
Ontological Support for Modelling
Planning Knowledge

Gerhard Wickler1(B), Lukáš Chrpa2, and Thomas Leo McCluskey2

1 AI Applications Institute, School of Informatics,
University of Edinburgh, Edinburgh, UK

g.wickler@ed.ac.uk
2 PARK Group, School of Computing and Engineering,

University of Huddersfield, Huddersfield, UK

Abstract. This paper describes the conceptual model underlying the
Knowledge Engineering Web Interface (KEWI) which primarily aims to
be used for modelling planning tasks in a semi-formal framework. This
model consists of three layers: a rich ontology, a model of basic actions,
and more complex methods. It is this structured conceptual model based
on the rich ontology that facilitates knowledge engineering. The focus of
this paper is to show how the central knowledge model used in KEWI
differs from a model directly encoded in PDDL, the language accepted
by most existing planning engines. Specifically, the rich ontology enables
a more concise and natural style of representation, including function
terms as object references. For operational use, KEWI automatically
generates PDDL. Experiments show that the generated PDDL can be
processed by a planner without incurring significant drawbacks.

Keywords: Knowledge engineering · Automated planning

1 Introduction

Domain-independent planning has grown significantly in recent years mainly
thanks to the International Planning Competition (IPC). Besides many advanced
planning engines, PDDL, a de-facto standard language family for describing
planning domains and problems, has been developed. However, encoding domain
and problem models in PDDL requires a lot of specific expertise and thus it is
very challenging for a non-expert to use planning engines in applications.

This paper concerns the use of AI planning technology in an organisation
where (i) non-planning experts are required to encode knowledge (ii) the knowl-
edge base is to be used for more than one planning and scheduling task (iii) it is
maintained by several personnel over a long period of time, and (iv) it may have
a range of potentially unanticipated uses in the future. The first concern has
been a major obstacle to using AI-based tools which input formal representa-
tions, in that the expertise required to encode such representations has only been
possessed by planning experts (e.g. as in NASA’s applications [1]). The other

c© Springer International Publishing Switzerland 2015
A. Fred et al. (Eds.): IC3K 2014, CCIS 553, pp. 293–312, 2015.
DOI: 10.1007/978-3-319-25840-9 19

294 G. Wickler et al.

concerns are often not covered in the planning literature: in real applications the
knowledge encoding is a valuable, general asset, and one that requires a much
richer conceptual representation than, for example is accorded by PDDL.

Very few collaborative, domain-expert-usable, knowledge acquisition inter-
faces are available that are aimed at supporting the harvesting of planning knowl-
edge within a rich language for use in a number of planning-related applications.
After initial acquisition, the validation, verification, maintenance and evolution
of such knowledge is of prime importance, as the knowledge base is a valuable
asset to an organisation.

This paper introduces the Knowledge Engineering Web Interface (KEWI),
which aims to enable the acquisition and modelling of knowledge necessary for
use with automated plan generation tools. Here we detail the theoretical aspects
of KEWI, and evaluate it using a well-understood planning domain.

2 Related Work

A small number of frameworks exist that support the formalisation of plan-
ning knowledge in shared web-based systems. Usually, such frameworks build on
existing Web 2.0 technologies such as a wiki. A wiki that supports procedural
knowledge is available at wikihow.com, but the knowledge remains essentially
informal. A system that uses a similar approach, namely, representing proce-
dural knowledge in a wiki is CoScripter [2]. However, their representation is
not based on AI planning and thus does not support the automated composi-
tion of procedures. More recently, an AI-based representation has been used in
OpenVCE [3].

There have been several attempts to create general, user-friendly develop-
ment environments for planning domain models, but they tend to be limited
in the expressiveness of their underlying formalism. The Graphical Interface for
Planning with Objects (GIPO) [4] is based on object-centred languages OCL
and OCLh. These formal languages exploit the idea that a set of possible states
of objects are defined first, before action (operator) definition [5]. This gives the
concept of a world state consisting of a set of states of objects, satisfying given
constraints. GIPO uses a number of consistency checks such as if the object’s
class hierarchy is consistent, object state descriptions satisfy invariants, predicate
structures and action schema are mutually consistent and task specifications are
consistent with the domain model. Such consistency checking guarantees that
some types of errors can be prevented, in contrast to ad-hoc methods such as
hand crafting.

itSIMPLE [6] provides a graphical environment that enables knowledge engi-
neers to model planning domain models by using the Unified Modelling Lan-
guage (UML). Object classes, predicates, action schema are modelled by UML
diagrams allowing users to ‘visualise’ domain models which makes the modelling
process easier. itSimple incorporates a model checking tool based on Petri Nets
that are used to check invariants or analyse dynamic aspects of the domain
models such as deadlocks.

Ontological Support for Modelling Planning Knowledge 295

The Extensible Universal Remote Operations Planning Architecture
(EUROPA) [7], is an integrated platform for AI planning and scheduling, con-
straint programming and optimisation. This platform is designed to handle com-
plex real-world problems, and the platform has been used in some of NASA’s
missions. EUROPA supports two representation languages, NDDL and
ANML [8], however, PDDL is not supported.

Besides these tools, it is also good to mention VIZ [9], a simplistic tool inspired
by itSimple, and PDDL Studio [10], an editor which provides users a support by,
for instance, identifying syntax errors or highlighting components of PDDL.

In the field of Knowledge Engineering, methodologies have been developed
which centre on the creation of a precise, declarative and detailed model of the area
of knowledge to be engineered, in contrast to earlier expert systems approaches
which appeared to focus on the “transfer” expertise at a more superficial level.
This “expertise model” contains a mix of knowledge about the “problem solving
method” needed within the application and the declarative knowledge about the
application. Often a key rationale for knowledge engineering is to create declara-
tive representations of an area to act as a formalised part of some requirements,
making explicit what hitherto has been implicit in code, or explicit but in doc-
uments. Knowledge Engineering modelling frameworks arose out of this, such as
CommonKADS [11], which were based on a deep modelling of an area of expertise,
and emphasising a life-cycle of this model. The “knowledge model” within Com-
monKADS, which contains a formal encoding of task knowledge, such as problem
statement(s), as well as domain knowledge, is similar to the kind of knowledge cap-
tured in KEWI. Unlike KEWI however, this model was expected to be created by
knowledge engineers rather than domain experts and users.

AI Planning. The primary aim for KEWI is to ease the formalisation of proce-
dural knowledge, allowing domain experts to encode their knowledge themselves,
rather than knowledge engineers having to elicit the knowledge before they for-
malise it into a representation. We formally describe the conceptual model which
consists of three layers: a rich ontology, a model of basic actions, and more com-
plex methods. KEWI is object-centred and allows for a richer representation of
knowledge than PDDL. It is more compact and more expressive which means
models are easier to maintain, especially for a user who is not an expert in AI
planning. KEWI’s internal representation can be exported to PDDL and hence
standard planning engines can be applied to solve planning problems modelled
in KEWI. We demonstrate that PDDL models exported from KEWI are com-
parable to hand coded ones.

AI planning deals with the problem of finding a sequences of actions trans-
forming the environment from a given initial state to a desired goal state [12].
Actions are defined via their preconditions and effects. An action is applicable
in a given state if and only if its precondition holds in that state. Effects of an
action denote how a state where the action is applied will change. A planning
domain model consists of a set of predicates and/or fluents describing the envi-
ronment and a set of actions modifying the environment. A planning problem

296 G. Wickler et al.

consists of a planning domain model, set of objects, an initial state and a set of
goal conditions.

3 Conceptual Model of KEWI

KEWI is a tool for encoding domain knowledge mainly by experts in the appli-
cation area rather than AI planning experts. The idea behind KEWI is to pro-
vide a user-friendly environment as well as a language which is easier to follow,
especially for users who are not AI planning experts. A high-level architecture of
KEWI is depicted in Fig. 1. Encoded knowledge can be exported into the domain
and problem description in PDDL on which standard planning engines can be
applied. Hence, the user does not have to understand, or even be aware, of any
PDDL encodings.

Fig. 1. An architecture of KEWI.

A language in which domain knowledge is encoded in KEWI has three parts,
which are explained in the following subsections. First, a rich domain ontology
is defined. The domain ontology consists of definitions of classes of objects,
hierarchies of classes and relations between objects. Second, action types are
defined in terms of their action name, logical preconditions and effects. Third,
methods define ways in which high-level task can be broken down into lower-level
activities, a so-called task network which includes explicit ordering constraints.

3.1 Ontology: Concepts, Relations and Properties

Ontological elements are usually divided into concepts and instances. Typically,
the concepts are defined in a planning domain whereas the instances are defined
in a planning problem. Since our focus for KEWI is on planning domains we
shall mostly deal with concepts here.

Concepts. A concept is represented by a unique symbol in KEWI. The formal
definition of a concept is given by its super-class symbol and by a set of role
constraints that define how instances of the concept may be related to other
concepts. In KEWI, the definition of a concept also includes other, informal
elements that are not used for formal reasoning. However, the knowledge engi-
neering value of such informal elements must not be underestimated, much like
the comments in programming often are vital for code to be understandable.

Ontological Support for Modelling Planning Knowledge 297

Definition 1 (KEWI Concept). A concept C in KEWI is a pair 〈Csup, R〉,
where:

– Csup is the direct super-concept of C and
– R is a set of role constraints of the form 〈r, n, C ′〉 where r is a symbolic

role name, C ′ is a concept (denoting the role filler type), and n is a range
[nmin, nmax] constraining the number of different instances to play that role.

We assume that there exists a unique root concept often referred to as object
or thing that acts as the implicit super-concept for those concepts that do not
have an explicit super-concept defined in the same planing domain. Thus, a
concept C may be defined as 〈�, R〉, meaning its super concept is implicit. This
implicit super-concept has no role constraints attached.

For example, in the Dock Worker Robot (DWR) domain [12], the concepts
container and pallet could be defined with the super-concept stackable,
whereas the concept crane could be defined as a root concept with no super-
concept (implicitly: �). A role constraint can be used to define that a crane can
hold at most one container as follows: 〈holds, [0, 1], container〉.

Since super-concepts are also concepts, we can write a C as
〈〈〈�, Rn〉, . . . , R2〉, R1〉. Then we can refer to all the role constraints associated
with C as R∗ = Rn ∪ . . . ∪ R2 ∪ R1, that is, the role constraints that appear
in the definition of C, the role constraints in its direct super-concept, the role
constraints in its super-concepts super-concept, etc.

The reason for introducing this simple ontology of concepts is that we can
now constrain the set of possible world states based on the role constraints.
States are defined as sets of ground, first-order atoms over some function-free
language L. This language shall contain symbols to denote each instance of a
concept defined in the ontology (c1, . . . , cL) where the type function τ maps each
instance ci to its type C, a concept in the ontology. The relation symbols of L
are defined through the role constraints.

Definition 2 (Relations inL). Let 〈r, n, C ′〉 be a role constraint of some con-
cept C. Then the first-order language L that can be used to write ground atoms
in a state contains a binary relation C.r ⊆ C × C ′.

In what follows we shall extend the language to include further relation sym-
bols, but for now these relations defined by the ontology are all the relations that
may occur in a state. The reason why the relation name is a combination of the
concept and the role is simply to disambiguate between roles of the same name
but defined in different concepts. Where all role names are unique the concept
may be omitted.

We can now define what it means for a state to be valid with respect to
an ontology defined as a set of KEWI concepts. Essentially, for a state to be
valid, every instance mentioned in the state must respect all the role constraints
associated with the concepts to which the instance belongs. Since role constraints
are constraints on the number of possible role fillers we need to be able to count
these.

298 G. Wickler et al.

Definition 3 (Role Fillers). Let s be a state, that is, a set of ground atoms
over objects c1, . . . , cL using the relations in L. Let 〈r, n, C ′〉 be a role constraint
of some concept C. Then we define valss(C.r, ci) = {cf |C.r(ci, cf) ∈ s}, ci ∈
C, cf ∈ C ′, that is, the set of all constants that play role r for ci in s.

Definition 4 (Valid State). Let C be a KEWI concept. Then a state s is valid
if, for any instance ci of C and any role constraint 〈r, n, C ′〉 of C or one of its
(direct and indirect) super-concepts, the number of ground atoms a = C.r(ci, ∗)
must be in the range [nmin, nmax], i.e. nmin ≤ |valss(C.r, ci)| ≤ nmax.

Thus, a concept definition defines a set of role constraints which can be
interpreted as relations in a world state. The numeric range defines how many
ground instances we may find in a valid state. This is the core of the ontological
model used in KEWI.

For example, let k1 be a crane and ca be a container. Then a state may
contain a ground atom crane.holds(k1,ca). If a state contains this atom, it may
not contain another one using the same relation and k1 as the first argument.

Relations. While the relations defined through the concepts in KEWI provide a
strong ontological underpinning for the representation, there are often situations
where other relations are more natural, e.g. to relate more than two concepts to
each other, or where a relation does not belong to a concept. In this case rela-
tions can be defined by declaring number and types (concepts) of the expected
arguments.

Definition 5 (Relations inL). A relation may be defined by a role constraint
as described above, or it may be a relation symbol followed by an appropriate
number of constants. The signature of a relation R is defined as C1 × . . . × CR

where Ci defines the type of the ith argument.

A valid state may contain any number of ground instances of these rela-
tions. As long as the types of the constants in the ground atoms agree with the
signature of the relation, the state that contains this atom may be valid.

Properties. In reality, we distinguish three different types of role constraints:
related classes for defining arbitrary relations between concepts, related parts
which can be used to define a “part-of” hierarchy between concepts, and prop-
erties which relate instances to property values.

The first two are equivalent in the sense that they relate objects to each
other. However, properties usually relate objects to values, e.g. an object may
be of a given colour. While it often makes sense to distinguish all instances of a
concept, this is not true for properties. While the paint that covers one container
may not be the same paint that covers another, the colour may be the same. To
allow for the representations of properties in KEWI, we allow for the definition
of properties with enumerated values.

Ontological Support for Modelling Planning Knowledge 299

Definition 6 (Properties). A property P is defined as a set of constants
{p1, . . . , pP }.

It is easy to see that the above definitions relating to role constraints and
other relations can be extended to allow properties in place of concepts and
property values in place of instances. A minor caveat is that property values
are usually defined as part of a planning domain, whereas instances are usually
given in a planning problem.

3.2 Action Types

Action types in KEWI are specified using an operator name with typed argu-
ments, a set of preconditions, and a set of effects. This high-level conceptualisa-
tion of action types is of course very common in AI planning formalisms. KEWI’s
representation is closely linked with the ontology, however. This will enable a
number of features that allow for a more concise representation, allowing to
reduce the redundancy contained in many PDDL planning domains.

Object References. In many action representations it is necessary to introduce
one variable for each object that is somehow involved in the execution of an
action. This variable is declared as one of the typed arguments of the action type.
The variable can then be used in the preconditions and effects to consistently
refer to the same objects and express conditions on this object.

Sometimes, an action type may need to refer to specific constants in its
preconditions or effects. In this case, the unique symbol can be used to identify
a specific instance. In the example above, k1 was used to refer to a crane and ca
to refer to a container. In most planning domains, operator definitions do not
refer to specific objects, but constants may be used as values of properties.

In addition to variables and constants, KEWI also allows a limited set of
function terms to be used to refer to objects in an action type’s preconditions
and effects. Not surprisingly, this is closely linked with the ontology, specifically
with the role constraints that specify a maximum of one in their range.

Definition 7 (Function Terms). Let 〈r, n, C ′〉 be a role constraint of some
concept C where nmax = 1. Then we shall permit the use of function terms of
the form C.r(t) in preconditions and effects, where t can again be an arbitrary
term (constant, variable, or function term) of type C ′.

Let s be a valid state, that is, a set of ground atoms over objects c1, . . . , cL
using the relations in L. Then the constant represented by the function term
C.r(ci) is:

– cj if valss(C.r, ci) = {cj}, or
– nothing (⊥) if valss(C.r, ci) = ∅.

Note that the set valss(C.r, ci) can contain at most one element in any valid
state. If it contains an element, this element is the value of the function term.

300 G. Wickler et al.

Otherwise a new symbol that must not be one of the constants c1, . . . , cL will be
used to denote that the function term has no value. This new constant nothing
may also be used in preconditions as described below.

The basic idea behind function terms is that they allow the knowledge repre-
sentation to be more concise; it is no longer necessary to introduce a variable for
each object. Also, this style of representation may be more natural, e.g. to refer
to the container held by a crane as crane.holds(k1) meaning “whatever crane
k1 holds”, where the role constraint tells us this must be a container. As a side
effect, the generation of a fully ground planning problem could be simpler, given
the potentially reduced number of action parameters.

Interestingly, a step in this direction was already proposed in PDDL 1, in
which some variables were declared as parameters and others as “local” variables
inside an operator. However, with no numeric constraints on role fillers or any
other type of relation, it is difficult to make use of such variables in a consistent
way. Similarly, state-variable representations [13] exploit the uniqueness of a
value. However, this was restricted to the case where nmin and nmax both must
be one.

Condition Types. The atomic expressions that can be used in preconditions
and effects can be divided into two categories. Firstly, there are the explicitly
defined relations. These are identical in meaning and use to PDDL and thus,
there is no need to discuss these further. Secondly, there are the relations based
on role constraints which have the same form as such atoms in states, except
that they need not be ground.

Definition 8 (Satisfied Atoms). Let s be a valid state over objects c1, . . . , cL.
Then a ground atom a is satisfied in s (denoted s |= a) if and only if:

– a is of the form C.r(ci, cj) and a ∈ s, or
– a is of the form R(ci1 , . . . , ciR) and a ∈ s, or
– a is of the form C.r(ci,⊥) and valss(C.r, ci) = ∅.

The first two cases are in line with the standard semantics, whereas the the
last case is new and lets us express that no role filler for a given instance exists
in a given state. Note that the semantics of atoms that use the symbol nothing
in any other place than as a role filler are never satisfied in any state.

The above definition can now be used to define when an action is applicable
in a state.

Definition 9 (Action Applicability). Let s be a valid state and act be an
action, i.e. a ground instance of an action type with atomic preconditions
p1, . . . , pa. Then act is applicable in s if and only if every precondition is satisfied
in s: ∀p ∈ p1, . . . , pa : s |= p.

This concludes the semantics of atoms used in preconditions. Atoms used in
effects describe how the state of the world changes when an action is applied.
This is usually described by the state transition function γ : S × A → S, i.e. it

Ontological Support for Modelling Planning Knowledge 301

maps a state and an applicable action to a new state. Essentially, γ modifies the
given state by deleting some atoms and adding some others. Which atoms are
deleted and which are added depends on the effects of the action. If the action
is not applicable the function is undefined.

Definition 10 (Effect Atoms). Let s be a valid state and act be an action
that is applicable in s. Then the successor state γ(s, a) is computed by:

1. deleting all the atoms that are declared as negative effects of the action,
2. for every positive effect C.r(ci, cj) for role constraint 〈r, n, C ′〉 with n =

[nmin, 1], if C.r(ci, ck) ∈ s delete this atom, and
3. add all the atoms that are declared as positive effects of the action.

Following this definition allows for a declaration of actions using arbitrary
relations and state-variables that may have at most one value. The ontology,
more specifically the numeric role constraints can be used to distinguish the two
cases.

3.3 Methods

The approach adopted in KEWI follows standard HTN planning concepts: a
method describes how a larger task can be broken down in into smaller tasks
which, together, accomplish the larger task. Technically, a method is defined as
an extension of an action type in the object-oriented sense. That is, a method
consists of a name, typed arguments, preconditions and effects, which are inher-
ited from action types. In addition, a method must define a task describing what
is accomplished by the method and the subtask network describing how this task
is accomplished with this method.

Typical HTN formalisms include all of the above, except for effects. When a
method declares that it achieves a (high-level) effect, then every decomposition of
this method must result in an action sequence which will achieve the effect after
the last action of the sequence has been completed. This allows a flat planner
(one that takes PDDL as input) to use a method as if it was an action type.
Thus, hierarchical planning is not an alternative to flat planning approaches as
it is traditionally viewed, but an extension that may be used to provide optional
guidance to a planner.

The task that is accomplished by a method is defined by a task name usually
describing what is to be done, and again some parameters which must be a subset
of the method parameters. For primitive tasks, the task name will be equal to
the name of an action type, in which case no further refinement is required, that
is, there will be no subtask network. Note that there may be multiple methods
that have the same task.

For non-primitive tasks, a method also includes a set of subtasks. In KEWI,
the ordering constraints between subtasks are declared with the subtask, rather
than as a separate component of the method. This is simply to aid readability

302 G. Wickler et al.

without changing the expressiveness. Subtaks may be specified in one of two
forms: as perfomable subtasks or as achievable subgoals.

A performable subtask is defined by a task name and some parameters. The
task name may be the name of an action type, in which case the task is con-
sidered primitive. Otherwise there must be a method that has a matching task
in its definition, and this method may then be used to refine the subtask. This
refinement process is typically done by an HTN planner.

An achievable subgoal can be either of the condition types defined above, rela-
tions or role constraints. For example, the subgoal “achieve C.r(ci, cj)” may be
used to state that at this point in the subtask network the condition C.r(ci, cj)
must hold in the corresponding state. Conjunctions of subgoals can be repre-
sented my a set of subgoals that are unordered with respect to each other. The
refinement process that finds actions to be inserted into the plan which achieve
the subgoals is what is typically computed by a flat planner, e.g. using state-
space search.

This mixed approach is not new and has been used in practical planners like
O-Plan [14].

3.4 Export to PDDL

Given that most modern planners accept planning domains and problems in
PDDL syntax as their input, one of the goals for KEWI was to provide a mech-
anism that exports the knowledge in KEWI to PDDL. Of course, this will not
include the HTN methods as PDDL does not support hierarchical planning for-
malisms.

Function Terms. The first construct that must be removed from KEWI’s
representation are the function terms that may be used to refer to objects. In
PDDL’s preconditions and effects only variables (or symbols) may be used to
refer to objects. The following function can be used to eliminate a function term
of the form C.r(t) that occurs in an action type O’s preconditions or effects.

function eliminate-fterms(C.r(t), O)
if is-fterm(t) then

eliminate-fterms(t, O)
v ← get-variable(C.r(t), O)
replace every C.r(t) in O by v

The function first tests whether the argument to the given function term is
itself a function term. If this the case, it has to be eliminated first. This guar-
antees that, for the remainder of the function t is either a variable or a symbol.
We then use the function “get-variable” to identify a suitable variable that can
replace the function term. Technically, this function may return a symbol, but
the treatment is identical, which is why we shall not distinguish these cases here.
The identification of a suitable variable then works as follows.

Ontological Support for Modelling Planning Knowledge 303

function get-variable(C.r(v), O)
for every positive precondition p of O do

if p = C.r(v, v′) then
if is-fterm(v′) then

eliminate-fterms(v′, O)
return v′

retrieve 〈r, n, C ′〉 from C
add new parameter v′ of type C ′ to O
add new precondition C.r(v, v′) to O
return v′

This function first searches for an existing, positive precondition that identi-
fies a value for the function. Since function terms may only be used for constraints
that have at most one value, there can only be at most one such precondition. If
such a precondition exists, its role filler (v′, a variable or a symbol) may be used
as the result. If no such precondition can be found, the function will create a
new one and add it to the operator. To this end, a new parameter must be added
to the action type, and to know the type of the variable we need to retrieve the
role filler type from the role constraint. In practise, we also use the type name to
generate a suitable variable name. Then a new precondition can be added that
effectively binds the function to the role filler. And finally, the new variable may
be returned.

(Handling nothing). The next construct that needs to be eliminated from the
KEWI representation is any precondition that uses the role filler nothing. Note
that this symbol does not occur in states and thus cannot be bound in tradi-
tional PDDL semantics. Simply adding this symbol to the state causes problems
since other preconditions that require a specific value could then be unified with
this state atom. For example, if we had an explicit atom that stated holds(k1,
nothing) in our state, then the precondition holds(?k, ?c) of the load action
type would be unifiable with this atom. The approach we have implemented in
KEWI is described in the following algorithm.

function eliminate-nothing(O)
for every precondition p = C.r(v,⊥) do

replace p with C.r. ⊥ (v)
if O has an effect e = C.r(v, v′)

add another effect ¬C.r. ⊥ (v)

The idea behind this approach is to use a new predicate to keep track of
state-variables that have no values in a state. This is the purpose of the new
predicate “C.r. ⊥”, indicating the role r of concept C has no filler for the given
argument. This is a common approach in knowledge engineering for planning.
For example, in the classic blocks world we find a “holds” relation for when a
block is being held, and a predicate “hand-empty” for when no block is held.

The algorithm above uses this technique to replace all preconditions that
have nothing as a role filler with a different precondition that expresses the

304 G. Wickler et al.

non-existence of the role filler. To maintain this condition, it will also be neces-
sary to modify the effects accordingly. This is done by adding the negation of
this new predicate to corresponding existing effects.

Since this is pseudo code, the algorithm actually omits a few details, e.g.
the declaration of the new predicate in the corresponding section of the PDDL
domain, and the fact that the planning problem also needs to be modified to
account for the new predicate. Both is fairly straight forward to implement.

An alternative approach we have implemented essentially keeps the nothing
symbol in the representation. To ensure that no action type uses this object
a number of inequality preconditions have to be added to the operators. This
requires that the planner can correctly handle inequalities. Note that inequalities
are static relations that disappear when the domain is grounded by the planner.

Keeping nothing literally causes another issue with typed domain, since
nothing can be an instance of multiple classes in our ontology. To avoid this
problem we replace this symbol with different symbols for the different types of
which it can be an instance.

This approach is not fundamentally different from the one described above.
It trades off a larger number of predicates against larger sets of instances in the
domain. The modified problem descriptions are almost identical.

State-Variable Updates. Finally, the cases in which the value of a state-
variable is simply changed needs to be handled. The approach we have adopted
here is identical to the approach described in [12]. That is, when an effect assigns
a new value to a state-variable, e.g. C.r(v, vnew), we need to add a precondition
to get the old value, e.g. C.r(v, vold), and then we can use this value in a new
negative effect to retract the old value: ¬C.r(v, vold).

4 Evaluation: The Dock Worker Robots Domain

In this section we shall describe some experiences gained while re-engineering an
existing and well understood planning domain, the dock worker robots (DWR)
domain described in [12]. Basically, a problem in this domain consists of a set
of locations at which containers are piled into stacks. Cranes at these locations
can move the containers around at the same location, and robots can be used to
move containers between locations. The current state is a given configuration of
containers in piles and the goal is usually to shift the containers to different piles.

4.1 Ontology

The original planning domain specified in PDDL defines a trivial ontology that
consists of just the five types of objects that are involved in the actions as shown
in Fig. 2. There is hierarchy and concepts are defined by name only. The text
following a semicolon are comments and ignored by the reasoning engine.

Apart from the lack of any intensional knowledge about these types, this
conceptualisation also does not use a separate type for the pallets that are at

Ontological Support for Modelling Planning Knowledge 305

(:types
location ; there are several connected locations in the harbour
pile ; is attached to a location

; it holds a pallet and a stack of containers
robot ; holds at most 1 container, only 1 robot per location
crane ; belongs to a location to pickup containers
container)

Fig. 2. The types declared in the original PDDL domain.

the bottom of each pile. In fact, a single pallet is declared as an instance of type
container in the problem files and the same pallet is used at the bottom of
every pile. This solution works in a planning engine but is clearly unsatisfactory
from a knowledge engineering perspective.

The KEWI version of the domain we have developed is shown in Fig. 3 is obvi-
ously much richer. There is some hierarchical structure, e.g. the class stackable
has two sub-classes, container and pallet. Most classes have associated role
constraints that provide an intensional definition of the class. In addition to the
types from the original domain, the KEWI version also defines a colour property
which is there solely to illustrate the use of properties and should be ignored by
a planner. Adjacency between locations is specified as a relation not associated
with any concept.

The use of an explicit class for pallets is the only significant difference in the
original conceptualisation and the KEWI version of the DWR ontology. What
appears as a complication at first is actually a simplification since there is no

(:class agent)
(:class crane (:super-class agent)

(:role at (:min 1) (:max 1) (:class location))
(:role holds (:max 1) (:class container)))

(:class robot (:super-class agent)
(:role loaded-with (:max 1) (:class container))
(:property has-colour (:min 1) (:max 1) (:type colour)))

(:class location
(:role occupied-by (:max 1) (:class robot)))

(:class stackable)
(:class container (:super-class stackable)

(:role on (:max 1) (:class stackable))
(:role piled-on (:max 1) (:class pallet))
(:property paint (:min 1) (:max 1) (:type colour)))

(:class pallet (:super-class stackable)
(:role at (:min 1) (:max 1) (:class location))
(:role top (:min 1) (:max 1) (:class stackable)))

(:property colour
(:values (red green blue)))

(:relation adjacent
(:arguments ((?loc1 location) (?loc2 location))))

Fig. 3. The ontology of the DWR domain in KEWI.

306 G. Wickler et al.

longer a need for piles. Piles can be identified by the pallets on which they are
stacked.

When the PDDL version of the domain is generated from the KEWI environ-
ment, most of the ontological information is lost, of course, as PDDL is not suffi-
ciently expressive for the kind of ontology KEWI uses. However, the information
is used to generate additional relations and modify the operator specifications
that are generated.

4.2 Action Types

The original PDDL specification of the DWR domain specifies five action types:

– move: a robot moves from one location to an adjacent location
– load: a crane loads the container onto a robot
– unload: a crane unloads a container from a robot
– take: a crane takes a container from a pile
– put: a crane puts the container onto a pile

All of these operators were (manually) re-encoded in KEWI, exploiting the
richer ontology and other language features described above. The result is a more
concise representation that reduces the need for certain explicit, but redundant
parameters, preconditions and effects. The generation of PDDL from KEWI
results in a specification that cannot make reference to the ontology and therefore
is not as concise as the KEWI version. In fact, as shown is Table 1, it even uses
some additional parameters, preconditions and effects.

Clearly, the KEWI version of the domain is the most concise. The use of func-
tion terms avoids the explicit introduction of parameters. From a knowledge engi-
neering perspective, this means the actions can be specified in terms of the main
objects involved. A similar construct is available in PDDL, where certain vari-
ables are “local” and not used in the parameter specification. However, this is not
widely supported by planners and used in few domain specifications. The KEWI
representation also uses fewer preconditions and effects. This is mostly because of
the use of role constraints with nothing as their value. Thus, both reasons for a
more concise representation are directly related to the richer ontology.

Table 1. Number of parameters, preconditions and effects in different versions of DWR.

Original PDDL KEWI Generated PDDL

params precs effects params precs effects params precs effects

move 3 3 4 3 3 2 3 3 4

load 4 4 4 3 3 2 4 4 4

unload 4 4 4 3 3 2 4 4 4

take 5 6 6 2 3 4 6 7 8

put 5 4 6 3 4 4 6 7 8

Ontological Support for Modelling Planning Knowledge 307

(:action put
:parameters (?k - crane ?c - container ?p - pile)
:vars (?else - container ?l - location)
:precondition (and (belong ?k ?l) (attached ?p ?l)

(holding ?k ?c) (top ?else ?p))
:effect (and (in ?c ?p) (top ?c ?p) (on ?c ?else)

(not (top ?else ?p)) (not (holding ?k ?c)) (empty ?k))))

Fig. 4. The original PDDL version of put.

Perhaps the most interesting operator to take a closer look at is the most
complex action type specified here, the put action. The original PDDL version
is shown in Fig. 4. The first local variable, ?else, is a reference to the container
(or pallet) that is at the top of the pile before the action executed. Two of the
preconditions are static, two are dynamic. Interestingly, the last of the precondi-
tions, (top ?else ?p), is not so much a logical precondition but simply a way
to bind the local variable ?else such that it may be used in the effects. There
are no negative preconditions. The effects are a mixture of four positive and two
negative effects.

Compare this to the KEWI version of the same operator. In the web interface,
the normal view provides many links for navigating the knowledge, whereas the
edit view shows a form with fields for different parts of the representation are
shown in Fig. 5. The explicit break-down in the edit view is meant to support
the knowledge engineer by listing the components available in the language.

The complete formalism specifying the action type in KEWI is shown in
Fig. 6. At first glance it appears less concise, but this is simply because the sym-
bols are more verbose, e.g. no single letter variables are used and role constraints
make the object type explicit. None of the local variables need to be represented
in KEWI as the values they refer to can be described with functional terms.

The first of the preconditions requires the location of the crane and the loca-
tion of the pile to be equal. This corresponds to the first two preconditions in
the PDDL version, where the equality is implicit in the use of the same vari-
able. The main dynamic precondition, that the crane must hold the container,
is present in both representations. The remaining preconditions are necessary
to make the planner work in both cases, to bind the local variable ?else or to
declare the values of state-variables before execution. Normally this is not neces-
sary in KEWI, unless there is no previous value (i.e. the value is nothing) which
is the case here. This could be avoided through the use of axioms, which can be
declared in the KEWI ontology, but are not currently used for reasoning. Such
an axiom would state that, if a container is held by a crane, this container is not
on another stackable object (container or pallet) and that this container is not
piled on any pallet. Using axioms like this would avoid the last two preconditions
shown in the KEWI operator.

The effects of the KEWI version are fairly straight forward. The first
effect corresponds to the first effect of the original operator. The second effect

308 G. Wickler et al.

Fig. 5. Different views of put in KEWI.

corresponds to the third original effect, where the previously top-most container
is referred to by a function term, rather than a local variable. The third KEWI
effect corresponds directly to the second original effect and the first negative
effect. The use of a state-variable makes this more concise in KEWI. The final
KEWI effect corresponds to the second negative original effect and the final
positive effect.

The final version of the put operator is the PDDL version that is generated
by KEWI. The full specification is not shown here as the additional parameters,
preconditions and effects are just artefacts of the translation process, and they
are not very interesting. For example, the equality precondition in KEWI trans-
lates into two additional parameters and preconditions, one for each function

(:action-type put
(:arguments ((?crane crane) (?cont container) (?pile pallet)))
(:precondition (:and

(:relation equals ((crane.at ?crane) (pallet.at ?pile)))
(:constraint crane.holds (?crane ?cont))
(:constraint container.piled-on (?cont nothing))
(:constraint container.on (?cont nothing))))

(:effect (:and
(:constraint container.piled-on (?cont ?pile))
(:constraint container.on (?cont (pallet.top ?pile)))
(:constraint pallet.top (?pile ?cont))
(:constraint crane.holds (?crane nothing)))))

Fig. 6. The KEWI version of put.

Ontological Support for Modelling Planning Knowledge 309

term. Then the equality itself becomes another precondition on the two new
parameters. Clearly, there is optimisation potential, but since this representa-
tion is not meant for human consumption and planners should be well capable of
compiling out these redundancies, this is not something we are going to dwell on.

4.3 Planning with KEWI

More interesting is to see what a planner actually makes of the PDDL generated
by KEWI compared to the original PDDL version. To this end, we have taken
two DWR problems1 and adapted them to the representation used in the gener-
ated KEWI. This has to be done manually, which is why only two examples were
used. The translation is fairly straightforward, requiring the change of all pred-
icate names and in one case swapping the order of the parameters. The change
from a single pallet to multiple pallets but no piles was surprisingly trivial. The
only real difference is the occupied predicate used in the original problems.
The KEWI-generated PDDL contains a location-no-occupied-by predicate
which is effectively the complement of the occupied predicate, indicating when
a location is free.

With these two problems translated (manually) it was then possible to run a
planner on them. We have chosen the FF planning system, a robust state-space
search planner that supports all the features used in the original as well as the
generated version of the problem. The result is shown in Table 2.

Table 2. Running FF on different versions of two DWR problems.

Reachable States searched Initial distance Plan length Total time

Facts Actions

PDDL pb12 121 362 101 25 34 0.00

KEWI pb12 161 506 96 25 34 0.31

PDDL pb38 1453 15306 94265 104 277 2473.12

KEWI pb38 1889 21642 72565 104 235 3637.81

The first problem is a very simple case with two locations, one robot and
six containers to be moved to the other location. The second problem is com-
plex, involving eight locations and three robots that need to shift more than 20
containers around the locations. The initial reachability analysis performed by
FF shows that the KEWI generated version has more facts and actions, which
means the additional predicates give rise to some redundant information that
cannot be compiled away by the planner. Interestingly enough, this redundant
information leads to a smaller number of states being explored for both prob-
lems. However, processing the additional information incurs an overhead that

1 See http://projects.laas.fr/planning/ for a full definition of these problems.

http://projects.laas.fr/planning/

310 G. Wickler et al.

results in a larger overall search time. While this is not good news, it must also
be pointed out that the resulting plan is shorter at least for the more complex
problem. Thus, one could argue the performance is roughly equivalent for the
original and the KEWI-generated versions.

Finally, we should note that the alternative method for eliminating nothing
from the domain is not mentioned here simply because it turns out that FF
generates the same ground version of the problem in both cases, thus leading to
almost identical performance.

4.4 Further Evaluation

This work is being carried out with an industrial partner with significant expe-
rience in control and automation as well as simulation, and we are using a real
application of knowledge acquisition and engineering in their area of expertise.
The development of KEWI is in fact work in progress, and its evaluation is ongo-
ing, and being done in several ways: (i) An expert engineer from the industrial
partner is using KEWI, in parallel with the developers, to build up a knowledge
base of knowledge about artefacts, operations, procedures etc. in their domain.
(ii) We have created a hand-crafted PDDL domain and problem descriptions
of part of the partner’s domain and for the same problem area we have gener-
ated PDDL automatically from a tool inside KEWI. We are in the process of
comparing the two methods and the PDDL produced. An interface to a sim-
ulation system is being developed which will help in this aspect. (iii) We are
working with another planning project in the same application, which aims to
produce natural language explanations and argumentation supporting plans. In
the future we believe to combine KEWI with this work, in order that (consistent
with involving the user in model creation) the user will be able to better validate
the planning operation.

5 Conclusions

In this paper we have introduced KEWI, a knowledge engineering tool for mod-
elling planning tasks, and we have given a formal account of parts of its struc-
ture and tools. In contrary to standard literal-centred approach used in PDDL,
KEWI represents domain knowledge in an object-centred way. As well as the
usual advantages of an object-centred approach, the use of a rich ontology with
numeric role constraints enables the use of function terms as object references
and explicit non-existence conditions. This allows for a more concise and more
natural style of representing planning knowledge. Hence, it is easier, especially for
users not being experts in automated planning, to capture and maintain domain
knowledge in KEWI. Moreover, KEWI has a user-friendly interface which is sim-
ple enough to support domain experts in encoding knowledge and it is designed
to enable groups of users to capture, store and maintain knowledge over a period
of time, thus facilitating knowledge reuse.

Ontological Support for Modelling Planning Knowledge 311

Since PDDL is widespread in the planning community and thus most of the
state-of-the-art planning engines supports it, KEWI is able to export domain
knowledge into PDDL. We demonstrated that no significant differences are
between hand-crafted and automatically generated PDDL models. On the other
hand, when running a planner on a more complex problem, results were consid-
erably different.

In future work, we plan to extend KEWI by (i) extending the representa-
tion to include numeric fluents, time, and, eventually, continuous processes (ii)
developing validation and verification methods which help users to debug and
adapt created planning domain and problem descriptions (iii) adding automated
acquisition tools which can add to KEWI’s knowledge by inputting batch or real
time data from process simulations inspired by the real domain KEWI is being
used to model.

Acknowledgements. The research was funded by the UK EPSRC Autonomous
and Intelligent Systems Programme (grant no. EP/J011991/1). The University of
Edinburgh and research sponsors are authorised to reproduce and distribute reprints
and online copies for their purposes notwithstanding any copyright annotation hereon.

References

1. Ai-Chang, M., Bresina, J.L., Charest, L., Chase, A., jung Hsu, J.C., Jnsson, A.K.,
Kanefsky, B., Morris, P.H., Rajan, K., Yglesias, J., Chafin, B.G., Dias, W.C.,
Maldague, P.F.: Mapgen: mixed-initiative planning and scheduling for the mars
exploration rover mission. IEEE Intell. Syst. 19, 8–12 (2004)

2. Leshed, G., Haber, E. M., Matthews, T., Lau, T. A.: Coscripter: automating and
sharing how-to knowledge in the enterprise. In: CHI, pp. 1719–1728 (2008)

3. Wickler, G., Tate, A., Hansberger, J.: Using shared procedural knowledge for vir-
tual collaboration support in emergency response. IEEE Intell. Syst. 28, 9–17
(2013)

4. Simpson, R., Kitchin, D.E., McCluskey, T.: Planning domain definition using
GIPO. Knowl. Eng. Rev. 22, 117–134 (2007)

5. McCluskey, T. L., Kitchin, D. E.: A tool-supported approach to engineering HTN
planning models. In: Proceedings of 10th IEEE International Conference on Tools
with Artificial Intelligence (1998)

6. Vaquero, T.S., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: itSIM-
PLE4.0: Enhancing the modeling experience of planning problems. In: System
Demonstration - Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS-12) (2012)

7. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P.,
Ong, J., Remolina, E., Smith, T.: EUROPA: a platform for AI planning, scheduling,
constraint programming, and optimization. In: 4th International Competition on
Knowledge Engineering for Planning and Scheduling (ICKEPS) (2012)

8. Smith, D.E., Frank, J., Cushing, W.: The ANML language. In: Proceedings of
ICAPS-08 (2008)

9. Vodrka, J., Chrpa, L.: Visual design of planning domains. In: KEPS 2010: Work-
shop on Knowledge Engineering for Planning and Scheduling (2010)

312 G. Wickler et al.

10. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL docu-
ments: simply and efficiently with PDDL studio. In: ICAPS12 System Demonstra-
tion, p. 4 (2012)

11. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de
Velde, Wv, Wielinga, B.J.: Knowledge Engineering and Management: The Com-
monKADS Methodology, 2nd edn. MIT Press, Cambridge (2000)

12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning. Morgan Kaufmann, San
Francisco (2004)

13. Jonsson, P., Bäckström, C.: State-variable planning under structural restrictions:
algorithms and complexity. Artif. Intell. 100, 125–176 (1998)

14. Currie, K., Tate, A.: O-Plan: the open planning architeture. Artif. Intell. 52, 49–86
(1991)

	Ontological Support for Modelling Planning Knowledge
	1 Introduction
	2 Related Work
	3 Conceptual Model of KEWI
	3.1 Ontology: Concepts, Relations and Properties
	3.2 Action Types
	3.3 Methods
	3.4 Export to PDDL

	4 Evaluation: The Dock Worker Robots Domain
	4.1 Ontology
	4.2 Action Types
	4.3 Planning with KEWI
	4.4 Further Evaluation

	5 Conclusions
	References

