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Abstract: In a realistic environment, intentions of belief-desire-intention (BDI) 
agents may be threatened by exogenous change. Subsequent activity failure 
may incur debilitative consequences that hinder both recovery and subsequent 
goal achievement. Capability aware, maintaining plans (CAMP-BDI) embodies 
BDI agents with capability knowledge, allowing anticipation of threats to 
activity success and stimulating the proactive, preventative modification of 
intended plans. We describe resultant agent-level algorithms and supporting 
architecture, including extension to provide decentralised, distributed 
maintenance through structured messaging. Our results show superior goal 
achievement to a reactive equivalent in a stochastic environment, increasing 
with the likelihood of debilitative failure effects. We suggest CAMP-BDI 
offers a valuable approach towards robustness, particularly in tandem with 
reactive recovery methods. 
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1 Introduction 

The belief-desire-intention (BDI) model has become a de-facto standard for development 
of intelligent agents, employed within realistic, stochastic and dynamic domains such as 
emergency response. Exogenous change may occur during plan execution in these types 
of environment, contradicting assumptions underlying initial plan formation and 
consequently increasing the risk of activity failure(s). Current BDI implementations often 
use reactive failure handling methods such as replanning, plan repair, or execution of 
predefined failure recovery plans – but failure may be associated with debilitative 
consequences that can stymie such recovery. Continuous planning can handle initial 
uncertainty by postponing planning decisions, but such shorter-term decision making 
risks inadvertent long-term failure – for example, failing to identify (reserve) key 
resources in advance, which are subsequently lost to contention before their necessity is 
identified. 

The paper describes the capability aware, maintaining plans (CAMP-BDI) approach 
for performing proactive plan repair (or maintenance) in response to where exogenous 
change during execution threatens intended plans. CAMP-BDI agents form long term 
plans but are also embodied with capability meta-knowledge; allowing introspective 
reasoning to identify failure risks and the advance reservation of required resources. The 
following contributions are presented: 

• an algorithm for anticipatory plan repair behaviour, referred to as performance of 
maintenance 

• extension of local behaviour to encompass decentralised maintenance of distributed 
intentions 

• a supporting architecture providing the capability, dependency, and obligation 
knowledge used to perform introspective reasoning and guide maintenance changes 

• a policy mechanism allowing runtime tailoring of maintenance behaviour 

• a policy mechanism allowing runtime tailoring of maintenance behaviour. 

We experimentally evaluated CAMP-BDI within a logistics environment, similar to our 
motivating example, in comparison against reactive replanning. Results over multiple 
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experimental runs, for scaling failure-debilitation probabilities, showed CAMP-BDI 
offered superior goal achievement over replanning when failure risked debilitative 
consequences. CAMP-BDI also offered superior planning efficiency (less planner calls 
per goal achieved) as post-failure debilitation became increasingly probable (reflecting 
the increasing difficulty of reactive recovery). 

2 Motivating example 

Our motivating example describes a logistics domain; the multiagent system (MAS) 
attempts to transport cargo objects between locations, within a stochastic, dynamic, 
continuous and non-deterministic environment. Uncertainty arises from suboptimal agent 
health or exogenous change – including flooding, landslips, or emergence of ‘danger 
zones’ which prohibit activity in certain locations. Delivery goals are achieved through 
the formation and execution of distributed plans by heterogeneous agent teams; agent 
types include Trucks (cargo transporters), support vehicles (including Bulldozers that 
clear blocked roads or APCs – armoured personnel carriers – that remove danger zones), 
and logical agents acting as organisational controllers or brokers. 

Figure 1 Example of truck executing a plan to travel from A to M 

 

In our example (Figure 1), activity failure risks consequent debilitation – hindering both 
recovery and future goal achievement. Here, a Truck, travelling from A to M, sees its 
intended move(F, M) activity threatened by flooding on the road F → M. Recovery after 
failing move(F, M) at F requires costly backtracking to use an alternate route; proactive 
behaviour may avoid this cost by identifying a need to change route earlier. Certain states 
may also increase the risk of failure without ensuring it – e.g., if F → M was partially 
flooded. 

CAMP-BDI aims to improve robustness – expressed in terms of goal achievement – 
in realistic environments where exogenous change may occur, failure may risk 
debilitation, and domain complexity renders probabilistic methods intractable. We argue 
this requires proactive anticipation and avoidance of failure, through preventative plan 
modification, on both a single agent and multiagent team level. Operator models used for 
deterministic planning in such realistic environments will represent an approximation – 
our approach should recognise where states increase failure risk, but not at the 
significance required for inclusion within operator preconditions. 
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3 Architecture components 

CAMP-BDI agents require meta-knowledge to introspectively reason over intended plans 
(i.e., our maintenance algorithms require agents to be ‘capability aware’). We regard 
these knowledge components as a subset of Beliefs, although their semantics will be 
implementation specific. CAMP-BDI agents must also distinguish between a selected 
desire and the associated plan when considering intentions, as we wish to modify the 
latter to ensure achievement of the former. This leads us to adopt the definition expressed 
by Simari and Parsons (2006), viewing an intention as combining a goal and associated 
plan – i.e., i = {goali, plani}. 

3.1 Capabilities 

Agents hold Capability meta-knowledge defining which activities – and ergo goals – they 
can achieve, used within our algorithms to anticipate and avoid failure. A common model 
is used to represent both activities performed by the agent and those requiring delegation; 
this allows out CAMP-BDI agents to employ the same introspective reasoning logic for 
both locally performed and delegated activity (as both types may exist within the same 
plani). 

We define an activity a as equivalent to a task within a hierarchical task network 
(HTN); i.e., a may be composite (a sub-goal which requires decomposition into a  
subplan) or primitive (an atomic action). An a is viewed as a deterministic state transition 
F(a, S) = S′; i.e., (successfully) executing a in state S achieves state S′. We refer to the 
agent’s beliefs at the point of execution for a (the execution context of a) as Ba. A plan p 
for a goal g is an ordered sequence of n activities (p{a1,…an}) whose effects ultimately 
achieve g; if agents use continual planning, p may contain composite activities whose 
decomposition is deferred until execution. 

A capability c(a) held by an agent provides knowledge about that agent’s ability to 
perform a, and contains the following fields: 

( )( ) , ( ), ( ), ( ), , ac a s g a pre a eff a conf a B=  

• A signature s of name n with x parameters; s = n(t1,…,tx). Each capability instance in 
a MAS is uniquely identifiable through combining s with the holding agent’s 
identifier. 

• g(a) defining the goal state (SG) achieved by executing a – i.e., if a can be 
represented as F(a, S) = S′, then SG ⊆ S′. Initially abstract, g(a) is ground using the 
parameters (t) of s. 

• The preconditions pre(a) for performing a through this capability – i.e., a set of state 
atoms which must be true (i.e., pre(a) ⊆ Ba) to avoid guaranteed failure. Both this 
and eff(a) are specified as abstract, but can be ground based upon the parameter (t) 
values of s. 

• The complete set of post-effects of a, eff(a), including side-effects (i.e., giving  
eff(a) = g(a) ∪ sideeffects(c(a))); allowing determination of S′ for f(a, S). Different 
capabilities may achieve the same g(a) with different side-effects – denoting the 
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semantic differences between performing a move activity through (for example) 
flying or driving. 

• A confidence function used to estimate the quality (i.e., the likelihood of success) of 
performing a, using c(a), given Ba. Returns a scalar value; conf: a × Ba → [0: 1]. 

3.1.1 Capability typology 

Capability type is defined through two overlapping categories; granularity – whether a 
(and c(a)) is a primitive or composite – and locality – whether the agent can perform a 
(c(a) is internal) or knows of some agent it can delegate a to (c(a) is external). 

3.1.1.1 Primitive capabilities 

Primitive capabilities indicate the holding agent can achieve g(a) through a single, atomic 
a [similar to know-how of a basic activity as defined by Singh et al. (2010)]. In order to 
be executable, all plans must eventually resolve to some set of atomic activities – in 
distributed plans, this may require over multiple levels of decompositional delegation. 
Consequently, composite and external capability knowledge ultimately derives from 
some subset of primitive capabilities. Similarly to classical planning operators, primitive 
capability knowledge must be defined (by the agent programmer) at implementation time. 

3.1.1.2 Composite capabilities 

Composite capabilities represent agent awareness of at least one plan to perform a and 
achieve g(a); i.e., a is non-atomic (divisible), representing a root goali or sub-goal within 
a plan. This type enables reasoning over abstract (composite) activities (sub-goals) in 
plans, particularly if agents use continual planning (i.e., will refine certain abstract 
activities during plan execution). 

BDI agents typically utilise libraries of pre-formed plans. Composite capabilities 
provide a 1: n mapping for g(a) against associated library plans (i.e., represent knowledge 
of n > 1 plans for achieving g(a)). Conversely, each library plan maps to exactly one 
composite capability (i.e., one g(a)), with the capability field values being derived from 
the (n) plans being represented. 

The preconditions (pre(a)) define all states under which a plan can be selected, and 
consequently are formed as the disjunction of all the represented plans’ selection 
conditions (we assume if selection conditions for plan p hold, so do those for all a ∈ p). 
The eff(a) field is set as the achieved goal states (g(a)); this is a generalisation, as the 
semantics of how g(a) is met (which plan would be selected, with what side-effects) will 
vary with individual a instances and their execution context Ba. The exact eff(a) can be 
formed for a given a and Ba through determining which plan would be selected for that 
specific context; if multiple plans are viable, we assume that with greatest estimated 
confidence would be selected. 

3.1.1.3 External capabilities 

CAMP-BDI agents are expected to advertise capabilities where they can accept 
obligations from others (with any authority constraints reflected by selective 
advertisement, and updated to reflect changes in circumstance such as confidence loss); 
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recipients use the received information to form a corresponding external capability set, 
representing where an a can be performed through delegation. Both primitive and 
composite capabilities can be advertised, although knowledge of the plans represented by 
the latter is restricted to the advertiser. As obligants identify and perform any plan 
selection within their internal reasoning, external capabilities are always regarded as 
primitive – i.e., will be indivisible from the (potential) dependant’s perspective. 

3.1.2 The confidence function 

It is impossible to represent every state that may cause activity failure within 
deterministic preconditions, as this would constrain operators to be virtually unusable 
[McCarthy (1958) describe this as the ‘specification problem’]. In such a context, 
preconditions define states where success is not guaranteed, but is instead probable. Our 
maintenance process uses capability confidence functions to account for states that 
increase failure risk, but which are still not considered significant enough to represent 
within preconditions. 

The confidence function (confa (a, Ba)) provides a scalar estimate of quality – used to 
identify whether changes to Ba have increased failure risk, even if a’s preconditions still 
hold. Use of a numerical value (0…1) allows comparison between capabilities sharing 
the same s without requiring awareness of semantic differences in their confidence 
estimation. Numerical estimation also enables flexible granularity – i.e., the function 
implementation can provide a Boolean (e.g., {0 = false, 1 = true}), enumerated (e.g., 
{succeed = 1, maybe = 0.5, fail = 0}) or specific probabilistic estimate, depending upon 
knowledge and computation constraints. 

The semantics of confa(a, Ba) depend upon both the capability type and a itself. For 
an unground a, confidence estimation indicates general ability for that activity type – i.e., 
for achieving g(a) in Ba. A ground a facilitates use of additional semantic information to 
provide a confidence value specific to that a. Primitive capabilities require predefined 
implementation for both estimation types – e.g., using historical records [Singh et al. 
(2010) use a similar methodology to learn plan reuse contexts] or programmer knowledge 
(requiring supporting domain analysis). 

3.1.2.1 Primitive capability confidence estimation 

Primitive capability confidence estimation depends upon both the capability holding (a 
performing) agent and the operating environment. Implementation may be aided through 
the same processes of state analysis as required to form deterministic planning operators 
– i.e., the identification of which states impact success and to what level of significance. 
We suggest this can reduce the specification burden, as such information will likely be 
necessary to specify plan executing agents (and plans) regardless of whether our 
approach is being used. Maintenance policies (described in 3.3) can also provide a means 
to compensate for any consistent over or under estimation by the confidence function. 

3.1.2.2 External capability confidence estimation 

Agents are unlikely to possess the semantic knowledge (or sensory awareness) to perform 
confidence estimation for external capabilities. Instead, such estimations are provided as 
fixed values by the (potential or actual) obligant performing a. These confidence values 
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indicate general confidence in the case of capability advertisements, but can provide 
specific estimates for agreed contracts through the external capability field (described in 
3.2). 

3.1.2.3 Composite capability confidence estimation 

Composite capabilities represent knowledge of a set of plans Pcc for g(a), such that 
estimation of composite capability confidence utilises the estimated confidence for each p 
∈ Pcc where p can be selected given Ba – i.e., the quality of plans the agent knows for 
performing a in Ba. Estimation of confidence in an individual plan is both relevant for 
threat anticipation (to estimate whether sub-goals or composite activities can be refined to 
an acceptable level of quality) and maintenance (to decide whether to accept maintenance 
plans generated to address an identified threat – see 4.3). 

Confidence in a plan p derives from the activities a ∈ p, and may be calculated in 
various ways. For example, the minimum confidence for any a ∈ p may provide the 
confidence for p (similar to TÆM’s q_min metric), as described below. Bp is the 
execution context for the first activity – a1 – in p, and Ba the estimated execution context 
of an 2 p. After confidence is estimated for each an, its (capability-defined) effects are 
added to Ba, giving the estimated execution context for the following activity in p (i.e., 
for an + 1): 

( ) ( )min , min ,p a p aconf p B conf a B∈=  

The confmin estimation can be employed where every a ∈ p must have acceptable 
confidence. This may be considered over-constraining, as the confidence ‘score’ will be 
determined solely by the single worst activity rather than how many activities are of a 
low confidence. Such constraints may be desirable to guard against future maintenance 
requirements, by ensuring a plan will not be accepted if any constituent activity is of low 
(i.e., maintenance requiring) quality (although exogenous change may still necessitate 
further change). One alternative is to use averaged activity confidence (confavg): 

( )
( )
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The above includes a weighting function (wi → Z≥0) to scale the significance of activity ai 
in contributing to confidence of p (where p is formed of n activities). For example, wi 
may be employed to give greater significance to more immediate activities (e.g.,  
wi = (n – 1)/i), reflecting that the risk of exogenous change increases uncertainty when 
estimating the execution context – and confidence – of later activities. This may also be 
advantageous where it is difficult to generate acceptable plans under the constraints 
defined by confmin; using an averaged value can allow incremental improvement in plani 
confidence, with any inserted low-confidence activities being individually addressed by 
maintenance in subsequent reasoning cycles. 

Composite capability confidence derives from the plans represented by that 
capability. Composite estimation returns the confidence value estimated for the highest 
confidence plan (where selection preconditions hold), and zero if no plans could be 
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selected given the execution context. This is described below, where agoal is the activity 
being performed through the composite capability and goalaB  the execution context: 

( ) ( )
( )

, max ,goal goal
agoal

goal a capability a
pre p B

conf a B p P conf p B
⊂

= ∈  

Composite capability estimation effectively sees formation of an AND-OR tree [similar 
to goal-plan trees in Thangarajah et al. (2003)], representing all potential plan and  
subplan paths to decompose and execute agoal. The estimated value requires estimating 
the confidence of every leaf activity (O(n) worst-case complexity, for n leaf nodes), 
where each leaf activity is primitive, and therefore originates from a primitive or external 
capability confidence value. We assume the decompositional nature of plans prevents 
cyclical loops – this property would be further required for agent activity itself (e.g., to 
avoid infinite looping). 

Considerable scope for domain specific optimisation exists for both primitive and 
composite types of confidence estimation, depending upon agent and environment 
details. For confmin, α – β pruning may improve common case complexity where plan 
confidence values are being evaluated against a minimum value threshold (i.e., for policy 
maintenance). Composite capabilities may also represent runtime planning abilities, with 
associated confidence estimation requirements; one possibility is to employ methods 
similar to heuristic planning, such as relaxing agoal to form a plan that can then provide 
the basis for approximate estimation. 

3.2 Obligation and dependency contracts 

We assume agents form dependency contracts in advance to counter potential contention 
over agent (i.e., to use advertised capabilities) and environmental resources. CAMP-BDI 
agents must be aware of their obligations to and dependencies upon others; contracts 
define the mutual beliefs established between agents in such delegation relationships, 
with definition of the following fields being required during contract formation: 

a The activity, agreed by the obligant(s) to be performed upon request by the 
dependant. We use dependant intention to refer to the dependant’s plani containing 
that delegated activity. 

b Causal link states that the dependant will establish (i.e., as effects of preceding 
activities in the dependant intention) prior to requesting execution of the delegated 
activity. 

c An external capability defined by the obligant in order to detail anticipated  
post-effects and confidence for executing the delegated activity, using causal link 
states to estimate execution context. If multiple obligants are involved, their 
individual capabilities are merged to form the external capability, with: 
• confidence as the minimum confidence held by an individual obligant 
• preconditions as the conjunction of all individual preconditions 
• effects as the union of all obligant post-effects. 

d A maintenance policy, whose contents and usage are detailed below. 
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3.3 Maintenance policies 

Policies allow dynamic regulation of system behaviour, without requiring modification of 
the underlying implementation (Tonti et al., 2003) – such as to define constraints or 
relaxations for activities or goals. In CAMP-BDI we use maintenance policies, applied to 
a stated set of agents and/or capabilities, to define key variables influencing our 
maintenance behaviour; specifically, a threshold stating the minimum acceptable 
confidence for an activity and a Priority used to define relative prioritisation where 
multiple activities in an plani are (identified as) threatened. 

Maintenance policy fields can be used to balance the costs of proactive maintenance; 
activities associated with more severe failure consequences can be given lower 
confidence thresholds, to increase the likelihood of CAMP-BDI maintenance attempting 
confidence raising plan modification. Conversely, activities with lesser failure 
consequence can be given lower thresholds or priorities – reducing the probability of 
proactive maintenance to instead rely upon reactive recovery. This can extend to 
disabling maintenance for activities with negligible consequences, or enabling 
maintenance during runtime if that assumption is found to be false. 

Use of a policy mechanism also facilitates runtime modification of such  
values – unlike implementation time definition, maintenance behaviour can be adapted 
(by a human user or some automated process) as new environmental or agent 
performance behaviour is learned. This principle of externalising behavioural influences 
(through policies) also provides a framework that can aid the genericisation and reuse of  
CAMP-BDI agents, and suggests options for future research and development. 

Contract maintenance policies must merge the – potentially divergent – maintenance 
policies applicable at both the obligant(s) and dependant side, in order to provide a policy 
specific to that activity delegation. The dependant policy will be that associated with the 
dependant goali; i.e., where the associated plani contains the delegated activity. The 
obligant policy(s) will be those associated with that agent and the delegated activity – 
which will itself correspond to an goali (and plani) adopted by that agent in order to 
perform that obligated activity. 

The merge process selects the lowest threshold value and highest priority value from 
the dependant and obligant maintenance policies to form the equivalent fields in the 
merged policy – i.e., the merged policy contains the most constraining values upon 
maintenance. These shared values ensure obligants will have performed maintenance 
before updating dependants of any confidence changes, providing a means to ensure a 
minimal subset of the delegated plan will be modified; any conditions for triggering 
maintenance of the dependant plani will always also apply to maintenance of associated 
obligant plans. 

4 The CAMP-BDI algorithm 

CAMP-BDI extends the generic BDI reasoning cycle defined by Rao and Georgeff 
(1995). Algorithm 1 shows our insertion of steps to perform dependency contract 
formation, and for performing maintenance of intended plans through the maintain 
function. Three contexts are defined for this invocation of maintain: 

1 after the intention i is selected 
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2 upon receipt of an obligationMaintained messages from obligants (i.e., following the 
consequent updating of dependency knowledge) 

3 when the agent has no selected intentions (i.e., is otherwise idle). 

The third context uses maintenance to update mutual beliefs in delegated activities, 
through examining (and maximising) confidence in preformed or cached plans for 
obligations. 

The maintain function may modify plani; further changes can also arise from receipt 
of obligationMaintained messages, sent by obligants upon changes (i.e., from local 
maintenances) to how delegated activities will be executed. Only the i ∈ I (where I is the 
set of possible intentions) selected for execution is maintained; it is assumed i is selected 
on the basis of goali (i.e., is goal driven behaviour), and that maintenance changes to 
plani would not invalidate the basis for the original selection of i. This avoids 
unnecessarily maintaining the unselected members of I, as these other plans would be 
selected and executed under a future (almost certainly different) B – rendering reasoning 
over their current confidence unnecessary and likely inaccurate. 

The formAndUpdateContracts function accounts for such changes by forming new 
contracts (if delegated activities have been added by maintenance), and communicating 
any changes to existing dependency or obligation contracts associated with a maintained i 
(for the former, relating to activities in the plani; for the latter, where goali corresponds to 
an activity delegated from another). An obligationMaintained message, including the 
updated contract as part of the message body, is used to communicate changes in the 
latter case; this can result in sequential transmission of such messages as changes are 
propagated up the decompositional agent team. 

Algorithm 1: The CAMP-BDI reasoning cycle; changes from the algorithm given by Rao and 
Georgeff (1995) are given by bold text 
 initializeState(); 
 while agent is alive do 
   D ← optionGenerator(eventQueue, I, B); 
   i ← deliberate(D, I, B); 
   /* (1) Maintenance of currently selected intention i */ 
   if i ≠ Ø & i not waiting on a dependency to complete then 
     i ← updateIntentions(D, I, B); 
     Bi ← estimated execution context of i; 
     maintain(i, Bi); 
     formAndUpdateContracts(i); 
     execute(); 
   /* (2) Maintenance of intentions in response to 

dependency changes received from obligant 
*/ 

   for each obligationMaintained message ∈ eventQueue do 
     idependency ← the associated dependant intention; 
     Bdependency ← estimated execution context of idependency; 
     maintain(idependency, Bdependency); 
     formAndUpdateContracts(idependency); 
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   /* (3) Maintenance of obligants held by this agent, if 
no intentions were selected  

*/ 

   if i = Ø then  
    for each obligation contract ∈ agent’s Obligations do 
      goalobi  ← activity defined in obligation; 

      planobi  ← cached plan for obligation (to achieve );goalobi  

      iob ← , ;goal planob obi i  

      Bob ← execution context estimated using (causal links in obligation ∪ B); 
      maintain(iob, Bob); 
      formAndUpdateContracts(iob); 
       
   getNewExternalEvents(); 
   I dropSuccessfulAttitudes(); 
   I dropImpossibleAttitudes(); 
   I postIntentionStatus(); 
    

CAMP-BDI agents use maintain to identify whether any activities in a specified intention 
i (i.e., within the plani) are at risk of failure given the current B, and – if so – to perform 
mitigatory modification. The maintain algorithm (Algorithm 2) employs a two part 
process; first forming an ordered agenda (Algorithm 3) of maintenance tasks which each 
detail an activity under threat (see 4.1). The algorithm iterates through the resultant 
agenda, using handleMaintenanceTask (see 4.3) to consider and attempt the threat 
identified by a maintenance task, and terminating when either a task has been handled 
(i.e., threat addressed) or the entire agenda iterated through without success. 

The maintain function will terminate after the first agenda task is successfully 
handled, as the associated to the plani (through handleMaintenanceTask, described in 
4.3) may invalidate the remaining agenda tasks. Although maintain could instead attempt 
to iteratively identify and handle maintenance tasks until no threats existed or none could 
be handled, this would risk uncertain termination conditions and higher computational 
cost. The decoupling of diagnosis and handling steps also facilitates future investigation 
towards improving either step. 

Algorithm 2: The maintain function 
 Data: i – an intention; a plan plani to meet some goal goali 
   Bi – The estimated execution context of the first activity in plani 
 handled ← false; 
 agenda ← formAgenda(goali; plani; Bi; empty agenda); 
 while ¬ handled and agenda ≠ do 
   handled ← handleMaintenanceTask(agenda.removeTop()); 

 Update Dependency contracts; 
 if i is an Obligation then 
   Update contract and send to the dependant in an obligationMaintained message; 
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Figure 1 shows a motivating example where a truck intends (as part of its plani) to 
perform a = move(M, F). The corresponding move capability defines, within the pre field, 
a requirement that the road being moved along must not to be flooded. When M → F 
does become flooded, formAgenda uses that pre field knowledge to identify the threat to 
a, inserting the corresponding maintenance task mta into the agenda. Following agenda 
generation, handleMaintenance task considers mta, and attempts to modify the plani to 
prevent failure – such as to travel a different route or remove the flooding from F → M – 
based upon the capability set of that agent. 

4.1 Maintenance tasks 

A maintenance task (mt) defines an activity under threat, and includes information 
relevant to the nature of that threat: 

, , , ,a a amt a type B conf mp=  

where a is an activity, intended to execute in the state given by Ba, which has an 
associated maintenance policy mpa and has estimated confidence (given Ba) of confa. The 
type categorises both the type of threat and guides handling; this is defined as either 
preconditions or effects. 

Maintenance task generation sees agents use capability knowledge to introspectively 
reason over their planned activities. A precedence ordering is applied if multiple 
capabilities may correspond to an activity; activities will be mapped to, in order, internal 
capabilities, contract-contained external capabilities, and advertised external capabilities 
(we assume agents will adopt the least complex approach for any activity, and avoid 
delegation if possible). Where multiple advertised external capabilities potentially apply, 
that with highest general confidence is mapped – under the assumption agents employ the 
same basis to arbitrate between obligant options. 

Maintenance tasks in the agenda are ordered first by priority (defined through the 
relevant field of mpa), and then a’s position in the plani; i.e., the agenda will prioritise 
activities set to execute earlier unless others have been stated as higher priority in their 
maintenance policy. 

The Preconditions type indicates a’s preconditions do not hold in Ba. Successful 
handling sees the generation of a plan that will re-establish pre(a), to be inserted into the 
plani and executed prior to a (i.e., ensuring pre(a) ⊆  Ba). Preconditions handling 
effectively focuses upon ensuring the success of that specific individual a. However, the 
insertion of new activities (particularly if multiple preconditions tasks are being handled 
over multiple reasoning cycle iterations) can risk reducing the overall optimality of plani. 
Consequently, preconditions tasks are only generated where there is value in preserving 
that specific a in plani – i.e., if a achieves a goal state or has an associated dependency 
contract (entailing communications costs from cancellation). 

Effects maintenance tasks indicate that the threatened a can be replaced with some 
activity sequence which achieves the same effects, but with an increased level of 
confidence (given Ba). These tasks are generated where the estimated confidence of a is 
unacceptable (i.e., confa < mpa.threshold), or if the preconditions of a do not hold in Ba 
and a does not require preservation. The latter condition helps prevent iterative plani 
expansion, as might occur if preconditions type tasks were always generated where 
pre(a) ⊆  Ba. 
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4.2 Agenda formation 

The formAgenda function (Algorithm 3) uses a recursive strategy (2) to support 
hierarchical plans (i.e., that involve activity decomposition), by iterating through leaf 
activities in their intended execution order. Leaf activities will typically be primitive, 
although they may also be (yet to be refined) composites in continuously planning agents. 
CAMP-BDI agents are assumed to possess capability knowledge (know-how) 
corresponding to every activity they can perform or decompose (i.e., regarding both any 
composites within the plani and the activity signified by the goali itself); the 
getCapability function identifies the appropriate capability object for a specified activity. 

Once the appropriate capability (ca) for a leaf activity a is identified, that ca is used to 
determine whether a is at risk of failure – and if so, to guide generation and insertion of a 
new maintenance task within the agenda (1). In order to estimate the execution context 
for the subsequent leaf activity, Ba is updated with a’s (i.e., ca. eff(a)) effects at the end of 
each iteration and returned; the updated Ba provides an estimated execution context for 
the following leaf activity during recursive formAgenda operations (but is discarded at 
the root maintain call level). 

At the end of each iteration of formAgenda, the consolidate function (3) is called. If 
the agenda holds multiple maintenance tasks for activities within the same subplan, this 
generates and inserts a single effects maintenance task in replacement, where mt.a is the 
composite activity refined by that subplan. This merging behaviour is intended to avoid 
recurrent costs associated s individual re-diagnosis and handling of multiple individual 
threats, as would be incurred over sequential reasoning cycles. Instead, handling the 
consolidated maintenance task effectively resolves multiple individual threats within a 
single maintain operation, by seeking to reform the entire subplan (a minimal 
‘threatened’ subset of plani) containing them. 

4.3 Handling maintenance tasks 

The handleMaintenanceTask function (Algorithm 4) ‘handles’ a given maintenance task 
(mt) by forming a maintenance plan (planfix) that, when inserted into the plani (where 
mt.a ∈ plani), will mitigate the threat represented by mt. The specific sub-function 
employed depends upon the type of mt; handlePreconditionsTask [(1) – Algorithm 5] and 
handleEffectsTask [(3) – Algorithm 6) for preconditions and effects maintenance tasks 
respectively. Capability knowledge is employed to define both the goal and operator set 
(i.e., to determine what states must be established to address mt, and the activities the 
agent can use to do so) when specifying the maintenance planning problem (required to 
form planfix). Where a preconditions task cannot be handled, an equivalent field content 
effects task is generated and handled instead [(2)]; this relaxes the tighter planning 
constraints imposed by preconditions types (i.e., where mt.a must be preserved), allowing 
for replacement of mt.a rather than accepting its failure from the unmet preconditions. 
For example, a Truck unable to restore preconditions for move(F, M) would employ 
effects maintenance to find an alternate route (i.e., finding a planfix that can replace mt.a) 
to achieve the required goal state of arriving at(M). 
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Algorithm 3: The formAgenda function 

 Data: g – a goal met, or composite activity performed, by p 
   p – plan of n activities {a1,…,an} to perform g 
   agenda – priority ordered list of maintenance tasks; empty in initial (top-level) call 
   Ba – estimated execution context of a0 in p 
 Result: agenda updated with maintenance tasks for p 
   Ba updated with post-effects of p (used by recursion) 
 Bstartleftarrow copy of Ba (for execution context estimation); 
 for each activity a ∈ p do 
  if a is abstract then 
    return agenda, Ba; 
     
  ca ← getCapability(a); 
  /* (1) Generate maintenance tasks for leaf activities */ 
  if ca primitive || (ca composite & (a is not decomposed into a subplan)) then  
   if maintenance task mt found for leaf activity a then  
     Add mt to agenda;  
     Update Ba with ca.eff(a);  
       
  /* (2) Recursion for decompositional subplans */ 

  else if ca composite & (a is decomposed into a subplan) then  
    pa ← subplan decomposing a; 
    agenda, Ba ← formAgenda(a, pa, agenda, Ba);  
  /* (3) Consolidate multiple tasks into one */ 

  agenda ← consolidate(g, agenda, Bstart);  
       
 return agenda, Ba;  

 

Algorithm 4: The handleTask function 
 Data: mt – a maintenance task 
   i – the intention requiring maintenance; i = {goali, plani} 
 Result: Boolean – true if plani is modified and mt addressed. 
 handled ← false; 
 if mt.type = preconditions then 
   // (1) Handle preconditions type of mt  

handled ← handlePreconditionsTask(mt, i); 
   if ¬ handled then 
     // (2) Create equivalent effects task for mt.a 
     mt ← new MaintenanceTask(effects, mt.a, mt.Ba, mt.confa); 
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   else 
     return handled; 
      
 // (3) Handle effects type of mt 
 return handleEffectsTask(mt, i); 

4.3.1 Performing preconditions maintenance 

Preconditions task handling is performed by the handlePreconditionsTask function 
(Algorithm 5). The algorithm first attempts to generate a maintenance plan (planfix) to 
(re)establish mt.a’s preconditions, to be inserted prior to mt.a in plani [similar to prefix 
plan repair in Komenda et al. (2014)]. To avoid requiring further maintenance, planfix is 
only inserted if its estimated confidence exceeds mt.mpa.threshold – i.e., will not trigger 
generation of further effects maintenance tasks in the next reasoning cycle. This 
constraint is removed if mt.a is the next to execute in plani; our motivation assumes 
adoption of any non-zero confidence planfix will be preferable to certain failure (and 
consequent debilitation) of an immediately executing mt.a. 

Algorithm 5: The handlePreconditionsTask function 
 Data: task – a maintenance task 
 Result: true if a plan was found and inserted 
 planmt ← plan containing task.a; 
 ca ← getCapability(task.a); 
 Define planning problem proba, with initial state = task.Bmt and goal = ca.pre(task.a); 
 if plan planfix solving proba found & planfix is acceptable then 
   Insert planfix into planmt as predecessor of task.a, and return true; 

 return false; 

Figure 2 Example where Truck’s plan to deliverCargo is threatened by violated preconditions of 
Move(D, F), indicated by the arrow, following closure of D → F 

 

An example of a preconditions maintenance scenario, deriving from our  
motivating example (Figure 1), is given in Figure 2. Here, Truck intends to travel to M;  
as D → F is blocked on the planned route, a new preconditions task is generated with 
mt.a = move(D, F) (we assume Truck wishes to preserve this activity, for the purposes of 
this example). Successful maintenance, given in Figure 3, sees generation of a 
maintenance plan, inserted and expected prior to mt.a, which employs a Bulldozer agent 
to reopen D → F (ensuring mt.a’s preconditions hold). 
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Figure 3 Example insertion of a successfully identified maintenance plan, restoring the 
preconditions of the threatened Move(D, F) through unblock clearing D → F 

 

4.3.2 Performing effects maintenance 

Effects maintenance attempts to replace a (minimal) subset of the plan containing mt.a, 
with a maintenance plan that will achieve the same post-execution effects with superior 
confidence. Figure 2 shows an example scenario where plan preconditions hold, but 
slippery conditions on D → F have introduced risk which reduces confidence to an 
unacceptable level. This scenario would see generation of an effects maintenance task mt 
where mt.a = move(D, F); successful handling of mt sees a minimal subset of the plani 
replaced with a maintenance plan that achieves the same outcome, with an acceptable 
level of confidence. 

Effects maintenance uses an approach similar to HTN plan repair. Our algorithm 
(Algorithm 6) employs upwards recursion to iteratively (3 in the algorithm) re-refine 
composite activities (subgoals, or the goali), and terminates upon either forming and 
inserting an acceptable confidence maintenance plan (planfix with confidence exceeding 
mt.mpa.threshold) or upon attempting and failing to re-decompose the root goali. 

Aside from the potential communications cost, a risk associated with dependency 
cancellation is that changes in circumstance may render external capabilities unavailable 
for new dependency contracts, even if a contract previously existed before being 
cancelled. This may stymie maintenance planning if a particular, now unusable, external 
capability is required for achieving goali – although these risks also exist for post-failure 
replanning, and may apply to a greater degree than with maintenance (which attempts to 
modify only a minimal subset of the plani). By attempting to minimise changes to the 
plani, our algorithmic design trades-off the cost of potentially performing multiple 
planning operations against stability and computational costs associated with total 
replanning (Fox et al., 2006). 

Algorithm 6: The handleEffectsTask function 

 Data: mt – a maintenance task 
 Result: true if a plan was found and inserted into the plani containing mt.a 
 a ← mt.a; 
 planmt ← intended plan containing mt.a; 
 if planmt is a hierarchical plan then 
   pmt ← subplan of planmt containing a; 
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 else 
   pmt ← planmt; 

 Bmt ← mt.Ba; 
 /* (1) Attempt replacement of mt.a only  */ 
 if a not last in planmt || a has subsequent dependencies then 

   ca ← getCapability(a); 
   Define planning problem proba, with initial state = Bmt and goal = ca.effects(a); 
   if plan planfix found for proba & planfix is acceptable then 
     Replace a in pmt with planfix; 
     return true; 
      
 /* (2) Attempt replacement of mt.a and its suffix in pmt */ 
 if a not first in planmt || a has preceding dependencies then  
   a ← goal achieved by pmt; 
   ca ← getCapability(a); 
   Define planning problem proba, with initial state = Bmt and goal = ca.effects(a); 
   if planfix found for proba & planfix is acceptable then 
     Replace the suffix of pmt from a inclusive with planfix; 
     return true; 
      
 /* (3) Iterates through increasingly abstract plan levels */ 
 while a ≠ root goal of planmt do  
   a ← goal activity for pmt; 
   Bmt ← estimated execution context of a; 
   ca ← getCapability(a); 
   Define planning problem proba, with initial state = Bmt and goal = ca.effects(a); 
   if planfix found for proba & planfix is acceptable then 
     // (4) Use planfix to re-decompose/re-refine a 
     Replace pmt with planfix; 
     return true; 
      
 return false; 

The algorithm attempts to minimise disruption to dependencies by first performing two 
restricted-scope planning operations at the most specific subplan level of iteration (i.e., 
the ‘lowest’ level subplan containing mt.a itself). If dependency contracts exist for mt.a 
or its successor activities (in that subplan), the agent first attempts to generate a 
maintenance plan (planfix) and replace mt.a only (1) – with the activities following mt.a 
(and associated dependency contracts) in the plani being retained as the suffix of the 
newly inserted maintenance plan (Figure 4). 
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Figure 4 Example insertion of a maintenance plan as a substitute for Move(D, F), which achieves 
the same goal state (being at location F) from the estimated execution context 
(including start location) of Move(D, F) 

 

If mt.a is preceded by dependencies (with existing contracts), the algorithm attempts 
suffix plan repair [similar to repeated lazy repair in Komenda et al. (2014)] – where the 
generated planfix replaces mt.a and any succeeding activities in the subplan, but without 
altering the predecessors of mt.a (2). An example of this behaviour, where the inserted 
maintenance plan will achieves the same goal as the subplan whose suffix it replaces, is 
given in Figure 5. Both this and the prior direct substitution behaviour attempt to reduce 
disruption to a distributed plan by restricting the scope of possible changes, but also 
entail additional planner calls. 

Figure 5 Example insertion of a successfully identified maintenance plan in the suffix case; the 
initial context of the threatened Move(D, F) is employed as the initial state for planning, 
with the goal defined as that of the parent MoveTo(B, M) activity 

 

The algorithm has worst-case complexity equivalent to O((n + 2)p) (where n is the 
number of plan levels and p the planning cost); i.e., where the algorithm attempts to plan 
at all levels of the hierarchical planmt, plus twice at the initial pmt level (for a failed 
preconditions maintenance task, and for replacement of mt.a alone). This may still 
represent a significant actual computational cost, depending upon the computational cost 
of each planning operation. 

5 Distributed behaviour 

In a MAS, agents form teams to achieve goals which are impossible for individuals 
acting alone. The failure of an individual agent in such a team can have reciprocal impact 
upon other team members, risking failure of the distributed plan. Our design of 
distributed maintenance behaviour assumes activity delegation to, and decomposition by, 
obligants leads to hierarchical team structures. As the distribution of knowledge and 
capabilities in realistic domains frequently renders centralised approaches infeasible, this 
behaviour is designed to be decentralised; we use structured communication to drive the 
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adoption of maintenance responsibility at increasingly abstract levels of the agent team 
hierarchy (Figure 8), with use of the algorithms defined in Section 4. 

Both internal and external capabilities share a common representation model, 
allowing use of the same maintenance algorithms to reason over both locally performed 
and delegated activities. The supporting architecture (Section 3) plays a critical role in 
distributed maintenance by providing external capability information specific to a 
delegated activity within associated dependency and obligation contracts. Local 
maintenance by dependant agents can utilise capability information specific to a 
delegated activity through the associated contract’s external capability field; any 
semantic knowledge requirements are offset to the obligant(s), who will actually form 
that field’s contents. 

Following execution of maintain for an obligation plani (i.e., whose goali corresponds 
to an accepted obligation contract), the obligant transmits an obligationMaintained 
message to the (waiting, quiescent) dependant – this communicates an updated obligation 
contract, reflecting any modifications made to plani. Receipt of obligationMaintained 
informs the dependant that the obligant has made any confidence-raising changes 
possible through local maintenance – allowing the dependant to adopt responsibility and 
maintain its own dependant intention, with the awareness that the obligant has already 
made any changes it can. Obligant maintenance is performed if the agent is either 
executing an (intention corresponding to an) obligation, or does not hold any intentions 
(Algorithm 1) – in the latter case, otherwise idle agents will act to maintain mutual beliefs 
(i.e., update the associated contract) regarding accepted obligations. 

A dependant will adopt maintenance responsibility if and when an obligant cannot 
maintain sufficient confidence in, or ensure preconditions hold for, its obligation – i.e., 
the subpart of the distributed plan the obligant intends to execute. Responsibility is 
gradually adopted ‘up’ the distributed team hierarchy until an agent has performed 
maintenance with an outcome acceptable to both itself and any direct dependant (of the 
maintained intention goali) – for the latter, the obligation contract (external capability) 
must indicate preconditions hold and sufficient confidence is held in the obligation, such 
that no maintenance tasks would be generated when considering that delegated activity 
within the dependant plani. The resulting upwards escalation restricts distributed plan 
changes to the most specific (‘lowest’) agent level possible; Figure 8 shows an example 
of this behaviour, also described below: 

1 Agents C and D call maintain within their local reasoning cycle(s). 

2 C and D individually perform post-maintenance messaging, with each sending a 
obligationMaintained message to B (including contracts updated to account for 
maintenance changes). 

3 B calls maintain locally upon receipt of obligationMaintained messages from all 
obligants. The messaged, updated contracts are used to update the contract held by B 
for that dependency. 

4 Upon B completing execution of maintain, the further updated contract (accounting 
for both the changes from C and D and the outcome of B’s maintain operation) is 
communicated to A within an obligationMaintained message. 

5 A calls maintain upon receiving B’s message. A’s plan does not correspond to an 
obligation, so no further post-maintain messaging is required. 
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We synchronise distributed maintenance by using contracts to define a maintenance 
policy, and specifically confidence thresholds, common to the obligant(s) and dependant 
involved in a delegated activity. This, combined with the sequencing of maintain calls 
and obligationMaintained messages (i.e., contract updates), ensures a dependant will only 
generate an effects maintenance task for a delegated activity under conditions where the 
obligant must have already done the same. Whilst the preceding example depicts linear 
dependency formation, it is possible for indirect ‘self dependencies’ to occur – e.g., if D’s 
plani includes a dependency upon some other capability of A. 

Figure 6 Example of a distributed intention, where Truck1 holds an obligation to perform the two 
activities moveTo(B, M) and unload(Cargo1, M) 

 

Figure 6 illustrates an example of maintaining a distributed intention; here, damage to 
Truck1 has reduced confidence in its obligation to perform a delivery task for 
LogisticsHQ. As Truck1 lacks the capability to repair itself, it cannot restore confidence 
above the relevant maintenance policy threshold. Following receipt of Truck1’s 
obligationMaintained message (conveying this confidence change and signifying Truck1 
cannot offer any improvement), subsequent maintenance of the dependant intention by 
LogisticsHQ identifies insufficient confidence in the corresponding activity. The 
modifications from successfully handling the resulting effects maintenance task see 
LogisticsHQ use an alternate, undamaged obligant (Truck2), which offers superior 
confidence over Truck1 (Figure 7). This distributed maintenance behaviour is equivalent 
to maintaining a local hierarchical plani, but is performed by a hierarchical team where 
the distributed plan is being effectively refined through delegation of activities to 
obligants. 

Figure 7 Result of adoption of maintenance responsibility by Logistics HQ in response to low 
confidence in Truck1’s obligation (Figure 6) 

 

Notes: The new obligant Truck2 originates at a different initial location and must first 
travel to B to retrieve Cargo1 – which was previously carried by, and now must be 
unloaded by, Truck1. 
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Figure 8 The adoption of responsibility process in a hierarchical team, where B is an obligant of 
A, and C and D are obligants for a joint activity in B’s plan 

 

Our distributed maintenance behaviour seeks to replicate re-refinement HTN plan repair, 
but for a distributed plan where dependency relationships (namely the resultant 
identification of plans by obligants to perform obligated activities) are analogous to task 
refinement. Agents adopt responsibility for maintenance when executing planned 
activities, or upon an obligant informing them that they have performed maintenance 
(Algorithm 1). The latter scenario sees updated dependency contract information used by 
the dependant to determine if obligant maintenance was successful, and – through 
considering changes against conditions defined by the contract maintenance policy – 
whether local modification is required for the dependant plani. 

6 Evaluation 

Our evaluation compared a CAMP-BDI MAS against one using a reactive failure 
mitigation approach, operating within a logistics domain corresponding to our motivating 
example (described in Section 2). Agents within the reactive MAS attempted replanning 
upon activity failure; we argue this is an appropriate method for handling unexpected 
outcomes, as it represents a conceptually similar approach to that employed by leading 
determinisation-based probabilistic planners. For example, FF-Replan (Yoon et al., 2007) 
takes advantage of historical optimisations to classical planning by determinising a 
probabilistic domain; differences between the actual and anticipated (classical operator 
modelled) outcome are detected through plan execution monitoring (PEM) and trigger 
reactive replanning. The reactive MAS used a single-outcome determinisation, with 
success regarded as the most probable outcome if preconditions held; activity failure was 
treated as an unexpected outcome and triggered replanning (mirroring FF-Replan). 
Baseline ‘worst-case’ performance was determined with a MAS where agents employed 
no failure mitigation strategy. 

All experiments were performed on a system with an Intel i5-3750k processor 
(3.5Ghz) and 16GB RAM, running Java v1.8.0 31; MASs were implemented by 
extending the Jason agent framework (Bordini and Hübner, 2006) to support contract 
formation as part of distributed intention execution and to support runtime planning 
within CAMP-BDI and replanning agents. We adopted LPG-td (Gerevini and Serina, 
2002) as a planner. We deemed use of a classical planner as an appropriate analogue to a 
real-world implementation, due to offering both superior flexibility over HTN or plan 
library methods and faster performance than probabilistic approaches. 

MAS performance was compared in terms of three metrics; overall goal achievement 
(total number of successful deliveries), the number of activities executed per goal 
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achieved (efficiency), and the average planning calls per achieved goal (as an indicator of 
computational cost). A variety of exogenous changes could occur in the environment; 
landslips (blocking roads), locations becoming dangerous, or rainfall leading to slippery 
and then flooded roads (leading, respectively, to increased risk of and then guaranteed 
failure for activities requiring use of said road). Each MAS was formed of heterogenous 
agents able to achieve system goals through delegation and co-ordination. Truck agents 
capable of load, unload and movement activities necessary for transport of cargo objects, 
with a variety of other agent types providing capabilities for addressing negative world 
states; APCs are used to render dangerous areas safe, Hazmats to decontaminate toxic 
roads, and Bulldozers to clear roads blocked by landslips. 

Performance of each approach was evaluated for, and averaged over, ten runs; each 
run lasted for (generation, and success or failure in achieving) 100 cargo delivery goals. 
All experiments employed the same procedurally generated geography, using a specified 
seed value to control simulation events. Activity failure risked various types of 
debilitation including damage to the agent (of incremental severity and with associated 
confidence loss) and – if the agent was loaded with, loading or unloading cargo – 
destruction or spillage of cargo (the latter applied only where cargo was of a hazardous 
type, and would render roads toxic). Agent damage was gradually recovered from 
(‘healed’) whilst that agent was idle. Performance of each system was evaluated for 20, 
40, 60 and 80% (n = 0.2, 0.4, 0.6 and 0.8) probabilities of the above debilitations arising 
following failure; probabilities were applied individually to each type of debilitation. 

Figure 9 Average goal achievement rate (%) for 0.2 to 0.8 post-failure damage probability, with 
standard deviation 

 

Notes: CAMP-BDI results are shown as solid lines, replanning dashed, and worst-case as 
dotted. 

Figure 9 shows that CAMP-BDI achieved significantly more goals than replanning, with 
increasing superiority as n increased. CAMP-BDI achieved around 95% of goals for all 
probabilities of debilitation; replanning achieved 61.9% of goals at n = 0.2, and 
eventually dropped to 26.6% at n = 0.8. Worst-case performance was consistently poor; 
from n = 0.2 to 0.6 19.5% to 16% of goals were achieved, with this falling to 8.6% as 
post-failure debilitation became virtually certain at n = 0.8. Debilitation had a reduced 
impact at lower n in the worst-case system as agents would fail goals immediately upon 
any activity failure, regardless of whether debilitation had occurred. Replanning, in 
contrast, would generally only fail a goal upon repeated activity failure and reactive 
replanning; this risked accumulating debilitation(s) from these individual activity failures, 
and increased the overall risk of at least one debilitation occurring during the pursuit of 
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goali. Replanning still offered superior performance over the worst-case, as certain 
(debilitated or otherwise) post-failure states could still be recovered from. 

The increasing superiority of CAMP-BDI over replanning was attributed to the 
increasing risks of post-failure debilitation; damage also persisted to impact subsequent 
activities, giving successive failures a compounding debilitative effect. CAMP-BDI’s 
proactivity offered two advantages. Firstly, preventing failure avoids agents having to 
plan and act in debiliated (suboptimal) post-failure states. The confidence loss associated 
with agent damage also saw maintaining dependants seek to use higher-confidence  
(i.e., undamaged) obligants, reducing the workload upon agents with suboptimal  
health – avoiding compounding damage from any subsequent failure of that obligant 
(e.g., due to existing damage) and allowing health recovery when idle. We can also 
imagine an extension to our experimental environment where agents recovered health 
using explicit repair activities rather than through ‘passive’ repair (i.e., whilst idle). In 
such cases, CAMP-BDI could stimulate such repair upon detecting the confidence loss 
from damage – while reactive approaches can only respond after consequent failure. 

The worst-case MAS generally had less pronounced decreases in goal achievement as 
n increased; we judged this as being due to immediate failure, whilst replanning would 
only ultimately fail from the cumulative effect of repeated debilitation from activity 
failure-then replanning cycles. At n = 0.8, post-failure debilitation became almost certain; 
this was reflected through a notable drop in worst-case performance between n = 0.6 and 
0.8 (Figure 9). 

Figure 10 Average activity success (%), for 0.2 to 0.8 post-failure damage probability, with 
standard deviation 

 

Notes: CAMP-BDI results are shown as solid lines, replanning dashed, and worst-case as 
dotted. 

Figure 10 shows a similar pattern for average activity success, with CAMP-BDI 
maintaining consistent success rates (99.78% to 99.70%) from n = 0.2 to 0.8, whilst both 
replanning (90.90% to 86.66%) and worst-case (89.59% to 83.39%) systems saw activity 
failures increase with greater values of n. This would seem intuitive, given that  
CAMP-BDI focuses upon proactive avoidance of failure versus reactive response (or 
ignorance, as in the worst-case); our results confirmed CAMP-BDI was effective at 
preventing activity failure. For all systems, including the worst-case, activity success 
rates were generally high, as failures typically followed successful execution of multiple 
preceding activities. Decreases in activity success rates for replanning and worst-case 
systems can be attributed to the increasing likelihood of post-failure debilitation, 
particularly as negative states could persist over time. 
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One potential concern for CAMP-BDI was the potential cost of employing runtime 
planning within a proactive approach; as Toyama and Hager (1997) note, reactive failure 
handling offers the benefit of only expending recovery costs after a definitive failure, 
rather than upon anticipating potential failure. To this effect, our results (Figure 12) did 
show CAMP-BDI as executing significantly more planning operations per goal at lower n 
values than replanning (e.g., 9.91 versus 5.642 planning calls per achieved goal at n = 2). 
However, replanning became significantly less efficient as n increased and debilitation 
became more likely; at n = 0.8, replanning performed an average 19.91 calls per achieved 
goal, compared to 11.03 for CAMP-BDI. This reflected an increasing risk of post-failure 
debilitation (including scenarios where reactive recovery was rendered impossible), and 
suggests the costs of employing a proactive approach may be balanced against the costs 
of ‘allowing’ failure before invoking a recovery strategy. The higher costs of proactivity 
may be further justifiable if failure can have particularly severe consequences – e.g., if 
destroyed cargo was nuclear waste or vital medical supplies. 

Figure 11 Average activities per goal, for 0.2 to 0.8 post-failure damage probability, with 
standard deviation 

 

Notes: CAMP-BDI results are shown as solid lines, replanning dashed, and worst-case as 
dotted. 

Figure 12 Average planner calls per goal achieved for 0.2 to 0.8 post-failure damage probability, 
with standard deviation 

 

Notes: CAMP-BDI results are shown as solid lines and replanning as dashed. 

One possible CAMP-BDI optimisation is to include temporal considerations within 
maintenance – for example, limiting (in configuration or through maintenance policies) 
the number of activities into the future (how ‘deep’ into the plani) maintenance should 
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consider. This could help balance the costs of maintaining more temporally distant 
activities against the benefits of earlier anticipation and response to failure risks. Such 
threshold configurations would likely depend upon the domain, considering factors such 
as average plan length, or the likelihood of various types of exogenous change over  
time – the latter reflecting the degree of uncertainty over whether the estimated execution 
context (used to anticipate failure) for an activity would have held at execution time. 

The average number of activities executed per each goal achieved (Figure 11) served 
as an indicator of the cost of each goal achieved. CAMP-BDI shown fairly consistent 
performance for this metric, executing an average 15.69 to 16.88 activities per goal 
achieved (from n = 0.2 to 0.8). In contrast, replanning shown increasing activity cost, 
from 21.47 activities executed per goal at n = 0.28 to 29.31 at n = 0.8. This reflected the 
increasing difficulty of the environment (greater n entailed more frequent debilitation, 
with consequently more frequent confidence loss, activity failure and replanning), 
particularly as less goals were achieved – the absolute total of activities (as averaged 
across all experimental runs) executed by replanning agents actually decreased from 
1,322.99 at n = 0.2 to 700.3 at n = 0.8. CAMP-BDI, in contrast, was relatively consistent; 
ranging from 1,504.6 activities at n = 0.2 to 1,564.2 at n = 0.8. 

Results in the worst-case system were more variable; the average activities per goal 
actually decreased between n = 0.2 and 0.4, from 28.85 to 24.93, before rising to a 
maximum of 39.04 at n = 0.8. This variation may be due to an extremely low goal 
success rate in the worst-case system, combined with variations in exactly when 
execution of the intention failed. While a comparatively modest increase is shown for  
n = 0.6, we note that one worst-case experimental run was discounted from the total 
average after failing to achieve any goals; this prevented calculation of an average 
activity cost, and suggests the overall averaged activities-per-goal would be much higher 
if this zero goal run had somehow been factored in. Due to the extremely low overall 
rates of goal achievement, the worst-case system values for this metric may not 
necessarily indicate the activity cost of goals, but rather at what point during distributed 
plan execution failure actually occurred – this point may have been more random than for 
CAMP-BDI and replanning systems, which would still attempt to respond to potential or 
actual failures. 

Our results, in summary, show a clear advantage for CAMP-BDI where activity 
failure risks debilitative consequences. While proactivity may risk additional costs from 
false-positive anticipation of failure, our results suggest this may be mitigated where the 
consequences of ‘allowing’ (and only reacting to) activity failure are likely to stymie 
reactive recovery, or hinder subsequent goals. However, we must note it is infeasible to 
expect any proactive approach to anticipate and prevent every failure in every realistic 
environment, particularly where exogenous change can occur during (and ergo fail) 
activity execution. 

As a consequence, it is likely some form of reactive failure recovery will always be 
required to handle random, unpredictable failures. We suggest CAMP-BDI offers a 
complimentary approach to reactive approaches, which can be targeted at those activity 
types whose failures are potentially preventable and which risk consequences that would 
hinder recovery. Our use of maintenance policies also provides the potential for 
optimisation; for example, confidence thresholds could be reduced for activity types with 
lower risks of post-failure debilitation, allowing use of reactive failure handling instead. 
This would reduce iterative costs of maintenance, under an assumption it would be 
possible to recover from any failure of that activity type. 
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7 Related work 

A variety of existing work influenced and inspired CAMP-BDI. The capability model 
draws from concepts of know-how-to-perform, can-perform and know-how-to-achieve by 
Morgenstern (1986) and work by Singh (1999) regarding know-how. Plan confidence 
estimation resembles TÆMS quality metrics (Lesser et al., 2004), specifically q_min 
(future work may investigate further alternatives). He and Ioerger (2003) also discuss 
quantitative quality estimation, but to maximise schedule efficiency. The potential value 
of capability knowledge within BDI reasoning has also been explored; Sabatucci et al. 
(2013) use capabilities to representing plans and their viability conditions to evaluate the 
achievability of desires during intention selection. Waters et al. (2014) propose an 
approach towards intention selection which favours selection of the most constrained 
options, using knowledge of selection preconditions to prioritise selectable plans with the 
lowest coverage (Thangarajah et al., 2012). Unlike CAMP-BDI, they sought to maximise 
overall intention throughput rather than ensure success of the current intended goal – 
although our capability model can support similar reasoning for desire and intention 
selection, beyond our current robustness focus. 

CAMP-BDI shares some conceptual similarities with both PEM – e.g., SIPE 
(Wilkins, 1983) – and plan repair – e.g., O-Plan (Drabble et al., 1997) – approaches, as 
all identify or respond (through reformation or modification) to divergence from expected 
states during plan execution. Plan repair can offer benefits over replanning for distributed 
plans, by minimising the scope of plan changes (i.e., maximising plan stability) and 
consequently reducing the cost of communicating such changes to others. However, 
CAMP-BDI differs from these approaches by explicitly focusing upon BDI agent 
reasoning and by extending agent-level maintenance behaviour to the distributed case; 
our use of confidence estimation also provides a qualitative aspect to this response 
behaviour, whilst PEM uses deterministic preconditions to diagnose if expected and 
actual states have diverged. 

Braubach et al. (2006) defines goal types driving agent proactivity as being to either 
achieve or maintain a state, over some defined period or while defined conditions hold; 
reactive (to re-establish the state if violated) and proactive (constraining plan and goal 
adoption to prevent state violation) subtypes of the latter are defined by Duff et al. 
(2006). Reactive maintenance goals stimulate achievement goals to restore the protected 
states if and when violated; the subsequent intentions can be maintained through  
CAMP-BDI. Identification and handling of preconditions maintenance tasks in  
CAMP-BDI is similar to inferring proactive maintenance goals to preserve required 
precondition states until execution of the relevant activity. Effects maintenance also bears 
similarities, as loss of high-confidence associated states similarly triggers plan 
modification – although maintenance planning may identify an alternate sequence of 
activities, rather than being solely bound to restore said high confidence states. We 
assume that the methods used by agents to determine plans for intentions and form 
maintenance plans will recognise and observe any defined maintenance goals. 

Hindriks and Van Riemsdijk (2007) suggest an approach which, like CAMP-BDI, 
employs (limited) lookahead. Rather than ensure successful activity execution, they use 
this lookahead to ensure proactive maintenance goals are respected; their approach forms 
and uses goal-plan trees to anticipate the future effects of plans, and consequently to 
prevent selection (intention) of plans which would violate such goals. Unlike the  
CAMP-BDI view of plans as modifiable, they treat plans as pre-defined and immutable – 
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with (anticipated) state violation suggested as best addressed through relaxing goals to 
allow adoption of alternate plans. However, such relaxation may not be viable in certain 
domains or scenarios – for example, if goals correspond to safety responsibilities 
(Wooldridge et al., 2000) where the agent must ensure particular critical states hold. A 
similar approach, again using a goal-plan tree to guide goal adoption based on plan 
effects, is also suggested by Duff et al. (2006). CAMP-BDI varies from these approaches 
by also considering exogenous change as potential sources of violation, and by focusing 
upon preventing failure of existing intentions – whilst proactive maintenance goals 
instead constrain the selection of desires and formation of intentions to preserve states. 

Proactive maintenance goals can impact runtime activity by constraining subgoal 
refinement by agents employing continual planning. Continual planning strategies handle 
uncertainty through deferring the refinement of certain abstract activities until plan 
execution, at a timepoint where knowledge (of their execution context) is considered 
more certain (des Jardins et al., 1999). CAMP-BDI uses composite capabilities to support 
such an approach; this type allows analysis of whether subgoals can be decomposed, 
through both representing the plan options (and precondition constraints) for refining a 
given activity and by providing confidence estimation (i.e., an indicator of quality based 
on such options). If sensing activities exist (i.e., to learn specific information before 
runtime refinement of activities), the knowledge required for and gained from execution 
can be represented within capability preconditions and effects. 

An alternate approach for acting within stochastic domains is offered by Markov 
decision processes (MDPs); MDPs use state transition probabilities and a reward function 
to generate a policy defining an optimal activity for each possible world state. Partially 
Observable MDPs remove the total knowledge requirement of MDPs by defining a 
probability map of state observations – this is used to infer the actual state and define a 
solvable MDP. Although the resultant policies offer optimal behaviour, complexity issues 
can render MDP approaches intractable for realistic environments as state space 
increases; applicability can be improved through state space abstraction, but this also 
loses overall policy optimality (Boutilier and Dearden, 1994). 

BDI approaches can be regarded as a more efficient alternative to MDPs; Schut et al. 
(2002) show BDI agents as able to handle domains intractable for MDPs, whilst offering 
approximate performance (depending upon runtime planning costs). Work has also 
sought to reconcile BDI with MDP approaches; work by Simari and Parsons (2006) 
identifies similarities and potential mappings between policies and plans. Subsequent 
extension by Pereira et al. (2008) defined an algorithm to form deterministic plans (for 
use in agent libraries) from POMDPs – but assumed POMDP policies could be formed 
offline, which may not be feasible for complex domains. MDP specifications can also be 
unintuitive, limiting their usability; Meneguzzi et al. (2011) suggest a method to map 
more intelligible HTN domains to MDP equivalents, defining transition probabilities 
based upon states within operation preconditions rather than environmental probabilities. 

In our design of CAMP-BDI, we assumed deterministic plans (and operator 
specifications) are required for realistic domains due to the likely intractability of MDP 
approaches. Confidence estimation provides information similar to an MDP transition 
function, but provides a scalar estimate (providing flexibility for implementation) rather 
than requiring an exact probability. 
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8 Conclusions 

We have contributed the CAMP-BDI approach towards distributed plan execution 
robustness, describing both an algorithm for performing pre-emptive plan modification 
(maintenance) and the use of structured messaging to extend local maintenance 
behaviour towards the distributed case. We also describe provision of supporting 
capability and contract meta-knowledge, and the use of maintenance policies to tailor this 
behaviour during runtime. Whilst CAMP-BDI – or any proactive approach – cannot 
wholly replace reactive methods (some failures will inevitably be impossible to anticipate 
or prevent), we argue it offers a valuable complementary approach. 

Our approach does incur analysis costs when forming capability knowledge, which 
must be balanced against the risk (costs) of post-failure debilitation. These analysis 
requirements may be justified by a need for similar information to specify library plans or 
planning domains, which require similar understanding of how and which environment 
states impact activity outcomes. Specification costs are somewhat reduced through only 
requiring an indicative value from confidence estimation; this allows implementation 
granularity to be tailored to reflect the available (or discoverable) domain knowledge. 
The benefit (value) of modelling capability knowledge is arguably increased by their 
potential application within other robustness approaches, or to aid desire and intention 
selection. 

Future work can explore minimisation of planning costs through expanded use of 
maintenance policies; e.g., introducing fields that define permissible relaxations for 
maintenance planning, or conditional rules indicating where maintenance is considered 
intractable (allowing responsibility to be deferred to dependants, avoiding ‘futile’ local 
planning effort). Further extension could define conditional rules that allow selection of 
pre-formed plan recipes for specific cases, used to avoid runtime planning. As  
CAMP-BDI does not mandate any specific planner implementation, use of heterogeneous 
planning approaches may be examined; e.g., with more specific (lower level) agents 
using fast HTN or library methods to improve reactive speed, but higher-level (abstract, 
broker or logical organiser) agents using more costly – but flexible – classical planning 
when the former cannot restore confidence locally. Greater optimisation of confidence 
estimation and agenda formation is also possible, although the most effective approaches 
may prove domain-specific. 
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