

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

USING GOAL STRUCTURE TO DIRECT SEARCH IN A PROBLEM SOLVER

BRIAN AUSTIN TATE

Ph. D

University of Edinburgh
1975

1

ABSTRACT

This thesis describes a class of problems in which interactions
occur when plans to achieve members of a set of simultaneous goals are
concatenated in the hope of achieving the whole goal. They will be
termed "interaction problems". Several well known problems fall
into this class. Swapping the values of two computer registers
is a typical example.

A very simple 3 block problem is used to illustrate the
interaction difficulty. It is used to describe how a simple
method can be employed to derive enough information from an
interaction which has occurred to allow problem solving to proceed
effectively.

The method used to detect interactions and derive information
from them, allowing problem solving to be re-directed, relies on an
analysis of the goal and subgoal structure being considered by the
problem solver. This goal structure will be called the "approach"
taken by the system. It specifies the order in which individual
goals are being attempted and any precedence relationships between them
(say because one goal is a precondition of an action to achieve
another). We argue that the goal structure of a problem contains
information which is simpler and more meaningful than the actual plan
(sequence of actions) being considered. We then show how an
analysis of the goal structure of a problem, and the correction of such
a structure in the light of any interaction, can direct the search
towards a successful solution.

Interaction problems pose particular difficulties for most
current problem solvers because they achieve each part of a composite
goal independently and assume that the resulting plans
can be concatenated to achieve the overall goal. This assumption is
beneficial in that it can drastically reduce the search necessary in
many problems. However, it does restrict the range of problems which
can be tackled. The problem solver, INTERPLAN, to be described as a
result of this investigation, also assumes that subgoals can be solved
independently, but when an interaction is detected it performs an
analysis of the goal structure of the problem to re-direct the search.
INTERPLAN is an efficient system which allows the class of
interaction problems to be coped with.

INTERPLAN uses a data structure called a "ticklist" as the basis
of its mechanism for keeping track of the search it performs. The
ticklist allows a very simple method to be employed for detecting and
correcting for interactions by providing a summary of the goal structure
of the problem being tried.

2

TABLE OF CONTENTS -----------------

ABSTRACT 1

TABLE OF CONTENTS 2

1. INTRODUCTION 6

1.1 Interaction problems 6

1.2 Goal structure 8

1.3 Ticklists 10

1.4 Other relevant work 10

2. ROBOT PROBLEM SOLVING 11

2.1 Problem paradigm 12

2.2 Problem representation 13

2.3 Forward search 14

2.4 Means-end analysis 15

2.5 Search trees in means-end analysis driven problem
solvers 17
2.5.1 An Example 17
2.5.2 Means-end analysis on the example 18
2.5.3 Goal control trees 19
2.5.4 Push-down goal lists vs. Backup 21

2.6 HACKER and goal protection 25

3. THE KEYS AND BOXES PROBLEM 27

3.1 Statement of the Keys and Boxes problem 28

3.2 What are the difficulties?
3.2.1 There are actions with imprecisely defined

31

outcomes 31
3.2.2 We do not know precisely which object is a key 31
3.2.3 Keeping track of the objects at each place 32

4. INTERACTING GOALS AND THEIR USE 33

4.1 Interacting goals 33

4.2 The 3 block problem 37

3

4.3 Using goal interactions to suggest new approaches
to a problem 41

5. INTERPLAN: THE PLAN GENERATOR 44

5.1 Aims and assumptions 44

5.2 Specification of a problem 47

5.3 Ticklists 51

5.4 INTERPLAN's search space 53

5.5 Ticklist levels - the goal control tree 55

5.6 Protection 57

5.7 Classifiers and Editors 58

5.8 Inclusion of heuristic yiAancQ information in INTERPLAN 75

5.9 The Approach - successful Ticklist headings 80

6. HOW INTERPLAN SOLVES THE 3 BLOCK PROBLEM

7. EXAMPLE PROBLEMS

7.1 STRIPS-world problems
7.1.1 Operator representation
7.1.2 Implementation note
7.1.3 Initial situation
7.1.4 Different versions of the STRIPS-world problems

7.2 Time comparisons - mainly on STRIPS-world problems

7.3 Variants of the STRIPS-world run on INTERPLAN
7.3.1 Variants with interactions
7.3.2 Variants with long solution paths

7.4 Comments on the time comparisons
7.4.1 Purpose of the time comparisons
7.4.2 Comparison with STRIPS

7.5 Problems run on INTERPLAN

8. OTHER PROBLEMS IN WHICH INTERACTIONS OCCUR

8.1 2 Room problem

8.2 Swap the values of 2 registers

81

87

87
87
89
90

91

92

94
94
94

96
96
96

98

99

99

104

4

9. WARPLAN - A COMPARISON WITH INTERPLAN 109

9.1 Problem specification 110

9.2 Method used 111

9.3 An Example (the 3 block problem) 112

9.4 A problem with interleaving given operator sequences 114

9.5 The SHUNT problem 119

9.6 Goal ordering vs. operator reordering 123

10. NOAH - A COMPARISON WITH INTERPLAN

10.1 NOAH on the 4 block problem

10.2 The multiple effects table

126

127

130

10.3 Some limitations of the current version of NOAH 133
10.3.1 Choice of an operator if several are relevant

to one goal 133
10.3.2 Restrictions on the legal linearizations to

correct for an interaction 134
10.3.3 Double interactions 137
10.3.4 Loop detection and correction 139
10.3.5 "Formal Object" problems 139

10.4 Beneficial side effects 140

11. KEYS AND BOXES PROBLEM SIMULATION 141

11.1 Representation of the Keys and Boxes problem to
INTERPLAN 142
11.1.1 Predicates 142
11.1.2 Operator schemas 143
11.1.3 Initial situation and Rules (IFNEEDS) 146
11.1.4 Goal 146
11.1.5 ACHIEVES it 147

11.2 The Simulation 148
11.2.1 Set matching for the Keys and Boxes 148
11.2.2 Simulation 149
11.2.3 Notes on the simulation 155

11.3 The approaches used in the Keys and Boxes problem 157

12. CONCLUSIONS

12.1 Interaction problems

12.2 Extending the scope of linear problem solvers

159

159

160

5

12.3 Use of goal structure 161

12.4 Use of Ticklists 163

12.5 Comparisons with other systems 165

12.6 Future considerations 166
12.6.1 A more flexible search strategy 166
12.6.2 Consideration of several goals simultaneously

for QA purposes 167
12.6.3 An improved problem solving philosophy 167

APPENDIX I PROGRAM IDENTIFIERS 169

I,1 The components of an OPSCHEMA 169

1.2 The components of TICKLIST, OP and LEVEL 172

APPENDIX II THE QUESTION ANSWERER (QA) 178

APPENDIX III OR-CHOICES 180

APPENDIX IV ACTOR RESTRICTIONS ON VARIABLES 184

ACKNOWLEDGEMENTS 186

REFERENCES 187

6

1. INTRODUCTION

For a robot device to be self-controlling, it will certainly

require a problem solving (planning) capability. Existing systems, such

as STRIPS for the SHAKEY robot at Stanford Research Institute (Fikes and

Nilsson, 1971), are severely restricted in that they take a long time

to produce even short and straightforward plans and operate only in

quite simple domains.

Michie (1974) describes a problem, the Keys and Boxes problem,

whose solution poses several difficulties for current problem solving

techniques and is beyond their capabilities. The work to be

described in this thesis results from an investigation of the

difficulties encountered by several existing problem solvers on the

Keys and Boxes problem. In the process of overcoming them we have

designed and tested a general and effective problem solving system.

1.1 Interaction problems --------------------

The Keys and Boxes problem, though it has other complications,

is a member of the specific class of problems considered in this work,

namely those in which interactions occur when plans to achieve

separate members of a set of simultaneous goals are concatenated in the

hope of achieving the whole goal. They will be termed

"interaction problems". Several well known problems fall into this
class. The problem of swapping the values of two computer registers

7

is a typical example.

Given that register 1 holds a value Cl and register 2 holds a

value C2, we wish register 1 to hold. a value C2 and register 2 a value

Cl when an assignment operator is available. Either of the separate

parts of the simultaneous goal can easily be achieved using a single

assignment. However, after doing one of the assignments, the other will

not achieve the desired result. This is because conditions which must be

true for an assignment to achieve the expected result are altered by

the previous assignment. It is important to note thatthe achievement

of either goal in any order independently will not lead to a solution

to the problem. In this problem we must realize that an

intermediate register should be used to hold one of the values needed.

Until recently, systems which could cope with such interaction

problems did so in either a domain-dependent fashion (by knowing that

an intermediate register should be used in register swapping) or by

having a very much larger search space than would otherwise be

necessary. Our aim in this work has been to develop a problem solving

system which could deal with interaction problems but has neither

of the above limitations.

A problem which is simpler than the Keys and Boxes, the 3 block

problem, is used to illustrate more clearly the interaction difficulty.

It is used to describe how a simple method can be employed to derive

enough information from an interaction which has occurred to allow

problem solving to proceed in an effective way.

8

1.2 Goal structure

It would be inefficient merely to extend the search space of the

problem solver to allow different orderings of the achievement of

sub-goals, and hope to be able to search through these for a solution

using, for example, a backtracking algorithm to select between the

alternatives. Instead, INTERPLAN can open up its

search space selectively in view of information gleaned from any

interactions which occur during an initial attempt to solve the

problem.

The method used to detect interactions and derive information

from them, allowing problem solving to be re-directed, relies on an

analysis of the goal and subgoal structure being considered by the

problem solver. This goal structure will be called the "approach"

taken by the system. It specifies the order in which individual goals

are being attempted as well as any precedence relationships which exist

between them (say because one goal is a precondition of an action to

achieve another). We will argue that the goal structure of a problem

contains information which is simpler and more meaningful than the

actual plan (sequence of actions) which is being constructed by the

problem solver during an attempt to solve a problem We will then show

how an analysis of the goal structure of a problem, and the correction

of such a structure in the light of any interactions, can direct the

search towards a successful solution.

Many current problem solvers achieve each part of a composite

goal independently and assume that the resulting plans can be

9

concatenated to achieve the overall goal. This assumption is

beneficial in that it can effect a drastic reduction in the search

necessary in many problems. However, it does also severely restrict

the range of problems which can be solved. In particular, interaction

problems cannot be coped with. We will describe a problem solver,

INTERPLAN, which also assumes that subgoals can be solved independently

and concatenated to achieve a composite goal. However, should this

prove to be invalid, INTERPLAN can perform an analysis of the goal

structure of the problem to derive a new "approach" which should be

tried to avoid interactions. INTERPLAN is an efficient system

which allows the class of interaction problems to be coped with.

The system makes productive use of the informatioa available from
a failure. Some earlier systems, such as HACKER (Sussmaa, 1973) and
the LISP theorem prover of Boyer and Moore (1972), also used
information from the failure of nose process to alter or guide further
problem solving efforts. INTERPLAN provides a particularily simple
method of detecting important information from its failures.

10

1.3 Ticklists

During the study of existing systems such as STRIPS (Fikes and

Nilsson, 1971) and HACKER (Sussman, 1973), a, sMple method of

controlling the growth of the search tree of the problem solver using

a data structure called a "ticklist" was devised. The ticklist provides

a summary of the goal structure of the problem being tackled. It
allows a simple scheme to be used for growing the search tree and for

detecting any difficulties which occur during problem solving. Such a

search tree growth scheme using "ticklists" has been used in INTERPLAN.

1.4 Other relevant work

While the present study was in progress, other workers have

written problem solvers which are able to cope with interaction

problems. WARPLAN (Warren, 1974) and a program-synthesis system

written at SRI (Waldinger, 1975) assume, as earlier systems did, that

independent plans can be found to achieve sub-goals. However, instead

of assuming that these can be concatenated sequentially, they allow

the actions found for each sub-goal to be inserted at any point in

the existing partial plan for sub-goals already achieved. NOAH

(Sacerdoti, 1975) takes a very different approach. It does not make

assumptions about the ordering of the individual actions within a

plan until such an ordering is constrained by the interactions which

occur. Both WARPLAN and NOAH acre described and compared with

INTERPLAN later in this report.

11

2 ROBOT PROBLEM SOLVING

In order to introduce the terminology to be used throughout

this report and to briefly describe several problem solvers upon which

this work was based we will describe the control structures used by

problem solvers to keep track of the growth of the search tree. We

will argue that a "backup" type of goal control tree

allows a localization of search information which is important if
failures in a solution strategy are to be used to guide further problem

solving efforts.

12

2.1 Problem paradigm

Many problems can be formulated as a SEARCH task. This can be

represented as follows (e.g., as in Frnst and Newell, 1969):-

GIVEN: an initial state representation

a number of actions (operators) which transform one state to

another if applicability conditions are met

a definition of a desired (goal) state

FIND: a sequence of actions (a plan) which will transform the initial

state into a desired state.

This can be viewed as a graph search problem (see Nilsson, 1971, for

background and terminology):

GIVEN: a node of a graph

a set of operators (represented by arcs of the graph)

a set of nodes satisfying a goal condition

FIND: a sequence of operator applications (arcs) which will generate

a path leading from the initial node to a goal node.

13

2.2 Problem representation

For expository purposes let us assume that a problem state

(or problem situation) is described by a list of assertions about the

state. Operators can be described by giving the effects they have on a

state when applied and by giving the applicability conditions for the

operator. The effects of the operator can be specified by a list of

statements ADDED (those made true) and DELETED (those no longer true)

from the state. The applicability conditions can be specified by a

list of statements which must be true in the state to which the

operator is applied (often called the PRECONDITIONS). Goal states

can then be specified by giving a list of statements which are

required to be true in a state satisfying the goal.

This representation for a domain was proposed for STRIPS (Pikes and
Nilssoa, 1971) and greatly simplifies the checks needed for relevance
and applicability of operators.

14

2.3 Forward search

Forward search can cope with a wide variety of problems

formulated in the state-space paradigm, especially when heuristic control

is used to guide the search across the graph, for example, as in the

Graph Traverser (Doran and Michie, 1966 pnd Michie and Ross, 1969). A node

of the graph (corresponding to the initial problem state) is identified

and APPLICABLE operators are applied to it to produce successor nodes.

Some node from the successors is chosen for expansion, typically the node

heuristically estimated to be closest to a goal node. APPLICABLE

operators are then used on this chosen node. This process continues

until a node satisfying the goal conditions is generated.

15

2.4 Means-end analysis

In robot planning problems, the number of APPLICABLE operators

is typically large (or even infinite). There may, for instance, be an

action GOTO(x,y) which can move a robot between any two points, x and

y, on a 1000 X 1000 grid. Forward search is not appropriate for such

problems. It is necessary to use some method of restricting the number

of APPLICABLE operators which need to be used. A technique was

introduced in the General Problem Solver

(GPS - a full account is given in Ernst and Newell, 1969)

to cope with this difficulty. It is termed MEANS-END ANALYSIS since

it considers only those operators which are RELEVANT to achieving some

desired goal. Hayes (1973) found that he co X c noe use -f ocwcor

e &cc\' for a large scale journey planning system in which over 2000
`*e Vs'-o' mk'ans-Q-d Q^aS'iS Eo o ciKQ EL S'2o('cL, 6-//kis svJS-eii

different journey components could be used. ;here i$ good evidence

that means-end analysis is extensively used during human problem solving

(Newell and Simon, 1972).

Means-end analysis has been employed by several robot planning

systems, e.g., STRIPS (Fikes and Nilsson, 1971), LAWALY (Siklossy and

Dreussi, 1973) and HACKER (Sussman, 1973). Such systems find which

statements must be true in a desired situation, but which are not true

initially. These statements become a "difference" and only operators

"relevant" to reducing this difference (typically operators which can

ADD one or more statements of the difference) can be considered. One of

the operators is chosen and, if applicable, is applied to produce a

new situation. The system then once again compares the desired situation

with the newly produced one to see if there is any remaining difference.

16

However, it is possible that a chosen operator may not be applicable in

the given situation. In this case the difference between the

preconditions and the given situation is constructed and means-end

analysis is again used to select from operators relevant to reducing this

new difference. Once its preconditions are met, an operator can be

applied. Such a process can recur to any depth if operators are chosen

which are not applicable in the given situation. Search is certainly

not ruled out in such a system, as often there will be more than one

"relevant" operator and the order in which preconditions are satisfied

may vary. Each choice must be capable of being explored if necessary.

Of course, just as forward search can be impractical when there are a

large number of APPLICABLE operators, means-end analysis can be impractical

when there are a large number of RELEVANT operators. A great deal of

research in robot problem solving has involved ways of cutting down the

number of RELEVANT operators, e.g., some way of considering individual

statements of a difference by putting priorities on them (as in GPS and

LAWALY).

For means-end analysis to be used, the problem must be described

in such a way as to allow the RELEVANT operators to be identified for

any goal. The representation of states as a list of assertions and

operators as ADD, DELETE and PRECONDITION lists (as mentioned in

section 2.2) fulfils this requirement and has been adopted by many

problem solvers, e.g., STRIPS and HACKER. Problems to be tackled by

forward search techniques can be described in different ways since only

APPLICABILITY conditions need be checked before the operators use.

17

2.5 Search trees in means-end analysis driven problem solvers

2.5.1 An example

We now describe a simple problem designed to illustrate means-end

analysis. The solution is found without any incorrect decisions being

taken. However, it does serve to explain the differences in the type of

control structures built by different problem solvers.

There are 2 operators:

(PICKUP ? OB) Z OB is a variable with identifier OB.
ADD (HELD ?OB) .

DELETE (HELD NOTHING)
PRECONDS (AT ?OB +3X) & (AT ROBOT ?X)

(GOTO ?X)
ADD (AT ROBOT 3X)
DELETE (AT ROBOT ==)
PRECONDS (HELD NOTHING)

"__" matches anything at all.
It can be interpreted as
a free variable. e DC"LFi SFEeMe,sa ys

x 'b FLE1 (i r Rogat x)

In an initial situation: (AT BALL A)
(AT ROBOT B)
(HELD NOTHING).

Achieve a situation in which (HELD BALL) is true.

18

2.5.2 Means-end analysis on the example ---------------------------------

A trace of a means-end analysis approach on the

example will be given below. Two types of arrows will be used:

a single shafted arrow indicates an operator considered relevant

to achieving a required goal, a double shafted arrow indicates an

operator application.

(HELD BALL) (HELD BALL) the top level goal is not true
in the present (initial) situation.

(PICKUP BALL) A (PICKUP BALL) is the only operator which
can ADD (HELD BALL). It can be applied if
its preconditions (AT BALL ? X)&(AT ROBOT ? X)
are true.

(AT BALL ?X)&(AT ROBOT ?X) (AT BALL ?X) is true if X=A. See NOTE below.
However, all preconditions are not satisfied
until (AT ROBOT A) is also true.

(GOTO A) A (GOTO A) is the only relevant operator.
This can be applied if its precondition
(HELD NOTHING) is true.

(HELD NOTHING) (HELD NOTHING) is true in the initial situation
and so the (GOTO A) action can be applied
to produce a new situation, say Si, in which

(GOTO A) (AT BALL A), (AT ROBOT A), and (HELD NOTHING)
were true.

Si Now, in Si, the preconditions of the
(PICKUP BALL) operator hold and so this

(PICKUP BALL) relevant action can be applied to produce
a new situation, say S2, in which
(AT BALL A), (AT ROBOT A) and (HELD BALL)

S2 were true. (HELD BALL) the top level goal
now holds in S2 so the problem is solved with
the plan (GOTO A); (PICKUP BALL).

NOTE: (AT ROBOT ?X) would be true if X=B, so the preconditions of (PICKUP BALL)
could also be made true if (AT BALL B) was achieved. However, in
this simple example there is no way to achieve (AT BALL ?X).

19

2.5.3 Goal control trees

It is useful to consider the data structure generated by means-end

analysis as being composed of 2 parts.

1) There is the part of the structure which corresponds to the tree

grown over the state-space problem graph by a forward search algorithm.

We will term this part the STATE-SPACE TREE. The arcs of this tree are

operator applications, the nodes are problem states (or situations).

In the example of section 2.5.2, the STATE-SPACE TREE is as below.

(AT BALL A)
Initial State (AT ROBOT B)

11 (HELD NOTHING)
apply (GOTO A)

apply (PICKUP BALL)

V (AT BALL A)
S1 (AT ROBOT A)
II (HELD NOTHING)

V

S2

(AT BALL A)
(AT ROBOT A)
(HELD BALL)

2) There is also the part of the structure which can be termed the

GOAL CONTROL TREE. This is used to record the goals being considered at

each point. The nodes of this tree represent the goals which are required

to be true in a particular situation. Such nodes are represented below

as a pair (situation, goal]. The arcs of the tree are of two types:

a) they can be RELEVANT operators which if applied would help to

achieve a goal. A successor node below such an arc generally has a

different goal to be solved (the applicability conditions of the

relevant operator), but the situation the goal is to be considered

in remains unchanged.

b) Another type of arc is the APPLICATION of an operator. This causes

the situation the goals are being considered in to alter and causes

a resetting of the goal being considered to some earlier goal.

20

In the example in section 2.5.2 the GOAL CONTROL TREE is as follows:

Is goal solved
in given situation

r-[Initial Sitn, (HELD BALL)]

(PICKUP BALL)

r-(Initial Sitn, (AT BALL ?X)&(AT ROBOT ?X)]

f

apply (GOTO A)

f L-[Initial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT ?X)]

[Initial Sitn, (HELD NOTHING)]

apply (PICKUP BALL)

(-[Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)]

NO

NO
X=A

YES

YES

YES

Note: The question answering within one particular situation is
separated from the search across a space of situations (by the
search for appropriate action sequences). Different mechanisms are
used for these widely differing tasks.

In the above diagram dotted lines link nodes which have the same GOALS.

Some means must be incorporated of knowing which goal is to be

considered at each stage. In the next section two possible ways to do

this will be described.

21

2.5.4 Push-down goal lists vs. Backup -------------------------------

As indicated in the diagram in section 2.5.3 the GOAL CONTROL TREE

generated by means-end analysis has nodes in which we ask a question: is

a certain goal true in a given situation? If the answer is YES, typically

some operation is performed to generate a new situation. If the answer

is NO, relevant operators are found to try to achieve the goal. In the

latter case, the goal becomes the achievement of the applicability

conditions of a chosen operator.

Push-down goal lists - as used in STRIPS
--

STRIPS has a method of keeping track of the questions to be asked

in turn to solve some problem which involves the use of a push-down list
of the goals to be solved. Only the top element of the push-down list is

considered at any time. If the goal is solved in the given situation,

the top element of the push-down list is removed. If this was the only

entry the top-level goal is solved. If it is not the only entry, the

goal removed was the applicability conditions of some operator which was

considered relevant to achieving some earlier goal. This relevant and

applicable operator is *hen applied to produce a new situation. The

process is then repeated by asking if the top element of the push-down

goal list is true in the new given situation. If the goal is not true

some relevant operator is chosen and its applicability conditions are

pushed onto the goal list. The process is once again repeated.

22

For the GOAL CONTROL TREE shown in section 2.5.3, a STRIPS-like version

of this would be as follows.

Note: Push-down goal list has the top element to the left.

Is top goal in the
push-down goal list
solved in given sitn

[Initial Sitn, ((HELD BALL))]

(PICKUP BALL) relevant

[Initial Sitn, ((AT BALL ?X)&(AT ROBOT ?X),(HELD BALL))]

(GOTO A)

[Initial Sitn, ((HELD NOTHING),(AT BALL ?X)&(AT ROBOT ?X),

11
(HELD BALL))]

apply (GOTO A)

[Initial Sitn;(GOTO A), ((AT BALL ?X)&(AT ROBOT ? X),(HELD BALL))]

apply (PICKUP BALL)

(Initial Sitn;(GOTO A);(PICKUP BALL), ((HELD BALL))]

NO

NO

X=A

YES

YES

YES

Top element of push-down goal list removed, so goal solved.

Considering goals at the top level of the push-down goal list only,

means that once an operator has been chosen as relevant, the algorithm

becomes single-minded in its attempts to achieve that goal. Earlier

goals which were ori,;nakiy achieved n made false by the efforts to

solve a later goal are not noticed.

23

Backup

A different approach to the recording of goals and the situations

they are being considered in is suggested by the links in the goal

control tree diagram in section 2.5.3 between nodes which have the same

goal. There is always a symmetry between two nodes which have the same
NoEe L4no -

goal. /,,,the operator relevant to achieving the goal has been applied

when the goal is reconsidered. It is therefore possible to substitute a

backward arrow up the goal control tree for APPLICATIONS of relevant

operators which in the push-down goal list tree caused entries lower in

the tree. For the goal control tree in section 2.5.3 the backup version

would be:

Is goal solved in
the given situation

[Initial Sitn, (HELD BALL)]
[Initial Sitn;(GOTO A);(PICKUP BALL), (HELD BALL)]

(PICKUP BALL) relevant apply (PICKUP BALL)

[Initial Sitn, (AT BALL ?X)&(AT ROBOT ? X)]
[Initial Sitn;(GOTO A), (AT BALL ?X)&(AT ROBOT ?X)]

(GOTO A) relevant apply (GOTO A)

[Initial Sitn, (HELD NOTHING)]

NO

YES

NO, X=A
YES

YES

A NO answer to a question results in further subgoaling downwards, a YES

answer causes backup and the application of the operator. Such a backup

goal control tree allows goals which become false as a result of later

steps in a plan to be easily detected. This localization of information

about the search has been found veryuseful and is the basis of an idea to

24

be described later (TICKLISTS) which can provide a simple method of

checking that the search is being performed in the intended manner.

Ticklists are used as a simple method of implementing a backup goal

control tree in INTERPLAN.

25

2.6 HACKER end goal protection

HACKER (Sussman, 1973) is a system which can write programs (make

plans) for the operation of a robot hand in the blocks world. It operates

by suggesting a simple program (plan) which may have the intended effect

on some problem, monitoring a simulation of the running of this program

and then making corrections for any "bugs" which occur.

The problem solving process used in HACKER is means-end analysis

with an important addition. Each goal that is achieved is noted as

being PROTECTED up until the time it need no longer be kept true. If it

is a top level goal, once achieved it must remain true until the whole

conjunct of goals is solved. If it is a precondition it must remain

true until the action it is a precondition of is applied. Any violations

of this protection (i.e., en action deletes some protected goal whilst

achieving some other goal) is reported to HACKER. HACKER then examines

a trace of the simulation of the program and compares this trace with

types of traces it knows can cause similar violations. If the trace is

of known type, an appropriate change in the program is made and the

program simulated again.

HACKER has many more features than the simple problem solving

part outlined above. It can remember traces which caused difficulties

but which were not of known type so that these can be avoided in future

problem solving. It also has the ability to generalize and remember

successful programs to be used as building blocks in future problem

solving.

26

It should be noted that protection schemes are straightforward

to implement using a backup goal control tree and such a scheme has been

incorporated in the TICKLISTS used in INTERPLAN. The goal control tree

of HACKER is of the backup type.

27

3 THE KEYS AND BOXES PROBLEM --------------------------

The Keys and Boxes problem was devised by Michie (1974) as a

benchmark test for robot problem solvers. A robot, without any

capability of gathering further information than it is given at the

start of problem solving, must operate in the world shown below.

BOX1 BOX2

DOOR

OUTSIDE

TABLE ROOM

The problem is defined informally below: words in capitals are

special to this problem in the sense that the problem statement is

meant to define them. This problem formulation differs from

that given by Michie. In particular, sets of objects are used to

describe the problem. The changes were made in the light of several

peoples attempts to solve the problem themselves (4 protocols of this

sort were used to gain some insight into the methods humans may use on

the problem).

28

3.1 Statement of the Keys and Boxes problem ---------------------------------------

The world consists of: the PLACES named BOX1, BOX2, DOOR, TABLE

and OUTSIDE; the OBJECTs, examples of which are named A, B and C; and

an agent named ROBOT. OBJECTs may have properties named RED and KEY.

PLACEs may have the property named INROOM. There are relations named

AT, HELD and ROBOTAT. There is a (possibly empty) set of OBJECTs AT any

PLACE. A set of OBJECTs (possibly empty) is HELD. NOTHING is equivalent to

the empty set of OBJECTs. If a set of OBJECTs has some property, then

any individual or non-empty subset of the OBJECTs has the property. The

property of OBJECTs being RED or KEYs cannot be changed. The property

of PLACEs being INROOM cannot be changed. The ROBOT can cause some

changes by executing actions named LETGO, PICKUP and GOTO.

The LETGO action causes the parameter of HELD to be changed to

NOTHING. There are no other effects of a LETGO action.

if there is a non-empty set of OBJECTs AT some PLACE and the

ROBOT(is)AT the PLACE, then the PICKUP action causes the set of OBJECTs

HELD to be changed to a non-empty subset of the set of OBJECTs AT the

PLACE. There are no other effects of a PICKUP action.

The GOTO action takes a parameter which is a PLACE. The GOTO

action primarily causes the PLACE the ROBOT(is)AT to be changed to the

PLACE which is the parameter of the GOTO action. If the set of OBJECTs

HELD is not empty, then the GOTO action also causes the PLACE the set of

HELD OBJECTs is AT to be changed to the PLACE which is the parameter of

the GOTO action. If the parameter of the GOTO action is OUTSIDE, then

the GOTO action can only be applied if there is an OBJECT (and possibly

29

others) AT the DOOR which has the property of being a KEY. Otherwise

the parameter of the GOTO action should have the property of being

INROOM. There are no other effects of a GOTO action.

In the initial situation there is A and possibly other OBJECTs

AT BOX1.

In the initial situation there is B and possibly other OBJECTs

AT BOX2.

In the initial situation there is C and possibly other OBJECTs

AT the DOOR.

In the initial situation there is NOTHING AT the TABLE.

In the initial situation the PLACE the ROBOT(is)AT is unknown.

In the initial situation, either all OBJECTs AT BOX1 have the

property of being KEYs or all OBJECTs AT BOX2 have the property of being

KEYS.

In the initial situation all OBJECTs AT the DOOR have the

property of being RED.

The PLACEs BOX1, BOX2, DOOR and TABLE all have the property of

being INROOM.

30

The goal of the problem is to produce an action sequence (plan)

which will convert the initial situation into a situation in which a

subset of the OBJECTs AT the OUTSIDE have the property of being RED.

Thus an action sequence such as:-

LETGO, GOTO(DOOR), PICKUP, GOTO(TABLE),
LETGO, GOTO(BOX1), PICKUP, GOTO(DOOR),
LETGO, GOTO(BOX2), PICKUP, GOTO(DOOR),
LETGO, GOTO(TABLE), PICKUP, GOTO(OUTSIDE) will achieve the goal.

31

3.2 What are the difficulties?

3.2.1 There are actions with imprecisely defined outcomes.

The PICKUP action causes a SUBSET of the objects at the place

the robot is at to be held. Therefore, unless we are sure there is only

one object at any place, we cannot pick up particular objects. This

indicates, what seems to me to be, the principal difficulty of the Keys

and Boxes problem: that placing objects at any place may ruin our

ability to later PICKUP objects with known properties. Thus, although

we know in the initial situation that all the objects at the door are

red, and therefore a PICKUP at the door will result in only red things

being held, we cannot guarantee this in a situation resulting from

putting keys at the door. The uncertainty of the PICKUP action gives

rise to a particular case of a more general problem which I will term

the INTERACTION PROBLEM. The robot is living in a "coupled world" where

there can be complex interactions between the effects of some actions

and the subsequent applicability of others. I will be mainly

concerned with such interaction problems throughout this report

(they are described in a more general way in section 4).

3.2.2 We do not know precisely which object is a key

A request to find a key will only produce the answer that either

any subset of the objects at boxl or any subset of the objects at box2

has the property of being keys.

32

3.2.3 Keeping track of the objects at each place --

The Keys and Boxes problem requires information to be stored

about what objects are at certain places. We need to remember whether

no objects, some particular objects, a selection of some particular

objects, or an indefinite number of objects are at a place. The

formulation of the problem (in section 3.1) in terms of sets of objects

is intended to clarify what is required. Simple data base methods of

storing a fact such as "objects OB1, OB2 Rnd possibly others are at

place BOX1" as (AT OB1 BOX1) & (AT OB2 BOX1) cannot reflect what is

required if an unknown selection of these is removed (by a PICKUP).

In the next section the interaction problem mentioned above will

be studied more generally. We will return to the Keys and Boxes

problem in section 11 after describing INTERPLAN, a system which we have

designed to deal with interaction problems.

33

4 INTERACTING GOALS AND THEIR USE

4.1 Interacting goals

A problem is given to a means-end analysis based problem solver,

such as STRIPS (Fikes and Nilsson, 1971) and the planning part of the

HACKER system (Sussman, 1973), as a conjunction of goals, e.g.,

(G1 & G2)

which must be true for the problem to be solved. Since the individual

goals are solved sequentially, they must, once achieved, hold together

for a period of time. The time for which an achieved goal must remain

true will be called the goals "holding period". I will illustrate this

as follows.

Initial Situation Problem Solved

G1

Approach: G1;

G2

G2

The horizontal dimension of this "holding period" diagram represents

time during which actions will be applied in a final plan to achieve

the given goals. APPROACH should be interpreted as: if G1 not true

achieve it using some operator sequence, then do likewise for G2.

34

STRIPS assumes, in the absence of other information, that it
can achieve the individual goals by relevant plan sequences, say, in the

order in which the goals are given (Sussman calls this a linear

assumption). Thus, as shown in the previous diagram, STRIPS would

assume that G1 can be solved by some relevant plan sequence and then

that G2 can be solved by a plan sequence following on from the first.
If STRIPS can find no way to achieve the goals in the order given,

it is capable of reversing the order it has attempted to achieve goals,

which were initially not true, at the failure level (e.g., at the top

level G1 and G2 could be reversed to give an expected holding period

diagram as shown below).

Initial Situation Problem Solved

G1 0

G2

Approach: G2; Gi

STRIPS further assumes that for the goals not already true at

the time required, the preconditions, which are required to be true for

some operator to be applied to achieve the goal, can all be made true

immediately before the time the goal is required to be true. Again,

reversals amongst these preconditions can be made on failure backup.

Thus, if the preconditions for some operator to achieve Gi are Gil and

Gi2, then STRIPS initially assumes an approach as in the diagram below

can be taken.

35

Initial Situation

Gll

G1

G12

Problem Solved

G21

G2 10

G22 0-

Approach: Gll; G12; G1; G21; G22; G2

Note that the holding period diagram represents the goals to be worked

upon for SOME chosen operator sequence. There is really a third

dimension to the diagram representing different operator choices.

Reversals allow certain other orderings of these goals to be

attempted. However, limiting reversals to goals at a particular level

of the search tree hierarchy means that STRIPS (these arguments also

apply to HACKER) can only tackle certain problems. Specifically, those

in which interactions between top level goals can be avoided by suitable

ordering of the goals and the choice of suitable operator sequences.

Since STRIPS and HACKER also allow attempts to achieve goals to

be repeated if interactions have occurred, they can also handle those

problems in which the interactions leave the world in some situation

from which the interacted goals can be re-achieved. STRIPS will often

produce longer than necessary solutions if it repeats attempts to

achieve goals.

Even for very simple worlds, such as the blocks world used by

36

Sussman, interaction can occur. To be able to deal with all types of

interaction between a set of goals, we could consider the search space

as containing approaches with every interleaving of the goals and

subgoals needed to achieve those goals. Thus, a holding period diagram

and approach as shown below is necessary to resolve some types of

interaction.

Initial Situation

Gil

G1

G12 00.

G21

G2

G22 --i -

Problem Solved

Approach: Gii; G12; G21; Gi; G22; G2

37

4.2 The 3 block problem

The 3 block problem is an example used by Sussman (1973) in hie

description of HACKER. It is regarded by HACKER as an ANOMALOUS

SITUATION. The problem is useful as it highlights the interaction

difficulty in a simple task.

A world is described by two predicates ON(x,y) and CL(x).

ON(x,y) asserts block x is on top of the (same size) block y.

Note that ON is NOT transitive, x oAl-) on-Q block con \0e ON a,\,Ckes

CL(x) asserts block x has a clear top.

There are two operators:-

PUTON(x,y) asserts ON(x,y) and deletes CL(y).

If 3u . ON(x,u) before the application of the operator

then assert CL(u) and delete ON(x,u).

It can be applied if CL(x) and CL(y) are true.

ACTCL(x) asserts CL(x).

If 3u . ON(u,x) before the application of the operator

then assert CL(u) and delete ON(u,x)

REPEAT if 3 v . ON(v,u) etc. (This operator therefore
O-A \ QJL-s tieM so.\Zwkec'e +'l -" space

clears all blocks from the top of block xj. It can always

be applied. ^

38

Given an initial situation ON(C,A) & CL(C) & CL(B) as shown in (a) below

a goal of ON(A,B) & ON(B,C) is given as shown in (b) below.

(a) (b)
A

C

A B

STRIPS can tackle (ON(A,B)&ON(B,C)) both parts of which are not true

initially. The goals may, at first, be attempted as shown in the

following holding period diagram.

Initi al Situation

CL(A) T he e ected holdin
not t ru e ON(A B)-

x
eriod

g p
the is broken b ,

not true
p
a chiev

y
ement of CL(B)

CL (
tru

B) ---
e

CL(B) -----
not t rue

Approach:

Pl n C

CL(A)

AC

;

TC

CL(

L(A)

B); ON(A,B);

PUTON(A B) J AI

CL(B)

ACTC

;

L(B) a ,

Sequence: A B . d o n BB n- r A an

The earlier achieved goal (ON(A,B)) does not now hold (its expected

holding period is broken), but this is not noticed by STRIPS, and

problem solving proceeds as shown below.

39

Problem Solved

CL(A) 01

The expected holding true
--- period is broken by the ON(A,B)

achievement of CL(B) not true
CL(B)

CL(B) true
not true

ON(B,C)-
not true

CL (C) ---10-
true

Approach
Continued... CL(C); ON(B,C); CL(A); CL(B); ON(A,B)

Plan sequence PUTON(B,C)

Continued... 1T B A C

PUTON(A,B)
A

C

So, STRIPS produces the longer than necessary solution:-

ACTCL(A), PUTON(A,B), ACTCL(B), PUTON(B,C), PUTON(A,B).

Attempting the initial goals in the opposite order would make the final

solution found longer still, though if the interactions in the first

ordering produced a world situation in which the interacted

goals could subsequently not be achieved, this would be attempted on

failure backup. STRIPS is incapable of producing a shorter plan for

this problem.

HACKER has a mechanism, called protection, which remembers

achieved goals and looks out for actions which violate them It would

notice that the previously achieved goal (ON(A,B)) ceased to hold (as a

protection violation) and would try to reverse the order of the top

level goals (to ON(B,C)&ON(A,B)) at that time. However, another

protection violation with the reversed approach will direct the HACKER

planner to allow the protection to be violated, and the result will be

the same as for STRIPS in this example.

40

The search space should have included an approach as shown

below. This approach is an ordering not allowed by reversals only

within the hierarchic levels of the search tree. It would have led to a

solution plan:-

ACTCL(A), PUTON(B,C), PUTON(A,B).

NOE-2 z \o c- CL(A), a pV'eccAAi-t ors a OrJ(/, g), / 1S V0 \0 e'FoS2 alnb& e 0,04 ` , o N 3 C

Initial Situation Problem Solved

CL(A)
not true)

ON B)-- 1 A (,

L(B)

not true
CL(B)--Y
true

true
ON(B,C)-
not true

CL(C)

true

Anproach: CL(B); CL

Plan

(C

C

) ; CL(A);

ACTCL(A)

ON(B,C); CL(B)

PUTON(B,C)

;

B

ON(A,B)

PUTON(A,B)
A
B

Sequence: A B A C C

STRIPS, by re-achieving the ON(A,B) goal, can solve this problem with

a longer than necessary plan because the world situation produced

after interaction is such that the goals can still be achieved. The

Keys and Boxes problem has interactions which would preclude a

STRIPS-like problem solver from finding any solution.

41

4.3 Using goal interactions to suggest new approaches to a problem --

Current means-end analysis problem solvers are not capable of

solving problems which have certain kinds of goal interaction. Also,

with the exception of some systems at MIT (e.g., HACKER), they do not

use interactions amongst goals to guide the search for a solution. I

mentioned earlier that all interleavings of goals should have the

potential of being considered. Generally, only very few of the possible

interleavings need be considered. An assumption, such as is made by

many existing problem solvers, that goals can be achieved in the order

given without interaction (linearily) is a very powerful

heuristic. My own work in problem solving is based upon the powerful

heuristics used in STRIPS and other problem solvers, but I Rm anxious

not to let these assumptions rule the types of problems which can be

dealt with. Proven contradictions of these assumptions during problem

solving can direct the search to consider appropriate interleavings of

plan parts to remove interactions.

The information gained from the discovery of an interaction can

be used to suggest appropriate continuations. As an example, the

interactions during attempts to solve the goals G1 & G2 linearily can lead

us to the point in the diagram below, where the expected holding period

for G1 is broken by the achievement of a subgoal G21 required for an

action to achieve G2.

42

Initial Situation

G11

The expected holding
G1 period is broken by the

achievement of G21
G12--4

G21

Approach: G11; G12; G1; G21;

We have tried and found that G1 and G21 cannot both hold together

when they have been achieved by some operator sequences in the order

(G1, G21). We can either try an approach in which the goals at

the higher (here the top) level are reversed to stop the conflicting

goals holding periods overlapping altogether (by reversing G1 and G2)

or try to achieve the conflicting goals in the opposite order. It

is sufficient to try to achieve the conflicting goals in the other

order only once. This can be done whilst still preserving linearity

as far as possible by moving the precondition (G21) whose achievement

made a previously achieved goal (G1) not hold, immediately in front of

the goal as shown in the following diagram. We shall say that we PROMOTE

the precondition.

Initial Situation

G11

G1

G12

G21

Approach: G11; G12; G21; G1;

43

Moving it further back through the goals to be worked on would, of

course, still enable the conflicting goals to be achieved in the

reverse order but would, however, risk the possibility that other

intermediate goals would conflict with the precondition being

promoted. Following Sussman (1973) we will sometimes refer to the

promoted goal as a "setup" goal. Note that the promoted precondition

(G21) may interact with earlier goals and may need to be shifted again

due to different interactions. Subgoals intermediate between G2 and G21

if they exist may need to be promoted also.

The details of the way in which information from such a goal

interaction is extracted and used to suggest new approaches to a problem

will be discussed in the next section, as will other goal interactions

from which information can be extracted to guide the search for a

solution.

44

5 INTERPLANT THE PLAN GENERATOR

cr\ 0\1S seck;oi L'50, W:\\ descz;\oe W hf Prob.m S o\v r,

5,1 Aims and assumptions

The plan generator is basically a STRIPS-like means-end

analysis driven (or subgoaling) problem solver with the additional

capability of dealing with interactions between goals. Problems are

given to it by specifying an initial world situation, a goal

situation, and a set of operators (or actions) which can be

used to transform situations. INTERPLAN is required to find a

linear, fully ordered sequence of operator applications which will

transform the initial situation into a goal situation. It has been

designed to produce a single solution to the problem (if one exists).

It takes a suggested "approach" (usually the given order of a

conjunct of individual goals) and tries to produce an operator

sequence which is a concatenation of the operator sequences to

solve the individual goals in the order specified in the approach.

Checks are incorporated to ensure that each operator sequence does not

delete the goal achieved by some earlier part. If a difficulty is

encountered while pursuing the given approach, alternative approaches

based upon information gathered from the nature of the difficulty

itself, are suggested by INTERPLAN. INTERPLAN tries to solve the

problem by showing that one such approach is valid. If the initial
approach is valid, INTERPLAN will merely try to find and check

appropriate operator sequences which will satisfy the individual

goals, no new approaches being suggested.

45

During problem solving INTERPLAN makes the following assumptions:

(a) a conjunction of individual goals can be solved by tackling the

goals in some order individually.

(b) a goal once solved must remain true until the other goals in the

conjunct are solved.

(c) in the absence of other ordering information, the given order of

goals is a reasonable first order to try. INTERPLAN is, however,

capable of trying other orderings in those cases where it is proven

to be of possible use to do so (e.g., on Protection Violation

discoveries).

(d) to achieve a given goal, only those operators which ADD the goal

directly are relevant. That is, only those operators in which the

goal appears on the operators ADD list.

(e) A goal containing variables is considered solved if it has any

true instance in the required situation. No attempt is made to

achieve other non-true instances in this case. This is an important

restriction on the search space. However, section 5.7.3 mentions

how this assumption may be relaxed if needed.

(f) Normally, the preconditions for some operator which will achieve a

goal can be made true immediately before the goal they are for is to

be made true. INTERPLAN is, however, capable of relaxing this

assumption in those cases where it is proved to be of possible use

to do so (e.g., on Protection Violation discoveries). Then, "setup"

46

goals can be inserted into the approach.

(g) changes to the world only occur through applications of the

operators given to the system.

The system separates the search across the space of world

situations (regarded as a graph whose nodes are situations and whose

arcs are operator applications) from the question answering about a

particular situation. INTERPLAN is an operational program written in

POP-2 (Burstall, Collins and Popplestone, 1971). The HBASE (Barrow,

1975) data base system is used to store situations (as CONTEXTS) and the

facts known about each particular situation (as assertions). There are

special INTERPLAN data structures and processes (to be described later

in this chapter) which control the search across the space of world

situations.

Program identifiers and syntax will be introduced and used

along with the description below since this chapter is also intended

to serve as documentation of the INTERPLAN program.

47

5.2 Specification of a problem

The plan generation system is given a task by specifying:

(a) An initial situation specified by a set of assertions.

E.g., for the 3 block problem initial situation

ASSERT <<ON C A>>
<<CL C>>
<<CL B5.>

The brackets << ... > indicate an HBASE pattern (stored as a POP-2

strip). Patterns may be nested. ASSERT takes a list of patterns

and indicates that they are true in the,current HBASE context

(CUCTXT) which is taken to be the initial situation by INTERPLAN.

(b) Descriptions of the actions which can transform situations.

These are basically specified similarily to STRIPS operator schemas

(whose instances are operators) with a list of facts to be DELETED

from a situation and a list of facts to be ADDED to a situation to

alter it. Also specified (as PRECONDITIONS) are those facts which

must hold in a situation for the operator to be applicable.

The ADD list of an operator schema is used to determine whether

it is relevant to achieving some goal (i.e., whether it ADDS a

statement required by the goal). However, an operator schema may make

changes to a situation other than those specified in the ADD/DELETE

lists since the system allows any function (the OPSCHFN) to be

applied when an operator is used to transform a situation (this

can be thought of as providing CONNIVER-like IFADD Rnd IFREM method

facilities - McDermott and Sussman, 1972). So, effects difficult to

48

express assertionally or requiring testing of the situation itself
can be made. However, these effects cannot be used to determine

whether the operator schema is relevant.

An operator is applied to a situation by

i) notionally making a copy of all facts true in the HBASE

context representing the old situation,

eac1n

ii) deleting all patterns from this which match DELETE list
entries,

iii) adding all ADD list entries, and then

iv) running the operators OPSCHFN.

An operator schema has further components mainly used by the

system itself, but some allow heuristic knowledge of a particular

domain to be incorporated. These will be mentioned in

appropriate places throughout the text, and are given in full in

appendix I,1.

A macro, OPSCHEMA, is available to construct simple operator

schemas. Assignments can then be made to the empty components if
more complex operator schemas are required, that is, with functions

which cause side-effects, or with heuristic knowledge.

Thus for block stacking:-

49

OPSCHEMA <<ACTCL *$*X>> *$*X is a variable local to this OPSCHEMA
ADD <<CL *$*X>>
DELETE no deletions
PRECONDS no preconditions
VARS X all local variables must be named

ENDSCHEMA -> Si; save OPSCHEMA in POP-2 variable S1.

OPSCHEMA <<PUTON *$*X *$*Y»
ADD <<ON *$*X *$*Y>>
DELETE <<CL *$*Y>>
PRECONDS <<CL *$*X>> <<CL *$*Y>>
VARS X Y

ENDSCHEMA -> S2;

There are further effects of these operator schemas as specified

in section 4.2. These effects are difficult to express merely in

ADD and DELETE lists (see Fikes, Hart and Nilsson, 1972a). They can

be written as functions in POP-2 which use HBASE primitives to

search, add to and delete from the current context (CUCTXT). See

section 6 for a listing of these functions.

Calling the functions CLFN and ONFN then

CLFN -> OPSCHFN(S1);
ONFN -> OPSCHFN(S2);

(c) The present system also requires the user to state which operators

can be used to achieve patterns. This information is kept as an

association list of patterns and a list of relevant operator schemas

in a global program identifier, ACHIEVES.

For example, in block stacking:

[% <<CL == >> , [% S1 %] ,

<<ON ,_ == >> , [% S2 %,] %] -> ACHIEVES;

That is, the user should take each item in the ADD list of each

operator schema, replace all variables by == (a pattern which

matches "anything" in HBASE), And group the corresponding schema

with any others which can ADD the same pattern. This list could be

generated automatically.

50

All ADD list entries for all operator schemas need not be put

on the ACHIEVES list. The "primary additions" of STRIPS can then

be modelled (see Fikes, Hrrt and NilsFon, 1972b). For instance, a

<<PUSHBOX BOX PLACE ,,> operator may add two facts <<AT BOX PLACE>>

and <<AT ROBOT PLACE>>. We may only want to consider using

PUSHBOX to achieve <<AT BOX PLACE'> goals and never merely to move

the ROBOT. We could then omit the PUSHBOX operator from the ACHIEVES

List associated with <<AT ROBOT -_ >> facts.

(d) A specification of a goal situation by giving the statements which

are all required to be true in a goal situation.

For example for the 3 block problem:

GOAL <<ON A B>> <<ON B C>>;

Variables are allowed in goal specifications.

51

5.3 Ticklists

The basic data structure used by the system is a TICKLIST.

See appendix 1.2 for its components. It forms the nodes of the goal

control tree which INTERPLAN constructs. Basically, a ticklist is a

2-dimensional array which has a column for each of a set of goals which

are all required to be true together in some situation. The root node

of the goal control tree for the goal of the 3 block problem would

consist of a ticklist with two columns headed <<ON A B>> and <<ON B C>>.

I will refer to the set of goals represented by the columns of a

ticklist as the TICKLIST HEADING. Rows of the array represent

situations in which it is hoped that all the goals will be true.

We thus start problem solving with a ticklist whose heading

consists of the individual statements specifying the goal situation

and whose single row represents the initial situation. This is shown

below for the 3 block problem.

<<ON A B>> <<ON B C>>

Initial
Situation

C

A

To fill in a ticklist, we scan the last row (in the example

above there is only one row initially) from left to right and for

eo.ch Co\u A o,c< ;-f- lne Coa1 \ ocX n9 is true in the situation

of the last row. We put a tick (./) if it is, or a cross (X) if it
isn't, stopping whenever a cross is entered. If the whole conjunct

of goals is true in the situation we get a complete

row of ticks and have thus found a goal situation. However, if a

52

column has a cross then this goal has to be achieved in some situation.

This occurs initially in the 3 block problem where it is found that the

first column has a cross entry (see diagram below).

<<ONAB> <<ON B C>>

Initial
Situation

C

A

53

5.4 INTERPLAN's search space

The space which can be potentially searched by INTERPLAN

consists of all those approaches which can be obtained by using means-end

analysis on all given goals and the preconditions of actions to achieve

those goals (and so on for actions to achieve those preconditions, etc.)

in any order, so long as the preconditions for an action are achieved

before its application. For example, given two goals G1 and G2, there

is an action Al relevant to achieving G1 and an action A2 relevant to

achieving G2. Al has precondition G11 and A2 precondition G21. Both

preconditions can be achieved by actions which have no preconditions.

The potential search space contains the approaches obtained by trying to

achieve the goals in any of the following orders.

G11 G1 G21 G2

G21 G2 G11 G1

G11 G21 G1 G2

G11 G21 G2 G1

G21 G11 G1 G2

G21 G11 G2 G1

A problem solver which makes and adheres to the linear assumption

would only have to consider the first two of the above six approaches

(with a corresponding decrease in the range of problems which could be

tackled). Simple schemes for considering alternative approaches when

a failure occurs, such as backtracking, can thus be used with such

systems. However, it would be very inefficient to represent the extended

search space to some problem solver and expect the system to

select a valid approach from this space using a simple backtrack

algorithm if failures occurred.

54

Since there may be no way to achieve some goals and because the

achievement of some goals may not in any way effect the achievement of

others (no interactions), several of the above approaches could be

equivalent. An initial approach is suggested to INTERPLAN by

giving an ordering on the top level goals, say G1 and then G2. Since

the preconditions are considered in the order in which they are found in

the PRECONDS list of each relevant CPSCHEMA, the ordering on top level
ced\oced.

goals will specify c \ombe of the possible approaches. Tie
ceJvckon w;11 dePenAon
whether there is one or more relevant operators for each top level

goal. OCen, v\o,,\y of the approaches in the potential search space are

initially locked away from consideration by INTERPLAN.

If this initial approach is successful, no further

approaches are made available to INTERPLAN. However if
some interaction in the initial approach occurs, this may

indicate other orderings of the goals (other approaches) which may

remove the interaction. Such specific approaches are then indicated as

open for consideration (it depends upon the particular OR-CHOICE

mechanism being used when, and if, they are actually considered). The

information gleaned from an interaction thus provides "keys" to unlock

specific branches along the potential search space. Tightly restricting

the possible approaches in this way, and only allowing other approaches

to be tried if they are indicated as being probably useful in the light

of the interactions discovered, can significantly reduce the part of the

potential search space actually considered in many problems.

55

5.5 Ticklist levels - the goal control tree

When a goal has to be achieved, for each relevant operator (i.e.,

instance of an operator schema) a subgoal is set up of trying to find a

situation in which all the preconditions for the operator hold. A goal

control tree of the BACKUP type (described in section 2.5.4) is grown

by making new ticklists on a LEVEL lower to that containing the goal

to be achieved. These have as column headings the preconditions of each

operator, and thus represent subproblems of the higher LEVEL. They are

connected to the upper level ticklist by arcs representing the

particular instantiation of each relevant operator schema. For

example, to continue the block stacking example:-

<<ON A B>-> <<ON B C>>

Initial

Situation
Crl

A

7<<PUTON A B» is only relevant
operator. It is derived from the
schema <<PUTON *$*x *$*y>>.

<<CL A>> <<CL B>>

Initial
Situation

C

A [B]

Branching would occur if more operators were
relevant.

All ticklists at the tips of the goal control tree being

constructed are suitable for further filling in, etc. Therefore, they

are held in a list of choices which can be heuristically ordered. See

appendix III for details of the scheme used to deal with choice points

in the current implementation of INTERPLAN. The choice list is a

56

list of pairs, each of which consists of a heuristic value and a

pointer to the ticklist on the tip of

the goal control tree (though 2 special entries are allowed on the

choices lists - see sections 5.7.1 and 5.7.3). The choice list is

ordered so that pairs with a lower heuristic value are nearer the head

of the list and are considered "better" choices.

ADDCHOICE F <heuristic value>, <pointer to ticklist> _> ();

splices a pair into the appropriate place in the list of choices.

MAKECHOICE removes the first (lowest value) pair from the choice

list and makes the ticklist from the pair, the one for consideration

next by INTERPLAN (by assigning the ticklist to GLOBTICK). It deals

with the special forms allowed in the choice lists.

57

5.6 Protection

When a goal has to be achieved after other goals have already

been achieved, there is a mechanism for ensuring that the previously

achieved goals are not deleted. We PROTECT the previously achieved

goals by adding them to the ticklist heading of all LEVELS of the goal

control tree which are grown below the LEVEL where the goals were

achieved. This is represented diagrammatically below. Global goals

(whose truth value is not changeable - see appendix I) are not

protected in this way.

G1 G22

C1 /
G1 G21 G22

In some situation, the protected goals must be true

simultaneously with all the other goals in the ticklist heading

(preconditions for some operator) for that situation

to be one in which the operator is applicable (in the

context of the previously achieved goals). It should become clear later

how information in the protected columns of a ticklist is used by the

system. For the moment, however, it will be useful to know that a

system using the protection facility will look for any VIOLATION of the

protection on a fact (PROTECTION VIOLATION). This is an implementation

of a feature in the HACKER planning system (Sussman, 1973).

58

5.7 Classifiers and Editors

CENTER THE SYSTEM WITH FIRST
TICKLIST AS CURRENT TICKLIST
(GLOBTICK). THE HEADING OF
THIS SPECIFIES THE GOAL.

CLASSIFY THE CURRENT TICKLIST TO
FIND AN APPROPRIATE EDITOR.

V

EDIT THE TREE OF TICKLISTS.
POSSIBLY CHANGE THE CURRENT
TICKLIST (GLOBTICK).

The basic loop of the planning system is shown above. Many

different problem solvers could be written within this framework. A

system is specified as pairs of classifiers for a ticklist and an

editor for the tree of ticklists. See appendix I for information

available within a ticklist and the tree of ticklists for use by the

classifiers and editors. The following sections describe the clas{ifiers

and editors used to specify INTERPLAN.

As will be seen later, the classifiers are defined to look at

the patterns of ticks and crosses in a ticklist. These patterns provide

a simple language in which difficulties during problem solving can be

quickly identified (cf. the analysis of the teleological trace of the

problem solver's actions necessary to find bug types in HACKER -

Sussman, 1973).

59

5.7.1

Classifier: No entries have been made in the last row of a ticklist or

a tick appears in the last column of the last row of the

ticklist and some other column on the row has no entry.
Cs.e , '\ec'e_ -eM& AS . oa 1 - ,c iski can we ave A cvUer eO e 0 0.10 &se u see i cue

Editor: (FILLIN)

Scan from left to right along the last row and for any

position not filled in, ask the question answerer whether

the pattern heading the position is true in the situation

of the last row. See appendix II for details of the

Question answerer (QA). A call to QA may instantiate

some variables local to the ticklist. If QA finds that a

pattern has more than one true instance in the given

situation the system asks the user if he would like to

pre-order the instances (given in a list POSSLIST). It

then hands back the first choice to FILLIN (which is thus

used to set variables), but adds a special node to the

choices list to be used to initialize the other choices.

This special node is a STRIP of three items - see appendix

II.

Filling in continues either until all the row is filled in

in which case we can SUCCBACKUP, or until a cross entry is

is made, in which case we must ACHIEVELAST the appropriate

goal (unless it is a global goal - see appendix I.1).

60

5.7.2

Classifier: (ALLTICKS)

A complete row of ticks exists in some row (or more

generally, the ticklist heading is satisfied by some row

representing a situation).
(S e o.\\ ooa.\c Elms cks ace solvek

Editor: (SUCCBACKUP)

Backup successfully to next higher node (ticklist) in the

goal control tree, applying the operator represented by

the arc of the tree which is now applicable in the

situation found. The new situation produced becomes a new

row in the higher ticklist and in this row a tick is

entered in the column of the goal the operator achieved.

The operator used to produce the new situation is

remembered by assigning its name to the VALUE of the item

"SITN" in the new situation (see HBASE - Barrow, 1975). An

example of the use of this editor is shown below.

P1

Cl

C2

P1

C2 J

P2

X

P3

OPx

Pxl Px2

I

after
editing

gives

Cl

C2

C4

P2

X

P3

OPx applied to C3 gives situation C4.

P1

X.

61

5.7.3

Classifier: A cross appears for some column in the last row of a

ticklist (but exC1,)c c\o) 0)wQ

cases in which there are ticks further right in the row

too- see sec6' oc\ S.`1 4 case,

is e) 0. goo.\ r2rna,;ns _D be OCln,Pv-- `)

Editor: (ACHIEVELAST)

Operators which could add the pattern represented by the

column with a cross to the world model in some situation

are sought for. This is the recursive use of the

means-end analysis technique. Before operators are found,

a check is made to see if the achieve request would cause

a LOOP. This is done by checking whether the achieve

request already exists on the CURRACHIEVES list (see

appendix 1.2) and if so, whether the situation the present

request is for is the same as the one for the previous

request. If so, a LOOP is reported and the LOOP editor

called (see section 5.7.7).

The editor finds all RELEVRnT oea c'c (i. e. , those which

can ADD the sought-for pattern). A function

OPSCHMODIFY E <opschema>, <search pattern> => <opschema>,

is applied for each relevant operator when found. This

normally returns the <opschema> unchanged, but can be used

to change the order of preconditions etc.

62

The editor adds new choice points to the goal control tree

corresponding to new successor nodes to the original

ticklist for each relevant operator. The successor nodes

are initialized when chosen from the choices list, where

they are kept in a compact form, but notionally they exist

after this editor has been applied. See section 5.6 on

Protection for explanation of the symbols used in the

example of the operation of this editor below (especially

why the P1 protected goal is brought down through levels

of the goal control tree).

Cl

P1 P2

Cl

Cl

P1

P1

J

P2

Pyl

If OPx and OPy are the only relevant operators.

63

Achieving goals which already have true instances

Normally, if INTERPLAN discovers some goal which is needed,

already is true at the time required, it makes no attempt to APPLY

operators to ACHIEVE the goal. If the goal is fully instantiated

(e.g., CL(B)) this is alright as it can only have one possible

instance and this is known to be true. If the goal was CL(x) and

CL(B) was true, the goal would hold if the variable x was set to "B".

However, another instance (e.g., CL(C)) may be required to reach a

solution.

A switch (turned on by assigning "true" to the variable

COMPLETE) has been provided in INTERPLAN so that goals which are not

fully instantiated and which in some instances are true can be

recognized and special extra choice points added to allow the non-true

instances to be ACHIEVED if the already true instances prove not to be

of use.

64

5.7.4

Classifier: A cross on some row (NOT a protected entry) is followed by

a tick in a later column. That is, the achievement of a

goal has made false a goal which was true previously.

Editor: (ALTERLASTORDER)

An attempt is made to shuffle the pattern of the column

which was ticked, before the pattern of the column with

the cross. Checks are first made to ensure that the

columns to be swopped have not been swopped previously or

are now not allowed to be swopped (looking at the TREVS of

the ticklist for the reference numbers of the patterns -

see appendix I.2), or to see if no more reversals are allowed

for this ticklist (TREVS is "NOREVERSE"). An example of

the use of this editor is given below when the swap is

allowed. The order of goals already achieved by some

operator sequence is preserved by a shuffle, as this takes

into account any interactions which occurred between these

earlier goals.

P1 P2 P3

-
P3 P1 P2

Cl x after F U
C2

editing

C3
gives

5.7.5
65

Classifier: A cross in a PROTECTED column of some row is followed by

a tick in a later column. ;S) a oecion
Vlolo*ion \\os occJrCQA-

Editor: (PROTECTVIOLATION)

This is the editor which suggests an approach with

reversed top level goals (at the level protection was

placed upon the pattern which is now crossed - this is

found by looking at the reference for the protected entry)

or suggests an approach in which we promote the actual

goal we were considering to the level at which protection

was placed (see section 4.3). Before promoting a

pattern, a check is made to see if the promotion would

have altered the course of computation in the original

case. That is, we see if the promoted pattern would

already have been true at the point to which we wish to

promote it. If it would have been, the promotion is

attempted for the goal higher in the goal control tree

for which the current goal was a subgoal. If the same

applies to this we try higher still, unless the
r

protection level itself is reached in which case no

promotion is made.

If some promotion can be made, and goals higher in the

goal control tree exist between the level we promoted

from and the level at which protection was placed, we also

try to suggest approaches in which these intermediate

goals are promoted as above.

An example of the use of this editor is given below.

66

C1

C2

C2

C3

P1

J

P1

P21 holding period
+ up until P2 achieved

P2

X

P21

a
ed

g

P22

fter
iting

ves

P2 P1

Il x C1

See appendix 1.2 for details of how a
goal with a restricted holding period
is represented to INTERPLAN.

Restrictions on instances of a promoted goal
--

The test for rejecting promoted goals on the basis

of their truth at the point required was intended to cut out those

approaches which would be exactly the same as the approach before a

protection violation. For example, in the 3 block problem:

ON(A,B) Protection Violation

CL(B) oo- ON(B,C);01

The above protection violation suggests two approaches, one of which is

67

ON (A, B)

CL(B) T ON(B, C) --- l

However, this approach is disallowed as CL(B) is true at the point

required (initial situation in the problem) and thus the approach would

be exactly as in the case when the protection violation was

discovered.

When the promoted goal has a variable (or variables) in it, as

can often happen during promotions attempted by the LOOP editor

(section 5.7.7), but is true in some particular instance, we should not

reject the promoted goal outright, but should modify it to exclude the

true instance (or instances). For example, in the "swap the value of

two registers" example (section 8.2):

(REG 1 IS C2)-

(REG == IS Cl) 0.-(REG 2 IS Cl)

4

should be allowed as an approach, even though (REG 2 IS Cl) is true in

the initial situation. However, the promoted goal should exclude this

instance to ensure that the protection violation which this approach

is being suggested to avoid is not encountered again.

68

A scheme has been experimented with to provide variable

restrictions using HBASE actors (Barrow, 1975). This scheme is outlined

in appendix IV. If such actor restrictions on variables were

allowed the goal to be promoted for the example above could be written:

(REG <:NON 1:> IS Cl).

No promotions for an already promoted goal

All goals in a ticklist heading are given a reference number as

described in Appendix 1.2. When a "setup" goal is promoted it is

given a reference number:

- (reference number of the goal it is a precondition of).

This simple referencing scheme disallows promotions for a goal which

is itself a promoted goal. o- Cesrric-; C, n

5.7.6
69

Classifier: A cross appears in some column for which there is no means

to achieve the relevant pattern (or no further means if
some have been tried).
(S. e

)
no VAC-_10n,& co,n b2 -oon& c4- acevno an uncue goal,

Editor: (FAILBACKUP)

Try to alter the order of the pattern which has a cross in

its column with some earlier pattern in the ticklist

heading (using ALTERPREV). The earlier goal's achievement

may have rendered the goal on which we failed unsolvable

(e.g., by wrong choice of a variable instance), in reverse

order they may both be solvable. The variables of the

ticklist are reset using INITVARS (see appendix 1.2).

If the reversal cannot be made with any other pattern

earlier in the ticklist heading (e.g., reversals already

tried or this is the first pattern we are trying to

achieve) then FAILBACKUP to the parent ticklist of the

current one. This editor is also used when other editors

have failed to do their job (e.g., cannot ALTERLASTORDER).

This backup process is mainly intended to clear the

problem solvers goal control tree of useless approaches

after a failure has occurred. As soon as some point is

backed-up to at which there is a way to attempt to

achieve the outstanding goal, backup stops and the

OR-CHOICE mechanism is used to select from ANY of the

outstanding choice points (which include the one just

backed-up to).

5.7.7 The LOOP classifier and editor
70

The planning system may try to pursue an approach which causes

it to loop in some way (i.e., left to itself, it may never terminate).

The loop can be treated as a failure, and information extracted from the

failure to suggest new problem approaches to try to avoid the loop.

However, the loop must be detectable to be able to do this. At present

INTERPLAN detects two types of loops.

(a) It prevents goal reversals which have already been tried from being

suggested again as approaches to circumvent goal interactions (see

section 5.7.4).

(b) During subgoaling, a list of all achieve requests which we are

planning to satisfy (along one path through the goal control tree)

are kept, together with the situation we required each one to be

achieved in. This list is kept in the CURRACHIEVES of a level (see

appendix 1.2). If, to satisfy some lower subgoal, an achieve request

is issued which is the same as some higher request and the situation

both are required in is the same, a loop is reported (as mentioned

in the editor in section 5.7.3).

However, for instance, the generation of similar non-linear approaches

(ones with a promoted subgoal) is not detected in INTERPLAN as it is

presently implemented. If a loop is not detected, as well as not

providing information on which to suggest possibly useful approaches

to a problem, redundancy can occur in the section of the search space

looked at by the planning system (the same branch may be tried more than

once). With certain OR-CHOICE mechanisms (especially those which are

mainly depth-first) it would then be possible to loop without producing

any solution.

The full loop editor

If a looping achieve request is detected in some situation, we

have available:

(a) the pattern causing the loop (lower occurrence)

(b) the ticklist this was required from (the lower ticklist)
(c) the pattern on CURRACHIEVES we detected loop on (the upper

occurrence)

(d) the ticklist this was required from (the upper ticklist).

71

The editor is intended to modify the approach in the heading of

the upper ticklist to try to avoid the loop. The approach being

considered when a loop is detected can be typified in the holding period

diagram below:

G1

G2' ow G21---G2--r
LOOP--- J

Where G2 is the looping achieve request. It should be noted that the

goals may contain variables, and thus the two occurrences of the loop

pattern may not be IDENTICAL, but one will be an instance of the other -

hence the use of G2' for the second (lower) occurrence.

We may be able to find a successful approach if some subgoal in

the loop (above, G2, G21 and G2') had already been true at the point

required and need not have been achieved then. We have tried to

achieve G2, G21 and G2' after a goal G1 has been solved (G1 was thus

protected) and found that a loop is generated with some operator

72

sequence. As in the case of a protection violation, two courses are

available to us. We could try to reorder goals at the upperticklist

containing the loop pattern. Removing the need to keep G1 true at that

point may enable G2 to be solved without looping (say using facts in the

initial situation altered when G1 was solved first. This occurs in the

(REG 1 IS C2) & (REG 3 IS Cl) example described in a note to the

section on "swap the value of 2 registers" (section 8.2).

G1----1

G2 10

The alternative is to suggest some "setup" goal which would aid in the

solution of G2. Any goal which would break the loop would be

appropriate. For example,

G2 . G2 -
Besides the normal test of checking the promoted goal would change the

actual approach being tried (by seeing if it was already true at the

time required - but see NOTE), a further check must be made in those

cases where the subgoal being promoted is the lower occurrence of the

loop pattern (i.e., G2'). If G2' was IDENTICAL to G2, no promotion

NOTE It can often happen that the goals to be promoted during loop
correction may contain variables, and in some instances these may
already be true at the point required. See note on "restrictions
on the instances of a promoted goal" for how this can be handled
(section 5.7.5).

73

should be made since

G1

G2 G2

is equivalent to

GI --41

G2 -- i
The approach specifies the order in which the goals can be achieved and

then kept true for the period required, the second G2 in the first

holding period diagram shown is therefore superfluous.

In keeping with the above, if the lower occurrence of the loop

pattern (G2') is more general than the upper occurrence (G2 is an

instance of G2'), we should disallow the promoted goal from taking an

instance such that it becomes IDENTICAL to the upper occurrence (i.e.,

G2' should be modified to exclude G2). If this were not done, once

again an approach equivalent to G2 followed by G1 would result.

This problem occurs in the "swap the values of 2 registers"

example, where the upper loop occurrence is (REG 2 IS Cl) and the

lower loop occurrence is (REG == IS Cl). We should modify the goal to

be promoted to exclude the number of the register being 2. If actor

restrictions on variables were allowed (see appendix IV), this could be

done by: <<REG <:NON 2:> IS C1>>.

74

The loop editor in the current implementation of INTERPLAN

The loop editor in the current implementation reports a loop to

the user by printing on the console:

LOOP ON <lower occurrence of the loop pattern>

If a variable LOOPEDIT is set true it also prints:

WHAT SHALL I PROMOTE :

Left to itself the editor would attempt to promote subgoals being

considered when the loop occurred. These would include the lower loop

occurrence. If this contains variables and some instance of the pattern

is true at the point Lo which promotion is being attempted, no

promotion is made. To alleviate the defect of not having restriction

facilities on variables at present, the editor can ask the user to

suggest an instance of a pattern to try to promote on loop detection.

The user may go into POP-2 READY (interrupt) mode and ask such

questions as what instances of the loop pattern are true at the point to

which promotion will be attempted, or ask what the upper occurrence of

the loop pattern is. The trace of the problem also provides

information about useful instances to suggest for promotion.

The user may either type "FALSE" to indicate he does not think

that correcting the loop would help, or he may suggest a goal for

promotion. Normal checks for the usefulness of the suggested approaches

are performed by the system.

An example of the use of this editor is given in the "swap the

J

values of 2 registers" problem in section 8.2.

75

5.8 Inclusion of heuristic 9uiAonce information in INTERPLAN

The points in the current implementation of INTERPLAN at which

domain-dependent knowledge can be incorporated are summarized below.

1. The ordering of preconditions in each operator schema and the

ordering of the individual goals in the problem to be solved is

important. This ordering is used by INTERPLAN as the approach to be

considered first in each case.

2. The choice of which operators are considered "relevant" for

achieving goals is important. Normally all ADD list entries of every

operator should appear on the ACHIEVES list together with all those

operators which can achieve them. If there is a heuristic restriction

on the choice of operators for some goals this can be reflected in the

ACHIEVES list. This can be used to give the same effect as the "primary

additions" of. STRIPS (Fikes, Hart and Nilsson, 1972b). See section

5.2(c) for more detail.

3. If there is more than one operator for any goal entry on ACHIEVES

the operators can be ordered, the first being tried before others

with the standard OR-CHOICE mechanism.

4. The OR-CHOICES can be made in a different order to the standard

scheme by the resetting of the OR-CHOICE control parameters (see

appendix III). This may be useful for example if we wish to

incorporate knowledge about the probabilities of interactions in the

problem domain.

-r C-tAQ
76

5. If,)predicates can be put into hierarchies for achievement (see

Siklossy and Dreussi, 1973) we can specify that reversals between

members of the hierarchies should not be attempted by assigning to the

SCHREVS of the operator schemas. Known hierarchies of predicates will
enable us to order goals as mentioned in 1 above. Heuristic knowledge

that certain orderings are equivalent may also be incorporated by

assignment to SCHREVS.

"NOREVERSE" - SCHREVS(<opschema>); stops any reordering attempt.

[[1.2x[1.3]] -> SCHREVS(<opschema>); stops reversals between the
1st and 2nd or the 1st and 3rd preconditions.

6. A function-

OPSCHMODIFY £ <opschema>, <achieve pattern> => <opschema>;

is provided. Initially this is defined to merely return the <opschema>

unchanged. However, it may be redefined to allow OPSCHEMAs to be

modified in the light of the environment in which they are to be used.

Information can be used from the <achieve pattern- or from the ticklist

this <achieve pattern> is being requested from (GLOBTICK). Schemes

which reorder preconditions or set certain variables may be implemented.

In particular it is possible to construct a maze-running algorithm for

transfering a robot between rooms in a STRIPS-like world by assigning to

certain variables in appropriate OPSCHEMAs when they are chosen (this

was done for the LAWALY superworld examples run on INTERPLAN).

Operator schema withdrawal

This process allows a high degree of flexibility. For example,

consider the Keys and Boxes problem where the operator GOTO(y) has

different outcomes and applicability conditions depending on

77

whether y--OUTSIDE or not, and on whether anything is HELD (see section

11.1.2). We could cause OPSCHMODIFY to select appropriate ADDS. DELETES

and PRECONDs from some data structure put in the ACHIEVES list to

produce an OPSCHEMA in the light of the goal pattern required. This

would alleviate the need to write out explicitly beforehand an

operator schema with conditionals in its definition into the appropriate

condition free OPSCHEMA structures.

7. A function

VALIDATE E <ticklist heading> => <ticklist heading*- I "INVALID";

is provided. Initially this is defined to return the <ticklist

heading> unchanged. However, it may be redefined to allow domain-

dependent knowledge of what conjuncts of goals are invalid to be used to

check the proposed heading. It may also be written to remove repeat

occurrences of goals etc. If an invalid ticklist heading is discovered

"INVALID" should be returned, otherwise the valid <ticklist heading>

(possibly modified) should be returned. Since the initial goal and all

precondition lists of OPSCHEMAs are validated beforehand, the only way

in which a heading can become invalid is if protected goals are added

to a set of already valid goals or if a promoted entry is added to a set

of already valid goals. If a set of protected goals are being added to

a heading, the global variable NPROTECT holds the number added (they are

at the front of the heading). This information can be used to cut down

the amount of checking necessary to ensure validity. A useful example

of how this facility may be used is decribed below.

78

Full expansion of search tree branches doomed to fail

INTERPLAN tries to solve a problem by TRYING OUT the problem

approach it is provided with initially (the given order of goals), It
solves goals in some sequence checking that previously achieved goals

remain true. In many cases the system will try to achieve a goal which

from the outset (if we had the information available) we could say

would fail always because of the context we are trying to achieve it in.

Such a problem occurs during block stacking in trying to achieve CL(B)

when ON(A,B) is already true and has to be kept true. A great deal of

effort may be wasted in trying different ways of achieving CL(B) when

none can work if ON(A,B) must be kept true. WARPLAN (Wrrren, 1974) uses

information about what conjunctions of facts cannot be true together to

reject certain branches of its search tree. In this case an

instruction such as IMPOSS(CL(y)&ON(x,y)) would be given to the

planning system. A similar idea has been proposed for STRIPS (Fikes,

Hart and Nilsson, 1972p, ',age 419). The same process could be

incorporated into INTERPLAN using the VALIDATE ticklist heading

facility. Whenever a new ticklist was generated, the ticklist heading

would be validated using IMPOSS(...) information to reject invalid

headings.

8. Any precondition of an OPSCHEMA can be preceeded by "G" to indicate

that no means of achievement should be used upon it. This is intended

to gain efficiency in handling global facts which are not altered by

the robots actions (e. g. , <<TYPE B1 BOX»). However, we can use the

same facility to indicate preconditions which must be true but for which

we do not wish actions to be applied to achieve them (even though such

actions may exist in ACHIEVES).

79

9. Whenever the QA-system is asked a question to which it can return

more than one reply (each reply causes a different choice point for

planning) the system asks the user if he would like to alter the list
of possibilities.

** MULTIPLE INSTANCES is printed on the console and the system goes

into POP-2 READY (interrupt) mode. The instances are in the list
POSSLIST which can then be examined or altered before continuing.

Possibilities can be totally removed if required, or others added. This

provides a usQcv\ Fac 1y Eo erNG\e o user

solving.

to guide problem

10. When a loop is reported to the system, INTERPLAN indicates what the

cause of the loop was by printing

LOOP ON <loop pattern>.

If a variable LOOPEDIT is set true, it also prints

WHAT SHALL I PROMOTE

The user may examine the state of the search and ask questions. The

user is then expected to indicate whether any attempt should be made to

correct the loop. If no attempt is to be made, type FALSE (or 0),

otherwise the user can indicate what goal may be worth promoting to give

a new approach. The goal will usually be an instance of the loop

pattern (see section on the full loop editor - section 5.7.7).

80

5.9 The Approach - successful Ticklist headings ---

The ticklist heading specifies the "approach" (the sequence

chosen to attempt to achieve a set of goals) to be taken by the planning

system. Any unforeseen difficulties in using this approach lead to it
being discontinued, failure information being extracted as appropriate,

and, possibly, new approaches being suggested. New approaches may

involve reorderings of the original goals or the suggestion of certain

"setup" goals in appropriate places. A successful approach fully

specifies the order in which goals can be achieved and kept true

without interaction. The aim of INTERPLAN is to discover such a

successful approach. Successful ticklist headings contain information

over which learning schemes may be devised.

Debugging the Approach

The continuous cycle of classifying the "bug" in a current

ticklist and editing the tree of ticklists in the light of this can be

seen as debugging the initial approach (i.e., the original goal order)

to one which will in fact lead to the goals achievement. Bugs are

detected by looking at the patterns of ticks and crosses in a ticklist,

and alterations (edits) to the tree of ticklists (the goal control tree)

are made to account for these bugs. The method used here on declarative

data representations has much in common with that used in HACKER

(Sussman, 1973) on more procedural representations. \ARQIKGR -\A k
tJERParJ cY-e exaMV`es 04 S,)re.V\s w cl VP OA") c-'ive
Use o 1e Ft c\ , on 0.\0.bQ f oN, o. F0. \e .

81

6 HOW INTERPLAN SOLVES THE 3 BLOCK PROBLEM
--

The 3 block problem was described in section 4.2, and was used

to illustrate the problem specification to INTERPLAN in section 5.2. A

listing of the problem specification is given below to bring this

information together. OPSCHFN functions are included. The purpose of

the functions CLFN and ONFN is explained in section 5.2 (b).

--
COMMENT" BLOCK STACKING PROBLEM FOR INTERPLAN';
VARS S1 S2;

FUNCTION CLFN; VARS B1 B2;
INSTACT(*$*X) -> B1

LOOPIF GETITEM(<<ON $>B2 $$B1>>,TRUE) THEN
1 -> VALUE(<<CL $$B2,>>);
0 -> VALUE(<<ON $$B2 $$B1'>); B2 -> B1; CLOSE

END;

FUNCTION ONFN; VARS B1 B2;
INSTACT(*$*X) -> B1; INSTACT(*$*Y) -> B2;
IF GETITEM(<<ON $$B1 <:ET <:NON $$B2:> $>B2:> >>,TRUE)
THEN 1 -> VALUE(<<CL $$B2-->);

0 -> VALUE(<<ON $$B1 $$B2>>) CLOSE-
END ;

OPSCHEMA <<ACTCL *$*X>>
ADD <<CL *$*X>>
DELETE
PRECONDS

VARS X
ENDSCHEMA -> S1;

OPSCHEMA <<PUTON *$*X *$*Y>>
ADD <<ON *$*x *$*Y>>
DELETE <<CL *$*Y>>
PRECONDS <<CL *$*X» <<CL *$*Y>>
VARS X Y

ENDSCHEMA -> S2;

CLFN -> OPSCHFN(S1);
ONFN -> OPSCHFN(S2);

[% <<CL = > , [%S1%],
<<ON >> , t%S2%] %] -> ACHIEVES;

ASSERT <<ON C A>>
<<CL C>>
<<CL B>>;

82

No special syntax is provided for their construction in the present

program. They use HBASE primitives, e.g., GETITEM, INSTACT, VALUE and

the actors ET and NON (see Bprrow, 1975). Many interesting problems can

be specified without the need of OPSCHFNs, e.g., the STRIPS robot world

and the Keys and Boxes problem. In this case the OPSCHFNs are used to

allow the operator schema's effects to be dependent on some condition

of the situation it is applied to. HBASE contexts have reference

numbers. The current context (CUCTXT) in which the 3 facts are asserted

has reference number 1. This will be taken as the initial situation by

INTERPLAN. A trace of INTERPLAN on the 3 block problem is given below.

--

: GOAL <<ON A B>> <<ON B C>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << ON A B >> IN 1

** ACHIEVE << CL A >> IN 1

** APPLY << ACTCL A >> TO 1 TO GIVE 2 note 1

** APPLY << PUTON A B > TO 2 TO GIVE 3
** ACHIEVE << ON B C >> IN 3
** ACHIEVE << CL B >> IN 3
** APPLY << ACTCL B >> TO 3 TO GIVE 4
PROTECTION VIOLATION REORDER note 2

** ACHIEVE << ON B C >> IN 1

** APPLY << PUTON B C >> TO 1 TO GIVE 5
** ACHIEVE << ON A B >> IN 5

** ACHIEVE << CL A >> IN 5

** APPLY << ACTCL A >> TO 5 TO GIVE 6
PROTECTION VIOLATION PROMOTE note 3

** ACHIEVE << CL A >> IN 1

** APPLY << ACTCL A >> TO 1 TO GIVE 7
**

**

**

**

ACHIEVE << ON B C >> IN 7

APPLY << PUTON B C >> TO 7 TO GIVE 8
ACHIEVE << ON A B >> IN 8

APPLY << PUTON A B >> TO 8 TO GIVE 9

** CPU TIME = 2.109 SECS

NOW

<< ACTCL A >> . note 4

<< PUTON B C >>
<< PUTON A B >>

Note 1

2 is the reference number of the new context got by applying the

operator with name <<ACTCL A>> to 1.

Note 2

83

The tree of ticklists (the goal control tree) is as below. Please note

that the individual ticklists expand downwards (new rows) only as needed.

The index numbers indicate the order in which the tick and cross entries

were made.

ON(A,B) ON(B,C)

1 A [B]
`/

NB 3 C4

/ V v
X

only PUTON(A,B)
relevant

CL(A) CL(B)

2\/
1 AA B

2 A B lcl
3 /

only ACTCL(A)
relevant

No preconditions

only PUTON(B,C)

CL(B) CL(C)

only ACTCL(B)
relevant

No preconditions

--

The protection violation occurs when we are taking an approach as

Protected

ON(A,B)

J AI

3 B

lo
4 A pQ x

PROTECTION VIOLATION
Attempt to achieve CL(B)
made ON(A,B) false.

relevant

shown in the holding period diagram below.

84

Initial Situation

ON(A, B)--1

CL(B)---ON(B, C)1

Approach: ON(A,B); CL(B); ON(B,C)

So as indicated in section 4.3, the violation may be resolved by trying

one of the approaches shown below.

Initial Situation Problem Solved

ON(A,B)

ON (B, C)

Approach: ON(B,C); ON(A,B)

Initial Situation Problem Solved

ON(A,B)

CL(B) P. ON(B,C)

Approach: CL(B); ON(A,B); ON(B,C)

The latter cannot be used as CL(B) is already true initially and hence

85

this approach is no different to the original which caused the violation.

So, problem solving proceeds with the first (and only) suggested approach

shown above. "REORDER" is printed to signify that such an approach has

been suggested.

Note 3

Again a protection violation occurs while persuing this approach. The

tree of ticklists then is shown below.

ON(B,C) ON(A,B)

1 A ®
x

5

v/

only PUTON(B,C)
relevant

CL(B) CL(C)

C

A ®
t9 / i3

ON (B, C)

5

6

C
A A

A Ii

16

xckx

PROTECTION VIOLATION
Attempt to achieve CL(A)
made ON(B,C) false.

CL(A)

1-T

X
18 /

CL(B)

only ACTCL(A)
relevant

No preconditions

--

The approaches suggested for overcoming the violation are similar

to before. However, since the top level reversal of goals has

already been done, only the approach with a promoted precondition can be

tried. "PROMOTE" is printed to signify this. This approach shown below

is tried next as it is the only choice.

86

Initial Situation Problem Solved

CL (A) ON (A, B)

ON(B,C)

Approach: CL(A); ON(B,C); ON(A,B)

Note 4

The approach shown above is successful and produces the optimal plan

<<ACTCL A>>; <<PUTON B Cs>; <<PUTON A B>>

The tree of ticklists after successful backup is shown below.

CL(A) must be true
to here

CL(A) ON(B,C) ON(A,B)

C

1 A ®
Ilo
X

7 Q ® © "',// 22 \/

B ,ti / ,b 28

B
9

33 3Z
V/

only ACTCL(A)
relevant

No preconditions

Protected

only only PUTON(A,B)
PUTON(B,C) relevant
relevant

CL(A) CL(B) CL (C)

7 ® © 3/ 24V
/

ASV

Protected

ON(B,C) CL(A) CL(B)

8

B 2,9 / 30 / 3

87

7 EXAMPLE PROBLEMS

INTERPLAN has been tried out on a variety of problems. Besides

the 3-block problem (described in section 6) and a 5-block example

used by Warren (1974, as described in section 9.4), the STRIPS robot

world in particular was used to give some comparison between the

performance of different problem solvers. The STRIPS-world is useful

for comparison purposes since almost every problem solver written

to date has been test run on these examples. STRIPS used this type of

world to form plans for an actual robot (SHAKEY), However, it is a very

simple world in which there are few serious interaction problems and in

which the maximum length of a plan needed to solve any problem is

limited (to 15 steps at maximum - Siklossy and Dreussi, 1973 p. 426). In

view of these restrictions, problem solvers which have been written

to cope with a wider class of problems than STRIPS have often extended

the basic STRIPS-world by adding more actions or by changing the

configuration of rooms the robot is to operate in, etc.

7.1 STRIPS-world problems

7.1.1 Operator representation

To give a background against which many of the example problems

described throughout this report can be understood, the

representation of the STRIPS-world actions (operators) to INTERPLAN is

given below. See section 5.2 for details of how this representation

specifies the problem - in particular the reason for having the ACHIEVES

list of relevant operators.

88

VARS Si S2 S3 S33 S4 S5 S6 S7 ;

OPSCHEMA <<GOTO1 *$*M>7
ADD <<ATROBOT *$*M.>
DELETE <<ATROBOT == >> <<NEXTTO ROBOT == >>
PRECONDS G <<LOCINROOM *$*M *$*X>>

<<INROOM ROBOT *$*X >> <<ONFLOOR>>
VARS M X

ENDSCHEMA -> Si;

OPSCHEMA <<GOTO2 *$*M>>
ADD <<NEXTTO ROBOT *$*M>>
DELETE <<ATROBOT == >> <<NEXTTO ROBOT >>
PRECONDS <<INROOM ROBOT *$*X >> <<INROOM *$*M *$*X >> <<ONFLOOR>>
VARS M X

ENDSCHEMA -> S2;

OPSCHEMA <<PUSHTO *$*M *$*N>>
ADD <<NEXTTO *$*M *$*N>> <<NEXTTO *$*N *$*M>>
DELETE <<ATROBOT =_ >> <<NEXTTO ROBOT <: NON *$*M :> >>

<<NEXTTO <:NON ROBOT:> *$*M>>
<<AT *$*M == >> <<NEXTTO *$*M _-- >>

PRECONDS G <<PUSHABLE *$*M>> <<INROOM *$*M *$*X >>
<<INROOM *$*N *$*X > <<NEXTTO ROBOT *$*M>> <<ONFLOOR>>

VARS M N X

ENDSCHEMA -> S3;

COPY(S3) -> S33; REV(ADDLIST(S3)) -> ADDLIST(S33);

OPSCHEMA <<TURNONLIGHT *$*M >>
ADD <<STATUS *$*M ON>>
DELETE <<STATUS *$*M OFF>>
PRECONDS G <<TYPE *$*M LIGHTSWITCH > G <<TYPE *$*N BOX>>

<<NEXTTO *$*N *$*M>> <<ON ROBOT *$*N>>
VARS M N

ENDSCHEMA -> S4;

OPSCHEMA <<CLIMBONBOX *$*M >>
ADD <<ON ROBOT *$*M >>
DELETE <<ATROBOT >> <<ONFLOOR >

PRECONDS G <<TYPE *$*M BOX>> <<NEXTTO ROBOT *$*M >> <<ONFLOOR>>
VARS M

ENDSCHEMA -> S5;

OPSCHEMA <<CLIMBOFFBOX *$*M >>
ADD <<ONFLOOR>>
DELETE <<ON ROBOT *$*M >>
PRECONDS <<ON ROBOT *$*M>>
VARS M

ENDSCHEMA -> S6;

OPSCHEMA <<GOTHRUDOOR *$*K *$*L *$*M>>
ADD <<INROOM ROBOT *$*M)>
DELETE <<ATROBOT =_ >> <<NEXTTO ROBOT == > <<INROOM ROBOT =_ >>

PRECONDS <<INROOM ROBOT *$*L>> G <<CONNECTS *$*K *$*L *$*M>>
<<NEXTTO ROBOT *$*K>> <<ONFLOOR>>

VARS L M K
ENDSCHEMA -> S7;

89

<<ATROBOT c_ >> , [%oSl%],
<<NEXTTO ROBOT = » , [%S2%],
<<NEXTTO =_ [%S3,S33%),
<<STATUS == ON>> , [%S4%],
<<ON ROBOT >> , [%S5%],
<<ONFLOOR>> , [%S6%] ,

<<INROOM ROBOT >> , [%S7%] %) -> ACHIEVES;

7.1.2 Implementation note

There are 7 operators, 6 of which are straightforward in that

they only have one statement on their ADD list. However, operator

schema S3, (PUSHTO m n), can add (NEXTTO m n) and (NEXTTO n m). So

there are 2 ways to achieve e.g. (NEXTTO B1 B2), by using a

(PUSHTO B1 B2) or a (PUSHTO B2 B1). In the current implementation of

INTERPLAN, the variables of an OPSCHEMA are instantiated to make it
relevant by matching the statement the operator is to achieve

against the ADD list entries in turn from left to right until a match

succeeds, the variables being set by this successful match.

Normally, if it will match more than one entry in the ADD list, the 2nd

and later occurrences can never be reached by the left to right

matching. In the (PUSHTO m n) OPSCHEMA the achieve statement will

always match the 1st entry in the ADD list (NEXTTO m n) and so to

achieve, for instance, (NEXTTO B1 B2) only (PUSHTO B1 B2) would be tried

whereas (PUSHTO B2 B1) is also relevant.

To overcome this implementation restriction, one must make a

copy of the OPSCHEMA in which the ADD list entry which would not

normally be reached in the left to right scan is put in a position in

the copied ADD list such that it will be. In the STRIPS-arorld

representation this is done by simply reversing the ADD list of

OPSCHEMA S3 to give a new OPSCHEMA S33.

90

7.1.3 Initial situation

The initial situation used for the problems given to STRIPS is

shown in the diagram below.

ROOM1

c B3

b B2 d

ROOM2

f

ROOM3 ROOM4

LS1
off

DOOR1
{ f

DOOR2 DOOR3 DOOR4

ROOMS

The following assertions represent this initial situation to

INTERPLAN.

ASSERT
<<TYPE DOOR1 DOOR>>

<<TYPE DOOR2 DOOR>>

<<TYPE DOOR3 DOOR>>

<<TYPE DOOR4 DOOR>>
<<TYPE B1 BOX>>
<<TYPE B2 BOX>>
<<TYPE B3 BOX>>
<<TYPE LS1 LIGHTSWITCH>>
<<INROOM DOOR2 ROOM2>>

<<INROOM DOOR2 ROOMS >

<<INROOM DOOR3 ROOM3>>

<<INROOM DOOR3 ROOMS»
<<INROOM DOOR4 ROOMS>>

<<INROOM DOOR1 ROOM5>>
<<INROOM DOOR4 ROOM4>>

<<INROOM DOOR1 ROOM1>
<<CONNECTS DOOR1 ROOMS ROOM1>>

<<CONNECTS DOOR4 ROOM4 ROOMS>>

<<CONNECTS DOOR2 ROOM2 ROOM5>>

<<CONNECTS DOOR2 ROOMS ROOM2a>

<<CONNECTS DOOR3 ROOM3 ROOMS»
<<CONNECTS DOOR3 ROOMS ROOM3>>

<<CONNECTS DOOR1 ROOM1 ROOM5>>

<<CONNECTS DOOR4 ROOMS ROOM4>>

91

<<LOCINROOM F ROOM4>>
<<AT B1 A>>
<<AT B2 B»
<<AT B3 C>>
<<AT LS1 D>>
<<ATROBOT E>>
<<INROOM B1 ROOM1>>
<<INROOM B2 ROOM1>>

<<INROOM B3 ROOM1>>
<<INROOM ROBOT ROOM1>>

<<INROOM LS1 ROOM1>>

<<PUSHABLE B1 >>
«PUSHABLE B2 >>
<<PUSHABLE B3 >>
<<ONFLOOR >>
<<STATUS LS1 OFF>>

7.1.4 Different versions of the STRIPS-world problems

The time comparisons of problem solvers on STRIPS-world problems

given in the literature are a little confusing since several versions

of the problem domain have been used on STRIPS. The version

described in sections 7.1.1 and 7.1.3 is as given in Fikes and Nilsson

(1971). This version appeared in volume 2 of the journal Artificial

Intelligence and will thus be refered to as version AIVol2. An

earlier version of this paper was presented at the Second International

Joint Conference on Artificial Intelligence and will be refered to as

version IJCAI2. The main difference in this formulation is that only

box B1 instead of any box may be used to stand ON to TURNON a

lightswitch. Different operators, different initial situations and

different problems were used in a paper by Fikes, Hart and Nilsson

(1972b) to compare normal STRIPS and STRIPS with a plan saving device

called MACROPS. This was published in volume 3 of the journal of

Artificial Intelligence and will thus be refered to as version AIVol3.

92

7.2 Time comparisons - mainly on STRIPS-world problems

In the table which follows six problem solvers are compared

where possible.

INTERPLAN: A program run in POP-2 (Burstall, Collins and Popplestone,

1971) and HBASE (Barrow, 1975 - a, CONNIVER-like data base

package written in POP-2). The times were obtained in a

single session without change of any search eorometers

(see appendix III). The times include garbage collection

and any operating system overheads when run on the

Edinburgh DEC10. INTERPLAN occupies under 5K words of

core on the DEC10.

STRIPS and ABSTRIPS: all forms were run in partially compiled LISP

on the Stanford DEC10.

STRIPS - Fikes and Nilsson (1971).

STRIPS with MACROPS - Fikes, Hart and Nilsson (1972b).

ABSTRIPS - Sacerdoti (1974).

LAWALY: is run in interpreted LISP on a CDC-6600 and the

times include garbage collection. (CDC-6600 is

reputedly approx. 8 times faster than the DEC10).

WARPLAN: is interpreted in PROLOG (see Warren, 1974), 1='hich is

implemented in FORTRAN 'nd is run on the Edinburgh DEC10.

T
i
m
e
s

i
n

s
e
c
o
n
d
s

I
N
T
E
R
P
L
A
N

S
T
R
I
P
S

I r
A
C
R
O
P

S
T
R
I
P

L
A
W
A
L
Y

I
A
R
P
L
A
N

T
 o

2

s
i
g
n
i
f
i
c
a
n
t

f
i
g
u
r
e
s

T
R
I
P
S

S
T
R
I
P
S

R
O
B
O
T

W
O
R
L
D

A
l
v
c
i
:

I
J
C
A
I
2

A
I
v
o
l
3

A
I
v
o
l
2

I
J
C
A
I
2

A
I
v
o
l
3

A
I
v
o
l
3

1
 1
A
I
v
o
l
3

A
I
v
o
1
2

A
I
v
o
1
3

I
J
C
A
I
2

S
T
A
T
U
S

L
S
1

O
N

1
.
6

1
.
5

-

1
1
3

6
5

-

-

-

1
.
6

-

8
.
8

A
T
R
O
B
O
T

F

2
.
1

2
.
1

-

1
2
3

1
2
5

-

-

-

4
.
1

-

1
8

N
E
X
T
T
O

B
2

B
3
&
N
E
X
T
T
O

B
3

D
O
O
R
1

&
S
T
A
T
U
S

L
S
1

O
N
&
N
E
X
T
T
O

B
1

B
2

&
I
N
R
O
O
M

R
O
B
O
T

R
O
O
M
2

1
8

1
2

-

-

-

-

-

-

-

-

8
4

S
T
A
T
U
S

L
S
1

O
N
&
N
L
X
T
T
O

B
2

D
O
O
M

&
N
E
X
T
T
O

B
1

B
2
&
N
E
X
T
T
O

B
3

L
S
1

&
A
T
R
O
B
O
T

F

1
0

1
1

-

-

-

-

-

-

1
0

-

-

S
T
A
T
U
S

L
S
1

O
N
&
N
E
X
T
T
O

B
1

B
2

&
N
E
X
T
T
O

B
2

B
3
&
A
T
R
O
B
O
T

F

1
3

1
2

-

-

-

-

-

-

-

-

7
3

N
E
X
T
T
O

B
1

B
2
&
N
E
X
T
T
O

B
2

B
3

4
.
4

4
.
4

3
.
3

6
6

1
2
2

5
8
7

1
8
0

1
5
0

4
.
1

1
4

1
8

N
E
X
T
T
O

B
1

B
2
&
I
N
R
O
O
M
 R
O
B
O
T

R
O
O
M
1

-

-

2
.
1

-

-

1
0
0

1
0
0

1
1
4

-

7
.
4

-

N
E
X
T
T
O

B
2

B
3
&
I
N
R
O
O
M

R
O
B
O
T

R
O
O
M
3

-

-

2
.
4

-

-

3
4
4

1
2
6

I

1
7
5

-

1
1

-

I
N
R
O
O
M

R
O
B
O
T

R
O
O
M
3

-

-

2
.
6

-

-

2
7
4

3
1
8

1
4
4

-

4

7
.
7

N
E
X
T
T
O

B
1

B
2
&
N
E
X
T
T
O

B
3

B
4

-

-

8
.
5

-

-

>
1
2
0
0
*

3
4
9

4
0
1

-

1
9

-

I
B
L
O
C
K

S
T
A
C
K
I
N
G

3
-
B
l
o
c
k

P
r
o
b
l
e
m

2
.
1

-

-

-

-

8
.
0

5
-
B
l
o
c
k

P
r
o
b
l
e
m

7
.
0

-

-

-

-

4
0

*

S
T
R
I
P
S

d
i
d

n
o
t

s
o
l
v
e

t
h
i
s

p
r
o
b
l
e
m
 w
h
e
n

g
i
v
e
n

2
0

m
i
n
u
t
e
s

o
f

C
P
U

t
i
m
e
.

94

7.3 Variants of the STRIPS-world run on INTERPLAN

7.3.1 Variants with interactions --------------------------

Two variants of the STRIPS-world which are similar to one

another were made to introduce interaction problems. These are the

2-room problem from Siklossy and Dreussi (1973) described in section

8.1, and the SHUNT problem from Warren (1974) described in section 9.5.

Both problems were used to point out shortcomings of the problem

solvers described in the respective references. The action of

INTERPLAN on these problems is described in the sections indicated.

7.3.2 Variants with long solution paths

Another variant of the STRIPS-world was introduced to test the

effect of LAWALY (Siklossy and Dreussi, 1973) on problems requiring long

sequences of individual operators to achieve some goals. A "superworld",

as they termed it, was invented with 7 rooms in which a robot janitor

was asked to sweep rooms, empty rubbish bins, water plants, etc. The

domain has 26 operator schemas and an initial situation described by 120

assertions.

However, in this domain for any given goal, only one operator

schema is relevant so eliminating branching in the search tree for

operator choices. There are no serious interaction problems in the

domain, and there are no interactions at all when priorities are given

for the order of achievement of the individual goals and preconditions

(as is done in LAWALY). Problems in this domain, though requiring long

operator sequences, need only minimal problem solving capabilities in

95

that there is only one operator relevant to each goal and the

preconditions of such operators can always be satisfied. Backtracking

is thus not needed for the solution of the problems in this domain. This

fact is used by LAWALY so that in between partial searches to solve

each component of a conjunct of goals, any choices generated are cleared

leaving only the successful partial plan for earlier components of the

conjunct.

Perhaps the only complexity of the LAWALY "superworld" for

means-end analysis driven problem solvers is the lack of guidance

available when a choice of intermediate rooms must be made to go from

one room to another when these are not directly connected, LAWALY uses

a maze-running algorithm to cope with this problem The maze-running

algorithm computes an optimal path between any two rooms in the

domain.

A listing of the "superworld" input to LAWALY was obtained and

run on INTERPLAN in a similar form. The original axiomatization

contained several errors which would not enable certain problems to be

solved. Therefore, the version run on INTERPLAN was only changed as

necessary to enable some search timings to be found. A maze-running

capability was given to INTERPLAN using the OPSCHMODIFY facility (see

section 5.8(6)). LAWALY solved some very long problems in this domain.

A 198 step plan being found in 348 seconds and a 275 Step plan being

found in 433 seconds. Giving an average time per step of the final

plan of 1.65 seconds. A problem in this domain was given to INTERPLAN.

It was to water plants in all 7 rooms of the world. This required a

151 step plan which was found by INTERPLAN in 306 seconds, an average of

just over 2 seconds per step of the final plan.

96

7.4 Comments on the time comparisons

7.4.1 Purpose of the time comparisons

The time comparisons of INTERPLAN on a variety of problems

against other problem solvers are intended to show that it has been

possible to incorporate the mechanism of protecting achieved goals and

monitoring any interactions which occur to allow corrections to be made

without ruining the performance of a problem solver. The range of

problems which can be solved by INTERPLAN is greater than the range

which can be dealt with by all the variants of STRIPS and LAWALY,

yet INTERPLAN performs favourably in relation to them. The test of

INTERPLAN on a single problem requiring a long plan in the LAWALY

"superworld" was made for a similar reason.

Time comparisons of different systems on different computers

are always difficult to make since the problem solvers are intended

to cope with different aspects of planning and may have additional

facilities to those being compared. Such comparisons can only be

used to get a rough estimate of relative performance.

7.4.2 Comparison with STRIPS

The significant improvement of search times of INTERPLAN over

STRIPS must be explained since INTERPLAN is based on many of the ideas

in STRIPS but has extra abilities and mechanisms.

(a) A major factor is the use in INTERPLAN of a very simple language

for performing the storage and retrieval of facts about

97

situations in the world (the Question-answering system). INTERPLAN

uses HBASE (Barrow, 1975) primitives to perform this task whereas

STRIPS uses a modification of the QA3 theorem prover (Green, 1969).

QA3 provides a richer language in which a situation of the world can

be described (allowing implications to be used), but this power is

not required for the simple problems tackled by STRIPS and the QA3

system is therefore cumbersome in this use.

(b) INTERPLAN also has a particularily straightforward method of

building up its search tree using a simple iterative process of

classifying and editing the structure being constructed. Ticklists

provide a very simple method of allowing the appropriate edit to

be chosen.

98

7.5 Problems run on INTERPLAN

This section lists the different problem domains given to

INTERPLAN at present. Where problems in these domains are described in

this report, section references are given.

Block stacking problems: especially 3 block problem (section 6) and

5 block problem (section 9.4).

STRIPS-world problems: see earlier in this chapter.

STRIPS-world variants: 2 Room problem (from Siklossy and Dreussi,

1973) see section 8.1.

SHUNT problem (from Warren, 1974) see

section 9.5.

LAWALY superworld (from Siklossy and Dreussi,

1973) see section 7.3.2

A simple machine code programming task (from Warren, 1974)

including the swap the values of 2 registers

problem (see section 8.2).

A model car assembly task.

A simplified version of the Keys and Boxes problem (from Warren, 1974).

A train movement task using a common section of line.

99

8 OTHER PROBLEMS IN WHICH INTERACTIONS OCCUR
--

Interactions occur in many problems, Several of these have been

mentioned previously in the literature on problem solving and have

usually been dealt with in a domain specific fashion. Two of these

problems will be outlined here and an interaction discovery and correction

approach given for them. Such an approach does not rely upon certain

domain specific facts being known before problem solving commences.

Both examples have been chosen because they have invenced

the design of INTERPLAN, showing the different conditions under which

interactions occur.

8.1 2 Room problem

Initial Situation

ROOM1

ROBOT

ROOM2

TDOORl

Goal Situation

ROOM1 ROOM2

ROBOT
DOOR1 A

<<STATUS DOOR1 CLOSED>>&<<NEXTTO ROBOT B1»

This problem is based upon the operators available in the

STRIPS-AIVo13 world (see section 7.1.4), The world consists of 2 rooms

100

connected by DOOR1 which is initially closed. The robot is in one room

and a box in the other. The goal is to get the robot NEXTTO the box

at the same time as the door being closed.

The problem was described by Siklossy and Dreussi (1973, sec.8)

as an example of a failure of LAWALY. Though I understand that J. Roach

at the University of Texas at Austin proposed the problem. It is a

typical interaction problem. Concentrating on each of the component

goals in either order will not achieve the goal. A similar problem, the

SHUNT problem, is described in section 9.5).

An annotated trace of INTERPLAN on the problem is given below.

GOAL <<STATUS DOOR1 CLOSED>> <<NEXTTO ROBOT B1>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 approach 1

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1

** ACHIEVE << STATUS DOOR1 OPEN » IN 1

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 2
** APPLY << OPEN DOOR1 >> TO 2 TO GIVE 3
PROTECTION VIOLATION PROMOTE PROMOTE REORDER

** ACHIEVE << TYPE B1 DOOR >> IN 1 approach 2
** ACHIEVE << NEXTTO ROBOT B1 >> IN 1

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1

** ACHIEVE << STATUS DOOR1 OPEN » IN 1

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 4
** APPLY << OPEN DOOR1 >> TO 4 TO GIVE 5
** APPLY << GOTHRUDR DOOR1 ROOM-9 >> TO 5 TO GIVE 6
** APPLY << GOTOB B1 >> TO 6 TO GIVE 7
** ACHIEVE << STATUS DOOR1 CLOSED >> IN 7
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 7
** ACHIEVE << TYPE DOOR1 OBJECT >> IN 7
** APPLY << GOTOD DOOR1 » TO 7 TO GIVE 8
PROTECTION VIOLATION PROMOTE

** ACHIEVE << STATUS DOOR1 OPEN >> IN 1 approach 3

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1

** ACHIEVE << TYPE DOOR1 OBJECT >> IN 1

** APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 9

101

** APPLY << OPEN DOOR1 >> TO 9 TO GIVE 10
** ACHIEVE << STATUS DOOR1 CLOSED >> IN 10

** APPLY << CLOSE DOOR1 >> TO 10 TO GIVE 11

SETUP REVERSE STOPPED
ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 approach 4
ACHIEVE << STATUS DOOR1 OPEN >> IN 1

ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1

ACHIEVE << TYPE DOOR1 OBJECT >> IN 1

APPLY << GOTOD DOOR1 >> TO 1 TO GIVE 12
APPLY << OPEN DOOR1 >> TO 12 TO GIVE 13
APPLY << GOTHRUDR DOOR1 ROOM2 > TO 13 TO GIVE 14
ACHIEVE << STATUS DOOR1 CLOSED >> IN 14
ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 14
ACHIEVE << TYPE DOOR1 OBJECT > IN 14

APPLY << GOTOD DOOR1 >> TO 14 TO GIVE 15
APPLY << CLOSE DOOR1 > TO 15 TO GIVE 16
ACHIEVE << NEXTTO ROBOT B1 >> IN 16
APPLY << GOTOB B1 >> TO 16 TO GIVE 17

** CPU TIME = 6.102 SECS

NOW

<< GOTOD DOOR1 >>
<< OPEN DOOR1 >>
<< GOTHRUDR DOOR1 ROOM2 >>
<< GOTOD DOOR1 >>
<< CLOSE DOOR1 >>
<< GOTOB B1 >>

: APPROACH

-1002 << INROOM ROBOT ROOM2 > -1002 indicates that the goal is
1 << STATUS DOOR1 CLOSED » a precondition for a goal ref. 2.
2 << NEXTTO ROBOT B1 >

--

Remember that preconditions of an action to achieve a goal are written
PRECOND P GOAL in the diagram below. Look back at the trace to

find the preconditions used.

Approach 1:

STATUS DOOR1 CLOSED go.

holding period is broken
by the achievement of
STATUS DOOR1 OPEN

STATUS DOOR1 OPEN- INROOM ROBOT ROOM2 --b' NEXTTO ROBOT B1-0

102

Note that the contradictory nature of the 2 goals <<STATUS DOOR1 OPEN>>

and <<STATUS DOOR1 CLOSED'> is not detected as no information is known

about this (IMPOSS(...) assertions could be used to save on search

effort here - see section 5.8(7)). All that is known when the interaction

occurs is that the achievement of the second goal deletes the first.
However, INTERPLAN can still cope. The interaction suggests a

REORDERING to approach 2 Rnd 2 PROMOTIONS to approaches 3 and 4. 2

promotions are suggested as there are 2 Fubgoals being considered

(<<STATUS DOOR1 OPEN>> and <<INROOM ROBOT ROOM2>>) when the

interaction occurs, and both goals are not already true at the point

at which they are being promoted to.

Approach 2:

NEXTTO ROBOT B1

NEXTTO ROBOT DOOR1- O STATUS DOOR1 CLOSED10

No REORDERING can be tried to correct for this interaction as it has

been performed once already in response to the first interaction.

However, a PROMOTION of <<NEXTTO ROBOT DOOR1>> can be made. This

latter approach does not figure in the solution of the problem.

Approach 3:

STATUS DOOR1 CLOSED

STATUS DOOR1 OPEN NEXTTO ROBOT B1--0 -

103

Reversal of the "setup" goal (<<STATUS DOOR1 OPEN'>) is not allowed

since this would place it in a position from which it had been

promoted by some earlier interaction. "SETUP REVERSE STOPPED" is

printed to signify this. Again note that use of IMPOSS (...)

assertions could have declared the above approach INVALID.

Approach 4:

STATUS DOOR1 CLOSED

INROOM ROBOT ROOM2 " NEXTTO ROBOT B1 --I

This approach is successful. Siklossy and Dreus-i (1973) suggest that

the problem should have been specified more exactly to a problem solver

by including <<INROOM ROBOT ROOM2>> in the goal, or that this could have

been done by some "transitivity of location" program. However,

INTERPLAN can deal with this problem in a straightforward way using

general techniques and does not rely upon domain specific knowledge

which for other similar problems might not be available. It also

realizes why the <<INROOM ROBOT ROOM2>> goal is needed - as a "setup"

goal for <<NEXTTO ROBOT B1>> (in the context of another goal

<<STATUS DOOR1 CLOSED >). This is in contrast to its treatment as a

separate top level goal in the suggestion of Siklossy and Dreussi.

104

8.2 Swap the values of 2 registers

A common problem in computer programming is: given 2 registers

with certain values, swap their values.

Initial Situation Goal Situation

REG 1 IS Cl REG 1 IS C2
REG 2 IS C2 REG 2 IS C1

The solution involves saving one of the values in some other register

before altering the two registers. This can be dealt with in a domain

specific fashion by ensuring a value in one of the registers to be

swapped is always saved. However below I will indicate how a general

interaction detection and correction approach may be used to solve this

problem.

The actions possible in this simple programming world (note) are

<<STORE x / val>> which puts the value in an accumulator into REG x.

<<LOAD x / val>> which loads the value in REG x into the accumulator.

The entry after the "/" gives the value of the register refered to after

being accessed or updated. It can be considered as a comment.

This problem requires the facilities of the full LOOP editor

(see section 5.7.7). This is not available in the current

implementation of INTERPLAN. However, a trace is given of the

operation of INTERPLAN on this problem using the present LOOP editor

which asks the user for an instance of a goal to be PROMOTED on a

LOOP detection. The approaches used are described in terms of the FULL

LOOP editor.

--
(note) This formulation of the problem was suggested by an application

given to WARPLAN (see Warren, 1974) and also run on INTERPLAN in
which ADD and SUBTRACT actions were also permitted, The "/"

comment is needed by WARPLAN to correctly associate the ADD,
DELETE n d pRECOND entries for each action - these being kept in
3 separate lists (see section 9.1). It is not required by
INTERPLAN.

105

: GOAL <<REG 1 I S C2>> <<REG 2 I S C1>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << REG 1 IS C2 >> IN 1 approach 1
** ACHIEVE << ACC IS C2 >> IN 1
** APPLY << LOAD 2 / C2 >> TO 1 TO GIVE 2
** APPLY << STORE 1 / C2 > TO 2 TO GIVE 3
** ACHIEVE << REG 2 IS Cl >> IN 3
** ACHIEVE << ACC IS Cl >> IN 3
** ACHIEVE << REG IS Cl >> IN 3

LOOP ON << REG == I S Cl >>
WHAT SHALL I PROMOTE: <<REG 3 IS C1»

PROMOTE PROMOTE REORDER
** ACHIEVE << REG 2 IS Cl >> IN 1 ..., approach 2
** ACHIEVE << ACC IS Cl >> IN 1
** APPLY << LOAD 1 / Cl >> TO 1 TO GIVE 4
** APPLY << STORE 2 / Cl 5> TO 4 TO GIVE 5
** ACHIEVE << REG 1 IS C2 >> IN 5
** ACHIEVE << ACC IS C2 > IN 5
** ACHIEVE << REG == IS C2 » IN 5 The approaches suggested

LOOP ON << REG == IS C2 >> here are not used in the
WHAT SHALL I PROMOTE: <<REG 3 IS C2>>f` search for a solution.

PROMOTE PROMOTE

** ACHIEVE << REG 3 IS Cl > IN 1 approach 3
** ACHIEVE << ACC IS Cl >> IN 1
** APPLY << LOAD 1 / Cl >> TO 1 TO GIVE 6
** APPLY << STORE 3 / Cl >> TO 6 TO GIVE 7
** ACHIEVE << REG 1 IS C2 >> IN 7
** ACHIEVE << ACC IS C2 » IN 7
** APPLY << LOAD 2 / C2 >> TO 7 TO GIVE 8
** APPLY << STORE 1 / C2 >> TO 8 TO GIVE 9
** ACHIEVE << REG 2 IS Cl >> IN 9
** ACHIEVE << ACC IS Cl >> IN 9
** APPLY << LOAD 3 / Cl >> TO 9 TO GIVE 10
** APPLY << STORE 2 / Cl >> TO 10 TO GIVE 11

** CPU TIME = 2.312 SECS

NOW

<< LOAD 1 / Cl >>
<< STORE 3 / Cl >--

<< LOAD 2 / C2 >
<< STORE 1 / C2 >>
<< LOAD 3 / Cl >>
<< STORE 2 / Cl >>

: APPROACH

A user could have asked what instances
of loop pattern were currently true
and what the upper loop occurrence
was to decide what to promote.

-1002 << REG 3 IS Cl >>
1 << REG 1 IS C2 >>
2 << REG 2 IS Cl >>

106

Remember that preconditions of an action to achieve a goal are written
PRECOND ---P GOAL in the diagrams below. Look back at the trace to

find the preconditions used.

Approach 1:

REG 1 IS C2

REG xI S C 1--* ACC I S C1- REG 2 IS C1--
------LOOP -------J

A LOOP is detected on <<REG x IS C1» as a higher level goal at that

time is <<REG 2 IS C1». As indicated in the description of the full

LOOP editor (see section 5.7.7), we may try to reorder the concurrent

goals at the upper loop level (<<REG 1 IS C2>> and <<REG 2 IS Cl>>).

This would give approach 2 (note). Alternative approaches of

suggesting a PROMOTION which would aid the solution of the upper loop

occurrence of the pattern (<<REG 2 IS C1») while avoiding the loop are

tried. PROMOTION of <<ACC IS Cl>> for this purpose is straightforward,

but the promotion is not used in the search for a solution. Promotion

of <<REG x IS Cl>> gives approach 3.

Anproach 2:

--- - - - LOOP - - - -
REG x IS C2 ACC IS C2-REG 1 IS C2 0

REG 2 IS C1

--
Note: If a goal of, for example, <<REG 1 IS C2>> & <<REG 3 IS C1» is

given in the same initial situation as the present problem, s

straightforward reversal of the goals at the upper loop level
would enable the problem to be solved.

107

Again a LOOP is detected. A similar process to the above is performed,

but the approaches which are suggested are not used in the search for a

solution.

Approach 3:

REG 1 I S C2

REG x IS Cl REG 2 IS Cl

x/=2 (a)
x/=1 (b) Notes are to the text below.

The promoted goal in approach 3 can only be promoted after a LOOP has

occured if
(a) the promoted goal is not IDENTICAL to the upper loop occurence of

the pattern. As explained in the description of the full loop

editor, this is because the approach

G1 I

is equivalent to

G1---'p

G2 P. G2 --*I I G2 I{

Thus x must not be 2.

(b) The promoted goal is not already true at the point to which it is

being promoted. Since <<REG 1 IS C1.> is true initially, the goal

must be restricted to exclude this instance (as explained in

"restrictions on the instances of a promoted goal" - section 5.7.5).

Thus x must not be 1.

108

A method of placing restrictions on variables has been experimented with

and is outlined in Appendix IV. However, as can be seen in the

trace of INTERPLAN on the swap the values of 2 registers example, the

user is given the responsibility for choosing an appropriate instance of

a goal to be promoted in the current implementation of the LOOP editor.

Similarity to the Keys and Boxes problem

It is interesting to note the close similarity between the

approaches needed to solve the "swap the value of 2 registers" problem

and those needed to solve the Keys and Boxes problem (see section 11.3).

109

9 WARPLAN - A COMPARISON WITH INTERPLAN

WARPLAN (Warren, 1974) is a means-end analysis driven problem

solver which has been designed to solve problems described in terms

similar to those used in STRIPS (initial world situation, operator

schemas and the goal specification). It is intended as a method of

relaxing the "linear" assumption made by earlier systems, such as STRIPS

and HACKER, in which they hope that operator sequences for each

individual goal can be combined end-on-end given some suitable ordering

of the individuals, Qnd that the combination of sub-plans will achieve

the whole conjunct. WARPLAN, therefore, can cope with problems in which

this assumption is not valid, such as the 3-block problem. Since its

aims are similar to those of INTERPLAN (it being motivated to some

extent by the same problem - the Keys and Boxes) it may be instructive

to compare the two systems.

Before considering the detail of the method used in WARPLAN, a

little background information may be useful. WARPLAN is written as 46

predicate calculus clauses which are interpreted by the PROLOG system

(see appendix III of Warren, 1974). Though the program is very concise,

it can cope with a wide variety of problems.

110

9.1 Problem specification

Operator schemas are described using 3 nredicates which state

which facts can be added by some operator (ADD(x,op)), what facts are

deleted by some operator (DELETE(x,op)) m.nd the preconditions

required of a situation for the operator to be applicable (CAN(op,x)).

Since the specification of the operator schema is in 3 different clauses,

the name of the schema must contain all the variables used in its

specification.

An initial situation is described using a predicate

GIVEN(sitn,x) which states that the fact x is true in the situation.

Facts true in all situations (global facts) can be given using a

predicate ALPWAYS(x). An additional predicate, IMPOSS(x), is used to

state that a conjunction of facts in unat=tainable in any situation.

This is provided for efficiency to stop fruitless goals being

investigated.

ill

9.2 Method used

The goals in a conjunct are tackled from left to right. For

each goal in turn:

(a) if the goal is solved in the current situation (the initial
situation for the first goal), no action is taken and we proceed to

the next goal. A choice is actually being made here, it is
equivalent to choosing a "do-nothing" operator at stage (b).

(b) If the goal is not solved, we seek operators which will achieve it
(by looking at what operators ADD the fact).

(c) For one of the relevant operators (the others are set up by PROLOG

processes as backtracking choice points in case of failure) we check

if the application of the operator will delete any earlier achieved

goal.

(d) If the operator is inconsistent with earlier goals, we trace back

through the plan part already produced trying to find a suitable

point to insert the operator. Care is taken that, at any point

considered, the goal this operator is to achieve will not be deleted

by actions later in the plan.

(e) Once a point of insertion for the operator is found (either after

the last step of the existing plan part or some intermediate point

as found in (d)), we check that the preconditions of the operator

hold in the situation in which the operator will be applied.

112

(f) If the preconditions do not hold, a subgoal is set up of attempting

to find a situation in which the operator can be applied.

NOTE: Recent work on coping with interacting goals in program synthesis

is reported in Waldinger (1975). The method employed is

essentially similar to that used in WARPLAN, though the two

systems are not based upon one another. The discussion of WARPLAN

here also applies in most part to Waldinger's system.

113

9.3 An Example (the 3 block problem)

Additional to the operator schemas and initial situation which

are similar to those used on INTERPLAN, a fact IMPOSS(ON(x,y)&CL(y)) is

given. The plan parts inserted by each step of the trace below are put

in capitals in the Plan Generated column.

Goals Considered Plan Generated Comments

none now

ON(A,B) now;ACTCL(A); Actcl(a) inserted to achieve a pre-
PUTON(A,B) condition for Puton(a,b) which

achieves the given goal.

ON(A,B)&ON(B,C) now;actcl(a); Puton(b,c) to achieve ON(B,C) cannot
PUTON(B,C); be put on the end of the sequence
puton(a,b) since a precondition, CL(B) is incon-

sistent with an earlier achieved
goal, ON(A,B), using IMPOSS(ON(x,y)&
CL(y)). A suitable point of
insertion is found just before
Puton(a,b).

The partial plan generated holds enough information to enable

the system to compute from the ADD and DELETE entries what facts hold in

the situations produced by application of each operator along the plan

sequence.

114

9.4 A problem with interleaving given operator sequences

Consider an example problem run on WARPLAN and based upon the

3 block problem. It is a 5 block problem For a detailed description

of the method WARPLAN uses on this see Warren (1974). A trace of the

important steps is given here. The problem is

Initial Situation A

B

C

C

A B

E

D

D

E

Goal Situation

The trace is for the first solution generated to this problem when using

a depth-first search strategy. Other choice points could be used by

backtracking.

Goals Considered Plan Generated Comments

ON(A,B)&ON(B,C) now;actcl(a); found as explained previously,
puton(b,c);
puton(a,b)

ON(A,B)&ON(B,C) nowactcl(a); Puton(c,d) requires CL(C) which cannot
&ON(C,D) ACTCL(D); be true if CN(B,C) is, using

PUTON(C,D); IMPOSS(ON(x,y)&CL(y)) once again.
puton(b,c); Therefore the operator must be put
puton(a,b) before Puton(b,c). In this

position a precondition, CL(D) does

not hold. It can be achieved by an
Actcl(d).

ON(A,B)&ON(B,C) now;actcl(a); Final goal achieved by insertion of
&ON(C,D)&ON(D,E) actcl(d); Puton(d,e) operator.

PUTON(D,E);
puton(c,d);
puton(b,c);
puton(a,b)

115

Note in the above that the constraint to use the already existing

plan sequence in the solution to subsequent goals results in a redundant

step, ACTCL(A), being left in the final plan. This is due to the fact

that an operator is chosen with regard to the facts which must be made

to hold in a particular situation. If the operator is later shifted to

a different position so that it is applied in a different situation, it
may become redundant.

INTERPLAN modifies the order of goals it is to consider when

interactions are discovered. The sequence of approaches suggested as

each interaction is discovered follows similar lines to the sequence of

partial plans generated by WARPLAN (as in the block stacking domain

there is only one operator to achieve each goal). However, since at

any point at which a goal is already true when it is tackled, no

operators are applied, no redundant steps are inserted. See the trace

below which shows INTERPLAN working on the 5 block problem annotated

with the approaches being considered at each phase.

116

: GOAL <<ON A B'> <<ON B C>> <<ON C D>> <<ON D E>,>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << ON A B >> IN 1approach 1

** ACHIEVE << CL A >> IN 1

** APPLY << ACTCL A » TO 1 TO GIVE 2
** APPLY << PUTON A B '> TO 2 TO GIVE 3
** ACHIEVE << ON B C » IN 3
** ACHIEVE << CL B >> IN 3
** APPLY << ACTCL B >> TO 3 TO GIVE 4
PROTECTION VIOLATION REORDER

** ACHIEVE << ON B C >> IN 1 approach 2
** APPLY << PUTON B C » TO 1 TO GIVE 5
** ACHIEVE << ON A B >> IN 5
** ACHIEVE << CL A » IN 5
** APPLY << ACTCL A » TO 5 TO GIVE 6
PROTECTION VIOLATION PROMOTE
** ACHIEVE << CL A > IN 1 ppproach 3
** APPLY << ACTCL A >> TO 1 TO GIVE 7
** ACHIEVE << ON B C > IN 7
** APPLY << PUTON B C >> TO 7 TO GIVE 8
** ACHIEVE << ON A B >> IN 8
** APPLY << PUTON A B >> TO 8 TO GIVE 9
** ACHIEVE << ON C D >> IN 9
** ACHIEVE << CL C >> IN 9
** APPLY << ACTCL C >> TO 9 TO GIVE 10
PROTECTION VIOLATION REORDER

** ACHIEVE << ON C D >> IN 1 approach 4
** ACHIEVE << CL D >> IN 1
** APPLY << ACTCL D >> TO 1 TO GIVE 11
** APPLY << PUTON C D >> TO 11 TO GIVE 12
** ACHIEVE << ON B C >> IN 12
** APPLY << PUTON B C >> TO 12 TO GIVE 13
** ACHIEVE << ON A B >> IN 13
** APPLY << PUTON A B >> TO 13 TO GIVE 14
** ACHIEVE << ON D E >> IN 14
** ACHIEVE << CL D '> IN 14
** APPLY << ACTCL D >> TO 14 TO GIVE 15
PROTECTION VIOLATION PROMOTE REORDER

** ACHIEVE << ON D E >> IN 1 approach 5
** ACHIEVE << CL D >> IN 1 2 choices - Reorder
** APPLY << ACTCL D » TO 1 TO GIVE 16 is prefered.
** APPLY << PUTON D E >> TO 16 TO GIVE 17
** ACHIEVE << ON C D >> IN 17

** APPLY << PUTON C D » TO 17 TO GIVE 18
** ACHIEVE << ON B C >> IN 18

** APPLY << PUTON B C >> TO 18 TO GIVE 19
** ACHIEVE << ON A B > IN 19
** APPLY << PUTON A B >> TO 19 TO GIVE 20

** CPU TIME = 7.712 SECS

NOW
<< ACTCL D >>
<< PUTON D E >>
<< PUTON C D >>
<< PUTON B C >>
<< PUTON A B >>

APPROACH

4 << ON D E >>
3 << ON C D >>

-1001 << CL A >>
2 << ON B C >>
1 << ON AB»

-1001 indicates that the goal is a
precondition for the goal ref. 1.

117

--
Approach 1:

CL(A) 0 ON (A, B)

Approach 2:

CL(B)- .ON(B,C) P.

CL(A) o ON (A, B) 01

ON(B, C)

The first part of this problem proceeds exactly as for the 3-block

problem (see section 6).

Anproach 3:

CL(A) T ON(A,B)

ON (B, C) -

CL(C)--0 ON(C,D)

118

Interaction suggests a REORDERING to approach 4. PROMOTION is not

allowed as CL(C), the goal to be promoted, is true before ON(B,C) (the

point to which promotion is attempted).

Approach 4:

CL(A) ON(A,B) ----------10

ON(B,C) -------0

CL(C)-i ON(C,D)
1

CL(D)-r ON(D, E)-p.

The interaction suggests a REORDERING to approach 5 and a PROMOTION of

CL(D) to before ON(C,D). This latter approach is not used in the search

for a solution.

Approach 5:

CL(A) 0 ON(A, B)

ON(B,C)

ON (C, D)

CL(D)---0 ON (D, E)

119

9.5 The SHUNT problem

The SHUNT problem is an extension to the STRIPS-world (see

section 7.1) proposed by Warren (1974) to illustrate the difficulty,

outlined above of having to use a previously discovered subplan for

earlier goals in the solution of further goals in a conjunct. It is

similar to the 2 ROOM problem of Siklossy and Dreussi (1973).

There is one additional operator to those given in the STRIPS-

world. It is <<SHUNTTHRU bx dxy rx ry>> which shunts the robot into

box bx in room rx and both box and robot go through door dxy into room

ry. However, the robot is not left NEXTTO the box bx. Therefore there

are two ways to achieve <<INROOM ROBOT =_ » using the normal GOTHRUDR

or using a SHUNTTHRU. Also, additionally to the STRIPS world there is a

way that a box may change the room it is in, using SHUNTTHRU. A goal of

<<INROOM ROBOT ROOM2>> & <<NEXTTO ROBOT B1>> is given in the

following world situation:

ROOM1

B1

B3 0

ROOM2

T DOOR1

ROBOT

120

Warren noted that the most obvious way to achieve

<<INROOM ROBOT ROOM2>> using a GOTHRUDR would not contribute to the

solution of the whole goal. Since WARPLAN relies on straightforward

backtracking to select continuation points after a failure, WARPLAN may

have to search through many possibilities before the correct SHUNT on B1

was chosen and the correct box "accidently" shunted into ROOM2 in an

attempt just to move the robot. Then this partial plan could be used to

go on to achieve both goals by executing a <<GOT02 B1>>.

Systems, such as WARPLAN, which reorder the chosen operators in

the light of interactions are really most suited to tasks in which there

is only one or few ways in which a goal can be achieved. If the choice

of operator was inappropriate for some goal, or becomes inappropriate

because of a change of position of the operator in a plan, no information

is available from the resulting failure to guide the choice of another

operator. This argument also applies to Sacerdoti's NOAH system (see

section 10).

A trace of INTERPLAN on the SHUNT problem is given below with

an annotation of the approaches being considered at each point.

: GOAL <<INROOM ROBOT ROOM2'> <<NEXTTO ROBOT B1>>;

ENTERING INTERPLAN WITH INITIAL SITUATION 1

** ACHIEVE << INROOM ROBOT ROOM2 >> IN 1 approach 1

** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 1

** APPLY << GOT02 DOOR1 >> TO 1 TO GIVE 2
** APPLY << GOTHRUDO DOOR1 ROOM1 ROOM2 > TO 2 TO GIVE 3
** ACHIEVE << NEXTTO ROBOT B1 >> IN 3
** ACHIEVE << INROOM B1 ROOM2 >> IN 3
** ACHIEVE << INROOM ROBOT ROOM1 » IN 3
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 3
** APPLY << GOT02 DOOR1 '> TO 3 TO GIVE 4
** APPLY << GOTHRUDO DOOR1 ROOM2 ROOM1 >> TO 4 TO GIVE 5
PROTECTION VIOLATION PROMOTE REORDER

121

** ACHIEVE << NEXTTO ROBOT B1 >> IN 1 approach 2
** APPLY << GOT02 B1 >> TO 1 TO GIVE 6
** ACHIEVE << INROOM ROBOT ROOM2 >> IN 6
** ACHIEVE << NEXTTO ROBOT DOOR1 >> IN 6

** APPLY << GOT02 DOOR1 > TO 6 TO GIVE 7
PROTECTION VIOLATION PROMOTE
MULTIPLE INSTANCES Trying a different way to achieve

READY <<INROOM ROBOT ROOM2>> IN 6 using a
:: GOON SHUNTTHRU. This allows a choice of box.

B3 happens to be chosen first.

** ACHIEVE << NEXTTO ROBOT B3 > IN 6
** APPLY << GOT02 B3 >> TO 6 TO GIVE 8
PROTECTION VIOLATION PROMOTE
** ACHIEVE << INROOM B1 ROOM2 >> IN 1 approach 3
** ACHIEVE << NEXTTO ROBOT B1 >> IN 1
** APPLY << GOT02 B1 >> TO 1 TO GIVE 9
** APPLY << SHUNTTHR B1 DOOR1 ROOM1 ROOM2 >> TO 9 TO GIVE 10

** ACHIEVE << NEXTTO ROBOT B1 "> IN 10
** APPLY << GOT02 B1 >> TO 10 TO GIVE 11

** CPU TIME = 6.164 SECS

NOW
<< GOT02 B1 »
<< SHUNTTHR B1 DOOR1 ROOM1 ROOM2 >>
<< GOT02 B1 >>

: APPROACH

-1002 << INROOM B1 ROOM2 >>
1 << INROOM ROBOT ROOM2 >>
2 << NEXTTO ROBOT B1 >>

--

Remember that preconditions for an action to achieve a goal are written
PRECOND PGOAL in the diagrams below. Look back at the trace to

find the preconditions used.

Approach 1:

Holding period of this goal is

INROOM ROBOT ROOM2 broken by the achievement of
INROOM ROBOT ROOM1

INROOM ROBOT ROOM1-rINROOM B1 ROOM2 --p- NEXTTO ROBOT B1--

122

The approaches suggested to remove the interaction are a REORDERING

to approach 2 and a PROMOTION to approach 3. The latter approach proves

successful, the choice of the SHUNTTHRU on B1 then being constrained.

It is chosen to achieve INROOM B1 ROOM2 on purpose and not as a

fortunate accident.

Approach 2:

NEXTTO ROBOT DOOR1- sINROOM ROBOT ROOM2 f

NEXTTO ROBOT B1

Approach 3:

INROOM ROBOT ROOM2

INROOM B1 ROOM2 NEXTTO ROBOT B1-')

Using "primary additions" only

To make this point clear, if we disallowed SHUNTTHRU rs an

operator relevant to achieving <<INROOM ROBOT =_ >>, using SHUNTTHRU

only to achieve <<INROOM box == >> and GOTHRUDR to achieve

<<INROOM ROBOT =_ >> (i.e., primary additions only are on the ACHIEVES

list given to INTERPLAN - see section 5.8(2)). the problem would still

be solved by INTERPLAN.

123

9.6 Goal Ordering vs. operator reordering --

WARPLAN has taken the extreme of considering the goals in a

fixed order and re-arranging the operators of suggested partial plans

for each goal to form the plan for the conjunct of goals. This has led

to the difficulty discussed above. However, INTERPLAN takes another

extreme position. It considers some ordering of the goals in the

conjunct and tries to form operator sequences to solve the individual

goals and combine these in THE ORDER GIVEN. Any interactions are

corrected for by discontinuing the former approach and suggesting a

reordering of the goals or some promotion of a subgoal to try to

remove the cause of interaction. INTERPLAN then tries to find

operator sequences for the individual goals to be combined in the new

order. Interactions may be localised and so not require a restart on

the top level goals. Since some of the operator sequences may be

virtually the same regardless of the position in the plan, this can lead

to a serious duplication of effort. For example, a long operator

sequence is needed to ensure a key is taken to the door in the Keys and

Boxes problem (see section 11.2.2). After the discovery of this sequence

an interaction occurs and planning with a different goal ordering

requires virtually the same long operator sequence to be found.

124

Operator recommendations

Early designs for INTERPLAN considered the notion of keeping an

association list of all relevant operators for each goal in an operators

precondition with the operator data structure (see appendix 1.2) which

is kept at the appropriate Levels of the goal control tree. When

a goal was first to be attempted, the relevant operators would be

found by the normal process by looking for all operators which could ADD

the goal. The association list entry for relevant operators for a goal

would have 3 components:

(a) previously successful operators

(b) untried operators

(c) previously failed operators.

On initialization only component b would have any entries. If the goal

was G1 and 2 operators were relevant, after initialization the

association pair would be:

(Gi , < nil , [% op1 , opt %] , nil >).

Whenever a choice of an operator is to be made for G1, it is then done

in the following way:

i) get relevant operators association value for the goal.

ii) if not yet initialized, do so as above.

iii) Set up choice points for the alternative operators available,

heuristically ordered so that relevant operators from the

previously successful list are chosen first, untried operators

next and previously failed operators last.

INTERPLAN normally performs step iii) by finding the operators which can

ADD the given goal, and it orders them according to the order they are

put in by the user.

125

Whenever backup occurs to a ticklist (whose heading represents

the precondition of some operator) then:

ON SUCCESS: if the successful operator is not on the previously

successful operators list of the operator whose precondition

is represented by the successful ticklist, remove it from

its present list and add it to the previously successful

operators list.

ON FAILURE: do likewise for the failed operator to the previously

failed operators list.

Now, whenever a re-arrangement of goals is made on an interaction, the

relevant operators recommendations can be passed from the failed

approach to the new one.

This scheme only accounts for the outcome of the last use of

an operator. Instead a count of the number of successful and failed

uses could be used to order operators within one list (+1 for

success, -1 for failure). A disadvantage of the operator recommendation

notion would be that much of the data structures generated during

problem solving would be retained after use while the recommendations

were kept.

126

10 NOAH - A COMPARISON WITH INTERPLAN

It is obvious that many interaction problems arise because the goals

are tackled in a linear way. Given a suitable ordering of the components

of a conjunct of goals many interactions can be avoided. The techniques

of this report allow interactions to be found, and corrected for, under the

assumption that we wish to tackle the goals linearily. This is because

efficient problem solvers can be written which tackle goals linearily.

Sacerdoti (1975) has described a non-linear approach to problem

solving embedded in NOAH (Nets of Action Hierarchies), a program written

in QLISP (,obrow o.nd. 9, hqQ\, I'll 4-). The system is intended only to

make assumptions about the ordering of individual actions when this is

necessary to the solution of the problem at hand.

Problem actions are described to the system as QLISP functions

which embed the ADD, DELETE and PRECOND entries of an OPSCHEMA. When

some goal is given, the system works by progressively refining a

"procedural net" for the problem. Refinement occurs by finding

actions to achieve the goals, then running the QLISP code for the chosen

action which in turn asks for the achievement of the actions preconditions,

and when this is done updates the world model to reflect the effects of the

action.

Generally there are two steps which are performed in turn until the

net is fully refined (the problem solved).

(a) Choice of an action to achieve an unsolved goal. This

choice may in turn introduce new precondition goals.

127

(b) "Criticism" of the structure of the net to look for interactions

between suggested actions etc.

Sacerdoti (1975) shows how the procedural net is

used within a particular problem solver (NOAH) to handle block stacking

problems. An example will be used to show the operation of the system.

It is a 4 block problem, the 3 block problem described in section 4.2 is

included in this. The problem is chosen as it shows more features of the

system than the 3 block problem would.

10.1 NOAH on the 4 block problem

C D

A

B

C

A B D

The following notation is used in the diagrams below:

Achieve

LD
A goal which is not satisfied in the situation
it is required in.

A goal which is satisfied in the situation it is
required in.

An action to achieve a goal.

A special "split" node for parallel branches.

A special "join" node for parallel branches.

+x, -x An action labelled -x deletes some precondition
x (labelled +x) for a parallel action.

An arc specifying an ordering constraint
between a pair of nodes.

128

Levels in the
Procedural Net
(Refinements)

1.

2.

Achieve (AND (ON A B) (ON B C) (ON C D))

The function for Achieve (AND ...) suggests parallel branches for
the components.

Achieve (ON B C)

Achieve (ON A B)

Achieve (ON C D)

The function for Achieve (ON x y) suggests a PUTON x y with
preconditions (CL x) and (CL y). N.B. If there was more than one
relevant operator, different procedural nets would have to be made
available for consideration at this point.

(CL C)

(CL D)

+z

PUTON C D

The System notices that in 2 cases a precondition (+x) is deleted by a
parallel operation (-x). The recognition is done by building a structure
called the "table of multiple effects" and allowing several critics to
look for interactions indicated in the table (see later). These
critics suggest appropriate linearizations when interactions are found.
The plan is thus partially linearized to put the goal which has
a deleted precondition before the negating action.

Redundant preconditions in parallel branches are eliminated.

3' (after criticism)

4.

PUTON B C

2 preconditions are again deleted by parallel operations. Further
linearization takes place as a result of criticism.

4' (after 1st stage of criticism)

(CL C) PUTON C ?objl

(CL D) UTON D ?obj2
S

(CL C)

(

The function for Achieve (CL x) suggests moving a block y which
is (ON y x). A PUTON y z for some z is used. This is different

from the block stacking problems run on INTERPLAN but the same
interactions occur.

CL D)

1IIPUTON C D

PUTON B C

129

PUTON A B

The system tries to make actions with unspecified arguments redundant
by trying to unify them with a parallel action using a suitable choice of
variable specification (i.e. here ?obj1="D"). The 2 merged operations
are ticked (,/) in the diagram
Final criticism removes redundant preconditions in parallel branches.

4" (after criticism)

(CL D) PUTON D Iobj D)
PUTON C D S 1PUTON B C

(CL C)

PUTON A B

130

10.2 The multiple effects table --------------------------

At each stage of plan expansion after new nodes have been added to

the procedural net, various "critics" are allowed to look at the net and

make appropriate changes if they see fit. One of these critics

(called Resolve Conflicts) looks for interactions between parallel branches.

It behaves thus:

1. A table of multiple effects is built by making an entry for each

expression (goal) that is asserted or denied by more than one node

in the current net.

E.g. At level 3 of the example block stacking problem given in the

previous section we had the following situation (nodes are

numbered for use in the explanation to follow).

Achieve (CL A

PUTON A B

PUTON B C

PUTON C D

The table of multiple effects would initially be:

CL B: asserted at node 2

deleted at node 3

Asserted at node 4

CL C: asserted at node 5
deleted at node 6

Asserted at node 7

CL D: asserted at node 8

deleted at node 9

131

2. Eliminate from the table those expresFions which are deleted at the node

they are a precondition for.

E.g. CL B at node 2 is a precondition for the action PUTON A B at node

3 and is deleted at node 3. No interaction is involved in such a

deletion. Drop any expression from the table which only has one

entry left after this elimination of preconditions. The table above

then becomes:

CL B: deleted at node 3

asserted at node 4

CL C: deleted at node 6
asserted at node 7

3. The Resolve Conflicts critic then uses the interaction information in

the table to partially linearize the procedural net being considered

as shown in the previous section.

132

Ticklists and the table of multiple effects

The table of multiple effects performs a similar function to the

ticklists of INTERPLAN (and indeed were based upon ticklists and the notion

of looking for interactions by the simple examination of a table of the

effects of different actions upon the goals required - Sacerdoti, 1975 p.29).

Such tabular formats provide a simple means of detecting

interactions between subgoals and allows the locality of the interaction to

be identified. The discovery of an interaction can thus be a constructive

thing in that suitable corrections can easily be made when definite

information as to what goals are interacting and how they interact is

available. This is quite different from the procedure in many existing

problem solvers which would simply backtrack to other choice points on

discovering an interaction, or worse still, fail to detect the interaction

at all.

133

10.3 Some limitations of the current version of NOAH

10.3.1 Choice of an operator if several are relevant to one goal

Actions are only put into the procedural net of a problem if they are

relevant to the achievement of a goal being considered. If there is more

than one relevant operator, -ome single action must be chosen from

those available. The other choices giving rise to different nets which are

kept as backup possibilities. If it turns out that the choice was

incompatible with the other parallel goals being considered, the net

currently being worked upon cannot lead to a solution and a failure

is reported to the problem solver. However, as in WARPLAN (see section 9),

no information as to the cause of the failure is given and blind

backtracking is used to select a new alternative net from the backup

possibilities available. Thus in those problems where the choice of the

obvious relevant operator will not lead to a solution, the procedural net

will not perform well. An example in which this would arise is

the SHUNT problem detailed earlier in the comparison with WARPLAN (see

section 9.5). The difficulty is explained there and the action of

INTERPLAN on such problems described.

134

10.3.2 Restrictions on the legal linearizations to correct for an interaction

If 2 goals are given, G1 and G2, and there are relevant actions Al

and A2 with preconditions G11 and G22 respectively, the net may be refined

thus:

level 1:

level 2:

I
Achieve (AND Gl G2)

Say there are interactions as indicated in the final diagram where

Al deletes G22, a precondition for a parallel action A2. Then the

current version of NOAH has the critic described in section 10.2 to resolve

the indicated conflict and it suggests the following linearization.

Al

Let us consider the holding period diagrams of the approach which

lead to interaction and the suggested linearization. Remember that in a

holding period diagram the time at which a goal is achieved is indicated

from left to right (see section 4.1).

The approach before linearization specifies any of the following

linear approaches (where Al achieves G1 and A2 schieves G2):

135

(a) G11--. G1 I (b) G11 -P, Gl--il

G22 --p- G2 --n

(c) GI 1- Gl---il

G22 --'G2

(e) G11--I'G1

G22 00 G2 --P

(d)

(f)

G22 --P G2

G1l0- G1 4

G22 No G2 ---I

G11 t G1---

G22 G2

The indicated interaction says that: if G22 is true and Al (to

achieve G1) is applied, G22 will be made false. So any approach which

requires that G22 be true while Al is applied (G1 achieved) is illegal.

This should reject approaches (d) and (e) only (i.e. those cases where

Al intersects the holding period of G22).

However, the linearization suggested by the resolve conflicts

critic in NOAH -pecifies the linear approaches (b), (c) and (f). However,

as indicated, approach (a) should also be allowed for consideration but is

excluded by the linearization suggested. Now, since approach (a) is the

simple linear sequence of trying to achieve G1 first and G2 second (the sort

of approach attempted first by most problem solvers), we must be wary of

excluding the possible use of this approach.

Accepting Sscerdoti's thesis that decisions about ordering choices

136

should be made only as is necessary to remove interactions, the

information available in the interaction

[Achieve Glib
Achieve G22

only specifies the ordering

constraint that Al should not be applied after G22 has been achieved and

before A2 is applied (G22 is a precondition of A2), This constraint

cannot be expressed within a single procedural net diagram by incorporating

ordering lines between goals and actions. Thus either a new type of

ordering constraint which excluded actions from appearing between some

pair of nodes must be allowed or alternatively, 2 or more separate

procedural nets should be suggested as appropriate linearizations for the

interaction described. In the case above 2 separate nets would suffice, the

one already suggested by the critics of NOAH

Al

specifying approaches (b),(c),(f)

and the alternative

Achieve G111 Al Achieve G22 A2

which specifies approach (a).

The addition of more backup possibilities as separate nets to be

considered on failure makes the lack of guidance as to a suitable choice

after failure (described in section 10.3.1) even more critical.

137

10.3.3 Double interactions

The problem solving routines in the version of NOAH described in

Sacerdoti (1975) are not capable of dealing with problems in which there are

"double interactions". The general case is given below:

Achieve G11

Achieve G22

Al

A2

A typical STRIPS-world problem which fits this case is:

Achieve (AND (NEXTTO B1 B2) (NEXTTO B3 B4))

when the robot is initially not NEXTTO any of B1, B2, B3 or B4.

An action (PUSH bx by) exists with definition
PRECONDS (NEXTTO ROBOT bx)
DELETE (NEXTTO ROBOT =_) (NEXTTO bx -_)
ADD (NEXTTO bx by) (NEXTTO ROBOT by)

This problem generates at some stage the procedural net:

+1 -2
A hi (NEXTTO ROBOT B1 PUSH B1 c eve B2

+Z
Achieve (NEXTTO ROBOT B3) - PUSH B3 B4

We can thus see that very straightforward problems fall into this category.

It is possible to make 2 simple linearizations which may resolve the

conflict.

Achieve(NEXTTO ROBOT B1 USH B1 B2

or

Achieve(NEXTTO ROBOT B3 USH B3 B4

}
t2

Achieve(NEXTTO ROBOT B3)J$

"Achieve NEXTTO ROBOT Bl)M,

PUSH B3 B4

(PUSH B1 B2

138

Once again (as in section 10.3.2) the generation of the 2 different nets for
consideration may be avoided if some "restriction" ordering was allowed

in the net to disallow an action from appearing between 2 nodes. Such a

method would be more in line with the procedural net philosophy of only

making linearizations as necessary.

N. B.

In the criticism contained in sections 10.3.2 and 10.3.3 it can be

seen that the present NOAH system is not considering those linear approaches

most frequently considered first by existing problem solvers.

Sections 10.3.1,10.3.2 and 10.3.3 outline cases under which several

nets may have to be generated, only one of which can be considered at any

one time. Choice mechanisms between these nets would have to be considered

and the use of failure information for this. Also duplication of effort on

several similar nets could arise in these cases.

139

10.3.4 Loop detection and correction

Loops generated in the procedural net are not

detected, e.g.

Achieve G1 A2 Al where Al is inserted to achieve G1.

--- - --LOoP- - -
As detailed in section 5.7.7 in the description of INTERPLAN, loop detection

can be as important as many forms of interaction in outlining a defect in

the approach on some problems. If corrected for it may enable a solution to

be found, as for example, in the "Swap the values of 2 Registers" and the

"Keys and Boxes" problems. Both these problems would be coped with by

other mechanisms in NOAH.

10.3.5 "Formal object" problems

For example, in block stacking if ?OBI or ?OB2 (see section

10.1 (4)) were set to any of the blocks for which (CL x) was later needed

in a plan, problems would occur. There is really an implicit exclusion

of any instance causing an interaction from the values any "formal

object" may take. Some sort of variable restriction scheme

(possibly as outlined in appendix IV) would be necessary to ENSURE that

this was done in longer and more difficult problems.

140

10.4 Beneficial side effects -----------------------

A precondition for some action may be achieved as a side effect of

a parallel action as shown below where Al achieves some main goal Gl but

also achieves G22 (a precondition for A2) as well.

Achieve Gil

Achieve G22

Then we could suggest a linearization to make the achievement of G22

unnecessary as follows:

Achieve Gll Al G22 A2

Achieved Goal

which is equivalent to

I
Achieve Gil Al i

10 A2

Though, it should be remembered that the other linearizations are not

illegal (no interaction prevents them being used) and for some problems

explicit achievement of G22 may be necessary.

The table of multiple effects provides the information which

would enable a critic to be written to look for beneficial side effects.

141

11 KEYS AND BOXES PROBLEM SIMULATION

As mentioned earlier in this report, an aim of the work was to

discover the reasons why existing problem solvers could not cope with

a particular problem, the Keys and Boxes. The work on interacting

goals stemmed directly from this investigation. We will now return to

this problem to illustrate how it could be represented to INTERPLAN

and to simulate the action of the program on the problem. To actually

run the problem on the current implementation of INTERPLAN would

require, in particular, the matcher to be extended to cope with sets.

and the full loop editor to be used (section 5.7.7). The provision of

set matching would be tedious and would not aid our understanding of the

processes involved. However, to make clear what would actually be

required of the matcher, all set matches have been noted in the

simulation and are listed in section 11.2.1.

A Si , P\;;e &, v2Sion ,-F 1.2 V\ys o.4' QoxQS eCae'`1

W l i C ', C, o e s 'N o C" Oy v " e e US 2 0 -(- a, s-e mo cLl r s

A-Qscibe a,rre+\ -A k,,3 wo S S u cess u lay c)

0 (\ INTE RPLAN .

142

11.1 Representation of the Keys and Boxes problem to INTERPLAN

This representation closely follows the English statement of the

problem given in section 3.1.

11.1.1 Predicates

There are 3 predicates which can be altered by the robot's

actions. With the parameter types they take they are:

AT(<set of objects>,<place>) t' ode ece w,11 ol, owe

ROBOTAT(<place>)

HELD(<set of objects>).

There are 3 global predicates:

RED(<set of objects>)

KEY(<set of objects>)

INROOM(<place>).

"NOTHING" is equivalent to J the empty set of objects. ...xi

represents a particular set of objects, possibly empty, whose

individuals are not explicitly known. The value of x distinguishes

different such sets, it may be omitted if no distinction is required.

The statement in the Keys and Boxes problem description is section 3.1
which says that in the initial situation there is A And possibly other
objects at BOX1 can be represented as << AT A, ...1J 80X1 >.
A is a particular object and ...1 represents the other elements which
may be at Bart initially. The other elements, if they exist are treated
as unique. We assume a limited set matching facility is available to
the system as specified in the following sections.

"SUBSET x>> can mean the set x itself or else represents a non-empty
set of objects from x.

"UNION x y>> mesas the set union of note x and y.

<<SETMINUS x y>> mesas the set y with the elements of not x removed.

N. B. "SUBSET x>> "UNION x y>> and <<SETKINUS x y>> are patterns which
are to be matched against others and do not behave as set functions.

143

11.1.2 Operator schemas

There are 3 actions, LETGO, PICKUP and GOTO(<place>). LETGO and

PICKUP are straightforward and each convert to an operator schema as

follows:

OPSCHEMA LETGO
ADD <<HELD NOTHING>>
DELETE <<HELD == >> "=_" matches any item (HBASE).
PRECONDS
VARS

ENDSCHEMA

OPSCHEMA PICKUP
ADD <<HELD <<SUBSET *$*X>> >>
DELETE <<HELD =_ >>

PRECONDS <<AT <<SUBSET *$*X>> *$*Y» <<ROBOTAT *$*Y>>
VARS X Y

ENDSCHEMA

N.B. it is only necessary to have a SUBSET of the set z at the place to
be able to hold a SUBSET of x after a PICKUP. This is the weakest
precondition which will specify the PICKUP effects and should be used
to ensure the PICKUP is useful in as may cases as possible.

The GOTO(<place>) action is a little more involved since it has

several conditions in its definition. It therefore expands out to

several operator schemas (though ways of withdrawing appropriate

operator schemas as needed from a single representation of GOTO(<place>)

can be provided - see section 5.8(6)). Following our English

statement of the problem we can write:

0010(y) is defined as follows
IF y"OUTSIDE"
TON precondition is EEY(t) & AT(UNION(SUBSET(t), ...), DOOR)

ELSE precondition is INROON(y) CLOSE;
deletes ROBOTAT(s) and adds ROBOTAT(y).
IF HELD(x); a/s"It TRING"
THEN deletes AT(w,z) and deletes AT(v,y)

adds AT(UNION(x,v),y) and adds AT(SETMINUS(x,w),z)
CLOSE;

144

Since there are 2 conditionals in this definition, we obtain 4 different

operator schemas all with the same name, GOTO(y). To aid the explanation

to follow we shall, however, rename them - though this is not necessary

for the operation of the program. TAKE(y) will describe the actions

in which we do a GOTO(y) with something HELD.

OPSCHEMA <<GOTO *$*Y)>
ADD <<ROBOTAT *$*Y,>
DELETE <<ROBOTAT == >
PRECONDS G <<INROOM *$*Y>> <<HELD NOTHING>>
VARS Y

ENDSCHEMA

OPSCHEMA <<GOTO OUTSIDE>>
ADD <<ROBOTAT OUTSIDE ,>>

DELETE <<ROBOTAT == >>
PRECONDS G <<KEY *$*T>> <<AT <<UNION <<SUBSET *$*T>> ... >>

<<HELD NOTHING>>
VARS T

ENDSCHEMA

OPSCHEMA <<TAKE *$*Y>>
ADD <<ROBOTAT *$*Y'> <<AT <<UNION *$*X *$*V>> *$*Y >

<<AT «5 E-mS *$*X *$*w > *$*Z>>
DELETE <<ROBOTAT *$*Z > <<AT *$*W *$*7>> <<AT *$*V *$*Y>>
PRECONDS G <<INROOM *$*Y>> <<AT *$*V *$*Y>> <<HELD *$*X>>
VARS V W X Y Z

ENDSCHEMA

DOOR>>

OPSCHEMA <<TAKE OUTSIDE >

ADD <<ROBOTAT OUTSIDE>> <<AT <<UNION <<SUBSET *$*X>> *$*V>> OUTSIDE>>
<<AT «SETf11N11S *$*X *$*W» *$*Z>>

DELETE <<ROBOTAT *$*Z>> <<AT *$*W *$*Z > <<AT *$*V OUTSIDE >>
PRECONDS G <<KEY *$*T > <<AT *$*V OUTSIDE,zz

<<AT <<UNION <<SUBSET *$*T)> L j > DOOR>>
<<HELD *$*X>>

VARS T V W X Z

ENDSCHEMA

The ADD/DELETE lists fully specify the effects of the actions, so

OPSCHFNs are not needed.

145

The changeable predicates (AT, ROBOTAT and HELD) may have a

definite order of priority put upon them. This does not always indicate

which goals are easier to solve, but gives information about the

interactions possible in the domain. If the ROBOT(is)AT q place, we

cannot go on to achieve an already untrue AT statement without first

deleting the ROBOTAT fact. So, AT must have greater priority than

ROBOTAT. Also, if we achieve some HELD goal and require it to be kept

true we may not be able to solve some AT goal, but it is usually

possible in the other order. Using such domain specific information we

can order the predicates by priority thus:

1. AT 2. HELD 3. ROBOTAT.

The ordering can be seen in the operator schemas given earlier.

It can be used to disallow reversals of goals of different priorities

by setting SCHREVS of each OPSCHEMA appropriately (see appendix I.1).

Theoretically, predicates of the same priority can be solved in any

order. So, the system accepts whatever order it is given, but is

prepared to alter this if an approach fails.

In fact the preconditions for the TAKE operator schemata are

insufficient if <<AT <<SETmiNOS x w>> z> is allowed as an achieve

request to them. However, the modifiation would be to add two

preconditions to them (<<AT *$*W *$*Z>> and <<ROBOTAT *$*Z»). We will

ignore this request knowing that it will not arise in the Keys and

Boxes problem

146

11.1.3 Initial situation and Pules (IFNEEDS)

We assert in the initial sitaution (CUCTXT):

<<AT FA, ..A 1 BOX1>>

<<AT B ,2 BOX2 >

<<AT C, ...33 DOOR>>

<<AT NOTHING TABLE">
<<INROOM BOX1»
<<INROOM BOX2>>
<<INROOM DOOR>>

<<INROOM TABLE> >

N.B. There are no assertions for <<AT x OUTSIDE >> or <<ROBOTAT x>>.

The following rules are available to compute true instances of an
wou\d be

achieve request (these n stored as IFNEEDED methods - McDermott and

Sussman, 1972). IFr13E60ED mecdc C&iVo be oJ;V A 7o LAe doAo,
base sre used` n Eke Currev'IeMen6, ton o f rJTrR/aJ.
true ==> <<AT ... y>>

i.e., there is a possibly empty set of objects at any place
(<<AT u BOX1» & <<AT v BOX2'>) in context NOW

==> <<KEY <<EI THEROF u v» >>.
<<AT u DOOR-> in context NOW =-> <<RED u>>.

«? X '>'> ==>

11.1.4 Goal

« P <,< '3 i h >> >>, 1 '- set o-F o hec-s I \&s SoAQ

ecoPecEy) (Z- tien a SO S k- of :1 Q set ':'AFo

The goal, following the English statement in section 3.1, can be

expressed as:

<<RED x>> & <<AT <<UNION <<SUBSET x» ... >> OUTS I DE>>.

147

11.1.5 ACHIEVES list

(% <<HELD NOTHING>>, L% LETGO %],
<<HELD <<SUBSET =_ >> >>, L% PICKUP %3,
<<ROBOTAT <:NON OUTSIDE : > >>, M GOTO(y) %3,
<<ROBOTAT OUTSIDE >>, [% GOTO(OUTSIDE) %],
<<AT <<UNION >> <:NON OUTSIDE:> >,,, t% TAKE(y) %],
<<AT <<UNION >> OUTSIDE,,>, [% TAKE(OUTSIDE) %] %] -> ACHIEVES;

N.B. (a) <:NON OUTSIDE:> is an HBASE actor which will not match OUTSIDE.

<:NON OUTSIDE:> instances are put first so that attempts to

achieve AT(x,y) where y="==" (i.e., put some objects anywhere)

only attempt to put x AT places INROOM, not OUTSIDE.

(b) TAKE(y) and TAKE(OUTSIDE) also achieve ROBOTAT goals. Also in

the ACHIEVES list above <<AT <<SE1 iJ US =_ == >> == >>

achievements are ignored. So, only the important achieve

requests with their primary method of achievement are on

ACHIEVES (i.e., the primary additions of STRIPS - Fikes, Hart

and Nilsson, 1972b).

148

11.2 The Simulation

11.2.1 Set matching for the Keys and Boxes

A matcher, cay MATCH1, is required which behaves thus:

MATCH1 = MATCH (normal HBASE matcher) exeep& n (:,e cose `0Fk aaoMejEs am- SeEs.

The set catcher gust have the following minimal properties to solve the
Keys and Be"* problem. Matches are one only.

0 NM NO or f i Matches only 1R)THINO 011 ii) j...t matches any set. iii) a set matches another if each element of the set matches each element
of the other in some order.

iv) SUBSET xv> matches y if x Matches y. I.e. <<SUBSET x» can be
equal to the not z itself.

v) ...x only Matches ...x. for any number x. I.e. Pet remainders are
considered as unique.

The letters in brackets refer to points in the figures to follow in

section 11.2.2 which explain the action of INTERPLAN on the

Keys and Boxes problem.

(a) MATCH1(<<UNION <<SUBSET JC,...3)» .. I », £...) _> ^eF ned,,

(b) MATCH1(...1 , ...j) => true.

(c) MATCH1(<<UNION <<SUBSET <<EITHEROF IA,.. . 1 JB,.. .2j» >> ...3 >>,

C,...3) => vnd enec.
or
MATCH1(<<UNION <<SUBSET IA,.. . 1j >>

<<UNION <<SUBSET B,...23>>
C,...3) => vnde ned

(d) MATCH1(<<UNION <<SUBSET B, ... 21» ... », C, 3) => vnde ,neut.

(e) MATCH1(...}, C, ... 3j) _> true.

(f) MATCH1(<<SUBSET B,...2)», Jj) => ndekined.

(g) MATCH1(<<SUBSET Z B, ... 2» , B, ... 23) => true.

149

(g#) MATCH1(<<SUBSET A, ... 1j », fA, ...1),) => true.

(g") MATCH1(<<SUBSET JC,... 31», C,...31) => true.

(h) MATCH1(<<SUBSET C,...31»,
. 11» <<UNION <<SUBSET fA,..

<<UNION <<SUBSET B, ...21» JC, ...31» >>) _> Urde ned

MATCH1(<<SUBSET C,...3», t) => Unoektned.

MATCH1(<<SUBSET C,. .. 31 >>,
{C

<<INTERSECT <<SUBSET A, ...1 » zA, ... 1 >>) => Vndef1ned.

MATCH1(<<SUBSET C, ... 3)» ,

<<INTERSECT <<SUBSET JB,...21» B,...23>>) => uAJ e-dined,

(i) MATCH1(J,) => true.

11.2.2 Simulation

We present the simulation of the action of INTERPLAN on the

Keys and Boxes problem by giving a series of 4 "snapshots" of the

state of the goal control tree of the system at interesting points on

the way to a solution.

STATE 1: Search has proceeded in a straightforward way to this point.

To achieve the goal, ? red thing must be outside. This can be

achieved using a TAKE(OUTSIDE) operator. To take anything

outside, a key must be at the door. We can be sure of getting

a key outside if we get a subset of the things now at Boxl to

the door, and a subset of the things now at Box2 to the door.

We plan to take a subset of the things at Box2 to the door

first. State 1 is the stage at which operators have been

chosen to get a subset of the things at Box2 to the door.

Successful backup is about to take place.

150

STATE 2: The successful backup from state 1 is shown giving entries

up to index number 35. We then have a subset of the objects

from Box2 At the door. Now a subset of the objects from Boxl

must be taken to the door. State 2 Phows the goal control tree

after this sub-plan is found and after successful backup has

taken place. By the time entry 61 is made we have planned to

get a key at the door.

STATE 3: Now we have a key at the door, we could achieve our top level goal

goal of getting a red thing outside by holding a red thing and

executing a TAKE(OUTSIDE). However, in this state we have

tried to hold a red thing and have run into a LOOP. Information

is available within the goal control tree upon which to suggest

a new approach (see section 11.2.3).

STATE 4: The new suggested approach is tried and proves successful.

The stage shown is just after planning to remove a red thing

from the door to the table for "safe-keeping". When this

approach has been fully expanded the optimal plan is

generated:

LETGO, GOTO(DOOR), PICKUP, TAKE(TABLE),

LETGO, GOTO(BOX2), PICKUP, TAKE(DOOR),
LETGO, GOTO(BOX1), PICKUP, TAKE(DOOR),
LETGO, GOTO(TABLE), PICKUP, TAKE(OUTSIDE).

StMULA'fIo.1 STAGE 1

GOAL

tc:INISN

151

GLOBAL

RED x AT (UNION (SUR,SET X) J.-I) OUTSIDE

Now '.33 4x (0.)

TAKE(OUrS\DE) oQecoloc in by
M0.t-0ti1-C o g4st ANtcvt:S \1s4 &r
(per (UNION == _=) OUTSIDE)

GLoP,AL
KEyE AT..ourstDE AT(UNIOrt(SU&S ETE)...)DooR HELD(SugSETC,...3)

NO\W 3 X C°)

E-- (E11HERlJF CA, 11(B, .21)

No-CE l (s-q- sect xon t\ 2 3) www`. TAK DOR oQeracr c\V\oseA y +ha;noj

V(UNiON(SUWTJA, l(UNION(SusET B ..2 ...) DaaR ,
q9o.;nsE AtCktEYEs \;st enErc
(AT (urJtoa =_ __) <1 MoA DOTStDQ

Nb(E 2. (See sec;o. 11..2.3)

RT £. OuTS1DE
G

IO1rtR6Dnl DooR AT (u(41o14 (SUBSETg,...2.V....)r , HEID(So SE({A,...1

NOw
6, ', 3X ("')

'CA, t DaoR oNr for c Hoses by mat(a:rn
o.oJa?ns I'1ku V S I;s - 'e 4 r,
(Pi (uatonl =- =-):No,J ou cStDE.>)

AT .. ou csloE
G1.0eAt,

10600 DaaR AT ...3 ; a F, M ELD (SUM r 19, ...2D

N oW t° t1

(e} X W

/PICKUP Oj razor Chases
by nEcln; noJ aoJa7 nsE'

Pc IEyES t;sEe.Ec7 (H.Ezt(SucSE1 -))

..OU'(SIDE AT f .. DaaR AT (StAsEt $,...2 v, Ra cTtT,

NOW
13 11} / t5 / (9) 16X

E:5= ZOA2,
(ro-i'o (DX2) opQc br
Ct Q \ b matt9 a;nsr

AcwttNES 1-,SE ent-ry (pogo-CRT =_)

AT 1.3 oU-tslpE ATc ... DaaR PiT(SugSE-f g,...2 oxZ
G-Lo13R l

INRmm .Boxz uuo rJcsTHIr1Cr

NOW
1'7 20 /

J
21X

(,_..E1 ° oPero.Eor chosen b
' rnaEcl+ n9

c o ; nt E loll ;E
' 1Et.Dr-1-);.st enkry (I
No QRCCOND1'1 +or' S

NOW %NcKu? occuRS

G0AL
FINISH

Acr(UNOON (SUme-rk) ..) ou"rSIDE

2 x
A

1AV,E(001SIt, E)

HT(Ur11ON (SUBSET E),.,,)DOOR

5 x

CF A . 8,..2

61 / uEy is 'I LA-r bMP,

1-we (osoR)

N-eLD(Su%SEi f c,.,3j)

DE
LCSAt

GI RWA DaoR A (UNlON(SUBSEr3,...2) .,, DaDR RECD (SuBSETJ

7
J 8

X
37/

1/

3S / 38 x
59 6 0 S7

'FAKE (DO-oR

K.
cE (ZMP,)

)E
GUAAL

It46om DON, AT ... DoaR \A r= LD (SugsFr (3,.,,2

10 ll / Il

/

\
\ 33/ 31+/ 31 /

ODE RTt...jDaR RTCSUgSETB,...2)y RO$oTPT L)

I L}- / I S / O 6 x

91`

°
3 I,,/

P\cy uP

AT JOcrts\DE aT(ualoa(wsET g,.,,j),,,)t ('f (so%sE-c ,.

NOL,, L , dP,
3`t t}.0 / / 4-1 /

1/ l
TAKE
Now L.Ffco

SA

SS / /
LErfso Csaro(6gc Y

Now, Leir-o,
ode I- c VA'L

y J - E 60X2,

v
4-9/ Tov

I LFr(sa

iDE AT,,,flQnR A"C(SUSt:Tg,..,2.)gox2
GUgAa

NRabm i Rrx2 4&E NOII! IP

\ S /

V

\ Q 261/ 21 x
2 y / 25 V 26v 22, /

(T .., OUisli E T (ulorl (sOgsETt;,..2) ,,,)DmR

No PREcbAOrfloNS

SIMULATION STAGE S:

GOAL

+,:I N is"
GLO6AL

R£D x AT (oNoN(SuSEr 4 ...)OVTSIDE

NOW ' 2 (
1 <E(oo1 IDE)

153

GLOBAL

KEY t ATJ... outsot AT(Uror So SET E ... DcoR uELD (suesE't c,..3)

NOW
3Y/ 4-V

Bo
3 6' / rK EY is l 6t

E-(L',11- C A, ...I B, ..Z)
PICKUP

AT ourslo AT(uroN(Su STE) ..)DAR AT(SuQSETc,..31)y Ro$OTAT.
9oF

can
65

1/
67v r\ / \ f get (w.84L1

xE (s')
o

(set sed ar 11 2.3)

AT ouTs1DE Rr(UNorl(so sETE)..j)DaoR RT y 1- (sugsET c,...3

QE gau
gQE- gym.. %Q(I

J ,/ J J

L,_TABLE

ACHEy REc oST C>4JSES

o C)

The LOOP detected editor now acts. It suggests a new approach at the
level where we are trying to find a situation in which the
preconditions of TAKE(OUTSIDE) are satisfied. See the notes on how
the full loop editor works (section 5.7.7). Reversal of goals at the
upper loop level is not possible since PRIORITY(AT) > PRIORITY(HELD).

S1MV tAT1oN S-«FE) e

GOAL

GLo& L
(ZED x

GLCCPPL

KEY t

NOW

I

NOW
-72

1,/

`13

x

ATUr' oN (SU%sa1 ...1) Otj1c E

AT .3ws\DE

TAKE(O Ut E)

AT(U r. 1
o1(SUP3ET e)f...)) bmk

NO1

TAKE ()) y # DAR (see pecE en 11.2.3)

N oV/

AT
yet bg

'74- /

v) _'C' LE

15x

P\CKUP

Now

AT j TggLE

-1 16v

RogoTAT L,

*7sx

NELD (SugSET iC...3)

AT(suw-re,..3) y

L, =DOOR

NOW

A-ro(Dmp)

(AT TAgLEI A-T (SugS(-TC/...3)b60RI1 G! Raarr\ o6bRI NELD Nb1Thv cr

`I qV/ go 8l 82 x

BACKUP now takes place. We have succeeded
in isolating some red things at the table.
The process of filling in the ticklists
then proceeds without further interaction
to produce the successful plan.

BACK UP
1{

r A% QCe o)S o Eamp f
C-C E1,S Cc:cQ Qoin,

AT(SOW icy#A y

1
LETGt

No QREC-P4b 1T10' S

154

155

11.2.3 Notes on the simulation

1. <<KEY t>> _ <<KEY <<EITHEROF A, ...1 >>

t is expected to be the set of all possible objects which are keys.

2. The question answerer and the operator selector perform appropriate

matching and transformation of set descriptions to obtain a match. A

special facility must be provided additionally to deal with EITHEROF

goals or facts.

Using: RELATION ON x & RELATION ON y =_> RELATION ON (EITHEROF x y)

the question answerer should transform

<<AT <<UNION <<SUBSET <<EITHEROF i A, ... 1 B, ... 21>> >> ... >> DOOR>>

to 2 questions both of which must be true:-

<<AT <<UNION <<SUBSET A, ... 11 » . , I>> DOOR'>

<<AT <<UNION <<SUBSET iB,...21>> .. 3 >> DOOR>>.

I.e., If both of above are true, the relation on EITHEROF is also

true. But, note that the above is

<<AT <<UNION <<SUBSET iA,... 1!»

<<UNION <<SUBSET B, ...21,» .. , » >> DOOR>>

AT ((SUBSET IA,.. . l) U (SUBSET B, ...21) U L. .J) DOOR.

Also if a relation on an EITHEROF is required to be ACHIEVED, we can

try to achieve the relation on both parts, as this is the only way of

being sure that the EITHEROF is satisfied if testing of a state of

the robots world is not allowed. So, an achieve request should also

be transformed as above.

156

3. <<AT <<SUBSET JC,...31 » y>> can only match

<<AT <<UNION == =-_ >> == >> in the ACHIEVES list (see section 11.1.5).

Since we are trying to ACHIEVE the pattern, we require:

<<AT <<UNION <<SUBSET C,.. .33 >>j >> y>>. Only other instance of

<<AT <<UNION <<SUBSET C,.. . 3\» <<SUBSET C, ... 34>> >> y>> would

merely cause a LOOP. This is a general heuristic principle which

could be incorporated into the set match routines.

157

11.3 The approaches used in the Keys and Boxes problem

We can describe the approaches used and tried during the

simulation of the Keys and Boxes problem using the "holding period"

diagram. I will abbreviate

<<UNION <<SUBSET C.... 31» f ...I > as "RED" and

<<UNION <<SUBSET A ,11» <<UNION <<SUBSET B, ...2» ... » >> as

"KEY". The approach (the initial approach) being considered when the

important LOOP detection occurs is shown below.

Remember that preconditions of an action to achieve a goal are written

PRECOND 0 GOAL in the diagrams below.

AT KEY DOOR

AT RED OUTSIDE-11-

HELD RED --- AT RED y lo HELD RED

-- - ---LOOP------

As indicated in the description of the full loop editor (section 5.7.7),

we may try to reorder the concurrent goals at the upper loop level

(AT KEY DOOR and HELD RED) to avoid the loop. This would give an

approach as shown below.

AT KEY DOOR

AT RED OUTSIDE

HELD RED

However, if knowledge of the predicate priorities has been incorporated

into the operator schemas (as mentioned in section 11.1.2), this ordering

158

would not be allowed as priority(AT) > priority(HELD).

The alternative of suggesting some "setup" goal to aid the

solution of HELD RED while avoiding the loop is also tried. The pattern

we looped upon (HELD RED) contains no variables and thus, the two loop

occurrences of the pattern are IDENTICAL. Using some instance of

the loop pattern as a "Setup" goal is thus equivalent to the approach

with goals at the upper loop level reordered (as shown in the

previous diagram). This is fully explained in section 5.7.7. However,

the intermediate subgoal between the loop patterns in the approach

(AT RED y) could be used as a setup goal if it had no true instance in

the initial situation (the point to which it is to be promoted). Since

(AT RED DOOR) is true initially, we must restrict y to not be the DOOR

to allow its promotion. The approach suggested by this promotion is the

one which allows us to go on to solve the problem. It is shown below.

AT KEY DOOR

AT RED OUTSIDE

AT RED y HELD RED
y/=DOOR

Similarity to the swap the values of 2 registers problem
--

It is interesting to note the close similarity between the

approaches needed to solve the swap the values of 2 registers problem

(see section 8.2) and those needed to solve the Keys and Boxes

problem.

159

12 CONCLUSIONS

12.1 Interaction problems

We have de-cribed a class of problems in which the solution of

individual goals in sequence will not lead to a solution of a conjunct

of goals. The Keys and Boxes problem falls into this class, as do other

well known problems, such as swapping the values of two computer

registers. Such problems have been termed interaction problems. A very

simple block stacking problem was used to point out the interaction

difficulties encountered by linear problem solvers and to describe our

approach to overcome these difficulties.

Several problems which previously have been dealt with using

special domain-dependent facts can be tackled in a natural fashion

without this information if dealt with as interaction problems. We have

shown our system, INTERPLAN, coping in a general way with the problem of

swapping the values of two computer registers and with other problems

which have been considered anomalous by other problem solvers. These

have included the 2-room problem of Siklossy and Dreussi (1973), see

section 8.1, and the Shunt problem of Warren (1974), see section 9.5.

160

12.2 Extending the scope of linear problem solvers

Linear problem solvers which assume that plans to achieve

individual goals can be concatenated to solve a conjunct of goals have

been studied extensively. For example, in STRIPS (Fikes and Nilsson,

1971), LAWALY (Siklossy and Dreussi, 1973) and HACKER (Sussman, 1973).

Such systems often gain their efficiency by being able to restrict the

operators which need be considered as relevant because goals which are

true in the initial or intermediate situations can be used to restrict

the instantiations of the relevant operators.

A process has been described which allows the use of linear

problem solving techniques on the class of interaction problems. The

process provides a monitoring system which looks out for interactions

in the plan being built up in a linear fashion, and provides the ability

to make simple corrections if interactions occur to allow linear problem

solving to resume. A problem solver which incorporates this process,

INTERPLAN, has been programmed and tec,ted.

The provision of an ability to deal with interaction problems by

a problem solver has extended the scope of linear means-end

analysis driven systems to an inportant class of problems. This ability

provides the mechanism which could be used to solve the Keys and Boxes

problem (Michie, 1974). We have given a simulation of the action of

INTERPLAN on this problem.

161

12.3 Use of goal structure

The monitoring system which checks for interactions does not

consider the individual sequences of actions which comprise the plan,

but rather considers the effects these plan sequences have on the

goals being achieved.

Initially some order of the top level goals is chosen as an

"approach" to the problem. If the conjunct of top level goals can be

achieved by the concatenation of operator sequences for the individual

goals in the order specified in the approach, the problem is solved

normally by the system. However, the monitoring system keeps a

check that the approach is being strictly followed. If the chosen

operator sequence for some individual goal deletes some previously

achieved goal a violation of the approach is reported by the

monitor. Corrections are made to the approach which will probably

remove the difficulty (for example, by reordering the goals in the

approach or the insertion of some necessary intermediate step). An

attempt is then made to solve the individual goals by plan sequences in

the order specified in the new approach and to concatenate these in that

order. Many other legal approaches to the problem are not tried since

they are not indicated as useful.

This process can be seen as "debugging" an initial approach

suggested to achieve some conjunct of goals to an approach which does in

fact allow the achievement of the conjunct. The method used here on

declarative data representations (operators represented basically as

ADD, DELETE and PRECONDITION lists) has much in common with that used in

HACKER (Sussman, 1973) on more procedural representations.

162

The aim of the INTERPLAN system can be interpreted as finding

a successful approach which fully specifies the order in which goals

can be achieved by some operator Sequence and kept true (without

interaction) whilst the other goals are achieved. Such a successful

approach provides much information over which learning schemes

can be devised.

163

12.4 Use of Ticklists

The goal control tree of INTERPLAN is of the "backup"

type described in the introductory section on robot problem solving

(see section 2.5.4). This structure allows the localization of the

information about which goals are effected by the operator sequences

which are used to achieve some individual goal. This localization led

to the use of a straightforward tabular form for keeping track of the

interactions between plan sequences to achieve individual goals. This

tabular structure is called a "ticklist" since goals which are asserted

by some plan sequence are ticked in the table and goals which are

deleted are crossed.

It has been found possible to define a set of classifiers which

look for certain patterns of ticks and crosses in the ticklist currently

being considered and a set of editors each of which is paired with a

classifier and which perform the appropriate actions on the tree of

ticklists (which is the goal control tree of INTERPLAN). An iterative

process of classifying and editing the tree of ticklists can therefore

be used to solve a problem.

The tabular format of ticklists and the pattern of ticks and

crosses within a ticklist provides a simple means of detecting interactions

between subgoals and allows the locality of an interaction to be identified.

Compare this with the analysis of the teleological trace of the problem

solver's actions necessary to find the cause of an interaction in HACKER

(Sussman, 1973). The discovery of an interaction can be constructive in

164

that suitable corrections to the approach being tried by the problem solver

can easily be made when definite information is available as to what

goals are interacting and how that interact. This is quite different

from the procedure in many existing problem solvers which would simply

backtrack to other choice points on discovering an interaction, or

worse still, fail to detect the interaction at all.

165

12.5 Comparisons with other systems ------------------------------

During the course of this project two other research workers

designed problem solvers which are capable of dealing with interaction

problems. The methods employed by these problem solvers, WARPLAN

(W^rren, 1974) and NOAH (Sacerdoti, 1975), have been compared with

INTERPLAN. NOAH is particularily interesting since it is probably

the first robot problem solver to use a non-linear approach to

solving the components of a conjunct of goals. NOAH uses a table in

which the effects of plan sequences on the GOALS being achieved are

recorded and this table is used to decide on the action to be taken by

the problem solver. This tabular form was based upon a description of

ticklists given in an earlier paper (Tate, 1974).

Time comparisons of several problem solvers against INTERPLAN,

particularily on problems in the STRIPS robot world and variants of this,

show that INTERPLAN performs better even though it can cope with a wider

class of problems than most.

INTERPLAN has been written in such a way as to be easily

modifiable to allow its use in further problem solving research. In

this context it has been used in a study on the usefulness of pre-

processing routines on STRIPS-world problems (Davis, 1975).

166

12.6 Future considerations

12.6.1 A more flexible search strategy

The work presented in this report has concentrated upon the

development of a problem solver which can use a means-end analysis

(or problem reduction) approach to solving a problem. It was argued in

section 2.4 that means-end analysis was useful, and in some problems

necessary, when a large number of operators were APPLICABLE to a current

situation. However, in some problems there may be a large number of

RELEVANT operators, but only a few which are APPLICABLE. Normal

forward search procedures would then be most useful. Such an alternative

strategy is not open to INTERPLAN pnd other means-end analysis driven

systems. What is required is a problem solver which can exploit the most

restrictive kind of search technique at EACH choice point during the

search for a problem solution.

Kowalski (1974) describes a means of representing a problem to a

theorem prover called "connection graphs". In theory, this representation

provides information upon which a decision could be based as to what is

the most restrictive operation which can be performed to aid the solution

of a problem at each choice point. Investigations would be needed to

find techniques to enable the information contained within such a

representation of the problem to be used to guide a problem solver's

search without the need to fully analyse the potentially
very large

structure.

167

12.6.2 Consideration of several goals simultaneously for QA purposes ---

Consider a question such as (AT ?X ?Y) & (AT ROBOT ?Y). If the

two parts were asked separately in the order given when the data base

contained

(AT BALL A)
(AT BLOCK B)

(AT ROBOT B)

we could instantiate such that (AT ?X .Y) matched (AT BALL A) setting

Y=A. Then the question (AT ROBOT A) would be asked and would not be

true. It would thus require achievement. If a different instance had

been chosen for Y we could have avoided making such an achievement. We

would like to obtain matching instances for the WHOLE goal first, and

only as a second best, matches for part of the goal. We would need to

have the other goals available when asking some question and extend the

Question Answerer to take these other goals into consideration when

ordering the possibility list of true instances of some individual question.

A better method may be to still ask the questions singly, but allow the

possibility lists of answers (e.g., above the QA system returns (AT BALL A),

(AT BLOCK B), etc. in reply to the question (AT ?X ?Y)) to RESTRICT the

values of the variables X and Y as appropriate. Further questions would

then contain enough information to enable the QA system to order their

possibility lists.

12.6.3 An improved problem solving philosophy

Many interaction problems arise because of the linear way in

which most current problem solvers tackle individual goals of a conjunct

168

of goals. The work of Sacerdoti (1975) makes the point that

linearization of components of a plan should only be made when

interactions actually dictate that they must be made. Sacerdoti

demonstrated the usefulness of such an approach on block stacking

problems. The question answering strategy outlined in section 12.6.2

is a special case of such a relaxation of the linear problem solving

approach.

Linear problem solvers generate a plan which can be represented

very simply. This report shows that it is also straightforward to

represent the structure of the goals being considered in a linear

system, such structure being important to help guide problem solving.

However, except in the simplest problems, the same cannot be said of

the problem solvers of the type advocated by Sacerdoti. This is because

there are many instances when restrictions on legal linearizations of

the non-linear plan representation must be made. This cannot be done by

simple orderings of actions within the representation (e.g., see section

10.3.2).

Search problems, similar to hose which occur in linear systems,

arise in non-linear problem solvers because operator choices have to be

made and the alternatives must be kept available as backup choices.

Decisions must be made as to whether to continue working with the

constraints of some particular operator choice or whether to choose

another operator. The search problem is particularly acute in

non-linear systems because alternative choices can be generated

in more cases than for linear problem solvers (e.g., see

sections 10.3.1, 10.3.2 and 10.3.3). It would be valuable now to

investigate the use of goal structure to direct alternative choices in

a problem solver which used a non-linear approach.

169

APPENDIX I PROGRAM IDENTIFIERS

I.1 The Components of an OPSCHEMA -----------------------------

An OPSCHEMA can be constructed using a function CONOPSCHEMA. The macro

OPSCHEMA makes default settings for most components, see example later.

(a) OPSCHNAME A pattern (possibly with variables local to the OPSCHEMA)

which is used as the name of the operator for output.

(b) ADDLIST A list of patterns (possibly with local variables) which

when an operator from this OPSCHEMA can be applied

in some situation, can be instantiated from the values

of variables local to this OPSCHEMA and asserted (made

true) in the successor situation.

(e) DELETELIST A list of patterns as above whreh cxce no \onge 1cnnwn "a
the SOC(QCS'oC S.; CU0.-iof\ P\t\ ?,,,R-errs 1'c1n

r0.ch a DELFT LIST entry or2 ,-va,r-Lt-ed, 0.S avino a/1

UA e -F-Ned. (-ru,4-l valve .

(d) OPSCHFN A function to be applied to the successor situation

after the additions and deletions have been made.

Generally, this may act like the IFADD and IFREM

theorems of CONNIVER (McDermott and Sussman, 1972).

(e) PRECONDS A list of pairs

[<REF NUMBER> . <PATTERN>]

where <REF NUMBER> will usually be a positive integer

170
(see Appendix 1.2 (b)). The PRECONDS are joined onto

any PROTECTED patterns to become the ticklist heading of

ticklists for operators which are instances of this

OPSCHEMA. The PRECONDS specify the applicability

conditions of the OPSCHEMA.

(f) SCHREVS This is a list of pairs of the reference numbers of

preconditions for which reversals should never be

attempted. It will generally be left null, but can be

used to incorporate heuristic knowledge of a problem

domain. For instance, n scheme preventing reversals

between groups of goals arranged in a precedence

ordering (see Siklossy and Dreussi, 1973) can be

implemented using this feature. SCHREVS can be

"NOREVERSE" if it is known that no reversals should be

attempted.

(g) VARSLIST An association list ("ALIST") which contains all the

local variables of this OPSCHEMA. Usually their values

will be UNDEF initially,

e.g., E X UNDEF Y UNDEF].

This component is used to initialize the TICKVARS of

each ticklist generated from this OPSCHEMA.

(h) MAXREVS Specifies the maximum number of pairwise reversals which

can be made for ticklists generated from this

OPSCHEMA. A function, NUMREVS(n), is provided to give

this number. MAXREVS is used only for computational

convenience in checking if all reversals have been tried.

171

The macro OP SCHEMA ------------------

When the macro OPSCHEMA is used, default settings are provided for many

components, e.g.,

OPSCHEMA <NAME> maps to <NAME>,
ADD <Al> <A2> [% <Al> , <A2> %],
DELETE <Dl> <D2> [% <Dl> , <D2 %],

(lambda; end), no action OPSCHFN
PRECONDS <P1> <P2> r% [1 . <P1>] [2 . <P2>] %],

f], null SCHREVS
VARS X Y [X UNDEF Y UNDEF],

NUMREVS(2) MAXREVS
ENDSCHEMA CONOPSCHEMA-

If "G" proceeds any precondition, the pattern is given a reference

number 0 to indicate it is a GLOBAL precondition with no means of

achievement (see Appendix 1.2).

172

1.2 The components of TICKLIST, OP and LEVEL
--

The components of a TICKLIST (constructor CONSTICK) are:- ----------------------------

(a) TICKARR The actual 2-dimensional array represented as a

STRIP of 2 bit elements (initiator INIT2, access

doublet SUBSCR2). The entries are initially 0,

but can also be a cross (2) or a tick (3). The

strip is initially given a length appropriate to

4 rows (i.e. 4*COLMBOUND - see (i) later) but can be

expanded as needed.

(b) TICKPATTS Is a list, COLMBOUND long.

Its entries are pairs [<REF NUMBER> . <PATTERN>).

It is accessed using the doublets:

PATTREF(i,ticklist) and PATT(i,ticklist).

<PATTERN> ::= goal pattern which may have variables.

<REF NUMBER, ::- INTEGER >= 1

A goal which must be true when the whole ticklist
heading is satisfied.

A goal for which there are no means of achievement

(a global goal). This is provided for efficiency in

some problems. It can also be used to indicate that

no means of achievement should be used for a goal.

INTEGER =< -1 but >= -1000

A goal which need only be true until the goal with

reference number equivalent to the absolute value of

this goals reference number is satisfied. Typically

173

these goals are ones found to be generally required

to be true before another harder to achieve goal can

be satisfied. These are often called SETUP goals,

as they SETUP the facts in some situation to make it
easier to solve a later goal.

INTEGER z< -1000

A setup goal as above whose corresponding main goal

is already true. -1000 is added to such a setup

reference number.

<TICKLIST . <COLUMN NUMBER,]

A reference number which is a pair indicates that

the corresponding pattern is a PROTECTED entry. In

the pair, the ticklist is the one at which the

PROTECTION was placed and to which any PROTECTION

VIOLATIONS should be reported. The column number is

the column in which the fact on which PROTECTION was

placed is in the ticklist.

(c) TICKSITNS Accessed by the doublet SITN(i,ticklist).

It is a list of contexts which represent the headings of

each row of the ticklist.

(d) OPOF A pointer to the operator which will be applied

to some situation which satisfies the heading of this

ticklist. Via OPOF the system can gain access to

nodes (ticklists) higher in the search tree. The

intermediate data structures between a ticklist and its

parent ticklist can be thought of as an arc of the goal

174

control tree of INTERPLAN. There are two such

connecting structures which are both always used to

specify an are as shown below.

<TICKLI ST> 1

PARENTTICK

<LEVEL>

OPLEVEL OPLEVEL

<TICKLIST>2 <TICKLIST>3

<OP>2 .

OPOF

<TICKLIST>4 .

See later for components of OPs other than OPLEVEL and
components of LEVELs other than PARENTTICK.

(e) TICKVARS An association list ("ALIST") of variable names local to

the OP being used, with their values (values are UNDEF

if not set).

E.g., if X="BOX1" and Y is not set, TICKVARS is

[X BOX1 Y UNDEF 1.

When a ticklist is created, its TICKVARS is

initialized from the VARSLIST of the OPSCHEMA.

(f) TREVS A list of pairs of reference numbers of major goals

(ones which initially have reference numbers >= 1) for

which column reversals at this ticklist have been

attempted. E.g., if there were 3 goals initially with

reference numbers 1, 2 and 3 and reversals have been

tried between 1 And 2, and between 1 and 3, TREVS

would be [[1 . 2 J [1 . 3]]. This component is

175

used to check that repeat reversals are not tried.

TREVS can also be "NOREVERSE". The system assigns

"NOREVERSE" to TREVS when all reversals have been tried.

TREVS is initialized from the SCHREVS component of the
OPSCHEMA of the OPOF this ticklist. Heuristic knowledge

as to what reversals are not useful can be incorporated

into the SCHREVS of OPSCHEMAs.

(g) LASTROW The row number corresponding to the context in which we

are trying to see if the ticklist heading is satisfied.

(h) LASTCOLM The column number we last made an entry in. It will
point to a column with no entry (value of entry=0) if
the ticklist has no entries yet.

(i) COLMBOUND The total number of columns in the ticklist heading.

(j) NUMPROTECTEDS The number of columns of the ticklist occupied by

PROTECTED entries. For convenience PROTECTED entries

are always put in the first NUMPROTECTED columns of the

ticklist.

176

The components of an OP (constructor CONOP) are :- -----------------------

(a) SCHEMA A pointer to the OPSCHEMA data structure from which this

OP is descended (i.e. this OP is an instance of the

OPSCHEMA).

(b) OPLEVEL A pointer to the LEVEL data structure (see later) to

connect with the parent ticklist as shown in the diagram

above.

(c) ACHPATT The pattern (which usually refers to local variables in

this OP) which will be used to match against the pattern

in the parent ticklist which we are trying to achieve.

This match transfers the values of variables between the

two ticklists.

(d) INITVARS This is a copy of the ALIST from the appropriate

OPSCHEMA after instantiation by matching the pattern we

expect to be achieved against the appropriate ADDLIST

entry (to set some variables). INITVARS is used to

RESET the TICKVARS of ticklists in certain cases if
column reversals etc. have been performed and a search

for some satisfactory situation is begun again.

177

The components of a LEVEL (constructor CONSLEVEL) are:- -------------------------

(a) PARENTTICK A pointer to a ticklist in which some goal is

desired to be true (see the previous diagram).

(b) CURRACHIEVES A list used in LOOP detection which holds information

on what patterns have been asked to be achieved in what

contexts, the entries being notionally grouped into

three components:-

1. An instance of the pattern we have asked to be

achieved (any unset variables are see Barrow,

1975).

2. The context we asked for the pattern to be achieved

i n.

3. The ticklist in which it was found necessary to make

this pattern true.

(c) CHOICES Used to hold a list of the different ways to achieve the

achieve pattern of the LEVEL. See Appendix III on the

Or-choice mechanism.

178

APPENDIX II THE QUESTION ANSWERER (QA) ---------------------------------------

The Question Answerer is used to gain access to facts about a

particular situation. It is given a pattern and a context, and is
expected to find all instances of the pattern which are true in the

context. If there are none, it return "cross", if there is a least one

it returns "tick".

QA £ <pattern> , <context> => <tick or cross>.

If there is more than one instance

** MULTIPLE INSTANCES is printed out and the system goes into POP-2

READY (interrupt) mode. The instances are in the list POSSLIST which

can then be examined or altered before continuing. The first (or only)

possibility is matched against the input pattern to cause instantiation

of variables. Any other possibilities are kept as choice points in the

goal control tree by adding a special node to the CHOICES lists, this

holds:

1. the rest of the possibility list (other than the first item),

2. the ticklist the call to QA was made for, and

3. the input pattern (to be used to instantiate variables when the

other possibilities are used).

The instances of a given pattern are found using a function

FETCHALL £ <pattern> => <possibility list of instances of patterns>

This is simply defined at present to find all patterns in the context

179

CUCTXT which have VALUE true, using APPITEMS (see HBASE - Barrow, 1975).

The deduction of facts which may be true in some context is not

at present allowed in the QA module. Simple extensions have been

experimented with to provide this facility by the use of a restricted

type of IFNEEDED theorem as provided in CONNIVER (McDermott and

Sussman, 1972). But, in the present implementation of INTERPLAN, the

incorporation of rules such as

AT(x,y) & ON(z,x) ==> AT(z,y) is not possible.

180

APPENDIX III OR-CHOICES

The mechanisms provided within the classifier/editor framework

describing INTERPLAN are intended to cope intelligently with the

generation of a solution to a problem composed of a conjunct of goals.

When the planner is confronted with a choice of several ways to proceed

to achieve a goal pattern, it uses the information it is given (e.g.,

the given ordering of different operator schemas which can be used to

achieve a given request) to make a reasonable first choice, then

proceeds. The alternative choices (OR-CHOICES) must be stored in some

way which will enable them to be chosen if the first choices are poor.

The mechanism presently used in INTERPLAN will be described here.

Or-choices occur when there are several ways in which a goal

pattern can be made true. These occur mainly when:

(a) there are several true instances of a goal, or,

(b) there are several different operator schemas which can be

be used to achieve instances of the goal.

Other or-choices can occur if INTERPLAN, in discovering some goal

interaction, has suggested alternative approaches to the main problem

(the original conjunct of goals) or to subproblems of it.

The basic way in which or-choices are ordered is that when

interactions occur, An alternative way to proceed is taken from the

or-choice point which was most recently used. That is, we usQ-

depth-first backtracking to find an alternative way

181

to proceed. Alternative choices are taken from the immediate vicinity

of some interaction discovered in the goal control tree.

We could just use a list, like a backtrack trail, in which all

choices were added to the front of the list when they were generated,

and alternative choices could be made by removing the first choice in

the list. However, INTERPLAN generates some choices (e.g., alternative

choices to avoid a protection violation) which are alternative ways to

proceed at different points in the search tree to the point at which an

interaction occurred. If these were merely added onto the front of a

choices list, they would be chosen at inappropriate times.

We therefore keep or-choices with the points in the goal control

tree at which they are intended to be used. The "LEVEL" data structure

(see Anpendix 1.2) provides the point to which or-choices can be

anchored. When an interaction occurs, a failure causes a choice to be

made from the appropriate alternatives at this LEVEL. When success

reaches some choice point, the untried choices are not forgotten, but are

released to a global list of untried choice points (called

CHOICES(TOPLEVEL)).

Ordering schemes may be used to order choices at any choice

point including the global CHOICES(TOPLEVEL) list. Each choice is

inserted into the appropriate choice list by comparing a heuristic value

it may have with others on the list. The lists are ordered so that

lower values are considered "better" and are earlier in the lists.

Choices are made from the head of the appropriate list. Whenever a

choice is made from the global CHOICES(TOPLEVEL) list "GLOBAL CHOICE
USED" is printed. This signifies that a choice has had to be made which

182

may not be immediately relevant to the interactions which have just

occurred - there being no choices left in this position. The

ordering scheme can easily be altered by setting parameters but is

arranged at present to prefer in order:

(a) alternative operators to achieve a goal,

(b) suggested re-orderings of goals (new approach),

(c) suggested promotion of a precondition (new approach), then

(d) alternative instantiation choice for a goal with variables.

If a first choice of an instance of a goal which is true in some context

proves to be of no value, we have no cause to believe that merely

substituting alternative instantiations will work (e.g., if it did not

work with BOX1, ,hy should it work with BOX2 - BOX99 ?). Different

operators or approaches suggested in the light of interactions provide

a more definite way to reconsider the problem Therefore choices of

type (d) need not be chosen immediately at the point at which

interactions occur. We therefore put alternative instantiation choices

(type (d)) immediately on the global CHOICES(TOPLEVEL) list. Once again

this scheme can easily be altered by a change of parameter.

183

Or-Choice Control Parameters

(a) There are parameters which give the heuristic values of different
choice types. These are used for inserting the choices into the

list held in the CHOICES of the appropriate level, or in the global

CHOICES(TOPLEVEL) list if this is indicated.

type (a) OPCHOICE default is 10

(b) REVCHOICE 11

(c) EXTCHOICE 12

(d) INSTCHOICE 20

A parameter CHOICELEVEL (default is 15) can be set to give the value

below which choices are routed to the CHOICES list of the

appropriate LEVEL, -nd above which are routed to the global

CHOICES(TOPLEVEL) list.

(b) An additional choice point type may be generated when the switch

COMPLETE is set to true. These are choices which indicate attempts

to achieve instances of a goal which has some true instance in the

context required. They have a parameter giving their heuristic

value:

type (e) COMPCHOICE default is 50.

Thus with CHOICELEVEL as given they are routed immediately to the

global CHOICES(TOPLEVEL) list.

184

APPENDIX IV ACTOR RESTRICTIONS ON VARIABLES

As mentioned in "restrictions on instances of a promoted goal"

(section 5.7.5) and "The loop classifier and editor"

(section 5.7.7) it is sometimes necessary to give a precondition or goal

which, though it contains variables, has certain restrictions on the

instances these variables can take. It was mentioned in the sections

indicated how this could be done if actor restrictions on variables were

allowed. A scheme has been tested which allows this process.

Normally, when a value is being matched against a variable used

in INTERPLAN (i.e., a variable prefixed by *$*), this is done using a

function

QAGIVEN(s,x) where s is the value being matched, Pnd

x is a variable name.

(a) the value of x is found in the appropriate TICKVARS(TICKLIST).

IF the value=UNDEF THEN the variable has no value. So s can be

assigned to x and the match succeeds.

ELSE we match the present value of x against s.

(b) Within the outer call of the MATCH function, Rny variable set

(i.e., match made against some variable with value UNDEF) are

remembered on a list SETVARS. If the match fails at top level,

these variables are reset to their UNDEFined values.

185

We could modify this process to provide actor restrictions on variables

thus:

(a) the value of x is found in the appropriate TICKVARS(TICKLIST).

IF the value is an actor AND the actor matches s (note)

THEN can be assigned to the value of x and the match succeeds

ELSE proceed as before.

(b) Since some variables when they are first set may have values

which were not UNDEF (i.e., ACTORS), we must save not only the

variables set as before in SETVARS, but also the values they

had before being set. If the outer level MATCH fails,

variables are reset to their UNDEFined or actor values as

appropriate.

Useful additional facility

It is useful to allow the initial value of an OPSCHEMA's

VARSLIST to be set with actor values as well as UNDEF. For example, if

a precondition was ON(x,y) & CL(x) where y/-FLOOR we could restrict y

to not be the FLOOR in the initial VARSLIST. The macro OPSCHEMA can

easily be modified to allow optional actor values to be given to

variables initially.

--

Note: an actor is a facility provided in HBASE (Barrow, 1975) and is a
function which can be run on any item to determine if it matches
the item.

186

ACKNOWLEDGEMENTS

In the course of 3 years study many people have contributed

towards the theme and content of this thesis. It would be impractical

to name all those people here but I would like to offer my thanks to

all who have taken an interest in the work.

The work has been financially supported by a Research

Studentship from the Science Research Council of Great Britain.

Professor Donald Michie supervised the work and offered encouragement

when it was needed.

The work has developed through discussions with Harlyn Baker,

Chris Brown, John Darlington, Alistair Duncan, Bill Scherlic, Jerry

Schwarz, Rodney Topor and Dave Warren.

I would particularily like to express my thanks to Harry

Barrow and Earl Sacerdoti, both at the Stanford Research Institute.

Robert Ross of the Mpchine Intelligence Research Unit at Edinburgh

read through a draft of the thesis and has managed to remove most of

the expressions which betray my Yorkshire up-bringing, but a few may

have managed to squeeze through his scrutiny.

187

REFERENCES

Qobca D G. ahd "aGtae g, (19` i4) Iew cooca N/t;\.t L1araoJes e
lp1'I A t, ,t0 Snell9en ce . CbMPJIitA JPt/e s U1. Nom, S S ¢Q,

Barrow, H.G. (1975) HBASE POP-2 library documentation.

Edinburgh: Dept. of Artificial Intelligence, Univ. of Edinburgh.

also a LISP version is documented in:

HBASE: A fast, clean and efficient database. Draft report from

pp

Stanford Research Institute AIp Center.

`jojr R,S onJ f1 oDre, S. 1`l`I2) ` CaJ nod eorelnts cbo LISP +U" i ens
DCL +e .to ice. 0. eP cf owe c io na Logic, Univ c4 C_d'Ufg 1 .

Burstall, R.M., Collins, J.S. and Popplestone, R.J. (1971)

Programming in POP-2. Edinburgh: Edinburgh University Press.

Davis, M. (1975) On constructing a pre-processor for STRIPS-world

problem solvers. Research Memorandum MIP-R-111. Edinburgh:

Machine Intelligence Research Unit, University of Edinburgh.

Doran, J. and Michie, D. (1966) Experiments with the Graph Traverser

program. Proc. Roy. Soc., (A), 294, pp 235-259.

Ernst, G.W. and Newell, E. (1969) GPS: A case study in generality and

problem-solving. New York: Academic Press.

Fikes, R.E., Hart, P.E. and Nilsson, N.J. (1972p) Some new directions

in robot problem-solving. In Machine Intelligence 7, (eds.

Meltzer, B. And Michie, D.) pp 413-438. Edinburgh: Edinburgh

University Press.

188

Fikes, R.E., Hart, P.E. and Nilsson, N.J. (1972b) Learning and

executing generalised robot plans. Artificial Intelligence,

3, pp 251-288.

Fikes, R.E. and Nilsson, N.J. (1971) STRIPS: a new approach to the

application of theorem proving to problem-solving.

Artificial Intelligence, 2, pp 189-208.

Green, C.C. (1969) Application of theorem proving to problem solving.

Advance papers of IJCAII, pp 219-240. Washington DC, USA.

Hayes, P.J. (1973) Structuring of robot plans by successive refinement

and decision dependency. M.Phil. Thesis, Univ. of Edinburgh.

Kowalski, R. (1974) Logic for problem solving. DCL memo 75.

Edinburgh: Dept. of Computational Logic, Univ. of Edinburgh.

McDermott, D.V. and Sussman, G.J. (1972) The CONNIVER reference manual.

MIT Al Memo No.259.

Michie, D. (1974) On Machine Intelligence pp 149-151. Edinburgh:

Edinburgh University Press.

Michie, D. and Ross, R. (1969) Experiments with the adaptive Graph

Traverser. In Machine Intelligence 5, (eds. Meltzer, B.

and Michie, D.), pp 301-318. Edinburgh: Edinburgh Univ. Press.

Newell, A. and Simon, H.A. (1972) Human Problem Solving pp 808.

New Jersey: Prentice Hall Inc.

189

Nilsson, N.J. (1971) Problem solving methods in Artificial

Intelligence. New York: McGraw-Hill.

Sacerdoti, E.D. (1974) Planning in a hierarchy of abstraction spaces.

In Artificial Intelligence, 5, np 115-135.

Sacerdoti, E.D. (1975) The nonlinear nature of plans. SRI Al Group

Technical Note 101.

Siklossy, L. and Dreussi, J. (1973) An efficient robot planner which

generates its own procedures. In Advance Papers of IJCA13,

Stanford, USA, pp 423-430.

Sussman, G.J. (1973) A computational model of skill aquisition. MIT

Technical Report Al TR-297.

Tate, A. (1974) INTERPLAN: a plan generation system which can deal with

interactions between goals. Research memorandum MIP-R-109.

Edinburgh: Machine Intelligence Research Unit, University of

Edinburgh.

Waldinger, R. (1975) Achieving several goals simultaneously.

Stanford Research Institute Al Center Technical Note 107.

May, 1975.

Warren, D.H.D. (1974) Warplan: a system for generating plans.

DCL Memo No. 76. Edinburgh: Dept. of Computational Logic,

University of Edinburgh.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-75-004

