
MACHINE INTELLIGENCE RESEARCH UNIT

UNIVERSITY OF EDINBURGH

INTERPLAN

Subject:

A plan generation system which can deal

with interactions between goals.

Author:Memorandum:Date:

Austin Tate

MIP-R-109

December 1974

ABSTRACT

Although it is often natural to specify a task to a problemsolver

as a conjunction of goals to be attained, the sequential

attainment of these goals is often complicated by interactions

between them. The interaction problem is discussed and a process

is described which allows the use of simple problem-solving

techniques which assume interactions do not occur. Such techniques

have received a great deal of attention, for example, in the STRIPS

system (SRI). We show that when interactions do occur, information

which enables problem solving to continue can easily be extracted

from the existing data structures. A problem solver, INTERPLAN, has

been designed and programmed which incorporates the process.

INTERPLAN tries to find a sequence of individual goals, in theorder

they will be considered, which will solve a task withoutinteraction.

It does this by "debugging" a given initial sequence

(usually the given order of the goals in a conjunct). This process

is similar to that used in the HACKER system (MIT) for a more

procedural representation of a problem.

INTERPLAN 2

TABLE OF CONTENTS

PAGE

ABSTRACT

TABLE OF CONTENTS 2

1. Introduction 4

2. The Keys and Boxes Problem 5

3.

8

8

8

What are the Difficulties?

3.1 There are actions with imprecisely defined outcomes

3.2 We don't know precisely which object is a key.

3.3 Keeping track of the objects at each place. .

4.

9

Interacting Goals: the limitations of some existing

Problem' Solvers

4.1 Means-end analysis. 4.2 Interacting Goals.

105.

The 3-Block Problem 13

6. Using Goal Interaction to suggest new approaches to

tackling a problem. 16

18

19

22

23

24

25

32

INTERPLAN:

the plan generator

7.1 Aims and Assumptions. ...

7.2 Specification of a problem. ..

7.3 Ticklists 7.4 Ticklist Levels -The Search Tree.

7.5 Protection. 7.6 Classifiers and Editors. ..

7.7 The Approach -Successful Ticklist Headings

8.

How INTERPLAN solves the 3-block problem 33

9. Example Problems 39

41

41

42

42

43

lO.Enhancements to the methods used in INTERPLAN

10.1 Full expansion of search tree branches doomed to fail.

10.2 Pre-ordering the Approach. 10.3 Achieving goals which already have true instances.

10.4 Loop detection -search space redundancy. ..

10.5 Planning in abstraction spaces.

INTERPLAN 3

PAGE

11. Conclusion 44

APPENDIX I

1.1 45

47

1.11

Program Identifiers

Components of an OPSCHEMA ..

Components of TICKLIST, OP and LEVEL

APPENDIX II The 'Question Answerer (QA) 51

APPENDIX III Or-Choices 52

ACKNOWLEDGEMENTS

55

REFERENCES 56

INTERPLAN 4

1. INTRODUCTION

This report describes progress that has been made on a postgrad-

uate research project at the Department of Machine Intelligence, Univer-

sity of Edinburgh. Michie (1974) describes a problem, the Keys and

Boxes, whose solution poses difficulties for many current problem-

solving techniques (the difficulties will be discussed in section 3).

The aim of the project is the investigation of problem-solving tech-

niques by considering their ability, or otherwise, to cope with the

Keys and Boxes problem and the class of problems this belongs to.

The work to be described here has been under study for the period

September 1973 -June 1974 and has focussed upon one particular diffi-

culty posed by the Keys and Boxes problem, that of interactions between

methods of achieving subgoa1s (this will be fully described later).

A planning.. problem solver has been designed and programmed to cope,

seemingly efficiently, with the difficulty.

In this report I will first describe the Keys and Boxes problem

and explain why it does pose difficulties. It is not necessary for

the reader to attempt to gain a full understanding of the Keys and Boxes

problem in order to follow the paper. A simpler problem (the 3-block

problem) which highlights the interaction problem will then be described.

The problem solver, INTERPLAN, which can cope with goal interactions will

then be fully specified. This part of the report is also intended to

serve as documentation to the program. Further problems, currently under

investigation using INTERPLAN as the research tool, will finally bementioned.

INTERPLAN 5

2.

THE KEYS AND BOXES PROBLEM

The problem was devised by Michie (1974) as a bench mark test for

robot problem solvers. A robot, without any capability of gathering

further information than it is given at the start of problem solving,

must op~rate in the world shown in figure 2.1

ROOM

EJ 8 EJ
DOOR

OUTS1DE

FIGURE 2.1

The problem'is defined informally below: words in capitals are

special to this problem, in the sense that the problem statement is

meant to define them. This problem formulation differs from that given

by Michie. In particular, sets of objects are used to describe theproblem.

The"changes were made in the light of several people's

attempts to solve the problem'themselves (4 protocols of this sort were

used to gain some insight into the methods humans use on the problem).

English Statement of the Keys & Boxes Problem.

The world consists of: the PLACEs named BOXl, BOX2, DOOR, TABLE

and OUTSIDE; the OBJECTs, examples of which are named A, B, and C; and

an agent named ROBPT. OBJECTs may have properties named RED and KEY.

PLACEs may have the property named INROOM. There are relations namedAT,

HELD and ROBOTAT. There is a (possibly empty) set of OBJECTs AT

any PLACE. Any OBJECT is AT only one PLACE. ROBOT(is)AT only onePLACE.

A.set of OBJECTs is HELD. NOTHING is equivalent to the empty

set of OBJECTs. If a set of items all have some property, then any

individual or non-empty subset of the items has the property. The

property of OBJECTs being RED or KEYs cannot be changed. The property

of PLACEsbeingINROOM cannot be changed. The ROBOT can cause changes

by executing'the actions named LETGO, PICKUP and GOTO.

The/

INTERPLAN 6

The LETGO action causes the parameter of HELD to be changed toNOTHI~~G.

There are no other effects of a LETGO action.

If there is a non-empty set of OBJECTs AT some PLACE then the

PICKUP action causes the set of OBJECTs HELD to be changed to a non-

empty sub-set of the set of OBJECTs AT the PLACE. There are no other

effects of a PICKUP action.

The GOTO action takes a parameter which is a PLACE. The GOTO

action primarily causes the PLACE the ROBOT(is)AT to be changed to

the PLACE which is the parameter of the-GOTO action. If the set of

OBJECTs HELD is not empty, then the GOTO action also causes the PLACE

the set of HELD OBJECTs is AT to be changed to the PLACE which is the

parameter of the GOTO action. If the parameter of the GOTO action

is OUTSIDE, then the GOTO action can only be applied if there is an

OBJECT (and possibly others) AT the DOOR which has the property of

being a KEY. Otherwise the parameter of the GOTO action should have

the property of being INROOM. There are no other effects of a GOTO

action.

In the initial situation there is A and possibly other OBJECTs

AT BOX1.

In the initial situation there is B and possibly other OBJECTs

AT BOX2.

In the initial situation there is C and possibly other OBJECTs

AT the DOOR.

In the initial situation there is NOTHING AT the TABLE.

In the initial situation the PLACE the ROBOT(is)AT is unknown

In the initial situation, either all OBJECTs AT BOXl have the

property of being KEYs or all OBJECTs AT BOX2 have the property of being

KEYs,

In the initial situation all OBJECTs AT the DOOR have the pr9perty

of being RED.

DOOR and TABLE all have the property of beingThe PLACEs BOXl, BOX2INROOM.

The goal of the problem is to produce an action sequence (plan)

which will convert the initial situation into a situation in which a sub-

INTERPLAN 7

set of the OBJECTs AT the OUTSIDE have the property of being RED.

Thus an action sequence such as:-

LETGO, GOTO(DOOR), PICKUP, GOTO(TABLE),LETGO,

GOTO(BOX1), PICKUP, GOTO(DOOR),LETGO,

GOTO(BOX2), PICKUP, GOTO(DOOR),LETGO,

GOTO(TABLE}, PICKUP, GOTO(OUTSIDE) will achieve the goal

INTERPLAN 8

3.

WHAT ARE THE DIFFICULTIES

3.1 There are actions with imprecisely defined outcomes.

The PICKUP action causes a SUBSET of the objects at the place the

robot is at to be held. Therefore, unless we are sure there is only

one object at any place, we cannot pick up particular objects. This

indicates, what seems to me ~o be, the principal difficulties of the

Keys and Boxes problem: that placing objects at any place may ruin

our ability to later PICKUP objects with known properties. Thus,

although we know in the initial situation that all the objects at the

door are red, and therefore a PICKUP at the door will result in only

red things being held, we cannot guarantee this in a situation resulting

from putting keys at the door. The uncertainty of the PICKUP action

gives rise to a particular case of a more general problem which I will

term the Interaction Problem. The robot is living in a "coup1ed wor1d",

where there can be complex interactions between the effects of some

actions and the subsequent applicability of others. I will be mainly

concerned with such Interaction Problems throughout this paper (they are

more fully described in section 4).

3.2

We don't know precisely which object is a key.

A request to find a key will only produce the answer that either

any subset of the objects at BOXl or any subset of the objects at BOX2

has the property of being keys.

Keeping track of the objects at each place.

The Keys and Boxes problem requires information to be stored about

what objects are at certain places. We need to remember whether no

objects, some particular objects, a selection of some particular objects,

or an indefinite number of objects are at a place. The formulation of

the problem (in section 2) in terms of sets of objects is intended to

clarify what is required. Simple data base methods of storing a fact

,such as "obj ects OB1, OB2 and possibly others at place BOX1'! as (AT

OBl BOX1) & (AT OB2 BOX2) cannot reflect what is required if an un-

known selection of these is removed (by a PICKUP).

INTERPLAN 9

4.

Means-End Analysis

I will assume familiarity with search techniques as used in Arti-

ficial Intelligence (see Nilsson, 1971). Problems can be formulated as

a search task:
-~--

GIVEN:

an initial state representation

FIND:

a number of actions (operators) which transform one
state into another if applicability conditions are
met

a definition Qf a desired (goal) state

a sequence of actions which will transform the initial
state into a desired state.

When there are a significant number of possible actions (or operators),

f~rward search from the initial state (i.e., trying to apply applicable

operators to generate a goal state), relies heavily on an evaluation

function containing problem-dependent information to guide the search

along fruitful paths. A more'uniform search method, called means-end

analysis, was used by GPS (Ernst and Newell, 1969). There is good

evidence that means-end analysis is extensively used during human

problem solving (Newell & Simon, 1972).

Means-end analysis has been used in several robot planning systems,

e.g., STRIPS (Fikes and Nilsson, 1971), LAWALY, (Sik1~ssy and Dreussi,

1973) and HACKER (Sussman, 1973). Such systems find what statements

must be true in a desired situation, but which are not true initially.

These statements become a "difference" and only operators "relevant"

to reducing this difference (typically operators which can add one or

more statements of the difference) can be considered. One of the

operators is chosen, and if applicable it is applied to produce a new

situation.. The system then once again compares the desired situation

with the newly produced one to find any remaining difference. However,

a chosen operator may not be applicable in the given situation. In

this case the difference between the applicability conditions (often

called preconditions) and the given situation is taken and the means-end

analysis driven system again selects from operators relevant to

reducing this difference. Once its preconditions have been met, an

operator can be applied. Such a process can recurse to any depth if

operators/

INTERPLAN 10

operators are chosen which are not applicable in the given state.

Search is not ruled out by any means in such a system, as often there

will be more than one "relevant" operator and the order in which pre-

conditions are satisfied may vary. Each choice must be capable of

being explored if necessary.

4.2 Interacting Goals

A problem is given to a means-end analysis based problem solver,

such as STRIPS (Fikes & Nilsson, 1971) and the planning part of the

HACKER (Sussman., 1973) system, as a conjunction of goals

e.g. (Gl & G2)

which must be true for the problem to be solved. Since the individual

goals are solved sequentially, they must, once achieved, hold together

for a perio,d of time. The time for which an achieved goal must remain

true will be called the goal's "holding period". I will illustrate

this as in figure 4.1

Problem SolvedInitial Situation

Gl

G2 -+

Approach:

Gl', G2

FIGURE 4.1

The horizontal dimension of this "Holding Period" diagram represents

time during which actions will be applied in a final plan to achieve

the given goals. Approach should be interpreted as: if Gl not true

achieve it using some operator sequence. then do likewise for G2.

STRIPS assumes, in the absence of other information, that it can

achieve the individual goals by relevant plan sequences, say, in the

order in which the goals are given (Sussman calls this a linear

assumption). Thus, as shown in figure 4.1, it assumes Gl can be

solved first by some relevant plan sequence and then that G2 can be

solved/

INTERPLAN 11

solved by a plan sequence following on from the first. If STRIPS

can find no way to achieve the goals in the order given, it is

capable of reversing the order it has attempted to achieve goals, which

were initially not true, at the failure level (e.g. at the top level Gl

and G2 could be reversed to give an expected holding period diagram as

in figure 4.2).

Problem SolvedInitial Situation

Approach,=,

G2;

Gl

-FIGURE 4.2

STRIPS further assumes that for the goals not already true at the

time required, the preconditions, which are required to be true for some-operator

to be used to achieve the goal, can all be made true immed-

iately before the time the goal is required to be true. Again,

reversals amongst these preconditions can be made on failure backup.

Thus, if the preconditions for some operator to achieve a goal G. are
1-

Gil and Gi2' then STRIPS initially assumes an approach as in figure

4.3 can be taken. Note that the holding period diagram represents

the goals to be worked upon for ~ chosen operator sequence. There

is really a 3rd dimension to the diagram representing different choices

FIGURE 4.3

Problem SolvedInitial Situation

Gll -+

Gl

G12 -'to

G21 ~

G2 j

G22 -+-

Approach:Gl;

G2Gll ; G12 ;

G21;G22;

INTERPLAN 12

of operators.

Reversals allow certain other orderings of these goals to beattempted.

However, limiting reversals to goals at a particular

level of the search tree hierarchy means that STRIPS (these arguments

also apply to HACKER) can only tackle certain problems. Specifically,

those in which interactions between top level goals can be avoided by

suitable ordering of the goals and the choice of suitable operator

sequences

Since STRIPS and HACKER also allow attempts to achieve goals to be

repeated if interactions have occurred, they can also handle those

problems in which the interactions leave the world in some situation

from which the interacted goals can be re-achieved. STRIPS will

often produce longer than necessary solutions if it repeats attempts

to achieve goals.

Even for very simple worlds, such as the blocks world used by

Sussman, interactions can occur. To be able to deal with all typesof

interaction between a set of goals, we could consider the search

space as containing approaches with every interleaving of the goals

and the subgoals needed to achieve those goals. Thus, a holding

period diagram and approach as shown in figure 4.4 is necessary to

resolve some types of interaction.

FIGURE 4.4

Initial Situation Problem Solved

IGll
Gl ~

~G12

jG21 G2 --
G22-

Approach:Gl;

G2Gll; G12; GZl;

G22;

INTE'RPLAN 13

5.

THE 3-Bl0CK PROBLEM

The 3-block problem is an example used by Sussman (1973) in his

description of HACKER. It is regarded by HACKER as an. ,Anomalou~-~p',

The problem is useful as it singles out the interaction diffi-

culty in a simple task.

A world is described by two predicates ON(x,y) and CL(x).

ON(x,y)

asserts block x is on top of the (same size) block y.

Note that ON is not transitive.

CL(x) asserts block x has a clear top.

There are two operators:

PUT ON (X,y) asserts ON(x,y) and deletes CL(y).

If3u.ON(x,u) before the application of the operator

then assert CL(u) and delete ON(x,u).

It can be applied if CL(x) and CL(y) are true.

ACTCL(x) asserts CL(x).

If3u.ON(u,x) before the application of the operator

then assert CL(u) and delete ON(u,x) and repeat if3v.ON

(v,u) etc. (This operator therefore clears all blocks

from the top of block x). It can always be applied.

Given an initial situation ON(C,A) & CL(C) & CL(B) as shown in figure

5.l(a) a goal of ON(A,B) & ON(B,C) is given as shown in figure 5.l(b)

(a) (b)

FIGURE 5.1

STRIPS can tackle (ON(A,B) & ON(B,C)) both of which are not trueinitially.

The goals may, at first, be attempted as shown in the

holding period diagram of figure 5.2

INTERPlAN 14

Initial Situation

CL(A) "

not true
The expected holding
period is broken by
achievement of CL(B)

ON(A,B) -
not true

CL(B) ~
true

CL(B) j

CL(B);

ON(A,B);Approach:

CL(A); CL(B);

Plan
1£1 ...ACTCL(A~ -~UT£N~~ I! I _A~~)- --

Sequence: !::. I!I I!::.II!II.£I ! 1£1 I!::.II!II£\

FIGURE 5.2

The earlier achieved goal (ON(A,B)) does not now hold (its expected

holding period is broke~ but this is not noticed by STRIPS, and

problem solving proceeds as in figure 5.3. So, STRIPS produces the
, .

longer than necessary solut1.on:-

ACTCL(A), PUTON(A,B) , ACTCL(B), PUTON(B,C), PUTON(A,B).

Attempting the initial goals in the opposite order would make the final

solution longer still, though if the interactions in the first ordering

produced a state of the world in which the goals could subsequently

not be achieved, this would be attempted on failure backup. STRIPS

is incapable of producing a shorter plan.

FIGURE 5.3

Problem Solved

CL(A)
true

The expected holding
period is broken by

I achievement of CL(B)

+ ON(A,B) -,.+-

not trueCL(B) -+-

trueCL(B) .
not true ON(B,C) c

not true
CL(C) true

ApproachContinued.'.'CL(C) ;

ON(B,C);

CL(A); CL(B); ON(A,B)

-

B
C

Plan sequence PUTON(B,C)Continued"""" IKI I!I If I -, I':BI PUTON(A,B)I!I :f .-.~

INTERPLAN 15

HACKER has a mechanism, called Protection, ,which remembers

achieved goals and looks out for actions which violate them. It

would notice that the previously achieved goal (ON(A,B)) ceased

to hold (as a Protection Violation) and would try to reverse the

order of the top level goals (to ON(B,c.)&ON(A,<?')) at that time.

However, another Protection Violation with the reversed approach

will direct the HACKER planner to allow the Protection to beviolated,

and the result will be the same as STRIPS in thisexample.

The search space should have included an approach as shown in

figure 5.4. This approach is an ordering not allowed by

reversals only within the hierarchic levels of the search tree. It

would have led to a solution path:-

ACTCL(A); PUTON(B,C); PUTON(A,B).

Initial Situation Problem Solved

CL (A) .

not true
ON(A,B) -+

CL(B) ~ot true

true
CL(B)
true ON(B,C) .

CL(C) jnot true

true

Approach:

CL(B); CL(C); CL (A) ;

ON(B,C);

CL(B); ON(A,B)

AIcl ACTCL(A) PUTON(B,C)," lEI PUTON(A,B) E! 1!1--""1!11!11£1 r I!I £ , ~ 1£
PlanSequence:

FIGURE 5.4

STRIPS, by re-achieving the ON(A,B) goal, can solve this problem with

a longer than necessary plan because the world produced after interaction

is such that the goals can still be achiev~d. The Keys & Boxes problem

has interactions which would preclude a STRIPS-like problem solver from

finding any solution.

INTERPLAN 16

6.

QSING

GOAL INTE_RACTIONS TO SUGGEST NER J:;)?PROACHES TO TACKLINg

A PROBLEM

Current'means-end analysis problem solvers are not capable of

solving problems which have certain kinds of goal interaction, and

(with the exception of some systems at MIT e.g. HACKER) do not use

interactions amongst goals to guide the search for a solution. I

mentioned earlier that all interleavings of goals, and the subgoals

needed to achieve those goals should have the potential of being con-

sidered. Generally, only very few of the possible interleavings need

be considered. An assumption that goals can be achieved in the order

given without interaction (linearily) is, however, a very powerfulheuristic.

My own work in problem solving is based upon the powerful

heuristics used in STRIPS and other problem solvers, but I am anxious

not to let these assumptions rule the type of problems I can deal with,

Proven contradictions of these assumptions during problem solving can

direct the search to consider appropriate interleavings of plan parts

to remove interactions.

As an example, the interactions discovered during attempts to

solve the goals Gl & G2 linearily lead us to the situation, in

figure 6.1, where the expected holding period for Gl is broken by the

Initial Situation

Gll ~
The expected holding
period is broken by
achievement of G21

Gl ~

G12 -+

G21

Approach:

Gl"Gll; GI2t

G21;

FIGURE 6.1

achievement of a subgoal G2l required for an action to achieve G2. We

have tried and found that Gl and G2l cannot both hold together when

they have been achieved by some operator sequences in the order Gl andt~G2l'

We can either try to reverse goals at a higher level to stopthe

conflicting goal's holding periods overlapping altogether (by

reversing Gl and G2) or try to achieve them in the opposite order.

INTERPLAN 17

It is sufficient to try to achieve the conflicting goals in the other

order only once, and this can be done whilst still preserving linearity

as far as possible by moving the precondition (G21) whose achievement

made a previously achieved goal (GI) not hold, immediately in front of

the goal as shown in figure 6.2 (we shall say that we PROMOTE theprecondition).

Moving it further back through the goals to be worked

Initial Situation

,Gll

Gl

G12

G21

Approach:

Gl ;Gll;

G12;G21;

FIGURE 6.2

upon would still try to achieve the conflicting goals in the opposite

orQer but would risk further possibilities for other intermediate

goals to interact with the precondition being brought forward. Note

thwt the precondition brought forward (GZ1) may interact with earlier

goals and may need to be shifted again due to different interactions.

Subgoals intermediate between GZ and GZl if they exist may need to be

promoted also.

If in both orders the same goals achieved by suitable operator

sequences still interact and cannot hold together, the problem cannotbe

solved by this approach.

The details of the way in which information from such a goal

interaction is extracted and used to suggest possible new approachesto

a problem will be discussed in the next section, as will other

goal interactions from which information can be extracted to guide the

search for a solution.

INTERPLAN 18

THE PLAN GENERATOR7.

INTERPLAN:

Aims and Assumptions

The plan generator is basically a STRIPS-like means-end analysis

driven (or subgoaling) problem solver with the additional capability of

dealing with interactions between goals. Problems are given to it by

specifying an initial world situation and a goal situation, and giving

the set of operators (or actions) which can be used to transform situa-

tions. INTERPLAN is required to find a linear, fully-ordered sequence

of operator applications which will transform the initial situation into

a goal situation. It has been designed to produce a single solution to

a problem. It takes a suggested "approach'! to tackling the problem

(usually the given order of a conjunct of individual goals) and tries to

produce an operator sequence to satisfy the goals which exactly follows

the approach. By this, I mean that the goals are achieved in the order

specified in the approach and can be kept true while other individual

goals are achieved. If, in pursuing the given approach, a difficulty is

discovered, alternative approaches are suggested by INTERPLAN which are

based upon information gathered from the nature of the difficulty itself.

INTERPLAN tries to solve a problem by showing one such approach is valid.

If the initial approach is valid, INTERPLAN will merely try to find and

check appropriate operator sequences to satisfy the individual goals, no

new approaches being suggested.

During problem solving INTERPLAN makes the following assumptions:

(a) a conjunction of individual goals can be solved by tackling the

goals in some order individually end-an-end.

(b) a goal once solved must remain true until the other goals of the

conjunct are solved.

in the absence of other ordering information, the given order of

goals is a reasonable first ordering to try. INTERPLAN is, how-ever,

capable of trying other orderings in those cases where it is

proven to be of possible use to do so (e.g. on Protection Violationdiscoveries).

to achieve a given goal, only those operators which can ADD the

goal directly are relevant. That is, only those operators in

which the goal appears in the operator's ADD list.

operators need not be considered to achieve instances of a goal

with/

INTERPLAN 19

with variables which already has some true instance (see section

10.3 for cases in which this assumption may need to be relaxed).

normally,

the preconditions for some operator which will achieve a

goal, can be made true immediately before the goal they are for is

to be made true. INTERPLAN is, however, capable of relaxing this

assumption in those cases where it is proven to be of possible use

to do so (e.g. on Protection Violation discoveries), then, "setup'

goals can be inserted into the Approach.

changes to the world only occur through applications of the opera-

tors given to the system.

The system separates the search across the space of world situations

(imagined as a graph whose nodes are situations and whose arcs are opera-

tor applications) from question answering about a particular situation.

INTERPLAN is an operational POP-2 (Burstall, Collins & Popplestone, 1971)program.

The RBASE (Barrow, 1974) data base system is used to store

different situations (as CONTEXTS) and the facts known about each partic-

ular situation (as assertions). There are special INTERPLAN data struc-

tures and processes (to be described later in this section) which control

the search across the space of world situations.

Program identifiers and syntax will be introduced and used along

with the description below since this section is also intended to serve

as documentation of the INTERPLAN program.

2 Specification ofa Problem

The plan generation system is given a task by specifying:

e.gAn initial situation (state) specified by a set of assertions.for

the 3-block Problem initial situation

ASSERT «ON C A>:

«CL C»«CL

B»

The brackets « ...» indicate an HBASE pattern (stored as a POP-2strip).

Patterns may be nested. ASSERT takes a list of patterns

and indicates that they are true in the current context, CUCTXT,

which will be taken as the initial situation by INTERPLAN.

Descriptions of the actions which can transform situations. Basic-

ally these are specified similarly to the STRIPS operator schemas

(whose/

INTERPLAN 20

(whose instances are operators) with a list of facts to be deleted

from a situation and a list of facts to be added to a situation to

alter it. They also specify (as Preconditions) those facts which

must hold in a situation for the operator to be applicable.

The add list of an operator schema is used to determine whether

it is relevant to achieving some goal (i.e., whether it ~ a state-

ment required as a goal). However, an operator schema may make changes

to a situation other than those specified in the add/delete lists

since the system allows any function (the OPSCHFN) to be applied when

an operator is used to transform a situation (this can be thought of

as providing CONNIVER-like IFADD and IFREM method facilities -McDer-

mott & Sussman, 1972). So, effects difficult to express assertiona11y

or requiring testing of the situation itself can be caused, but these

effects cannot be used to determine whether the operator schema is

relevant

An operator is applied to a situation by

i)

ii)

iii:

iv)

notionally making a copy of all facts true in the RBASE
context representing the old situation,

deleting all patterns from this which match DELETE list

entries,

adding all ADD list entries,

running the operators OPSCRFN.

An operator schema has further components mainly used by the

system itself, but some allow heuristic knowledge of a particular

problem domain to be incorporated. These will be mentioned in appro-

priate places throughout the text, and are given in full in APPENDIX1.1.

A macro is available to construct simple operator schemas. As-

signments can then be made to the empty components if more complexoperator

schemas are required, that is, with functions which cause

side-effects, or with heuristic knowledge.

Thus for block stacking:-

«ACTCL *$*X»

«CL *$*X»

*$*X is a variable X local to this opschemaOPSCHEMA

ADD

DELETE

PRECONDS

no <;ieletions

no preconditions

all local variables must be named

save opschema in 81

VARS X

ENDSCHEMA -+ S 1;

OPSCHEMAI

INTERPLAN 2

OPSCHEMA

ADD

DELETE

«PUTON *$*X

*$*X

*$*Y»

*$*Y»

«ON

«CL

*$*X» *$*Y»

PRECONDS

«CL «CL

VARS x y

END8CHEMA -+- 82;

There are further effects of these operators as specified in

section 5. These effects are difficult to express merely in ADD and

DELETE lists (see Fikes, Hart and Nilsson, 1972a). They can be writ-

ten as functions in POP-2 which use HBASE primitives to search, add

to and delete from the current context (CUCTXT). See figure 8.1 for

a listing of these functions.

Call the functions CLFN and ONFN then

CLFN ~ OPSCHFN(Sl);

ONFN ~ OPSCHFN(S2);

(c) The present system also requires the user to state which operators

can be used to achieve patterns.

For

example, for block stacking

{% «CL == », {% Sl %},

«ON == == », {% S2 %} %} + ACHIEVES;

That is, the user should take each item in an add list, replace all

variables by = (a pattern which matches "anything" in HBASE), and

group the corresponding operator with any others which can add the

same pattern. This list could be generated automatically. All ADD

list entries for all operators need not be put in ACHIEVES. The

"primary additions" of STRIPS can then be modelled (see Fikes, Hart

and Nilsson, 1972b).

d) A specification of a goal situation by giving the statements, which

are all required to be true in a goal situation.

For example, here

GOAL «ON A B» «ON B C»;

Variables in goal specifications are allowed

INTERPLAN 22

7.3 Ticklists

The basic data structure used by the system is a "ticklist". See

APPENDIX 1.11 for its components. It forms the nodes of the search tree

which the system explores. Basically, it is a 2-dimensional array which

has a column for each of a set of goals which are all required to be true

together in some situation. The root node of the search tree for the goal

above would consist of 2 columns headed «ON A B» and «ON B C». I

will refer to the set of goals which the ticklist columns represent as the

TICKLIST HEADING. Columns of the array represent situations in which we

hope to find that all the goals are true (hold). We thus start with a

ticklist with the main goals as the ticklist heading and the initial situ-

ation as a row heading (as figure 7.1).

FIGURE 7.1

We scan the last row of the ticklist (here only one) and ask if the goal

heading each column of the ticklist is true in the context of the lastrow.

We put a tick (I) if it is, or a cross (X) if it isn't. If the

whole conjunction of goals is true in the situation we get a complete row

of ticks and have thus found a goal situation. If, however, any column

has a cross then this goal remains to be achieved in some situation, as

initially with our problem (figure 7.2).

FIGURE 7.2

INTERPLAN 23

7.4

Ticklist Levels -The Search Tree
-~-

When a goal has to be achieved, for each relevant operator (i.e.

instance of an operator schema) a subgoal is set up of trying to find a

situation in which all the preconditions for the operator hold. A search

tree is grown by making new ticklists on a lower ~ to the one contain-

ing the goal to be achieved. These have as column headings the precon-ditions

of each operator, and thus represent subproblems of the higherlevel.

They are connected to the upper level ticklist by arcs represent-

ing the particular instantiation of each relevant operator schema. Forexample,

in our case as figure 7.3.

«ON A B» «ON B C»

Ini tial IC

ISi tuation ~ ~I
x

«PUTON A B» is only relevant

operator. It is derived

from the operator schema

«PUTON *$*X *$*Y».

Branching would occur

if more operators were

relevant.

FIGURE 7.3

All ticklists at the tips of the search tree being constructed are suitable

for further filling in, etc. So they are held in a list of choices which

can be heuristically ordered. See APPENDIX III for details Qf the scheme

used to deal with choice points in the current program. The choice list is

a list of pairs of a heuristic value and a pointer to a ticklist on the tip

of the search tree (though 2 special entries are allowed -see sections

7.6.2 and 7.6.3). The choice list is ordered so that pairs with a lower

heuristic value are nearer the head of the list and are considered to be

"better'! choices.

<heuristic value>,

<pointer

to ticklist> => ();ADDCHOICE e:

splices/

INTERPLAN 24

splices

a pair into the appropriate place in the list of choices.

MAKECHOICE removes the first (lowest value) pair from the choice list

and makes the ticklist in this pairt the one for classification next. It

deals with the special forms allowed in the choice list.

7.5 Protection

When a goal has to be achieved, after other goals have previously

been achieved, there is a mechanism for ensuring that the previously

achieved goals are kept true. We PROTECT the previously achieved goals

by adding them to the ticklist heading of all levels of the search tree

which are grown below the ticklist where the goals have been achieved.

This is represented diagrammatically in figure 7.4.

FIGURE 7.4-

Then the protected goals must be true simultaneously with all the goals

(preconditions for some operator) in a ticklist in some situation for that

situation to be one in which the operator is then applicable (relative to

previously achieved goals). It should become clear later how information

in the protected columns of a ticklist is used by the system. For theIOOment,

however, it will be useful to know that a system using the pro-

tection facility generally will look for any VIOLATION of the protectionof

a fact (PROTECTION VIOLATION). This is an implementation of a feature

in the HACKER planning system (Sussman, 1973).

INTERPLAN 25

7.6 Classifiers and Editors

FIGURE 7.5

Th~ basic loop of the planning system is shown in figure 7.5. The system

is thus specified as pairs of a classifier for a ticklist and an editor

for the tree of ticklists. See Appendix I for information available

within a ticklist and within the tree of ticklists for use by classifiers

and editors.

As will be seen later, the classifiers are defined to look at the

patterns of ticks and crosses in tick1ists. These patterns provide a

quick and simple language in which bug types can be identified for con-

junctions of goals (cf. the teleological trace of the problem solver's

actions necessary to find bug types in HACKER -Sussman, 1973).

INTERPLAN 26

7.6.1

(ALLTICKS)

Classifier:

A complete row of ticks exists in some row (or more gener-

ally, the ticklist heading is satisfied by some row repre-

senting a context).

(SUCCBACKUP)

Editor:

Backup successfully to next higher node (ticklist) in tree,

applying the operator represented by the arc of the tree

which is now applicable in this context. The new context

produced becomes a new row in the higher ticklist and in

this row a tick is entered in the column of the goal the

operator achieved. The operator used to produce a new con-

text is remembered by assigning its name to the VALUE (HBASE

Barrow, 1974) of the item "SITN'f in the new context.

For example see figure 7.6

FIGURE 7.6

P2 P3PlPI P2 P3

Cl xCl x

C2 xC2 x.;

C4 II

after
editing -.
givesOP

x

PI p p
xl X2

C2 x

v

applied to C3 gives state C4.OPG3 .;
x

INTERPLAN 27

7.6.2

Classifier:

A cross appears for some column in the last row of a ticklist

(and see section 7.6.4 classifier for ticks later in row too)

Editor:

(ACHIEVELAST)

Operators which could add the pattern represented by the

column to the world model in some context are sought for.

This is the recursive use of the means-end analysis technique

The editor finds all operators relevant (i.e., those

can ~ the sought-for pattern to the context). A function

OPSCHMODIFY £ <opschema> , <search pattern> => <opschema>

is applied for each relevant operator when found. This norm-

ally just erases the second argument to return the <opschema>

unmodified but can be used to change the order of precondi-

tions etc.

The editor adds new choicepoints to the search tree corre-

sponding to new successor nodes for each relevant operator.

The successor nodes are initialized when chosen from the

CHOICEPTS list, where they are kept in compact form, but

notionally they exist after this editor has been applied. See.
section 7.5 on Protection for explanation of symbols used in

the example in figure 7.7 below (especially why the PI pro-

tected goal is brought down through levels of the search tree).

FIGURE 7.7

PI

P2

Pl p p PI pXl X2 Yl
Cl Cl

if OP and OP. are only relevant operators.x y

INTERPLAN 28

7.6.3

Classifier:

A tick appears in the last column of the last row of a

ticklist and some other entry on the row does not have

an entry.

Editor:

(FILLIN)

Scan from left to right along the last row and for any

position not filled in, ask the question answerer

QA E:

<pattern>,

<context> => <tick or cross>

whether the pattern heading the position is true in the

context of the last row. See APPENDIX II for details of

QA. A call to QA may instantiate some variables local to

the ticklist. If QA finds that a pattern is true in the

given context with more than one instance

«TYPE *$*X BOX»

matches

e.g. «TYPE BI BOX»

«TYPE B2 BOX»

«TYPE B3 BOX»

the system asks the user if he would like to pre-order

the choices (POSSLIST) , then proceeds as above with the

first choice, but adds a special node to the choices list

to be used to initialize the other choices (this special

node is a STRIP of three items -see APPENDIX II). These

choices other than the first are demoted on the choiceslist.

Filling in continues either until all the row is filledin,

in which case we can SUCCBACKUP, or until a cross

entry is made, in which case we must ACHIEVELAST the

appropriate goal (unless it is a global goal -see

APPENDIX 1.1).

INTERPLAN 29

7.6.4

Classifier:

A cross on same row (E£! a protected entry) is followed

by a tick in a later column. That is, the achievement of

a goal has made false a goal which was true previously.

Editor:

(ALTERLASTORDER)

An attempt is made to shuffle the pattern of the column

which was ticked, before the pattern of the column with

the cross in the ticklist heading. Checks are first made

to see if the columns have been swopped about previously

or are now not allowed to be swopped (looking at TREVS

of the ticklist for the reference numbers of the patterns

see APPENDIX 1.11) or to see if no more reversals are

allowed for this ticklist (TREVS is "NOREVERSE"). For

example see figure 7.8.

FIGURE 7.8

P3 PI P2

Cl
after

editing
-.~

gJ.ves

INTERPLAN 30

7.6.5

A cross in a protected column of some row is followed by a

tirk in a later column.

C1.~s~i fi.er:

Editor: (PROTECTVIOLATION)

This is the editor which suggests an approach with reversed

top level goals (at the level protection was placed upon the

pattern which is now crossed -this is found by looking at the

reference for the protected entry), or suggests an approach in

which we promote the actual goal we were considering to the

level at which protection was placed (see section 6). Before

promoting an entry a check is made to see if the promotion

would have altered the course of computation in the original

case. That is, we see if the promoted entry would already

have been true at the point to which we wish to promote it. If

it would have been, the promotion is attempteti for the goal

higher in-the tree which this subgoal was for. If the same

applies to this we try higher still, unless the protection

level itself is reached, in which case no promotion is made.

For example see figure 7.9.

If some promotion can be made, and goals higher in the search

tree exist between the level we promoted from and the level at

which protection was placed, we also try to suggest approaches

in which these intermediate goals are promoted as above.

FIGURE 7.9

.~ P21 holding period
t ~ until P2 achieved

P] PL after
editing

-~

gives
Cl)(

c~ ;i

i
P] P22P2J

Xc~ ~

c~ ~ See APPENDIX 1.11 for details
of how a goal with a restrictec
holding period is represented
to INTERPLAN.

INTERPLAN 31

7.6.6

Classifier:

A cross appears in some column for which there are no

means to achieve the relevant pattern (or no further

means if some have been tried).

Editor:

(FAILBACKUP)

Try to alter the order of the pattern which has a cross

in its column with some earlier pattern in the ticklist

heading (using ALTERPREV). The earlier goals achievement

may have rendered the goal on which we failed insoluble

(e.g., by wrong choice of a variable instantiation), in

reverse order they may both be solvable. The variables

of the ticklist are reset using INITVARS (see APPENDIX

1.11).

If the reversal cannot be made with any other pattern

earlier in the ticklist heading (e.g., reversal already

done in opposite order or this is first pattern we are

trying to achieve) then FAILBACKUP to the parent ticklist

of the current one. This editor is also used when other

editors have failed to do their job (e.g., cannot

ALTERLASTORDER).

INTERPLAN 32

7.7 The Approach-Successful Ticklist Headings

The ticklist heading specifies the "Approach" (the sequence chosen

to attempt to achieve goals) to be taken by the planning system. Any

unforeseefl-difficulties in using this approach lead to it being discon-

tinued, failtlre information being extracted as appropriate and, possibly,

new approaches being stlggested. New approaches may involve re-orderings

of the original goals or the suggestion of certain Ilset-up'l goals in

appropriate places. A successful approach fully specifies the order in

which goals can be achieved and kept true without interaction. The aim

of the INTERPLAtJ system can be interpreted as discovering such a successful

approach. Successful tieklist headings contain information over which

learning schemes may be devised.

Debugging~the Approach

The continuous cycle of classifying the "bug" in a current ticklist

and editing the tree of ticklists in the light of this can be seen as

debugging the initial approach suggested to achieve a goal (i.e., the

goal ordering itself) to one which will in fact achieve the goal. Bugs

~re detected by looking at the patterns of ticks and crosses in a tick-

list and alterations (edits) to the search tree of ticklists are made to

account for these bugs. The method used here on declarative data repre-

sen~ations has much in common with that used in HACKER (Sussman, 1973) on

more procedural representations.

INTERPLAN 33

8.

HOW__I~J~RP~§~L~S- 'l~~ ~~~~CK PROBLEM

The 3-block problem was described in section 5, and was used to

illustrate the problem specification to INTERPLAN in section 7.2. A

listing of the problem specification is given in figure 8.1 to bring

this information together. OPSCHFNfunctions are included. The

purpose of the functions CLFN and ONFN is specified in section 7.2(b).

No special snytax is provided for their construction in the presentprogram.

They use HBASE primitives, e.g. GETITEM, INSTACT, VALUE and

FIGURE 8.1

COMMENT' BLOCK STACKING PROBLEM FOR 1~~RPLAN'
VARS 81 S?;

FUNCTION CLFN; V ARS 81 82;
INSTACT(*~*X) -> Bl;

COMMENT 'GET INSTANCE OF X lDCAL 'ro Opsr;mMA 51
LOOPIF GETITEM«<DN ~>B2 .cr,~81»,~.TJr) THE~

1 -> VALUE«<CL $~B2»);
n -> VALUE («ON S~2 $fBl»); B3 -> 1=\1 ClJJSE

END;

FUNCTION ONFN; VARS B1 B2;
INSTACT(*~*X) -> g1; INSTACT(*~*V' -> ~2;
IF GETITEM'«rN .t.tB1 <:RT <::IoJON ~$B2:> ~>p~:> ».TR1JE) THEN

1 -> VALTJE«<CL S$B2»);
0 -> VALUE«<ON ~~Bl ~$B3») ~LOSY

END;

OPSCREMA «ACTCL *~*X»
ADD «CL *~*X»
DELETJ;;
PRECONDS
VARS X

J::NDSCHEMA -> .";1;

QPSCHEMA «T>1J'IUN *$*X *~*"7»

ADD «ON *$*X *~*Y»
DELETE «CL *$*Y»
PRECONDS «CL *~*X» «Clj *~*Y»

VARS X Y
ENDSCHEMA -> 82;

CLFN -> OPSCHFN(51) ;
ONFN -> OPSCHFN(52) ;

[% «CL ~~ » , ['.Sl~"],
«ON == == » , [~S2~] ~"] -> ACHIEVES;

ASSERT «ON C A»

«CL C»
«CL B» ;

INTERPLAN 34

the actors ET and NON (see Barrow, 1974). Many interesting problems

can be specified without the-need of OPSCRFNs, e.g, the STRIPS-robot

world and the Keys and Boxes problem. In this case the OPSCHFNs are

used to allow the operator schema's effects to be dependent on some

condition of the situation it is applied to. RBASE contexts have

reference numbers. The current context (CUCTXT) in which the 3 facts

are asserted has reference number 1. This will be taken as the initial

situation by INTERPLAN.

A trace of INTERPLAN on the 3-block problem'is shown in figure 8.2.

:

GOAL «ON A B» «ON B C»

1';NTERING PL'-NHIHQ. SYSTEM WITH INITIAL STATE 1

note 1

note 2

note 3

** ACHI~VE « ON A B » IN 1

** ACHIEVE « CL A» IN 1

** APPLY « ACTCL A » TO 1 TO GIVE 2 ** APPLY « PU'roN A B » 'It) 2 'I'O GI VE 3

** ACHIEVE « ON B C » IN 3

** ACHIEVE « CL B » IN 3

** APPLY « ACT~L B » TO ~ '{t) GI VE 4

PR£JrECTIUN VIOLATION REfmnER ** ACHIEVE « ON B C » IN 1

** APPLY « PU'roN B C » TO 1 TO GIVE ~

** ACHIEVE « r.N A ~ » IN 5

** ACHIEVE « CL A» IN ~

** APPLY « ACTCL A » TO ~ TO GI VE 6

PROTECTION VIOLATION PROMOTE ** ACHIEVE « CL A » IN 1

** APPLY « ACTCL A » TO 1 T() GIVE 7

** ACHIEVE« ON B C » IN?

** fi.PPLY « PUTrnf B C » TO 7 TO GIVE 8

** ACffiEVE « (;N A B » IN 8

** APPLY « PUTON A R » Tn 8 'IU GIVE ~

CPU TIME = 2.109 SECS**

NOW
«ACTCL A »
« PfJTON B C »
« purmN A B »

note 4

FIGURE 8.2

Note 1

2 is the reference number of the new context got by applying the operator

wi th name «ACTCL A» to 1.

INTERPLAN 35

Note 2

Please

note that the.
The index

--"- See

The tree of ticklists at this stage is as below.

individual ticklists expand downwards (rows) only as needed.numbers

indicate the erder in which tick and cross entries are made.

figure 8.3.

only PUTON (A,1)
relevant

CL(A) CL(B)

2

I~fl!'

1

x

3 1+

I!II!IIE:I2 I.;

PROTECTION VIOLATION

only ACTCL(B)
relevant

only A~(A) Attempt to achieve CL(B)relevant ~ made ON(A,B) false.

No preconditions No preconditions

FIGURE 8.3 c

'!'he protection violation occurs when taking the approach as shown in

the holding period diagram of figure 8.4.

FIGURE 8.4

ON(A,B)

I [

CL(B) -+- ON(B,C)

Initial Situation

IApproach:

I

DN(A,B)

; CL(B); ON(B,C)

INTERPLAN 36

So, as indicated in section 6, the violation may be resolved by trying

an approach as shown in figure 8.5(a) or one as shown in figure 8.5(b).

(a) Initial Situation Problem Solved

ON(B,C)

ON(A,B) ~

Approach:ON(B,C);ON(A,B)

(b) Initial Situation Problem Solved

ON(A,B) ~

CL(B) ION(B,C) I

Approach:

CL(B);

ON(A,B);

ON(B,C)

FIGURE 8.5

The latter cannot be used as CL(B) is already true initially and here

this approach is no different to the original which caused the violationSo,

problem solving proceeds with the first (and only) suggested

approach (f igure 8.5 (a» ."REORDER" is printed to signify this.

Note 3

Again a protection violation occurs while pursuing this approach.

The tree of ticklists then is shown in figure 8.6. The approaches

suggested for getting around the violation are similar to before.

Since, however, the top level reversal of goals has already been done,

only the approach with a promoted precondition can be tried (see

f,igure 8.7). "PROMOTE" is printed to signify this. This is attempted

next as again it is the only choice.

INTERPLAN 37

only PUTON(B,C)relevant'

PROTECTION VIOLATION
only ACTCL(A)
relevant

Attempt to achieve CL(A)
made ON(B,C) false.

No preconditions

FIGURE 8.6

Note 4

The approach of figure 8.7 is successful and produces the optimal plan

« PUTON B C »; « FUTON A B »« ACTCL A»;

The tree of ticklists after successful back-up is shown in figure 8.8.

FIGURE 8.7

Initial Situation Problem ,Solved

CL(A) I ON(A,B) ~

ON(B,C) .

Approach:

CL (A) ; ON(B,C);

ON(A,B)

INTERPLAN 38

CL(A) must be true
to here

CL(A) ON(B,C) ON(A,B)

20

~I

1

x
I!I

21 22---I
1!II!fl~17 xyi

I!/I!/
27 26 28

I8 xt'

-
33 32

9 I I

only ACTCL(A)
relevant

only PUTON(A,B)
relevant

t only
PUTON(B,C)
relevant

No preconditions

/Protected

Protected

FIGURE 8.8

INTERPLAN 39

9. EXAMPLE PROBLEMS

INTERPLAN has been tried out on a variety of problems. Besides

the block stacking problem (3 block as given and a 5 block example used

by Warren, 1974), the STRIPS robot world in particular was used to give

some comparison between the different problem solvers' performance.

Especially to test the degradation of performance on longer problems.

Some provisional times for a series of problems are given below.

Comparison times are given where available for STRIPS (3 versions of the

axioms were used for their problems: AI Journal Vol. 2 (Fikes and Nilsson,

1971), an earlier ve~sion of this paper as presented at IJCAI2, and AI

Journal Vol. 3 (Fikes, Hart and Nilsson,1972b)), ABSTRIPS (Sacerdoti,

1974), LAWALY (Sikl~ssy and Dreussi, 1973) and WARP LAN (Warren, 1974).

These times should not be taken too seriously as I have felt free to

modify the axiomatizations to fit into the INTERPLAN framework.

~ (these refer to the table below)

1. INTERPLAN is a program run in POP-2 and HBASE (a CONNIVER-like data

base package written in POP-2) on a DEC10 computer. The times were

obtained in a single session and include garbage collection and any

operating system overhead. INTERPLAN occupies approx. 5K words of

store.

2. STRIPS and ABSTRIPS in all forms were run in partially compiled

LISP on a DEC10.

3. LAWALY is run in interpreted LISP on a CDC-6600 and the times

include garbage collection. (CDC-6600 is approx. 8 times faster

than the DEC10).

4. WARPLAN is run in PROLOG, run in optimized FORTRAN on a DEC10.

5. STRIPS did not solve this problem given 20 minutes of CPU time.

INTERPLAN 41

10. ENHANCEMENts Te THE METHeDS USED IN INTERPLAN

The current program, as described here, has been kept simple so

that the mechanisms used to cope with the interacting goal problem could

be identified and described. Some of the range of problems which

INTERPLAN has tackled have indicated several enhancements which could

prove useful or, for some problems, necessary.

Full expansion of search tree branches doomed to fail.

INTERPLAN tries to solve a problem by trying out the problem

approach it is provided with initially (the given order of goals).

It solves goals in some sequence checking that previously achieved

goals remain true. In many cases the system will try to achieve a

goal which from the outset (if we had the information available) we

could say would fail under any circumstances. Such a problem occurs

during block stacking in trying to achieve CL(B) when ON(A,B) is already

true and has to be kept true. A great deal of effort may be wasted

in exploring ways to achieve a goal (e.g. CL (B)) when none can work

because of the particular context we are working in (e.g. ON(A,B) to

remain true). WARPLAN (Warren, 1974) uses information about what

conjunctions of facts cannot be true together to reject certain branches

of the search tree. In this case an instruction to the planning system

such as

IMPOSS(CL(y) & ON (x,y)) would be given.

1 propose to incorporate a similar idea into INTERPLAN. Whenever

a new ticklist is generated, the ticklist heading will be validated

using IMPOSS(...) information to reject invalid headings.

Pre-ordering the Approach

When a sequence of goals is given, some may already hold in the

initial situation. We should prefer plans which did not d~stroy the

goal, and then re-achieve it again later. However, the ordering as

given may allow this, since INTERPLAN only preserves the truth of a

goal once it has actually considered it in the approach it was given.

If all the individual goals which are true in the initial situation

are moved to the front of the goal list (the approach is pre-ordered

in this way) INTERPLAN will prefer plans which preserve the truth of

these goals.

INTERPLAN 42

Heuristic knowledge about goal orderings, or orderings learned

during planning may also be used to pre-order an approach. A pre-

ordering of each new ticklist heading could be done to allow the

above. Repeated goals in a ticklist heading could also then be

weeded out.

10.3.

Achieving goals which already have true instances.

Normally, if INTERPLAN discovers some goal which is required to be

true already is true, at the time required, it makes no attempt to

apply operators to achieve the goal. If the goal is fully instantiated

(e.g. CL(B)) this is okay as it can only have one possible instance

and this is known to be true. If the goal was CL(x) and CL(B) was

true, the goal would hold if the variable x was set to B. However,

another instance (e.g. CL(C» may be required to be achieved to reach

a solution.

A switch (turned on by assigning "true'! to the variable "COMPLETE")

has been provided in INTERPLAN so that goals which are not fully

instantiated and which in some instances are true can be recognized

and further choice points constructed to allow the non-true instances

to be achieved if the already true instances prove not to be of use.

10.4. Loop detection -Search space redundancies.

The planning system may try to pursue an approach which causes

it to loop in some way (i.e. left to itself, it may never terminate).

The loop can be treated as a failure, and information extracted from

the failure to suggest new problem approaches to try to avoid the

loop. However, the loop must be detectable to be able to do this.

At present, INTERPLAN detects two types of loop.

a) It prevents goal reversals which have already been tried being

suggested as approaches to circumvent goal interaction problems

(see section 4).

b) During subgoaling a list of all achieve requests which we are

planning to satisfy (along one path through the ticklist search

tree) are kept, together with the situation we required each one

to be achieved in. If, to satisfy some lower subgoal, a request

is issued which is the same as some higher request and the situation

both are required in is the same, a loop is reported (see section

INTERPLAN 43

7.6.2).

However, for instance, the generation of similarnon-linear

approaches (ones ~ith a promoted sub-goal) is notchecked.

If a loop is not detected, as well as not providing information

on which to suggest possibly useful problem approaches, redundancy

can occur in the search space of the planner (the same branch may be

tried more than once). When depth first expension of the search tree

is being used we then can loop without producing any solution.

10.5. Planning in abstraction Spaces

As mentioned in section 10.1, planning in INTERPLAN proceeds by

making a plan which in all the details given (in add and delete lists

of operators) works. Where there is an excessive amount of detail

this can be tedious and small errors can throw the planner off track

(with a depth first 'search expansion strategy). Sacerdoti (1974)

has suggested and implemented a scheme in the ABSTRIPS problem solver

which checks that suggested plans will work at certain abstract levels

of detail before going on to check them on more details. His scheme

is to assign each precondition of a STRIPS-like operator schema to an

!'abstraction space" and then to plan in higher abstraction spaces

before going deeper to check details. ABSTRIPS will re-plan in a

higher level abstraction space if details cannot be filled in without.
interaction. If this occurs, the higher level planning space is not

given an indication of what caused the failure. The system relies

on good plans being produced at high levels of abstraction.

I have started to consider a simple extension to INTERPLAN based

on Sacerdoti's assignment of operator schema preconditions to ab-

straction spaces, which will allow its full power to be used to produce

an "approach" which seems suitable at a high abstraction level. Then,

further details will be added to this "approach" and planning in lower

abstraction spaces can be done until a plan which works for the most

detailed level is available. All goal interactions, whether within

an abstraction level, within details, or between both, will be dealt

with by the normal classifiers and editors of INTERPLAN. Failure inform-

ation in this way is passed between planning efforts in different ab-

straction spaces.

INTERPLAN 44

11.

CONCLUSION

This report has outlined the problems of interactions between goals

which occur in "coupled worlds". A process has been described which

allows the use of problem solving techniques which ignore the possi-

bilityof interactions and hence which can be simple. Such techniques

have received a greal deal of attention, e.g. in STRIPS (Fikes &

Nilsson, 1971). Information can easily be extracted from any inter-

actions which do occur to allow planning to continue. A problem

solver, INTERPLAN, has been designed and programmed which incorporates

this process.

INTERPLAN tries to find an approach (sequence of individual goals)

which will solve a task which comprises a conjunction of goals. It

does this by "debugging" a given initial approach (usually the given

order of a conjunct of goals). This process is similar to that used

in HACKER (Sussman 1973) for a more procedural representation of the

problem information.

INTERPLAN, and the classifier/editor framework it is described

in, provides a tool which can be used for the further study and com-

parison of problem-solving techniques for creating linear plans.

In particular the ticklist and its heading provide a source of infor-

mation which can be used to improve the planner1s information.

The Keys and Boxes problem described in section 2 can still not

be tackled by the system though I still consider this to be a bench-

mark test. Further pattern matching facilities must be provided to

deal with sets of objects (see section 3.3) before this will be

possible.

INTE RP LAN 45

APPENDIX 1 PROGRAM IDENTIFIERS

1.1

The Components of an OPSCHE~

An OPSCHEMA can be constructed using CONOPSCHEMA. The macro OPSCHEMA

makes default settings for most components, see example later.

(a) OPSCHNAME A pattern (possibly with variables local to the

OPSCHEMA) which is used as the name of the operator

for output purposes.

(b) ADDLIST A list of patterns (possibly with local variables)which,

when an operator from this OPSCHEMA can be

applied in some situation, can be instantiated from

the values of vaTiables local to this OPSCHEMA and

asserted (made true) in the successor situation.

(c) DELETELIST A list of patterns as above to be made false in

the successor situation.

(d) OPSC1IFN A function to be applied to the successor situationafter

the additions and deletions have been made.

(Generally, this may act like the IFADD and IFREM

theorems of CONNIVER -McDermott & Sussman, 1972).

(e) PRECOND3 A list of pairs

{<REF NUMBER>. <PATTERN>}

where <REF NUMBER> will usually be a positive integer.

The PRECONDS are joined to any PROTECTEDS to become

the ticklist heading of ticklists for operators which

are instances of this OPSCHEMA. The PRECONDS specify

the applicability conditions of the OPSCHEMA.

(f) SCHREVS This is a list of pairs of the reference numbers of

preconditions for which reversals should never beattempted.

It will generally be left null, but can

be used to incorporate heuristic knowledge of a

problem domain. For instance, a scheme of preventing

re~als between groups ef goals arranged in a

precedence ordering (see Sik1ossy and Dreussi, 1973)

can be implemented using this feature. SCHREVS can

be r'NOREVERSE,r if it is known that no reversals should

be

attempted.

INTERPLAN 46

(g)

VARSLIST

An association list ('iALIST") which contains all the

local variables of this OPSCHEMA. Usually their

values will be UNDEF initially,e.g.

{X UNDEF Y UNDEF}

This component is used to initialize the TICKVARS of

each ticklist generated from this OPSCHEMA.

(h) MAXREVS Specifies the maximum number of pairwise reversals

which can be made for ticklists generated from thisOPSCHEMA.

A function NUMREVS(N) is provided to

give this number. MAXREVS is only used for com-

putational convenience in checking if all reversals

have been tried.

The macro OPSCHEMA

When the macro OPSCHEMA is used default settings are provided for many

components, e.g.

OPSCHEMA

ADD

DELETE

<NAME>

<Al>

<Dl>

<NAME>,maps to

<A2>

<D2>

PRECONDS<Pl> <p2>

{% <Al>, <A2> %} ,

{% <Db, < D2> %} ,

(lambda; end), no action OPSCHFN

{% {I .<Pl>}{2 .<P2>} %},

{ }, null SCHREVS

{ X UNDEF Y UNDEF },

NUMREVS (2) MAXREVS

.CONOPSCHEMA

VARS X Y

ENDSCHEMA

If I'G" proceeds any precondition, the pattern is given a reference number

0 to indicate it is a GLOBAL precondition which has no means of achieve-

ment (see Appendix 1.11).

INTERPLAN 47

.11 Components of TICKLIST, OP and LEVEL

The Components of a TICKLIST (constructor CONSTICK) are:-

(a) TICKARR The actual 2-dimensional array represented as a strip of

2 bit elements (initiator INIT2, access doublet SUBSCR2) ,

The entries are initially 0 but can also be a cross (2)

or a tick (3). The strip is initially given a length

appropriate to 4 rows (i.e. 4*COLMBOUND -see (i) later)

but can be expanded as needed.

(b) TICKPATTS Is a list, COLMBOUND long.

It's entries are pairs { <REF> .<PATTERN> }

It is accessed using the doublets:

PATTREF(i,ticklist) and PATT(i,ticklist).

<PATTERN> ::= goal pattern which may have variables.

<REF> ::= INTEGER >= 1

A goal which must be true when the whole ticklist

heading is satisfied.

0

A goal for which there are no means of achievement

(a global goal). This is provided for efficiency in

some problems. It can also be used to indicate that

no means of achievement should be used for a goal.

INTEGER =< -1 but >= -1000
A goal which need only be true until the goal with I

reference number equivalent to the absolute value of

this goal's reference number is satisfied. Typically

these goals are ones found to be generally required

to be true, before another harder to achieve goal

can be satisfied, often called SETUP goals as they

SETUP the facts in some context to make it easier to

solve a later goal.

INTEGER =< -1000

A setup goal as above whose corresponding main goal

is already true. -1000 is added to such a setup

reference number.

{ < TICKLIST> .< COLUMN NUMBER> }

A reference number which is a pair indicates that the

INTERPLAN 48

corresponding pattern is a PROTECTED entry. In thepair,

the ticklist is the one at which PROTECTION was

placed and to which any PROTECTION VIOLATIONS should

be reported. The column number is the column in which

the fact on which PROTECTION was placed is in the

ticklist.

(c) TICKSITNS Accessed by the doublet SITN(i,ticklist).
It is a list of contexts which represent the headings of

each row of the ticklist.

(d) OPOF
A pointer to the operator which will be applied to some

situation which satisfies the heading of this ticklist.

Via the OPOF, the system can gain access to nodes

(ticklists) higher in the search tree.

The intermediate data structures between a ticklist and its

parent ticklist can be thought of as an arc of the search

tree. There are two such connecting structures which are

both always used to specify an arc as shown in figure APP.l.

PARENTTICK

<TICKLIST> 1

"-'"- ---"""""""""""""

<LEVEL>

OPLEVEL

<OP>l.' -

<TICKLIST>4

<TICKLIST>2 <TICKLIST>3

FIGURE APP.l

See later. for components of OPs other than OPLEVEL and

components of LEVELs other than PARENTTICK.

(e) TICKVARS
An association list (ALIST) of variable names local to the

OP being used, with their values (values are UNDEF if not

set).

INTERPLAN 49

e.g. if X = "BOXl" and Y is not set, TICKVARS is

{ X BOXI Y UNDEF}.

When a ticklist is created, it's TICKVARS is initial-

ized from the VARSLIST of an OPSCHEMA.

(f) TREVS A list of pairs of reference numbers of major goals

(ones which initially have reference numbers >= 1) for

which column reversals at this ticklist have beenattempted.

For example, if there were 3 goals initially

with reference numbers 1, 2 and 3 and reversals have

been tried between 1 and 2, and between 1 and 3, TREVS

would be { { 1 .2 } { 1 .3 }}. This component is

used to check that repeat reversals are not done.

TREVS can also be "NOREVERSE". The system assigns

"NOREVERSE" to TREVS when all reversals have been tried.

TREVS is initialized from the SCHREVS component of the

OPSCHEMA of the OPOF this ticklist. Heuristic knowledge

as to what reversals are not useful can be incorporated

into the SCHREVS of OPSCHEMAs.

(g) LASTROW The row number corresponding to the context in which we

are trying to see if the ticklist heading is satisfied.

(h) LASTCOLM The column number we last made an entry in (or will point

to a column with no entry -value of entry = 0 -if the

ticklist has no entries yet).

The total number of columns in the ticklist heading.(i) COLMBOUND

(j) NUMPROTECTEDThe number of columns of the ticklist occupied by

PROTECTED entries. For convenience PROTECTED entries are

always put in the first NUMPROTECTED columns of the tick-

list.

The Components of an OP (constructor CONOP) are:-

(a) SCHEMA A pointer to the OPSCHEMA data structure from which this

OP is descended, i.e. this OP is an instance of theOPSCHEMA.

(b) OPLEVEL A pointer to the LEVEL data structure (see later) to

connect with the parent ticklist. See figure APP.l.

INTERPLAN 50

(c) ACHPATT

(d) INITVARS

The pattern (which usually will refer to local var-

iables in this OF) which will be used to match against

the pattern in the parent ticklist which we are trying

to achieve. This match transfers the values of the

variables between ticklists.

This is a copy of the ALIST from the appropriate

OPSCHEMA after instantiation by matching the pattern we

expect to be achieved against the appropriate ADDLIST

entry (to set some variables). INITVARS is used to

RESET the TICKVARS of ticklists in certain cases if

column reversals etc. have been performed and a search

for some satisfactory situation is begun again.

The Components of a LEVEL (constructor CONSLEVEL; are:-

(a) PARENTTICK A pointer to a ticklist in which some goal is

desired to be true (see figure APP.l).

(b) CURRACHIEVES A list used in loop detection which holds information

on what patterns have been asked to be achieved in

what contexts, the entries being notionally grouped

into 3 components:-

1. An instance of the pattern we have asked to be

achieved -any unset variables are 1'==11 (see

Barrow, 1974).2.

The context we asked for the pattern to be true in

3. The tick1ist in which it was found to be necessary

to make this pattern true.

(c) CHOICES Used to hold a list of the different ways to achieve the

achieve pattern of the LEVEL. See Appendix III.

INTERPLAN 51

APPENDIX II THE QUESTION ANSWERER (QA)

The Question Answerer is used to gain access to facts about a

particular situation. It is given a pattern and a context, and is

expected to find all instances of the pattern which are true in the

context. If there are none, it returns "cross", if there is at least

one it returns "tick'!.

<tick or cross>.QA e: <pattern>, <context> =>

If there is more than one instance

** MULTIPLE INSTANCES is printed out and the system goes into POP-2

READY (interrupt) mode. The instances are in the list POSSLIST which

can then be examined or altered before continuing. The first (or

only) possibility is matched against the input pattern to cause

instantiation of variables. Any other possibilities are kept as

choice points in the ticklist search tree by adding a special node to

the CHOICES lists, this holds:

1. the rest of the possibility list (other than the first item),

2. the ticklist the call to QA was made for, and

3. the input pattern (to be used to instantiate variables when the

other possibilities are used).

The instances of a given pattern are found using a function

FETCHALL e <pattern> <possibility list of instances of pattern>

This is simply defined at present to find all patterns in the context

CUCTXT which have VALUE true, using APPITEMS (see HBASE -Barrow, 1974).

It is inteaded to expand FETCHALL to be able to deal with the equivalent

of CONNIVER-like IFNEEDed theorems (McDermott and Sussman, 1972).

INTERPLAN 52

APPENDIX III OR-CHOICES

The mechanisms provided within the classifier/editor framework

describing INTERPLAN are intended to cope intelligently with the

generation of a solution to a problem composed of a conjunct of goals.When

the planner is confronted with a choice of several ways to

proceed to achieve a goal pattern, it uses the information it is given

(e.g. the given ordering of different operator schemas which can be

used to achieve a given request) to make a reasonable 1st choice, thenproceeds.

The alternative choices (or-choices) must be stored in

some way which will enable them to be chosen if the first choices arepoor.

The mechanism presently used in INTERPLAN will be described here

Or-choices occur when there are several ways in which a goal

pattern can be made true. These occur mainly when:

a) there are seve.ral true instances of a goal, or,

b) there are several different operator schemas which can

be used to try to achieve instances of the goal.Other

or-choices can arise if INTERPLAN, in discovering some goal

interaction, has suggested alternative approaches to the main problem

(the original conjunct of goals) or to subproblems of it.

The basic way in which or-choices are ordered is that when inter-

actions occur, an alternative way to proceed is taken from the or-

choice point which was most recently used. That is, we would like to

use simple depth-first backtracking to find an alternative way toproceed.

Alternative choices are taken from the immediate vicinity

of some interaction discovered in the search tree.

We could just use a list, like a backtrack trail, in which all

choices were added to the front of the list when they were generated,

and alternative choices made by removing the first choice in the list.However,

IN'rERPLAN generates some choices (e.g. alternative approaches

to avoid a Protection Violation) which are alternative ways to proceed

at different points in the search tree to the point at which an

interaction occurred.

If these were merely added onto the front of a choices list,

INTERPLAN 53

would be chosen at inappropriate times

\ve therefore keep or-choices with the points in the search tree
which they were intended for. The I'level I' data structure (see

Appendix 1.11) provides the point to which or-choices can be anchored.

When an interaction occurs a failure causes a choice to be made from

the appropriate alternatives at this LEVEL. When success reaches

some choice point, the untried choices are not forgotten, but are

released to a global list of choicepoints (called CHOICES(TOPLEVEL».

Ordering schemes may be used to order choices at any choice

point including the global CHOICES(TOPLEVEL) list. Each choice is

inserted into the appropriate choice list by comparing a heuristic

value it may have with others on the list. The lists are ordered so

that lower values are considered "better" and are earlier in the lists.

Choices are made from the head of the appropriate list. Whenever

a choice is made from the global CHOICES(TOPLEVEL) list "GLOBAL CHOICE

USED" is printed. This signifies that a choice has had to be made

which may not be immediately relevant to the interactions which have

just occurred -there being no choices left in this position. The

ordering scheme can easily be altered by setting parameters but is

arranged at present to prefer in order

a)

b)

c)

d)

alternative operators to achieve a goal

suggested re-orderings of goals (new approach)

suggested promotion of a precondition (new approach)

alternative instantiation choice for a goal with variables.

11 a first choice of an instance of a goal which is true in some

context proves to be of no value, we have no cause to believe that

merely substituting alternative instantiations will work (e.g. if it

didn't work with BOXl why should it work with BOX2 --BOX99).

Different operators or approaches suggested in the light of inter-

actions provide a more definite way to re-consider the problem.

Therefore choices of (type d) need not be chosen immediately at the

point at which interactions occur. We therefore put alternative

instantiation choices (type d) immediately on tbe global CHOICES(TOP

bEVEL) list. Once again this scheme can easily be altered by a

change of a parameter.

INTERPLAN 54

Or-choice Control Parameters
, ~

a) There are parameters which give the heuristic values of different

choice types. These are used for inserting the choices into the

list held in CHOICES of the appropriate level, or in the global

CHOICES (TOPLEVEL) list.

(a)

(b)

(c)

(d)

OPCHOICE

REVCHOICE

EXTCHOICE

INSTCHOICE

default is 10

11

12

20

A parameter CHOICELEVEL (default is 15) can be set to give the

value below which choices are routed to the CHOICES list of the

appropriate level, and above which are routed to the globalCHOICES

(TOPLEVEL) list.

b) An additional choice point type may be generated when the switch

COMPLETE is set true. These are choices which indicate attempts

to achieve instances of a goal which has some true instance in

the context required. They have a parameter giving their

heuristic value type (e) COMPCHOICE default is 50. Thus with

CHOICELEVEL as given they are routed immediately to the global

CHOICES (TOPLEVEL) list.

INTERPLAN 55

ACKNOWLEI:x:;EMENTS

This work has benefited from interactions with members of the

Department of Machine Intelligence (now the Machine Intelligence

Research Unit) of Edinburgh University, especially Harry Barrow and

Robert Ross. Discussions with my fellow student, Dave Warren, tackling

similar problems from a different viewpoint have helped clarify theideas.

My debt to the designers of STRIPS and HACKER should be clear.

The work is being supported by an SRC research studentship and is

supervised by Professor D. Michie. I thank Jean Duckman and Gloria

Ketchin for their care and patience during the preparation of the

typescript.

INTERPLAN 56

REFERENCES

HBASE POP-2 library documentation (in preparation).

Barrow,

H.G. (1974)

Burstall,

R.M., Collins, J.5. and Popplestone, R.J. (1971)

Programming in POP-2 Edinburgh: Edinburgh University Press.

Ernst,

G.W. and Newell, E. (1969) GPS: A Case Study in Generality and

Problem-solving Academic Press.

Fikest R.E't Hartt P.E. and Nilssont N.J. (1972a) Some New Directions

in Robot Problem-solving Machine Intelligence 7 pp.4l3.

Edinburgh: Edinburgh University Press.

Fikest

R.E.t Hartt P.E. and Nilssont N.J. (1972b) Learning and

Executing Generalised Robot Plans Artificial Intelligencet 3

pp. 251-288.

Fikes, R.E. and l~ilsson, N.J. (1971) STRIPS: A New Approach to the

Application of Theorem Proving to Problem-solving.

Artificial Intelligence, 2 pp. 189-208.

The CONNIVER Reference

McDermott,

D.V. and Sussman, G.J. (1972)

Manual MIT AI Memo No. 259.

pp. 149-151

Michie,

-D. (1974) On Machine Intelligence

Edinburgh: Edinburgh University Press.

Human Problem Solving pp. 808.

Newell,

A. and Simon, H.A. (1972)

New Jersey: Prentice Hall Inc

Problem Solving Methods in Artificial Intelligence

Nilsson,

N.J. (1971)

McGraw-Hill.

Sacerdoti, E.D. (1974) Planning in a Hierarchy of Abstraction Spaces

Artificial Inte11igenc_e, 5 pp. 115-135.

An Efficient Robot Planner which

Advance Papers of IJCAI3 pp. 423-430.

Sik15ssy,

L. and Dreussi, J. (1973)

Generates its own Procedures.

Sussman,

G.J.. (1973) A Computational Model of Skill Acquisition

MIT Technical Report AI TR-297.

Warren,

D.H.D. (1974) Warp1an: A system for Generating Plans

DCL Memo No. 76, University of Edinburgh.

