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Abstract

Hedlamp is a UK EPSRC grant funded research project in
which we aim to tackle challenges with knowledge engineer-
ing of automated planning techniques when applied to real
applications. Normally, successful deployment of planning
technology relies on groups of planning experts encoding de-
tailed domain models and investing large amounts of time
maintaining them.
We are developing a high level, application-oriented knowl-
edge engineering framework usable by application develop-
ers who want to experiment with the potential of AI Planning,
while encoding a precise domain model of some valuable ap-
plication area. We are developing tools and theory for the
framework which support knowledge acquisition, validation
and operationality of the domain model. In particular, this
project aims to explore the opportunities of applying model
translation, adaptation and reformulation techniques to im-
prove the model’s quality, and that of the planning function
of which it is a part.
In this paper we outline the main areas that Hedlamp has ad-
dressed, and overview an automated knowledge acquisition
technique that has been tested with real industrial process
data.

Introduction: Project Context
Hedlamp (Huddersfield and Edinburgh: Learning Action
Models for Planning) is a UK EPSRC joint grant funded
research project, 2012-16, in which we in which we aim
to tackle challenges with knowledge engineering of auto-
mated planning techniques. Our work is carries on from
previous knowledge engineering research platforms such as
GIPO (Simpson, Kitchin, and McCluskey 2007) and ItSim-
ple (Vaquero et al. 2012), but is also heavily influenced by
the EPSRC AIS Programme’s industrial setting1. Utilizing
planning machinery relies on the expertise of groups of plan-
ning experts having to learn application expertise, encoding
detailed domain models of the relevant part fo the applica-
tion, and investing large amounts of time maintaining the
model. We are developing theory and techniques to meet
the challenge through involving the expert in the encoding of
the knowledge, developing V & V techniques which identify
and remove bugs at the domain modelling stage, developing

1https://www.epsrc.ac.uk/files/funding/calls/2011/autonomous-
and-intelligent-systems/

techniques to acquire the knowledge automatically, and op-
timising the translation of the domain model into a form ac-
ceptable by a planning engine. The tools are built around the
key concepts of expert involvement and inspection, transla-
tion, reformulation, and machine learning, This has led to
the development of a high level, application oriented knowl-
edge representation language (AIS-DDL), with translators
to the family of PDDL planner input languages, as well as
the development and use of an hierarchical planner which
inputs AIS-DDL. Given planning knowledge is notoriously
hard to encode, we need effective ways of removing bugs
and certifying its quality. The interface needs multiple ways
to perform V & V to enable this. Following this rationale,
our progress has largely covered the following areas:

• manual coding of an AIS programme application, expert
involvement and validation: the knowledge representation
lanaguage AIS-DDL has been developed such that the ex-
pert user can both add to it and inspect it. This involves it
being accessible on a networked platform called ”KEWI”,
which includes documentation and (links to) source mate-
rial for traceability (G.Wickler, L.Chrpa, T.L.McCluskey
2014a).

• parsing and translation: components of AIS-DDL are
checked, parsed and translated down to an appropriate
PDDL level for input to a planning engine. The trans-
lator embodies consistency checking, and the operational
form is run to help in validation, hence V & V processes
are being addressed (G.Wickler, L.Chrpa, T.L.McCluskey
2014b).

• reformulation and heuristic learning: given the transla-
tion is automated, the resulting PDDL is not optimised
and could include inefficient components. In this case,
problem transformation components are useful to input
the translated PDDL and transform it into a more effi-
cient representation, as well as deriving heuristics in the
form of macros. The transformations preserve the initial
model’s semantics and keep it within the same PDDL lan-
guage. We have shown that these techniques are both
domain and planner independent (L.Chrpa, M. Vallati,
T.L.McCluskey 2014).

• internal planner: For validation by operation, we have de-
veloped a hierarchical planner within KEWI. This has the
advantage of operational heuristics embodied within AIS-



DDL which correspond to known procedures or activities
involving a collection of primitive actions.

• machine learning: where other sources of data can be
identified (apart from expert involvement and the use of
expert documents), then it is possible to consider the use
of machine learning techniques either in real time or batch
mode. For example, work in the area of ATC used track-
ing records to perform machine learning in the form of
theory revision on an existing domain model (McCluskey
and West 2001). From initial acquisition and domain
maintenance viewpoints, the use of training data can lead
to the automated reconstruction or evolution of the do-
main model.

A central element of the HedLamp research project is in
its aim to develop procedures to automatically learn domain
models for automated planning. In this report we will give an
overview of the recent developments in adding acton model
learning to the KEWI environment, in particular to benefit
from data output from inductrial processes. First, we will
survey related work along these lines.

Learning Domain Models for Planning
Overview
Machine Learning applied to APS has attracted a long his-
tory of research, and can be applied to various areas of auto-
mated planning such as learning heuristics. Here we concen-
trate on learning applied to knowledge acquisition of action
schema, and point the reader to a recent survey for a full
account (Jiménez et al. 2011). Using techniques from the
field of Machine Learning, researchers have experimented
with processes that input training or observation inputs, and
output solver-ready models in languages such as PDDL. To
be able to do this, the learning processes have to embody
various types of knowledge such as general properties and
constraints about actions and objects, as well as knowledge
about the kind of domain in which they are learning. Moti-
vations for this type of learning include the following inter-
connected challenges: to overcome the knowledge acquisi-
tion bottleneck; to alleviate ”coding bias” of knowledge en-
gineers; to debug existing doman models; and to be able to
apply planning to adapted or new domains without re-coding
of models.

As an example, the knowledge engineering environment
GIPO III (Simpson, Kitchin, and McCluskey 2007) embod-
ied an induction technique to aid the acquisition of operator
descriptions, called OpMaker. The tool requires as input a
structural description of the static parts of the domain com-
prising knowledge about states of objects and their relations.
Given a training problem instance and a valid solution plan
for that instance, OpMaker outputs a full PDDL model (Mc-
Cluskey et al. 2010). This kind of domain model learning
can be separated into three concerns:

1. What inputs (training plans, observations, constraints,
partial models, etc.) are there to the learning process?

2. What stage in the development process is the learning tak-
ing place (initial acquisition, or incremental, online adap-
tation)?

3. What language is the learned domain model going to be
expressed in?

In the case of OpMaker, (i) is a partial model and one
example, (ii) is initial acquisition, and (iii) is PDDL ver-
sion 2.1. Several recent notable learning systems (OpMaker,
LAMP, LOCM) aim to output some variant of PDDL within
an initial acquisition phase. While sytems tend to concen-
trate on initial acquisition, adaptation can be viewed itself as
a non-monotonic special case of initial acquisition, where
input to the learning process includes the current domain
model as well as training examples and the output is the up-
dated model. Wang’s OBSERVER system was a seminal
example of this, as it learns an initial model and continues to
perform repairs to the model during operation (Wang 1995).

Regarding (i), systems that learn very expressive domain
models tend to demand the most detailed input, often requir-
ing detailed state information before and after action execu-
tion within each training plan. Past work on learning do-
main models for robotic agents in uncertain environments
assumes such detailed input and substantial a priori knowl-
edge (Amir 2005; Benson 1996). With such rich inputs, sys-
tems such as Amir’s SLAF (Amir 2005) can learn actions
within an expressive action schema language.

In comparison, significant recent work on learning do-
main models within a deterministic and totally observable
framework has concentrated on learning from example plans
but with little or no pre-engineered domain knowledge. The
LAMP system (Zhuo et al. 2010) can form PDDL domain
models from example plan scripts and associated initial and
goal states only. It inputs object types, predicate specifica-
tions, and action headings, and from plan scripts taken from
planning solutions, it learns a domain model. The domain
model is synthesised using a constraint solver, inputting two
sets of constraints. One set is based on assumed physical,
consistency and teleological constraints – for example, every
action in the example plan script adds at least one precondi-
tion for a future action, actions must have non-empty effects,
and so on. The other set of constraints is generated using a
type of associative classification algorithm which uses each
plan script as an itemset, and extracts frequent itemsets to
make up constraints. LAMP is aimed at helping knowl-
edge engineers create a new domain model, as the authors
maintain that, after learning, the model needs to be hand-
crafted to remove bugs. Another family of systems rooted
in LOCM, exploit the assumption of an object-centred do-
main to enable learning from plan scripts only (Cresswell,
McCluskey, and West 2011). As with LAMP, LOCM out-
puts a model in a PDDL format but it inputs only training
plan scripts: it does not require representations of initial and
goal states, or any descriptions of predicates, object classes,
states etc. LOCM assumes that the objects referred to in the
training plans can be clustered into classes, and each class
has a behaviour defined by a parameterised state machine,
which it constructs using implicit physical constraints on the
state change of objects. While being a useful induction en-
gine, LOCM also, to some degree, avoids the encoding bias
of knowledge engineers mentioned above.

To be successful, automated tools that learn domain mod-



els have to embody general properties and constraints about
actions and objects, and in most cases the kind of domain
in which they are learning. The key idea within these ap-
proaches is that of inductive generalization – using examples
of behaviours of a class of objects and generalising these
examples to a theory about the whole class of objects. In
the case of planning, a set of plans that are observed from
the domain itself is a natural training input. Potential train-
ing plans could be harvested from a wide range of applica-
tions, and examples include logs of commands such as op-
erating system instructions, moves made in a game or traces
of work-flow or business process execution - any output of
some operation in the application domain from which we
can extract information relating to the domain model.

An Overview of Action Model Learning in
KEWI

The HedLamp project was aimed at supporting autonomous
intelligent systems in the industrial sectors supporting the
EPSRC AIS Programme. Hence, we worked on knowledge
acquisition and engineering of knowledge of industrial pro-
cesses, supplied by the industrial backers of the Programme.

The target of learning was action schema, both to help the
system adapt over time, and to provide another form of vali-
dation of previously encoded schema. Referring to the three
concerns above, the output (iii) is the KEWI source lanuage
(AIS-DDL), and the stage of learning (ii) is post initial ac-
quisition. Inputs (i) to the learning process are detailed: ap-
plications where knowledge engineering is required to cap-
ture the objects and their dynamics in an area such as in-
dustrial plant operation, there is a great deal of persistent
structural and constraint knowledge which is naturally cap-
tured by encoding with the help of domain experts and do-
main manuals. Additionally, some of the knowledge may
already exist in ontological form, and may be translatable
to AIS-DDL. Hence, the kind of learning method we will
need would take account and indeed benefit from existing
knowledge. We are interested in those techniques, there-
fore, which assume that part of the input to learning process
is a partial domain theory, which includes some of the pre-
viously encoded model. The other question is: what data
is available to drive the learning taking place? In scenarios
describing some external controllable process such as indus-
trial plant operation, the inputs to a learning component are
data traces of processes which contain objects of classes al-
ready encoded in KEWI. These traces are typically observa-
tions of the state of features and properties of the equipment
- in other words, state data in a raw form.

The nature of the problem area therefore determines the
kind of learning technology we need to use: we have a
partial domain model, we have a stream of raw data, and
we would like to learn action models in AIS-DDL. In this
case, our solution would be inspired by systems such as Op-
maker (McCluskey et al. 2010) or LAMP (Zhuo et al. 2010),
where we are learning action models from state information,
and previously encoded ”static” knowledge. Before we de-
scribe the learning process, we will give an overview of the
language in which the partial domain model is encoded, and

in which the output will be formed.

The KEWI Source Language
KEWI (G.Wickler, L.Chrpa, T.L.McCluskey 2014b) was de-
signed to help the formalisation of procedural knowledge
both for use in planning, as other knowledge based appli-
cations such as plan explanations. The idea is to enable do-
main experts to encode knowledge themselves, rather than
using knowledge engineers. KEWI is object-centred and al-
lows for a richer representation of knowledge than PDDL.
It is more compact and more expressive which means mod-
els are easier to maintain, especially for a user who is not
an expert in AI planning. KEWI’s internal representation
can be exported to PDDL (though information will be lost
in the process) and hence standard planning engines can be
applied to solve planning problems modelled in KEWI. Do-
main knowledge encoded in KEWI is at three levels: level
1: a rich domain ontology is defined. The domain ontol-
ogy consists of definitions of classes of objects, hierarchies
of classes and relations between objects. Level 2: action
types are defined in terms of their action name, logical pre-
conditions and effects. Level 3: methods define ways in
which high level task can be broken down into lower-level
activities, a so-called task network which includes explicit
ordering constraints. Ontological elements are usually di-
vided into concepts and instances. Typically, the concepts
are defined in a planning domain whereas the instances are
defined in a planning problem.

For example, part of “level 1” AIS-DDL for the “dock
workers” domain, used in the Planning textbook (Ghallab,
Nau, and Traverso 2004), is as follows:

(:domain dwr
(:class agent)
(:class crane
(:super-class agent)
(:role at (:min 1)(:max 1)(:class location))
(:role holds (:max 1)(:class container)))

(:class robot
(:super-class agent)
(:role loaded-with (:max 1)(:class container))
(:property has-colour (:min 1)(:max 1)

(:type colour)))
(:class location
(:role occupied-by (:max 1)(:class robot)))

(:class stackable)
(:class container
(:super-class stackable)
(:role on (:max 1)(:class stackable))
(:role piled-on (:max 1)(:class pallet))
(:property paint (:min 1)(:max 1)

(:type colour)))
(:class pallet
(:super-class stackable)
(:role at (:min 1)(:max 1)(:class location))
(:role top (:min 1)(:max 1)(:class stackable)))

(:property colour
(:values ( red green blue )))

(:relation adjacent
(:arguments ((?loc1 location)(?loc2 location)
)))



Learning Action Models from Raw Data
We detail the model learning method, and its application to a
real process plant assembly. The industrial process delivers
to us raw values / measurements of objects which are already
encoded within a KEWI class. This means that the definition
of the features and properties of objects that the data is de-
scribing (e.g. status of a pump) are already declared within
KEWI. We therefore have taken a staged approach:

1. collection of raw data from the operation of the mechanics
of the system that is already (partially) encoded within
KEWI;

2. translation of the trace of the raw data into symbolic data
sequences, where the symbols are defined within KEWI,
and each element of the sequence describes a partial state;

3. inducing/deducing action schema/models from the sym-
bolic data sequences

The first two stages are application dependent, though
tied, of course to the ontology supplied by the knowledge in
KEWI. This kind of translation has been carried out in much
previous work, for example, mapping from geometric states
to symbolic states in robot maniputation applications (Dear-
den and Burbridge 2014), or low level sensor data to pred-
icates in action learning (Laguna 2014). In our work, we
place the previously engineered knowledge as central to the
type of learning performed: the blend of induction with de-
duction in stage 3 is key to the success of the method.

We created a domain-dependent procedure to discretize
the continuous streams of sensory inputs, dealing with the
noise in the data, and building on known dependency be-
tween values. In particular, noise can be in form of missing
or incorrect values. Whereas it is easy to deal with missing
values, (for instance, by ignoring the data item), incorrect
values might not be straightforward to identify. This is be-
cause a value that differs from the previous ones might be
either inaccurate or indicate a change of a state. For exam-
ple, a stream of values representing the number of rotations
per minute of some movable part of a plant assembly deter-
mines whether the part is rotating or not (i.e., the values are
discretized into a binary state). A sequence of zeroes in that
stream thus indicates that the part is not rotating. However,
if a non-zero value occurs we have to decide whether the
state of the part has changed to “rotating”, or the value is
incorrect. We cannot draw conclusions from a single value,
however, we can observe n values (we set n = 10) and ma-
jority of the values indicates a change of the state (e.g. if 8
out of 10 values describing the part’s rotation are non-zero,
then the state is changed to “rotating”). A similar approach
is used to determine state changes for states that are deter-
mined from multiple different sensory inputs (e.g. such as
an exogenuos event that causes direct or indirect changes in
the plant). In such cases, the noise is considerably larger. To
overcome this issue we set up specific rules for each state
value change (e.g. changing between the mode of operation
of a moveable part of an assembly).

For the third stage, we assume that the sets of values mak-
ing up each state in the trace of the system are known to de-
scribe observations (here values of properties) of parts of a

known object in KEWI (here parts of the plant assembly).
Hence a sequence of object feature variable - values is input
to the third stage. We base the method of the third state on
two ideas:
• Deduction - we use a priori knowledge to enrich learned

patterns
• Inductive generalisation - we induce patterns from many

examples
In the deduction step, we use the fact that object knowl-

edge within the domain model contains the specification of
the set of states of a class of objects. For example, recalling
our example in the Dockworkers domain, for a Container, it
specifies that there are 3 legal states that an object of class
container may occupy. Each state is represented by one of
the three predicate sets below:
–paint(Container,Colour),on(Contained,Stackable),
piled on(Container,Pallet)
–paint(Container,Colour),on(Contained,Stackable)
–paint(Container,Colour), piled on(Container,Pallet)
Hence, as objects are affected by sequences of actions, they
potentially travel through the state space as specified in the
static model, and objects which are Containers are therefore
in one of the three states as specified above, in any state as
the plan progresses. The inductive generalisation part incor-
prates these constraints from KEWI’s ‘level 1’ knowledge
base. It uses the many examples of state changes, analyses
the context of each change of state property, and induces
action schema, as outlined below:

1. Iterate through the whole batch of input and record each
object feature change

2. For each feature variable-value change:
(a) collect the pre- and post values of other variables in the

before/after states;
(b) induce event pre-conditions : gather variables with a

fixed value for each instance of change
(c) induce post-condition: record cases where other values

change at the same time
(d) create parameter list from objects involved in the tran-

sition

A change is where the variable’s value changes from one
state in the sequence to the next (there are sometimes more
than one change). A list of KEWI ‘level 2’ operators are
output from this process.

Results
We have implemented and tested the model learning method
on a data sequence of length c.60,000 records over c.2 days
of operaton of a real industrial process, with 23 value read-
ings per record. The learning system generates intermediate
states, then learns action and event schema in KEWI syn-
tax. Of the 16 schema learned, 14 represented new actions
or events, in the sense that they were not already encoded
into KEWI. The 2 hand crafted actions already present in
KEWI were not inconsistent from the 2 counterpart learned
versions, in that the latter were more specific and formed



wth extra preconditions. For example the following action
schema was induced by the system:

(:action-class off-to-on-pump
(:arguments

( (?x pump)(?x1 plant-assembly) ))
(:precondition (:and
(:constraint

pump.state ( ?x off))
(:constraint

plant-asembly.main-activity
( ?x1 inactive))))

(:effect (:and
(:constraint

pump.state ( ?x on )))))

This introduces a new precondition that was not recognised
- that the plant assembly’s main activity must be inactive
before the pump is activated. This raises validation issues
with the original encoding. An interesting side effect of
the method is that the original raw data can be replaced by
events and actions throughout the time period, replacing raw
traces with sequences of events and action applications, giv-
ing a high level description of the happenings over the 2
days. The induction engine creates several hundred of these
events and actions that occur over the period - a small snap-
shot of the sequence is shown below, where at two stages
two actions/events occur simultaneously 2:

disengage-assembly
stop-rotating stop-pump
start-pump suspect-overload
start-rotating
no-overload-found
start-engaging-assembly

The system is integrated with KEWI in the sense that it uses
translated KEWI knowledge structures to inform it, and pro-
duces KEWI action descriptions. The results have been pre-
sented to domain experts, but we are yet to perform a full
analysis, or (automatically or otherwise) integrate the new
knowledge into the KEWI knowledge base, and deal with
induced schema that are different from previously acquired
actions.

In comparison to existing systems, KEWI’s learning com-
ponent can be seen as a generalisation of Opmaker, as it
utilises a priori domain knowledge in the form of the Level
1 partial domain model to direct learning. Additionally it in-
corporates into it an inductive part, so that the process ben-
efits from many examples; and its inputs are derived from
real data, rather than simulated.

Conclusions
In this paper we have given an overview of an industrial-
oriented EPSRC project which is aimed towards tackling
challenges in knowledge engineering for automated plan-
ning applications. We outline the wide range of knowledge
engineering techniques that the research has been aimed at.

2names for actions, events, processes etc have been made
generic in this paper so as to protect the privacy of the specific
industrial sector involved

The paper looked in more detail at the area of learning ac-
tion models, and described such an implemented and tested
system. Our current work is engaged on the integration of
the learned knowledge, with the existing knowledge, in the
KEWI knowledge engineering platform.
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