of the 

action. 

Generally there are two steps which are performed in turn until the 

net is fully refined (the problem solved). 

(a) Choice of an action to achieve an unsolved goal. This 

choice may in turn introduce new precondition goals. 
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(b) "Criticism" of the structure of the net to look for interactions 

between suggested actions etc. 

Sacerdoti (1975) shows how the procedural net is 

used within a particular problem solver (NOAH) to handle block stacking 

problems. An example will be used to show the operation of the system. 

It is a 4 block problem, the 3 block problem described in section 4.2 is 

included in this. The problem is chosen as it shows more features of the 

system than the 3 block problem would. 

10.1 NOAH on the 4 block problem 

C D 

A 

B 

C 

A B D 

The following notation is used in the diagrams below: 

Achieve 

LD 
A goal which is not satisfied in the situation 
it is required in. 

A goal which is satisfied in the situation it is 
required in. 

An action to achieve a goal. 

A special "split" node for parallel branches. 

A special "join" node for parallel branches. 

+x, -x An action labelled -x deletes some precondition 
x (labelled +x) for a parallel action. 

An arc specifying an ordering constraint 
between a pair of nodes. 
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Levels in the 
Procedural Net 
(Refinements) 

1. 

2. 

Achieve (AND (ON A B) (ON B C) (ON C D)) 

The function for Achieve (AND ... ) suggests parallel branches for 
the components. 

Achieve (ON B C) 

Achieve (ON A B) 

Achieve (ON C D) 

The function for Achieve (ON x y) suggests a PUTON x y with 
preconditions (CL x) and (CL y). N.B. If there was more than one 
relevant operator, different procedural nets would have to be made 
available for consideration at this point. 

(CL C) 

(CL D) 

+z 

PUTON C D 

The System notices that in 2 cases a precondition (+x) is deleted by a 
parallel operation (-x). The recognition is done by building a structure 
called the "table of multiple effects" and allowing several critics to 
look for interactions indicated in the table (see later). These 
critics suggest appropriate linearizations when interactions are found. 
The plan is thus partially linearized to put the goal which has 
a deleted precondition before the negating action. 

Redundant preconditions in parallel branches are eliminated. 



3' (after criticism) 

4. 

PUTON B C 

2 preconditions are again deleted by parallel operations. Further 
linearization takes place as a result of criticism. 

4' (after 1st stage of criticism) 

(CL C) PUTON C ?objl 

(CL D) UTON D ?obj2 
S 

(CL C) 

( 

The function for Achieve (CL x) suggests moving a block y which 
is (ON y x). A PUTON y z for some z is used. This is different 

from the block stacking problems run on INTERPLAN but the same 
interactions occur. 

CL D) 

1IIPUTON C D 

PUTON B C 
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PUTON A B 

The system tries to make actions with unspecified arguments redundant 
by trying to unify them with a parallel action using a suitable choice of 
variable specification (i.e. here ?obj1="D"). The 2 merged operations 
are ticked (,/) in the diagram 
Final criticism removes redundant preconditions in parallel branches. 

4" (after criticism) 

(CL D) PUTON D Iobj D) 
PUTON C D S 1PUTON B C 

(CL C) 

PUTON A B 
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10.2 The multiple effects table -------------------------- 

At each stage of plan expansion after new nodes have been added to 

the procedural net, various "critics" are allowed to look at the net and 

make appropriate changes if they see fit. One of these critics 

(called Resolve Conflicts) looks for interactions between parallel branches. 

It behaves thus: 

1. A table of multiple effects is built by making an entry for each 

expression (goal) that is asserted or denied by more than one node 

in the current net. 

E.g. At level 3 of the example block stacking problem given in the 

previous section we had the following situation (nodes are 

numbered for use in the explanation to follow). 

Achieve (CL A 

PUTON A B 

PUTON B C 

PUTON C D 

The table of multiple effects would initially be: 

CL B: asserted at node 2 

deleted at node 3 

Asserted at node 4 

CL C: asserted at node 5 
deleted at node 6 

Asserted at node 7 

CL D: asserted at node 8 

deleted at node 9 
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2. Eliminate from the table those expresFions which are deleted at the node 

they are a precondition for. 

E.g. CL B at node 2 is a precondition for the action PUTON A B at node 

3 and is deleted at node 3. No interaction is involved in such a 

deletion. Drop any expression from the table which only has one 

entry left after this elimination of preconditions. The table above 

then becomes: 

CL B: deleted at node 3 

asserted at node 4 

CL C: deleted at node 6 
asserted at node 7 

3. The Resolve Conflicts critic then uses the interaction information in 

the table to partially linearize the procedural net being considered 

as shown in the previous section. 
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Ticklists and the table of multiple effects 
------------------------------------------- 

The table of multiple effects performs a similar function to the 

ticklists of INTERPLAN (and indeed were based upon ticklists and the notion 

of looking for interactions by the simple examination of a table of the 

effects of different actions upon the goals required - Sacerdoti, 1975 p.29). 

Such tabular formats provide a simple means of detecting 

interactions between subgoals and allows the locality of the interaction to 

be identified. The discovery of an interaction can thus be a constructive 

thing in that suitable corrections can easily be made when definite 

information as to what goals are interacting and how they interact is 

available. This is quite different from the procedure in many existing 

problem solvers which would simply backtrack to other choice points on 

discovering an interaction, or worse still, fail to detect the interaction 

at all. 
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10.3 Some limitations of the current version of NOAH 

10.3.1 Choice of an operator if several are relevant to one goal 

Actions are only put into the procedural net of a problem if they are 

relevant to the achievement of a goal being considered. If there is more 

than one relevant operator, -ome single action must be chosen from 

those available. The other choices giving rise to different nets which are 

kept as backup possibilities. If it turns out that the choice was 

incompatible with the other parallel goals being considered, the net 

currently being worked upon cannot lead to a solution and a failure 

is reported to the problem solver. However, as in WARPLAN (see section 9), 

no information as to the cause of the failure is given and blind 

backtracking is used to select a new alternative net from the backup 

possibilities available. Thus in those problems where the choice of the 

obvious relevant operator will not lead to a solution, the procedural net 

will not perform well. An example in which this would arise is 

the SHUNT problem detailed earlier in the comparison with WARPLAN (see 

section 9.5). The difficulty is explained there and the action of 

INTERPLAN on such problems described. 
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10.3.2 Restrictions on the legal linearizations to correct for an interaction 

If 2 goals are given, G1 and G2, and there are relevant actions Al 

and A2 with preconditions G11 and G22 respectively, the net may be refined 

thus: 

level 1: 

level 2: 

I 
Achieve (AND Gl G2) 

Say there are interactions as indicated in the final diagram where 

Al deletes G22, a precondition for a parallel action A2. Then the 

current version of NOAH has the critic described in section 10.2 to resolve 

the indicated conflict and it suggests the following linearization. 

Al 

Let us consider the holding period diagrams of the approach which 

lead to interaction and the suggested linearization. Remember that in a 

holding period diagram the time at which a goal is achieved is indicated 

from left to right (see section 4.1). 

The approach before linearization specifies any of the following 

linear approaches (where Al achieves G1 and A2 schieves G2): 
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(a) G11--. G1 I (b) G11 -P, Gl--il 

G22 --p- G2 --n 

(c) GI 1- Gl---il 

G22 --'G2 

(e) G11--I'G1 

G22 00 G2 --P 

(d) 

(f) 

G22 --P G2 

G1l0- G1 4 

G22 No G2 ---I 

G11 t G1--- 

G22 G2 

The indicated interaction says that: if G22 is true and Al (to 

achieve G1) is applied, G22 will be made false. So any approach which 

requires that G22 be true while Al is applied (G1 achieved) is illegal. 

This should reject approaches (d) and (e) only (i.e. those cases where 

Al intersects the holding period of G22). 

However, the linearization suggested by the resolve conflicts 

critic in NOAH -pecifies the linear approaches (b), (c) and (f). However, 

as indicated, approach (a) should also be allowed for consideration but is 

excluded by the linearization suggested. Now, since approach (a) is the 

simple linear sequence of trying to achieve G1 first and G2 second (the sort 

of approach attempted first by most problem solvers), we must be wary of 

excluding the possible use of this approach. 

Accepting Sscerdoti's thesis that decisions about ordering choices 
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should be made only as is necessary to remove interactions, the 

information available in the interaction 

[Achieve Glib 
Achieve G22 

only specifies the ordering 

constraint that Al should not be applied after G22 has been achieved and 

before A2 is applied (G22 is a precondition of A2), This constraint 

cannot be expressed within a single procedural net diagram by incorporating 

ordering lines between goals and actions. Thus either a new type of 

ordering constraint which excluded actions from appearing between some 

pair of nodes must be allowed or alternatively, 2 or more separate 

procedural nets should be suggested as appropriate linearizations for the 

interaction described. In the case above 2 separate nets would suffice, the 

one already suggested by the critics of NOAH 

Al 

specifying approaches (b),(c),(f) 

and the alternative 

Achieve G111 Al Achieve G22 A2 

which specifies approach (a). 

The addition of more backup possibilities as separate nets to be 

considered on failure makes the lack of guidance as to a suitable choice 

after failure (described in section 10.3.1) even more critical. 
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10.3.3 Double interactions 
------------------- 

The problem solving routines in the version of NOAH described in 

Sacerdoti (1975) are not capable of dealing with problems in which there are 

"double interactions". The general case is given below: 

Achieve G11 

Achieve G22 

Al 

A2 

A typical STRIPS-world problem which fits this case is: 

Achieve (AND (NEXTTO B1 B2) (NEXTTO B3 B4)) 

when the robot is initially not NEXTTO any of B1, B2, B3 or B4. 

An action (PUSH bx by) exists with definition 
PRECONDS (NEXTTO ROBOT bx) 
DELETE (NEXTTO ROBOT =_ ) (NEXTTO bx -_ ) 
ADD (NEXTTO bx by) (NEXTTO ROBOT by) 

This problem generates at some stage the procedural net: 

+1 -2 
A hi ( NEXTTO ROBOT B1 PUSH B1 c eve B2 

+Z 
Achieve (NEXTTO ROBOT B3) - PUSH B3 B4 

We can thus see that very straightforward problems fall into this category. 

It is possible to make 2 simple linearizations which may resolve the 

conflict. 

Achieve(NEXTTO ROBOT B1 USH B1 B2 

or 

Achieve(NEXTTO ROBOT B3 USH B3 B4 

} 
t2 

Achieve(NEXTTO ROBOT B3)J$ 

"Achieve NEXTTO ROBOT Bl)M, 

PUSH B3 B4 

(PUSH B1 B2 
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Once again (as in section 10.3.2) the generation of the 2 different nets for 
consideration may be avoided if some "restriction" ordering was allowed 

in the net to disallow an action from appearing between 2 nodes. Such a 

method would be more in line with the procedural net philosophy of only 

making linearizations as necessary. 

N. B. 

In the criticism contained in sections 10.3.2 and 10.3.3 it can be 

seen that the present NOAH system is not considering those linear approaches 

most frequently considered first by existing problem solvers. 

Sections 10.3.1,10.3.2 and 10.3.3 outline cases under which several 

nets may have to be generated, only one of which can be considered at any 

one time. Choice mechanisms between these nets would have to be considered 

and the use of failure information for this. Also duplication of effort on 

several similar nets could arise in these cases. 
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10.3.4 Loop detection and correction 

Loops generated in the procedural net are not 

detected, e.g. 

Achieve G1 A2 Al where Al is inserted to achieve G1. 

--- - --LOoP- - - 
As detailed in section 5.7.7 in the description of INTERPLAN, loop detection 

can be as important as many forms of interaction in outlining a defect in 

the approach on some problems. If corrected for it may enable a solution to 

be found, as for example, in the "Swap the values of 2 Registers" and the 

"Keys and Boxes" problems. Both these problems would be coped with by 

other mechanisms in NOAH. 

10.3.5 "Formal object" problems 

For example, in block stacking if ?OBI or ?OB2 (see section 

10.1 (4)) were set to any of the blocks for which (CL x) was later needed 

in a plan, problems would occur. There is really an implicit exclusion 

of any instance causing an interaction from the values any "formal 

object" may take. Some sort of variable restriction scheme 

(possibly as outlined in appendix IV) would be necessary to ENSURE that 

this was done in longer and more difficult problems. 
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10.4 Beneficial side effects ----------------------- 

A precondition for some action may be achieved as a side effect of 

a parallel action as shown below where Al achieves some main goal Gl but 

also achieves G22 (a precondition for A2) as well. 

Achieve Gil 

Achieve G22 

Then we could suggest a linearization to make the achievement of G22 

unnecessary as follows: 

Achieve Gll Al G22 A2 

Achieved Goal 

which is equivalent to 

I 
Achieve Gil Al i 

10 A2 

Though, it should be remembered that the other linearizations are not 

illegal (no interaction prevents them being used) and for some problems 

explicit achievement of G22 may be necessary. 

The table of multiple effects provides the information which 

would enable a critic to be written to look for beneficial side effects. 
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11 KEYS AND BOXES PROBLEM SIMULATION 
--------------------------------- 

As mentioned earlier in this report, an aim of the work was to 

discover the reasons why existing problem solvers could not cope with 

a particular problem, the Keys and Boxes. The work on interacting 

goals stemmed directly from this investigation. We will now return to 

this problem to illustrate how it could be represented to INTERPLAN 

and to simulate the action of the program on the problem. To actually 

run the problem on the current implementation of INTERPLAN would 

require, in particular, the matcher to be extended to cope with sets. 

and the full loop editor to be used (section 5.7.7). The provision of 

set matching would be tedious and would not aid our understanding of the 

processes involved. However, to make clear what would actually be 

required of the matcher, all set matches have been noted in the 

simulation and are listed in section 11.2.1. 

A Si , P\;;e &, v2Sion ,-F 1.2 V\ys o.4' QoxQS eCae'`1 

W l i C ', C, o e s 'N o C" Oy v " e e US 2 0 -(- a, s-e mo cLl r s 

A-Qscibe a,rre+\ -A k,,3 wo S S u cess u lay c) 

0 (\ INTE RPLAN . 
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11.1 Representation of the Keys and Boxes problem to INTERPLAN 
--------------------------------------------------------- 

This representation closely follows the English statement of the 

problem given in section 3.1. 

11.1.1 Predicates 

There are 3 predicates which can be altered by the robot's 

actions. With the parameter types they take they are: 

AT(<set of objects>,<place>) t' ode ece w,11 ol, owe 

ROBOTAT(<place>) 

HELD(<set of objects>). 

There are 3 global predicates: 

RED(<set of objects>) 

KEY(<set of objects>) 

INROOM(<place>). 

"NOTHING" is equivalent to J the empty set of objects. ...xi 

represents a particular set of objects, possibly empty, whose 

individuals are not explicitly known. The value of x distinguishes 

different such sets, it may be omitted if no distinction is required. 

The statement in the Keys and Boxes problem description is section 3.1 
which says that in the initial situation there is A And possibly other 
objects at BOX1 can be represented as << AT A, ...1J 80X1 >. 
A is a particular object and ...1 represents the other elements which 
may be at Bart initially. The other elements, if they exist are treated 
as unique. We assume a limited set matching facility is available to 
the system as specified in the following sections. 

"SUBSET x>> can mean the set x itself or else represents a non-empty 
set of objects from x. 

"UNION x y>> mesas the set union of note x and y. 

<<SETMINUS x y>> mesas the set y with the elements of not x removed. 

N. B. "SUBSET x>> "UNION x y>> and <<SETKINUS x y>> are patterns which 
are to be matched against others and do not behave as set functions. 
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11.1.2 Operator schemas 

There are 3 actions, LETGO, PICKUP and GOTO(<place>). LETGO and 

PICKUP are straightforward and each convert to an operator schema as 

follows: 

OPSCHEMA LETGO 
ADD <<HELD NOTHING>> 
DELETE <<HELD == >> "=_" matches any item (HBASE). 
PRECONDS 
VARS 

ENDSCHEMA 

OPSCHEMA PICKUP 
ADD <<HELD <<SUBSET *$*X>> >> 
DELETE <<HELD =_ >> 

PRECONDS <<AT <<SUBSET *$*X>> *$*Y» <<ROBOTAT *$*Y>> 
VARS X Y 

ENDSCHEMA 

N.B. it is only necessary to have a SUBSET of the set z at the place to 
be able to hold a SUBSET of x after a PICKUP. This is the weakest 
precondition which will specify the PICKUP effects and should be used 
to ensure the PICKUP is useful in as may cases as possible. 

The GOTO(<place>) action is a little more involved since it has 

several conditions in its definition. It therefore expands out to 

several operator schemas (though ways of withdrawing appropriate 

operator schemas as needed from a single representation of GOTO(<place>) 

can be provided - see section 5.8(6)). Following our English 

statement of the problem we can write: 



0010(y) is defined as follows 
IF y"OUTSIDE" 
TON precondition is EEY(t) & AT(UNION(SUBSET(t), ... ), DOOR) 

ELSE precondition is INROON(y) CLOSE; 
deletes ROBOTAT(s) and adds ROBOTAT(y). 
IF HELD(x); a/s"It TRING" 
THEN deletes AT(w,z) and deletes AT(v,y) 

adds AT(UNION(x,v),y) and adds AT(SETMINUS(x,w),z) 
CLOSE; 
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Since there are 2 conditionals in this definition, we obtain 4 different 

operator schemas all with the same name, GOTO(y). To aid the explanation 

to follow we shall, however, rename them - though this is not necessary 

for the operation of the program. TAKE(y) will describe the actions 

in which we do a GOTO(y) with something HELD. 

OPSCHEMA <<GOTO *$*Y)> 
ADD <<ROBOTAT *$*Y,> 
DELETE <<ROBOTAT == > 
PRECONDS G <<INROOM *$*Y>> <<HELD NOTHING>> 
VARS Y 

ENDSCHEMA 

OPSCHEMA <<GOTO OUTSIDE>> 
ADD <<ROBOTAT OUTSIDE ,>> 

DELETE <<ROBOTAT == >> 
PRECONDS G <<KEY *$*T>> <<AT <<UNION <<SUBSET *$*T>> ... >> 

<<HELD NOTHING>> 
VARS T 

ENDSCHEMA 

OPSCHEMA <<TAKE *$*Y>> 
ADD <<ROBOTAT *$*Y'> <<AT <<UNION *$*X *$*V>> *$*Y > 

<<AT «5 E-mS *$*X *$*w > *$*Z>> 
DELETE <<ROBOTAT *$*Z > <<AT *$*W *$*7>> <<AT *$*V *$*Y>> 
PRECONDS G <<INROOM *$*Y>> <<AT *$*V *$*Y>> <<HELD *$*X>> 
VARS V W X Y Z 

ENDSCHEMA 

DOOR>> 

OPSCHEMA <<TAKE OUTSIDE > 

ADD <<ROBOTAT OUTSIDE>> <<AT <<UNION <<SUBSET *$*X>> *$*V>> OUTSIDE>> 
<<AT «SETf11N11S *$*X *$*W» *$*Z>> 

DELETE <<ROBOTAT *$*Z>> <<AT *$*W *$*Z > <<AT *$*V OUTSIDE >> 
PRECONDS G <<KEY *$*T > <<AT *$*V OUTSIDE,zz 

<<AT <<UNION <<SUBSET *$*T)> L j > DOOR>> 
<<HELD *$*X>> 

VARS T V W X Z 

ENDSCHEMA 

The ADD/DELETE lists fully specify the effects of the actions, so 

OPSCHFNs are not needed. 
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The changeable predicates (AT, ROBOTAT and HELD) may have a 

definite order of priority put upon them. This does not always indicate 

which goals are easier to solve, but gives information about the 

interactions possible in the domain. If the ROBOT(is)AT q place, we 

cannot go on to achieve an already untrue AT statement without first 

deleting the ROBOTAT fact. So, AT must have greater priority than 

ROBOTAT. Also, if we achieve some HELD goal and require it to be kept 

true we may not be able to solve some AT goal, but it is usually 

possible in the other order. Using such domain specific information we 

can order the predicates by priority thus: 

1. AT 2. HELD 3. ROBOTAT. 

The ordering can be seen in the operator schemas given earlier. 

It can be used to disallow reversals of goals of different priorities 

by setting SCHREVS of each OPSCHEMA appropriately (see appendix I.1). 

Theoretically, predicates of the same priority can be solved in any 

order. So, the system accepts whatever order it is given, but is 

prepared to alter this if an approach fails. 

In fact the preconditions for the TAKE operator schemata are 

insufficient if <<AT <<SETmiNOS x w>> z> is allowed as an achieve 

request to them. However, the modifiation would be to add two 

preconditions to them (<<AT *$*W *$*Z>> and <<ROBOTAT *$*Z»). We will 

ignore this request knowing that it will not arise in the Keys and 

Boxes problem 



146 

11.1.3 Initial situation and Pules (IFNEEDS) 
------------------------------------- 

We assert in the initial sitaution (CUCTXT): 

<<AT FA, ..A 1 BOX1>> 

<<AT B , . . ..2 BOX2 > 

<<AT C, ...33 DOOR>> 

<<AT NOTHING TABLE"> 
<<INROOM BOX1» 
<<INROOM BOX2>> 
<<INROOM DOOR>> 

<<INROOM TABLE> > 

N.B. There are no assertions for <<AT x OUTSIDE >> or <<ROBOTAT x>>. 

The following rules are available to compute true instances of an 
wou\d be 

achieve request (these n stored as IFNEEDED methods - McDermott and 

Sussman, 1972). IFr13E60ED mecdc C&iVo be oJ;V A 7o LAe doAo, 
base sre used` n Eke Currev'IeMen6, ton o f rJTrR/aJ. 
true ==> <<AT ... y>> 

i.e., there is a possibly empty set of objects at any place 
(<<AT u BOX1» & <<AT v BOX2'>) in context NOW 

==> <<KEY <<EI THEROF u v» >>. 
<<AT u DOOR-> in context NOW =-> <<RED u>>. 

«? X '>'> ==> 

11.1.4 Goal 

« P <,< '3 i h >> >>, 1 '- set o-F o hec-s I \&s SoAQ 

ecoPecEy ) (Z- tien a SO S k- of :1 Q set ':'AFo 

The goal, following the English statement in section 3.1, can be 

expressed as: 

<<RED x>> & <<AT <<UNION <<SUBSET x» ... >> OUTS I DE>>. 
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11.1.5 ACHIEVES list 
------------- 

(% <<HELD NOTHING>>, L% LETGO %], 
<<HELD <<SUBSET =_ >> >>, L% PICKUP %3, 
<<ROBOTAT <:NON OUTSIDE : > >>, M GOTO(y) %3, 
<<ROBOTAT OUTSIDE >>, [% GOTO(OUTSIDE) %], 
<<AT <<UNION >> <:NON OUTSIDE:> >,,, t% TAKE(y) %], 
<<AT <<UNION >> OUTSIDE,,>, [% TAKE(OUTSIDE) %] %] -> ACHIEVES; 

N.B. (a) <:NON OUTSIDE:> is an HBASE actor which will not match OUTSIDE. 

<:NON OUTSIDE:> instances are put first so that attempts to 

achieve AT(x,y) where y="==" (i.e., put some objects anywhere) 

only attempt to put x AT places INROOM, not OUTSIDE. 

(b) TAKE(y) and TAKE(OUTSIDE) also achieve ROBOTAT goals. Also in 

the ACHIEVES list above <<AT <<SE1 iJ US =_ == >> == >> 

achievements are ignored. So, only the important achieve 

requests with their primary method of achievement are on 

ACHIEVES (i.e., the primary additions of STRIPS - Fikes, Hart 

and Nilsson, 1972b). 
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11.2 The Simulation 

11.2.1 Set matching for the Keys and Boxes 

A matcher, cay MATCH1, is required which behaves thus: 

MATCH1 = MATCH (normal HBASE matcher) exeep& n (:,e cose `0Fk aaoMejEs am- SeEs. 

The set catcher gust have the following minimal properties to solve the 
Keys and Be"* problem. Matches are one only. 

0 NM NO or f i Matches only 1R)THINO 011 ii) j...t matches any set. iii) a set matches another if each element of the set matches each element 
of the other in some order. 

iv) SUBSET xv> matches y if x Matches y. I.e. <<SUBSET x» can be 
equal to the not z itself. 

v) ...x only Matches ...x. for any number x. I.e. Pet remainders are 
considered as unique. 

The letters in brackets refer to points in the figures to follow in 

section 11.2.2 which explain the action of INTERPLAN on the 

Keys and Boxes problem. 

(a) MATCH1(<<UNION <<SUBSET JC,...3)» .. I », £... ) _> ^eF ned,, 

(b) MATCH1( ...1 , ...j ) => true. 

(c) MATCH1(<<UNION <<SUBSET <<EITHEROF IA,.. . 1 JB,.. .2j» >> ...3 >>, 

C,...3 ) => vnd enec. 
or 
MATCH1(<<UNION <<SUBSET IA,.. . 1j >> 

<<UNION <<SUBSET B,...23>> 
C,...3) => vnde ned 

(d) MATCH1(<<UNION <<SUBSET B, ... 21» ... », C, 3 ) => vnde ,neut. 

(e) MATCH1(...}, C, ... 3j) _> true. 

(f) MATCH1(<<SUBSET B,...2)», Jj ) => ndekined. 

(g) MATCH1(<<SUBSET Z B, ... 2» , B, ... 23) => true. 
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(g#) MATCH1(<<SUBSET A, ... 1j », fA, ...1),) => true. 

(g") MATCH1(<<SUBSET JC,... 31», C,...31) => true. 

(h) MATCH1(<<SUBSET C,...31», 
. 11» <<UNION <<SUBSET fA,.. 

<<UNION <<SUBSET B, ...21» JC, ...31» >>) _> Urde ned 

MATCH1(<<SUBSET C,...3», t ) => Unoektned. 

MATCH1(<<SUBSET C,. .. 31 >>, 
{C 

<<INTERSECT <<SUBSET A, ...1 » zA, ... 1 >>) => Vndef1ned. 

MATCH1(<<SUBSET C, ... 3)» , 

<<INTERSECT <<SUBSET JB,...21» B,...23>>) => uAJ e-dined, 

(i) MATCH1(J, ) => true. 

11.2.2 Simulation 

We present the simulation of the action of INTERPLAN on the 

Keys and Boxes problem by giving a series of 4 "snapshots" of the 

state of the goal control tree of the system at interesting points on 

the way to a solution. 

STATE 1: Search has proceeded in a straightforward way to this point. 

To achieve the goal, ? red thing must be outside. This can be 

achieved using a TAKE(OUTSIDE) operator. To take anything 

outside, a key must be at the door. We can be sure of getting 

a key outside if we get a subset of the things now at Boxl to 

the door, and a subset of the things now at Box2 to the door. 

We plan to take a subset of the things at Box2 to the door 

first. State 1 is the stage at which operators have been 

chosen to get a subset of the things at Box2 to the door. 

Successful backup is about to take place. 
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STATE 2: The successful backup from state 1 is shown giving entries 

up to index number 35. We then have a subset of the objects 

from Box2 At the door. Now a subset of the objects from Boxl 

must be taken to the door. State 2 Phows the goal control tree 

after this sub-plan is found and after successful backup has 

taken place. By the time entry 61 is made we have planned to 

get a key at the door. 

STATE 3: Now we have a key at the door, we could achieve our top level goal 

goal of getting a red thing outside by holding a red thing and 

executing a TAKE(OUTSIDE). However, in this state we have 

tried to hold a red thing and have run into a LOOP. Information 

is available within the goal control tree upon which to suggest 

a new approach (see section 11.2.3). 

STATE 4: The new suggested approach is tried and proves successful. 

The stage shown is just after planning to remove a red thing 

from the door to the table for "safe-keeping". When this 

approach has been fully expanded the optimal plan is 

generated: 

LETGO, GOTO(DOOR), PICKUP, TAKE(TABLE), 

LETGO, GOTO(BOX2), PICKUP, TAKE(DOOR), 
LETGO, GOTO(BOX1), PICKUP, TAKE(DOOR), 
LETGO, GOTO(TABLE), PICKUP, TAKE(OUTSIDE). 
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The LOOP detected editor now acts. It suggests a new approach at the 
level where we are trying to find a situation in which the 
preconditions of TAKE(OUTSIDE) are satisfied. See the notes on how 
the full loop editor works (section 5.7.7). Reversal of goals at the 
upper loop level is not possible since PRIORITY(AT) > PRIORITY(HELD). 
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BACKUP now takes place. We have succeeded 
in isolating some red things at the table. 
The process of filling in the ticklists 
then proceeds without further interaction 
to produce the successful plan. 
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11.2.3 Notes on the simulation 

1. <<KEY t>> _ <<KEY <<EITHEROF A, ...1 >> 

t is expected to be the set of all possible objects which are keys. 

2. The question answerer and the operator selector perform appropriate 

matching and transformation of set descriptions to obtain a match. A 

special facility must be provided additionally to deal with EITHEROF 

goals or facts. 

Using: RELATION ON x & RELATION ON y =_> RELATION ON (EITHEROF x y) 

the question answerer should transform 

<<AT <<UNION <<SUBSET <<EITHEROF i A, ... 1 B, ... 21>> >> ... >> DOOR>> 

to 2 questions both of which must be true:- 

<<AT <<UNION <<SUBSET A, ... 11 » . , I>> DOOR'> 

<<AT <<UNION <<SUBSET iB,...21>> .. 3 >> DOOR>>. 

I.e., If both of above are true, the relation on EITHEROF is also 

true. But, note that the above is 

<<AT <<UNION <<SUBSET iA,... 1!» 

<<UNION <<SUBSET B, ...21,» .. , » >> DOOR>> 

AT ((SUBSET IA,.. . l) U (SUBSET B, ...21 ) U L. .J ) DOOR. 

Also if a relation on an EITHEROF is required to be ACHIEVED, we can 

try to achieve the relation on both parts, as this is the only way of 

being sure that the EITHEROF is satisfied if testing of a state of 

the robots world is not allowed. So, an achieve request should also 

be transformed as above. 
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3. <<AT <<SUBSET JC,...31 » y>> can only match 

<<AT <<UNION == =-_ >> == >> in the ACHIEVES list (see section 11.1.5). 

Since we are trying to ACHIEVE the pattern, we require: 

<<AT <<UNION <<SUBSET C,.. .33 >>j >> y>>. Only other instance of 

<<AT <<UNION <<SUBSET C,.. . 3\» <<SUBSET C, ... 34>> >> y>> would 

merely cause a LOOP. This is a general heuristic principle which 

could be incorporated into the set match routines. 
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11.3 The approaches used in the Keys and Boxes problem 
------------------------------------------------- 

We can describe the approaches used and tried during the 

simulation of the Keys and Boxes problem using the "holding period" 

diagram. I will abbreviate 

<<UNION <<SUBSET C.... 31» f ...I > as "RED" and 

<<UNION <<SUBSET A , . . ..11» <<UNION <<SUBSET B, ...2» ... » >> as 

"KEY". The approach (the initial approach) being considered when the 

important LOOP detection occurs is shown below. 

Remember that preconditions of an action to achieve a goal are written 

PRECOND 0 GOAL in the diagrams below. 

AT KEY DOOR 

AT RED OUTSIDE-11- 

HELD RED --- AT RED y lo HELD RED 

-- - ---LOOP------ 

As indicated in the description of the full loop editor (section 5.7.7), 

we may try to reorder the concurrent goals at the upper loop level 

(AT KEY DOOR and HELD RED) to avoid the loop. This would give an 

approach as shown below. 

AT KEY DOOR 

AT RED OUTSIDE 

HELD RED 

However, if knowledge of the predicate priorities has been incorporated 

into the operator schemas (as mentioned in section 11.1.2), this ordering 
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would not be allowed as priority(AT) > priority(HELD). 

The alternative of suggesting some "setup" goal to aid the 

solution of HELD RED while avoiding the loop is also tried. The pattern 

we looped upon (HELD RED) contains no variables and thus, the two loop 

occurrences of the pattern are IDENTICAL. Using some instance of 

the loop pattern as a "Setup" goal is thus equivalent to the approach 

with goals at the upper loop level reordered (as shown in the 

previous diagram). This is fully explained in section 5.7.7. However, 

the intermediate subgoal between the loop patterns in the approach 

(AT RED y) could be used as a setup goal if it had no true instance in 

the initial situation (the point to which it is to be promoted). Since 

(AT RED DOOR) is true initially, we must restrict y to not be the DOOR 

to allow its promotion. The approach suggested by this promotion is the 

one which allows us to go on to solve the problem. It is shown below. 

AT KEY DOOR 

AT RED OUTSIDE 

AT RED y HELD RED 
y/=DOOR 

Similarity to the swap the values of 2 registers problem 
-------------------------------------------------------- 

It is interesting to note the close similarity between the 

approaches needed to solve the swap the values of 2 registers problem 

(see section 8.2) and those needed to solve the Keys and Boxes 

problem. 
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12 CONCLUSIONS 

12.1 Interaction problems 

We have de-cribed a class of problems in which the solution of 

individual goals in sequence will not lead to a solution of a conjunct 

of goals. The Keys and Boxes problem falls into this class, as do other 

well known problems, such as swapping the values of two computer 

registers. Such problems have been termed interaction problems. A very 

simple block stacking problem was used to point out the interaction 

difficulties encountered by linear problem solvers and to describe our 

approach to overcome these difficulties. 

Several problems which previously have been dealt with using 

special domain-dependent facts can be tackled in a natural fashion 

without this information if dealt with as interaction problems. We have 

shown our system, INTERPLAN, coping in a general way with the problem of 

swapping the values of two computer registers and with other problems 

which have been considered anomalous by other problem solvers. These 

have included the 2-room problem of Siklossy and Dreussi (1973), see 

section 8.1, and the Shunt problem of Warren (1974), see section 9.5. 
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12.2 Extending the scope of linear problem solvers 

Linear problem solvers which assume that plans to achieve 

individual goals can be concatenated to solve a conjunct of goals have 

been studied extensively. For example, in STRIPS (Fikes and Nilsson, 

1971), LAWALY (Siklossy and Dreussi, 1973) and HACKER (Sussman, 1973). 

Such systems often gain their efficiency by being able to restrict the 

operators which need be considered as relevant because goals which are 

true in the initial or intermediate situations can be used to restrict 

the instantiations of the relevant operators. 

A process has been described which allows the use of linear 

problem solving techniques on the class of interaction problems. The 

process provides a monitoring system which looks out for interactions 

in the plan being built up in a linear fashion, and provides the ability 

to make simple corrections if interactions occur to allow linear problem 

solving to resume. A problem solver which incorporates this process, 

INTERPLAN, has been programmed and tec,ted. 

The provision of an ability to deal with interaction problems by 

a problem solver has extended the scope of linear means-end 

analysis driven systems to an inportant class of problems. This ability 

provides the mechanism which could be used to solve the Keys and Boxes 

problem (Michie, 1974). We have given a simulation of the action of 

INTERPLAN on this problem. 
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12.3 Use of goal structure 

The monitoring system which checks for interactions does not 

consider the individual sequences of actions which comprise the plan, 

but rather considers the effects these plan sequences have on the 

goals being achieved. 

Initially some order of the top level goals is chosen as an 

"approach" to the problem. If the conjunct of top level goals can be 

achieved by the concatenation of operator sequences for the individual 

goals in the order specified in the approach, the problem is solved 

normally by the system. However, the monitoring system keeps a 

check that the approach is being strictly followed. If the chosen 

operator sequence for some individual goal deletes some previously 

achieved goal a violation of the approach is reported by the 

monitor. Corrections are made to the approach which will probably 

remove the difficulty (for example, by reordering the goals in the 

approach or the insertion of some necessary intermediate step). An 

attempt is then made to solve the individual goals by plan sequences in 

the order specified in the new approach and to concatenate these in that 

order. Many other legal approaches to the problem are not tried since 

they are not indicated as useful. 

This process can be seen as "debugging" an initial approach 

suggested to achieve some conjunct of goals to an approach which does in 

fact allow the achievement of the conjunct. The method used here on 

declarative data representations (operators represented basically as 

ADD, DELETE and PRECONDITION lists) has much in common with that used in 

HACKER (Sussman, 1973) on more procedural representations. 
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The aim of the INTERPLAN system can be interpreted as finding 

a successful approach which fully specifies the order in which goals 

can be achieved by some operator Sequence and kept true (without 

interaction) whilst the other goals are achieved. Such a successful 

approach provides much information over which learning schemes 

can be devised. 
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12.4 Use of Ticklists 

The goal control tree of INTERPLAN is of the "backup" 

type described in the introductory section on robot problem solving 

(see section 2.5.4). This structure allows the localization of the 

information about which goals are effected by the operator sequences 

which are used to achieve some individual goal. This localization led 

to the use of a straightforward tabular form for keeping track of the 

interactions between plan sequences to achieve individual goals. This 

tabular structure is called a "ticklist" since goals which are asserted 

by some plan sequence are ticked in the table and goals which are 

deleted are crossed. 

It has been found possible to define a set of classifiers which 

look for certain patterns of ticks and crosses in the ticklist currently 

being considered and a set of editors each of which is paired with a 

classifier and which perform the appropriate actions on the tree of 

ticklists (which is the goal control tree of INTERPLAN). An iterative 

process of classifying and editing the tree of ticklists can therefore 

be used to solve a problem. 

The tabular format of ticklists and the pattern of ticks and 

crosses within a ticklist provides a simple means of detecting interactions 

between subgoals and allows the locality of an interaction to be identified. 

Compare this with the analysis of the teleological trace of the problem 

solver's actions necessary to find the cause of an interaction in HACKER 

(Sussman, 1973). The discovery of an interaction can be constructive in 
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that suitable corrections to the approach being tried by the problem solver 

can easily be made when definite information is available as to what 

goals are interacting and how that interact. This is quite different 

from the procedure in many existing problem solvers which would simply 

backtrack to other choice points on discovering an interaction, or 

worse still, fail to detect the interaction at all. 
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12.5 Comparisons with other systems ------------------------------ 

During the course of this project two other research workers 

designed problem solvers which are capable of dealing with interaction 

problems. The methods employed by these problem solvers, WARPLAN 

(W^rren, 1974) and NOAH (Sacerdoti, 1975), have been compared with 

INTERPLAN. NOAH is particularily interesting since it is probably 

the first robot problem solver to use a non-linear approach to 

solving the components of a conjunct of goals. NOAH uses a table in 

which the effects of plan sequences on the GOALS being achieved are 

recorded and this table is used to decide on the action to be taken by 

the problem solver. This tabular form was based upon a description of 

ticklists given in an earlier paper (Tate, 1974). 

Time comparisons of several problem solvers against INTERPLAN, 

particularily on problems in the STRIPS robot world and variants of this, 

show that INTERPLAN performs better even though it can cope with a wider 

class of problems than most. 

INTERPLAN has been written in such a way as to be easily 

modifiable to allow its use in further problem solving research. In 

this context it has been used in a study on the usefulness of pre- 

processing routines on STRIPS-world problems (Davis, 1975). 
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12.6 Future considerations 

12.6.1 A more flexible search strategy 

The work presented in this report has concentrated upon the 

development of a problem solver which can use a means-end analysis 

(or problem reduction) approach to solving a problem. It was argued in 

section 2.4 that means-end analysis was useful, and in some problems 

necessary, when a large number of operators were APPLICABLE to a current 

situation. However, in some problems there may be a large number of 

RELEVANT operators, but only a few which are APPLICABLE. Normal 

forward search procedures would then be most useful. Such an alternative 

strategy is not open to INTERPLAN pnd other means-end analysis driven 

systems. What is required is a problem solver which can exploit the most 

restrictive kind of search technique at EACH choice point during the 

search for a problem solution. 

Kowalski (1974) describes a means of representing a problem to a 

theorem prover called "connection graphs". In theory, this representation 

provides information upon which a decision could be based as to what is 

the most restrictive operation which can be performed to aid the solution 

of a problem at each choice point. Investigations would be needed to 

find techniques to enable the information contained within such a 

representation of the problem to be used to guide a problem solver's 

search without the need to fully analyse the potentially 
very large 

structure. 
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12.6.2 Consideration of several goals simultaneously for QA purposes ------------------------------------------------------------- 

Consider a question such as (AT ?X ?Y) & (AT ROBOT ?Y). If the 

two parts were asked separately in the order given when the data base 

contained 

(AT BALL A) 
(AT BLOCK B) 

(AT ROBOT B) 

we could instantiate such that (AT ?X .Y) matched (AT BALL A) setting 

Y=A. Then the question (AT ROBOT A) would be asked and would not be 

true. It would thus require achievement. If a different instance had 

been chosen for Y we could have avoided making such an achievement. We 

would like to obtain matching instances for the WHOLE goal first, and 

only as a second best, matches for part of the goal. We would need to 

have the other goals available when asking some question and extend the 

Question Answerer to take these other goals into consideration when 

ordering the possibility list of true instances of some individual question. 

A better method may be to still ask the questions singly, but allow the 

possibility lists of answers (e.g., above the QA system returns (AT BALL A), 

(AT BLOCK B), etc. in reply to the question (AT ?X ?Y)) to RESTRICT the 

values of the variables X and Y as appropriate. Further questions would 

then contain enough information to enable the QA system to order their 

possibility lists. 

12.6.3 An improved problem solving philosophy 
-------------------------------------- 

Many interaction problems arise because of the linear way in 

which most current problem solvers tackle individual goals of a conjunct 
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of goals. The work of Sacerdoti (1975) makes the point that 

linearization of components of a plan should only be made when 

interactions actually dictate that they must be made. Sacerdoti 

demonstrated the usefulness of such an approach on block stacking 

problems. The question answering strategy outlined in section 12.6.2 

is a special case of such a relaxation of the linear problem solving 

approach. 

Linear problem solvers generate a plan which can be represented 

very simply. This report shows that it is also straightforward to 

represent the structure of the goals being considered in a linear 

system, such structure being important to help guide problem solving. 

However, except in the simplest problems, the same cannot be said of 

the problem solvers of the type advocated by Sacerdoti. This is because 

there are many instances when restrictions on legal linearizations of 

the non-linear plan representation must be made. This cannot be done by 

simple orderings of actions within the representation (e.g., see section 

10.3.2). 

Search problems, similar to hose which occur in linear systems, 

arise in non-linear problem solvers because operator choices have to be 

made and the alternatives must be kept available as backup choices. 

Decisions must be made as to whether to continue working with the 

constraints of some particular operator choice or whether to choose 

another operator. The search problem is particularly acute in 

non-linear systems because alternative choices can be generated 

in more cases than for linear problem solvers (e.g., see 

sections 10.3.1, 10.3.2 and 10.3.3). It would be valuable now to 

investigate the use of goal structure to direct alternative choices in 

a problem solver which used a non-linear approach. 
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APPENDIX I PROGRAM IDENTIFIERS 
-------------------------------- 

I.1 The Components of an OPSCHEMA ----------------------------- 

An OPSCHEMA can be constructed using a function CONOPSCHEMA. The macro 

OPSCHEMA makes default settings for most components, see example later. 

(a) OPSCHNAME A pattern (possibly with variables local to the OPSCHEMA) 

which is used as the name of the operator for output. 

(b) ADDLIST A list of patterns (possibly with local variables) which 

when an operator from this OPSCHEMA can be applied 

in some situation, can be instantiated from the values 

of variables local to this OPSCHEMA and asserted (made 

true) in the successor situation. 

(e) DELETELIST A list of patterns as above whreh cxce no \onge 1cnnwn "a 
the SOC(QCS'oC S.; CU0.-iof\ P\t\ ?,,,R-errs 1'c1n 

r0.ch a DELFT LIST entry or2 ,-va,r-Lt-ed, 0.S avino a/1 

UA e -F-Ned. (-ru,4-l valve . 

(d) OPSCHFN A function to be applied to the successor situation 

after the additions and deletions have been made. 

Generally, this may act like the IFADD and IFREM 

theorems of CONNIVER (McDermott and Sussman, 1972). 

(e) PRECONDS A list of pairs 

[ <REF NUMBER> . <PATTERN> ] 

where <REF NUMBER> will usually be a positive integer 
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(see Appendix 1.2 (b)). The PRECONDS are joined onto 

any PROTECTED patterns to become the ticklist heading of 

ticklists for operators which are instances of this 

OPSCHEMA. The PRECONDS specify the applicability 

conditions of the OPSCHEMA. 

(f) SCHREVS This is a list of pairs of the reference numbers of 

preconditions for which reversals should never be 

attempted. It will generally be left null, but can be 

used to incorporate heuristic knowledge of a problem 

domain. For instance, n scheme preventing reversals 

between groups of goals arranged in a precedence 

ordering (see Siklossy and Dreussi, 1973) can be 

implemented using this feature. SCHREVS can be 

"NOREVERSE" if it is known that no reversals should be 

attempted. 

(g) VARSLIST An association list ("ALIST") which contains all the 

local variables of this OPSCHEMA. Usually their values 

will be UNDEF initially, 

e.g., E X UNDEF Y UNDEF ]. 

This component is used to initialize the TICKVARS of 

each ticklist generated from this OPSCHEMA. 

(h) MAXREVS Specifies the maximum number of pairwise reversals which 

can be made for ticklists generated from this 

OPSCHEMA. A function, NUMREVS(n), is provided to give 

this number. MAXREVS is used only for computational 

convenience in checking if all reversals have been tried. 
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The macro OP SCHEMA ------------------ 

When the macro OPSCHEMA is used, default settings are provided for many 

components, e.g., 

OPSCHEMA <NAME> maps to <NAME>, 
ADD <Al> <A2> [% <Al> , <A2> %], 
DELETE <Dl> <D2> [% <Dl> , <D2 %], 

(lambda; end), no action OPSCHFN 
PRECONDS <P1> <P2> r% [1 . <P1>] [2 . <P2>] %], 

f], null SCHREVS 
VARS X Y [ X UNDEF Y UNDEF], 

NUMREVS(2) MAXREVS 
ENDSCHEMA CONOPSCHEMA- 

If "G" proceeds any precondition, the pattern is given a reference 

number 0 to indicate it is a GLOBAL precondition with no means of 

achievement (see Appendix 1.2). 
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1.2 The components of TICKLIST, OP and LEVEL 
---------------------------------------- 

The components of a TICKLIST (constructor CONSTICK) are:- ---------------------------- 

(a) TICKARR The actual 2-dimensional array represented as a 

STRIP of 2 bit elements (initiator INIT2, access 

doublet SUBSCR2). The entries are initially 0, 

but can also be a cross (2) or a tick (3). The 

strip is initially given a length appropriate to 

4 rows (i.e. 4*COLMBOUND - see (i) later) but can be 

expanded as needed. 

(b) TICKPATTS Is a list, COLMBOUND long. 

Its entries are pairs [ <REF NUMBER> . <PATTERN> ). 

It is accessed using the doublets: 

PATTREF(i,ticklist) and PATT(i,ticklist). 

<PATTERN> ::= goal pattern which may have variables. 

<REF NUMBER, ::- INTEGER >= 1 

A goal which must be true when the whole ticklist 
heading is satisfied. 

A goal for which there are no means of achievement 

(a global goal). This is provided for efficiency in 

some problems. It can also be used to indicate that 

no means of achievement should be used for a goal. 

INTEGER =< -1 but >= -1000 

A goal which need only be true until the goal with 

reference number equivalent to the absolute value of 

this goals reference number is satisfied. Typically 
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these goals are ones found to be generally required 

to be true before another harder to achieve goal can 

be satisfied. These are often called SETUP goals, 

as they SETUP the facts in some situation to make it 
easier to solve a later goal. 

INTEGER z< -1000 

A setup goal as above whose corresponding main goal 

is already true. -1000 is added to such a setup 

reference number. 

<TICKLIST . <COLUMN NUMBER, ] 

A reference number which is a pair indicates that 

the corresponding pattern is a PROTECTED entry. In 

the pair, the ticklist is the one at which the 

PROTECTION was placed and to which any PROTECTION 

VIOLATIONS should be reported. The column number is 

the column in which the fact on which PROTECTION was 

placed is in the ticklist. 

(c) TICKSITNS Accessed by the doublet SITN(i,ticklist). 

It is a list of contexts which represent the headings of 

each row of the ticklist. 

(d) OPOF A pointer to the operator which will be applied 

to some situation which satisfies the heading of this 

ticklist. Via OPOF the system can gain access to 

nodes (ticklists) higher in the search tree. The 

intermediate data structures between a ticklist and its 

parent ticklist can be thought of as an arc of the goal 
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control tree of INTERPLAN. There are two such 

connecting structures which are both always used to 

specify an are as shown below. 

<TICKLI ST> 1 

PARENTTICK 

<LEVEL> 

OPLEVEL OPLEVEL 

<TICKLIST>2 <TICKLIST>3 

<OP>2 . 

OPOF 

<TICKLIST>4 . 

See later for components of OPs other than OPLEVEL and 
components of LEVELs other than PARENTTICK. 

(e) TICKVARS An association list ("ALIST") of variable names local to 

the OP being used, with their values (values are UNDEF 

if not set). 

E.g., if X="BOX1" and Y is not set, TICKVARS is 

[ X BOX1 Y UNDEF 1. 

When a ticklist is created, its TICKVARS is 

initialized from the VARSLIST of the OPSCHEMA. 

(f) TREVS A list of pairs of reference numbers of major goals 

(ones which initially have reference numbers >= 1) for 

which column reversals at this ticklist have been 

attempted. E.g., if there were 3 goals initially with 

reference numbers 1, 2 and 3 and reversals have been 

tried between 1 And 2, and between 1 and 3, TREVS 

would be [[ 1 . 2 J [ 1 . 3]]. This component is 
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used to check that repeat reversals are not tried. 

TREVS can also be "NOREVERSE". The system assigns 

"NOREVERSE" to TREVS when all reversals have been tried. 

TREVS is initialized from the SCHREVS component of the 
OPSCHEMA of the OPOF this ticklist. Heuristic knowledge 

as to what reversals are not useful can be incorporated 

into the SCHREVS of OPSCHEMAs. 

(g) LASTROW The row number corresponding to the context in which we 

are trying to see if the ticklist heading is satisfied. 

(h) LASTCOLM The column number we last made an entry in. It will 
point to a column with no entry (value of entry=0) if 
the ticklist has no entries yet. 

(i) COLMBOUND The total number of columns in the ticklist heading. 

(j) NUMPROTECTEDS The number of columns of the ticklist occupied by 

PROTECTED entries. For convenience PROTECTED entries 

are always put in the first NUMPROTECTED columns of the 

ticklist. 
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The components of an OP (constructor CONOP) are :- ----------------------- 

(a) SCHEMA A pointer to the OPSCHEMA data structure from which this 

OP is descended (i.e. this OP is an instance of the 

OPSCHEMA). 

(b) OPLEVEL A pointer to the LEVEL data structure (see later) to 

connect with the parent ticklist as shown in the diagram 

above. 

(c) ACHPATT The pattern (which usually refers to local variables in 

this OP) which will be used to match against the pattern 

in the parent ticklist which we are trying to achieve. 

This match transfers the values of variables between the 

two ticklists. 

(d) INITVARS This is a copy of the ALIST from the appropriate 

OPSCHEMA after instantiation by matching the pattern we 

expect to be achieved against the appropriate ADDLIST 

entry (to set some variables). INITVARS is used to 

RESET the TICKVARS of ticklists in certain cases if 
column reversals etc. have been performed and a search 

for some satisfactory situation is begun again. 
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The components of a LEVEL (constructor CONSLEVEL) are:- ------------------------- 

(a) PARENTTICK A pointer to a ticklist in which some goal is 

desired to be true (see the previous diagram). 

(b) CURRACHIEVES A list used in LOOP detection which holds information 

on what patterns have been asked to be achieved in what 

contexts, the entries being notionally grouped into 

three components:- 

1. An instance of the pattern we have asked to be 

achieved (any unset variables are see Barrow, 

1975). 

2. The context we asked for the pattern to be achieved 

i n. 

3. The ticklist in which it was found necessary to make 

this pattern true. 

(c) CHOICES Used to hold a list of the different ways to achieve the 

achieve pattern of the LEVEL. See Appendix III on the 

Or-choice mechanism. 
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APPENDIX II THE QUESTION ANSWERER (QA) --------------------------------------- 

The Question Answerer is used to gain access to facts about a 

particular situation. It is given a pattern and a context, and is 
expected to find all instances of the pattern which are true in the 

context. If there are none, it return "cross", if there is a least one 

it returns "tick". 

QA £ <pattern> , <context> => <tick or cross>. 

If there is more than one instance 

** MULTIPLE INSTANCES is printed out and the system goes into POP-2 

READY (interrupt) mode. The instances are in the list POSSLIST which 

can then be examined or altered before continuing. The first (or only) 

possibility is matched against the input pattern to cause instantiation 

of variables. Any other possibilities are kept as choice points in the 

goal control tree by adding a special node to the CHOICES lists, this 

holds: 

1. the rest of the possibility list (other than the first item), 

2. the ticklist the call to QA was made for, and 

3. the input pattern (to be used to instantiate variables when the 

other possibilities are used). 

The instances of a given pattern are found using a function 

FETCHALL £ <pattern> => <possibility list of instances of patterns> 

This is simply defined at present to find all patterns in the context 
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CUCTXT which have VALUE true, using APPITEMS (see HBASE - Barrow, 1975). 

The deduction of facts which may be true in some context is not 

at present allowed in the QA module. Simple extensions have been 

experimented with to provide this facility by the use of a restricted 

type of IFNEEDED theorem as provided in CONNIVER (McDermott and 

Sussman, 1972). But, in the present implementation of INTERPLAN, the 

incorporation of rules such as 

AT(x,y) & ON(z,x) ==> AT(z,y) is not possible. 
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APPENDIX III OR-CHOICES 
------------------------- 

The mechanisms provided within the classifier/editor framework 

describing INTERPLAN are intended to cope intelligently with the 

generation of a solution to a problem composed of a conjunct of goals. 

When the planner is confronted with a choice of several ways to proceed 

to achieve a goal pattern, it uses the information it is given (e.g., 

the given ordering of different operator schemas which can be used to 

achieve a given request) to make a reasonable first choice, then 

proceeds. The alternative choices (OR-CHOICES) must be stored in some 

way which will enable them to be chosen if the first choices are poor. 

The mechanism presently used in INTERPLAN will be described here. 

Or-choices occur when there are several ways in which a goal 

pattern can be made true. These occur mainly when: 

(a) there are several true instances of a goal, or, 

(b) there are several different operator schemas which can be 

be used to achieve instances of the goal. 

Other or-choices can occur if INTERPLAN, in discovering some goal 

interaction, has suggested alternative approaches to the main problem 

(the original conjunct of goals) or to subproblems of it. 

The basic way in which or-choices are ordered is that when 

interactions occur, An alternative way to proceed is taken from the 

or-choice point which was most recently used. That is, we usQ- 

depth-first backtracking to find an alternative way 
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to proceed. Alternative choices are taken from the immediate vicinity 

of some interaction discovered in the goal control tree. 

We could just use a list, like a backtrack trail, in which all 

choices were added to the front of the list when they were generated, 

and alternative choices could be made by removing the first choice in 

the list. However, INTERPLAN generates some choices (e.g., alternative 

choices to avoid a protection violation) which are alternative ways to 

proceed at different points in the search tree to the point at which an 

interaction occurred. If these were merely added onto the front of a 

choices list, they would be chosen at inappropriate times. 

We therefore keep or-choices with the points in the goal control 

tree at which they are intended to be used. The "LEVEL" data structure 

(see Anpendix 1.2) provides the point to which or-choices can be 

anchored. When an interaction occurs, a failure causes a choice to be 

made from the appropriate alternatives at this LEVEL. When success 

reaches some choice point, the untried choices are not forgotten, but are 

released to a global list of untried choice points (called 

CHOICES(TOPLEVEL)). 

Ordering schemes may be used to order choices at any choice 

point including the global CHOICES(TOPLEVEL) list. Each choice is 

inserted into the appropriate choice list by comparing a heuristic value 

it may have with others on the list. The lists are ordered so that 

lower values are considered "better" and are earlier in the lists. 

Choices are made from the head of the appropriate list. Whenever a 

choice is made from the global CHOICES(TOPLEVEL) list "GLOBAL CHOICE 
USED" is printed. This signifies that a choice has had to be made which 
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may not be immediately relevant to the interactions which have just 

occurred - there being no choices left in this position. The 

ordering scheme can easily be altered by setting parameters but is 

arranged at present to prefer in order: 

(a) alternative operators to achieve a goal, 

(b) suggested re-orderings of goals (new approach), 

(c) suggested promotion of a precondition (new approach), then 

(d) alternative instantiation choice for a goal with variables. 

If a first choice of an instance of a goal which is true in some context 

proves to be of no value, we have no cause to believe that merely 

substituting alternative instantiations will work (e.g., if it did not 

work with BOX1, ,hy should it work with BOX2 - BOX99 ?). Different 

operators or approaches suggested in the light of interactions provide 

a more definite way to reconsider the problem Therefore choices of 

type (d) need not be chosen immediately at the point at which 

interactions occur. We therefore put alternative instantiation choices 

(type (d)) immediately on the global CHOICES(TOPLEVEL) list. Once again 

this scheme can easily be altered by a change of parameter. 
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Or-Choice Control Parameters 
---------------------------- 

(a) There are parameters which give the heuristic values of different 
choice types. These are used for inserting the choices into the 

list held in the CHOICES of the appropriate level, or in the global 

CHOICES(TOPLEVEL) list if this is indicated. 

type (a) OPCHOICE default is 10 

(b) REVCHOICE 11 

(c) EXTCHOICE 12 

(d) INSTCHOICE 20 

A parameter CHOICELEVEL (default is 15) can be set to give the value 

below which choices are routed to the CHOICES list of the 

appropriate LEVEL, -nd above which are routed to the global 

CHOICES(TOPLEVEL) list. 

(b) An additional choice point type may be generated when the switch 

COMPLETE is set to true. These are choices which indicate attempts 

to achieve instances of a goal which has some true instance in the 

context required. They have a parameter giving their heuristic 

value: 

type (e) COMPCHOICE default is 50. 

Thus with CHOICELEVEL as given they are routed immediately to the 

global CHOICES(TOPLEVEL) list. 
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APPENDIX IV ACTOR RESTRICTIONS ON VARIABLES 

As mentioned in "restrictions on instances of a promoted goal" 

(section 5.7.5) and "The loop classifier and editor" 

(section 5.7.7) it is sometimes necessary to give a precondition or goal 

which, though it contains variables, has certain restrictions on the 

instances these variables can take. It was mentioned in the sections 

indicated how this could be done if actor restrictions on variables were 

allowed. A scheme has been tested which allows this process. 

Normally, when a value is being matched against a variable used 

in INTERPLAN (i.e., a variable prefixed by *$*), this is done using a 

function 

QAGIVEN(s,x) where s is the value being matched, Pnd 

x is a variable name. 

(a) the value of x is found in the appropriate TICKVARS(TICKLIST). 

IF the value=UNDEF THEN the variable has no value. So s can be 

assigned to x and the match succeeds. 

ELSE we match the present value of x against s. 

(b) Within the outer call of the MATCH function, Rny variable set 

(i.e., match made against some variable with value UNDEF) are 

remembered on a list SETVARS. If the match fails at top level, 

these variables are reset to their UNDEFined values. 
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We could modify this process to provide actor restrictions on variables 

thus: 

(a) the value of x is found in the appropriate TICKVARS(TICKLIST). 

IF the value is an actor AND the actor matches s (note) 

THEN can be assigned to the value of x and the match succeeds 

ELSE proceed as before. 

(b) Since some variables when they are first set may have values 

which were not UNDEF (i.e., ACTORS), we must save not only the 

variables set as before in SETVARS, but also the values they 

had before being set. If the outer level MATCH fails, 

variables are reset to their UNDEFined or actor values as 

appropriate. 

Useful additional facility 

It is useful to allow the initial value of an OPSCHEMA's 

VARSLIST to be set with actor values as well as UNDEF. For example, if 

a precondition was ON(x,y) & CL(x) where y/-FLOOR we could restrict y 

to not be the FLOOR in the initial VARSLIST. The macro OPSCHEMA can 

easily be modified to allow optional actor values to be given to 

variables initially. 

------------------------------------------------------------------------ 

Note: an actor is a facility provided in HBASE (Barrow, 1975) and is a 
function which can be run on any item to determine if it matches 
the item. 
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