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ABSTRACT

We present an approach to distributed planning and coor-
dination architecture for dynamic non-deterministic multi-
actor mixed-initiative environment. The system provides
flexible planning, replanning, and task allocation. The key
idea of the presented approach is in integration of (i) I-X
hierarchical planner with (i) agent-based architecture and
(i11) commitment-based plan representation. The imple-
mentation of the system was verified and evaluated on sim-
ulated environment. The experimental validation confirms
the performance, stability, and robustness of the system in
complex scenarios.

1. INTRODUCTION

The problem of controlling entities in heterogeneous dis-
tributed environment is crucial for many domains [3]. Clas-
sical centralized methods depend on one central planning
system. Such a system gathers all required input data be-
fore the planning process take place. Then the plan (set of
plans respectively) is generated using these data. This ap-
proach faces various problems. One problem is a need for
private local knowledge of the actors. The other problem
is the need for real-time replanning based on dynamically
changing environment and conditions in the time. On the
other hand, in distributed methods of planning each entity
plans it’s own plan. Cooperation and heading to common
goals is done by negotiating methods.

The problem of distributed planning has been often dis-
cussed in the Al planning and multi-agent research commu-
nities recently (e.g. [3], [2], [4], [1]). Distributed planning
has been viewed as either (i) planning for activities and re-
sources allocated among distributed agents, (i:) distributed
(parallel) computation aimed at plan construction or (i)
plan merging activity. The classical work of Durfee [3] di-
vides the planning process into five separate phases: task
decomposition, sub-task delegation, conflict detection, indi-
vidual planning and plan merging. In this paper we describe
those phases as: HTN planning (Durfee’s task decomposi-
tion and individual planning), distributed resource alloca-
tion (Durfee’s sub-task delegation and partially conflict de-
tection), and plan coordination (Durfee’s plan merging and
partially conflict detection).
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1.1 Scenario

The approach presented in this paper is being verified on
a realistic simulation scenario emphasizing mixed-initiative
planning and decision making. Figure 1 shows a scenario
island inspired by the Pacifica Suite of Scenarios® (Pacifica
domain for DARPA planning initiative [7], [8] and other
experiments). The Pacifica scenarios adopt the concept Go
places, do things, a tasking base that allows for a range of
missions to be designed to for experiments. On the island,
there are cities and a network of roads connecting them, but
off-road movement is also allowed. There are also several
seaports and airports. The scenario actors are several unit
types (ground, armored, aerial or sea units), civilians and
hostile units.

Pacifica covers the need for a scenario with flexibility of
the scale of the roads and places involved to allow for the
introduction of more details as the scenario experiments de-
mand it.

The scenario is based on an island with hostile environ-
ment and limited information visibility and sharing. Due to
this, the environment provides non-deterministic behavior
from the single unit point of view. There are heterogeneous
independent self-interested units in the scenario that com-
mit to the shared/joint goals. To fulfill the desired strategic
goals in such environment, the units provide complex coop-
erative actions on several levels of planning and control.

The aim is to fulfill strategic goals defined by mid and
long-term planners on the strategic level for each type of
the unit. The strategic plans generation is provided by a
set of commanders that are responsible for each type of field
units - the ground, aerial, sea and armored. The number
and specialization of commanders reflects the desired sce-
nario setting. The field units are dedicated to a particular
commander and receives the strategic goals from it. The
hierarchical structure of the tactical planners then create
tactical plans for each field unit (tactical planners are part
of each unit’s tactical layer). Tactical plans are confronted
with the developed multi-agent simulation and adapted to
the actual feedback provided by the simulation in real-time.
Execution of the plan of the individual unit is simulated and
integrated with the environment feedback from the simula-
tion engine.

"http://www.aiai.ed.ac.uk/oplan/pacifica



Figure 1: Scenario island screenshot

There is a number of heterogeneous unit types operating
in the scenario e.g.:

e Commanders — abstract units (not geographically
simulated) that represent Ground, Armored, Aerial and
Sea headquarters.

e Stationary units — units representing assembling points

for civilians — Clities, material and resources providers
— Supply depots and Petrol pumps, landing and refu-
eling zones for aerial units — Airfield and docking and
refueling zones for sea units — Seaports.

e Mobile units — units with the ability to move on the
island. There are ground units, which are Transporters
(can provide faster transportation of other unit(s), ma-
terial or civilians), Construction (can repair damages
or assemble/disassemble stationary units) and Medical
(provides medical care for other units or some rescue
operations). The Armored units for protection of other
units or secure an area or convoy. The Aerial — the
UAVs with an extended visibility range and Sea units
for transportation over the water.

1.2 Issues

In previous section, the environment, domain, and sce-
nario was described. The problem of automated planning in
such a world can be described by a several more-or-less sep-
arable problems. The problems have to be solved to fulfill
the requirement for planning system able to plan in dynamic
non-deterministic environment. The overview of the prob-
lems follows:

e Distributed planning — Planning in such an envi-
ronment is practically realizable only as a distributed
process. This affirmation is supported by several facts:
the objects of planning are naturally distributed in the
world. The communication among the entities can be

restricted, constrained or limited in other ways. The
robustness of the process should be conserved even in
such a circumstances. And finally, each entity have
to hold its own private knowledge of its capabilities in
form of a planning domain.

e Distributed resource allocation — Integral part of
the planning process is resource allocation both of the
acting entities in the world and of the static resources.
And as the planning process is distributed, the re-
source allocation has to be distributed as well. The al-
location process must be appropriately integrated with
the planning system and similarly, the planning pro-
cess has to be robust with respect to the mentioned
constraints in the environment.

e Distributed plan execution and synchronization
— Constituted distributed plan consisting of several
personal plans has to be executed by the entities then.
The personal plans need to be distributively coordi-
nated, as the entities do not know each other plans.
As well as, the plan has to be robust enough to be
able to minimize its volatility and do not need to be
completely replanned in a case of any non-determined
effect in the planning phase.

Next section shows the planning system in one whole de-
scription and answers the question, how the problems are
interconnected and affecting each other. It also describes
particular approaches solving the three mentioned issues.

2. APPROACH

Presented approach is based on the concept of multi-layer
planning architecture (Section 2.1). The whole planning
process of overall plan is distributed among arbitrary amount
of autonomous agents. The planning hierarchy of the enti-
ties is not predefined, and it emerges during the planning.
Each agent knows only its own planning domain, which de-
scribes the agent’s capabilities in the terms of the environ-
ment domain. This private personal domains are described
in the form of Hierarchical Task Networks (HTN). The plan-
ning process (Section 2.2) is initiated by externally tasked
agent(s). The tasks are typically added by human opera-
tor using system humane-machine-interface (HMI). As the
HMI, it is used the I-X Control Panel, which is part of the
I-X architecture. The agent tries to fulfill the task goals and
may need to incorporate the sub-plans of other agents, in
the case it is not able to fulfill the task on its own. Such
agents recursively runs the same planning process until the
whole plan is formed and ready for execution. In the phase
of incorporating of the sub-plans, the agents need to mark
parts of the plans, where the other agents continue in the
plan execution. For that purpose, the designed concept
of plan interconnection by synchronization-points (Section
2.2.3) can be used. The parameters of the spatio-temporal
synchronization-points are negotiated during the process of
forming of the planning hierarchy. The synchronization-
points are later used in the plan execution.

From the perspective of one agent, the planning process
can be divided into three layers, which form the multi-layer
planning architecture. In the strategic layer (the topmost
layer), it is used the HTN I-Plan planner [12] creating ab-
stract plan for long-time horizon. The planner is part of
the I-X architecture and originates in the O-Plan planner.



The plan instantiating process uses distributed resource allo-
cation (Section 2.2.4) based on the well-known multi-agent
Contract Net Protocol [11]. With the help of this proto-
col, the appropriate subordinate agents are found and the
responsibilities of the plan actions are fixed. The tactical
layer (the middle layer) optimizes the plan using the early-
as-possible scheduling heuristic. The heuristic causes the
earliest possible execution of the plan actions which affects
the length of the whole plan in the non-deterministic envi-
ronment. The effect is directly proportional to the amount
of the non-determinism in the world. The personal layer (the
bottommost layer) plans potential refinements of the tacti-
cal actions. One of these actions is the movement, where the
path is planned using the A* algorithm. The other respon-
sibility of the personal layer is the execution of all low-level
actions in the scenario simulator.

All plans are described in the form of social commitments
(Section 2.2.1) (substituting plan actions). The commitment
is knowledge-base structure describing agent’s obligation to
change the world-state and a set of rules what the agent
should do if the obligation is not satisfiable. The proposed
structure is an extension of widely used formalization of the
commitment [15]. The commitment recursiveness [5] enables
more expressive description of the decommitment rules and
thus the replanning process. The introduction of the causal
commitment inter-referencing enables the real-time replan-
ning constraining. The mutual bindings and commitments
form a commitment graph. The graph notation can be used
for the process of the successive solving of the exceptional
states (the replanning). The process is based on the travers-
ing through the commitment graph. The traversing starts
with the first violated commitment. One of the decommit-
ment rules is triggered. In the case, that the decommitment
rule inter-references other commitment, the process crosses
on the referenced commitment and starts one of the decom-
mitment rules on the side of the referenced commitment.
Provided that the decommitment rule terminates the com-
mitment without a need of crossing to other commitments,
the process ends here, the violation is fixed and the plan
is successfully replanned. In other words, the replanning
process by means of social commitments can be described
as successive re-committing [5]. For the decommitting pur-
poses, three basic decommitment rules was used: full decom-
mitment, delegation, and relaxation [14]. The most suitable
decommitment rule set and ordering for non-deterministic
domains was used: delegation, relaxation, and full decom-
mitment, in this particular order.

The simulator is based on ACROSS2? testbed. The testbed
is heavily supported by the A-Globe multi-agent platform
[10]. The testbed and platform are implemented in the Java
programming language, similarly as the whole system.

2.1 Multi-layer Planning Architecture

The architecture is based on a hierarchy of planning lay-
ers using the extended form of social commitments as the
integration part. Because of the modularity of the layers,
the architecture is open for integration of various planning
methods. The variety of possible layers enables maximal
utilisation for the distributed planning problem.

The layers are mutually interconnected, saying that each
layer is directly connected only to its neighbour layers. As

2ACROSS?2 is a new major version of ACROSS system —
http://agents.felk.cvut.cz/projects/#£across
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Figure 2: Multi-layer Planning Architecture

the layer forms a batch, each layer is connected to (0, 2)
other layers.

The top-down direction means the successive refinement
process of the plan, plan instantiation, concretization, and
finally plan execution. On the other hand, the bottom-up di-
rection is used for controlling of the planning process, which
means informing the higher levels of the planning results,
success, and failure feedbacks.

The layer loose coupling and simple process flows enables
the volatility minimization of the plans, since there is no
need to replan the plans on higher layers (typically more
abstract and long-term plans) in the case of only minor vi-
olations (which can be solved by the bottom-level replan-
ning). As the higher levels of planning typically invokes
much more resources consuming processes (as inter-agent
negotiation, HTN planning, etc.) this separation helps to
optimize the planning process as a whole.

Each agent uses all layers or their subset (e.g. the com-
manding unit does not use the bottom-most layer, because
it is not typically executing the plan at all and only uses
its subordinates to implement the plan in the environment).
The basic architecture design consists of three layers:

e Strategic layer: The layer provides an overall strate-
gic plan for mid and long-term time horizon using I-
Plan for high-level planning and distributed allocation
based on multi CNP protocol and social commitments.

e Tactical layer: On this layer, the strategic plan is op-
timized using a commitment condensation algorithm.
The algorithm searches for blank time slots in the plan
and replaces them with later commitments (taking in
account the time constraints of the commitments).

e Individual layer: On this layer, the units perform re-
active behavior and path-finding based on the tactical
plan (i.e. an ordered set of commitments).

2.2 Distributed Planning

Distributed planning is decentralized process of the plan
constitution. According to the proposed Multi-layer Plan-
ning Architecture, the planning process take place on several
levels (of abstraction and granularity) in several different
agents. Those planning processes collaborate to form one
global plan considering desired goals and particular agent
constraints.



2.2.1 Distributed Plan Representation

In planning, the main role is acted by the appropriate dis-
tributed plan representation. The representation should be
suitable for flexible planning and plan revision purposes and
should provide execution robustness and effective appara-
tus for handling various types of plan execution exceptional
effects. All these requirements can be handled using the
concept of social commitments for planning [5].

A social commitment is a knowledge structure describing
an agent’s obligation to achieve a specific goal, if a specific
condition is made valid and how it can drop the commitment
if it cannot be achieved. For the planning purposes, the
recursive form of the commitment can be used:

(Commit Ay o X\*),\* =
{(Commit 1 P11 )\T),
(Commit z2 p2 2 A3),. ..,
(Commit =k pr v& M)}

(1)

Formula 1 extends the definition in [15] not only by inclu-
sion of a set of decommitment rules in each of the individual
decommitment rules. It also allows the newly adopted com-
mitments to be assigned to different actors [5].

2.2.2 Distributed Plan Forming

By the means of the commitments, the planning process
can be described as committing to appropriate actions. The
sequence of this actions can be found by any planning ap-
proach. We use HTN I-Plan as the main planner of the
system. The planner is supported by distributed resource
allocation based on extension of the CNPs (see in Section
2.2.4).

The instantiated plan is converted into commitments. The
conversion process creates a commitment according to the
particular plan action and according to forward causality
links of the plan.

The commitments of the tactical layer are based on strate-
gic commitments. The layer uses negotiation to form the
most suitable mutual commitments. The constraints for
the negotiation respects the particular needs of the agents.
The tactical commitments also define decommitments to the
strategic layer and they can additionally refine some strate-
gic commitment too. They are much more refined than the
strategic commitment in the sense of spatio-temporal con-
straints, and particular world-states. The individual layer
plans commitments for later execution. These commitments
copy the tactical commitments, but some of these can be
omitted. Each individual commitment contains a decom-
mitment request only to its parent commitment (from the
tactical layer).

During the execution of the plan the commitments are
processed. The commitments can be decommited according
to the plan or due to unexpected environment interactions.

The monitoring of the commitments is triggered by a
change of the world, e.g. a tick of the world timer, move-
ment of a unit, a change of a world entity state, etc. The
process evaluates all commitments in the actor’s knowledge
base. The value of the commitment defines the commitment
state and can start the decommitting process.

2.2.3 Distributed Plan Coordination

Since the plan is executed by autonomous actors in par-
allel, we had to define the efficient method for distributed
plan execution coordination. For that purpose, we designed

concept of plan synchronization-points (or synchro-points in
short). The synchro-point is a pair of commitments (or an
actions in the planning terminology). One member of the
pair is a wait commitment and the other is a notify commit-
ment. Each side of the synchro-point is on different agent.
The wait commitment is not succeeded until the paired no-
tify commitment is not executed (or intended in the BDI
terminology), which means that the execution of one agent’s
plan can be temporarily delayed until other agent finish some
actions in its plan. The parameters of the spatio-temporal
synchronization-points are negotiated during the process of
forming of the plan.

In some cases there is need for synchronization of plans of
agents, which are not neighbours in the planning hierarchy.
Since the planning hierarchy can emerge into arbitrary num-
ber of sub-ordinate agent levels the synchronization-points
have to be able to handle synchronization of distant levels
too. We chose an approach, in which the trans-level synchro-
points are composed from primitive synchronization-points
connecting only neighbour levels of the planning hierarchy
and forming a chain across several plans and agents. More
formally, we can define one line of the hierarchy as:

A— By — By —---— B, —C, (2)

where A, B;, and C are agents. Now the trans-level synchro-
point can be described using the primitive synchro-point as
follows:

A=—C= {A—>B17B1 —>B2,...,Bn71 —>Bn,Bn —>C}

(3)
The main advantage of this approach is no need for search
of all causally affected agents in case of replanning.

2.2.4 Distributed Resource Allocation

We have encountered three dimensions of resource alloca-
tion problem in our domain. The first two dimensions are
two points of view on the similar type of problem. The third
one is inverse problem.

The first resource allocation problem is to allocate a set
of tasks, defined by total ordered plan, which means that
tasks are dependent and ordered. The tasks of the plan cor-
responds to the linear horizontal commitment graph. Each
agent creates a plan to achieve it’'s commitment. According
to the scenario and the domain of the agent, some parts of
the plan cannot be executed by this agent and thus have to
be delegated to another agents. The allocation problem is
then to find the best candidates that are able to overtake
such parts of the plan (tasks). Every successive task allo-
cation constraints depends on previous task allocation. The
criteria function for allocation optimization is function of all
tasks allocations. This means (i) no task can be allocated
optimally without knowledge of other tasks allocations and
(ii) no task can be allocated without fixation of allocation
of all preceding tasks.

The second resource allocation problem is hierarchical task
allocation. This problem represents vertical commitment
graph creation. When agent commits (or even prepare the
commitment) to some task, it has to decompose this task
and make plan for it. So each task that is being allocated
implies the need of consequent allocation of other tasks on
other actors.

The third problem occur when multiple independent tasks
are requested simultaneously. This potentially produces (i)



overbooking of best resource provider and (ii) unbalanced
recourse utilization.

In the complex scenario, there should be complicated hier-
archical structure of the agent domains. All three allocation
problems occur simultaneously. The agents’ hierarchy lead
to the both horizontal and vertical commitments dependen-
cies. The task concurrency is caused by the multiple goals
inserted in the system and by the substitutional agents’ ca-
pabilities. To get over the distributed allocation problem,
we have implemented progressive task allocation mechanism
with as soon as possible execution heuristic and backtrack-
ing. We have applied recursive task allocation mechanism
using iterative CNP with backtracking when allocation fails
because of overbooking caused by concurrency. The effi-
ciency and speed of convergence of the allocation mechanism
is illustrated in Section 3.

2.3 I-X Architecture Integration

There are a number of tools available that help people
organize their work. One of these is provided with virtually
every organizer, be it electronic or paper-based: the “to-do”
list [6]. This is because people are not good at remembering
long lists of potentially unrelated tasks. Writing these tasks
down and ticking them off when they have been done is
a simple means of ensuring that everything that needs to
be done does get done, or at least, that a quick overview
of unaccomplished tasks is available. In responding to an
emergency this is vital, and the larger the emergency, the
more tasks need to be managed.

I-X Process Panels constitute the primary user interface to
an I-X application. A panel more or less directly reflects the
ontology underlying the whole I-X system, the <I-N-C-A>
ontology [13], which is a generic description of a synthesis
task (such as design, planning or configuration), dividing it
into four major components: Issues, Nodes, Constraints, and
Annotations. When used to describe processes, nodes are
the activities that need to be performed in a course of action,
thus functioning as the items in an intelligent to-do list. The
other elements contain issues as questions remaining for a
given course of action, information about the constraints
involved and the current state of the world, and notes such
as reports or the rationale behind items in the plan.

In <I-N-C-A>, both processes and process products are
abstractly considered to be made up of a set of Issues which
are associated with the processes or process products to rep-
resent potential requirements, questions raised as a result of
analysis or critiquing, etc. They also contain Nodes (activi-
ties in a process, or parts of a physical product) which may
themselves have sub-nodes making up a hierarchical descrip-
tion of the process or product. The nodes are related by a set
of detailed Constraints of various kinds. Finally there can
be Annotations related to the processes or products, which
provide rationale, information and other useful descriptions.

<I-N-C-A> models are intended to support a number of
different uses:

e for automatic and mixed-initiative generation and ma-
nipulation of plans and other synthesized artifacts and
to act as an ontology to underpin such use;

e as a common basis for human and system communica-
tion about plans and other synthesized artifacts;

e as a target for principled and reliable acquisition of
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Figure 3: I-Globe — AGENTFLY control protocol

knowledge about synthesized artifacts such as plans,
process models and process product information;

e to support formal reasoning about plans and other syn-
thesized artifacts.

These cover both formal and practical requirements and
encompass the requirements for use by both human and
computer-based planning and design systems.

The I-X architecture is used in I-Globe on several lev-
els. The main HTN planner of the I-Globe system is the
I-Plan planner. It is instantiated in each entity and used by
the multi-layer planning architecture for long-term planning.
The scenarios are extended such that commander agent has
I-P? (I-X Control Panel) to allow for mixed initiative plan-
ning and the state subscription interfaces and protocols are
used to allow state monitoring for the commander through a
selective subscription mechanism. The other I-P? is used as
a user interface for the Sense Maker actor, which can task
through the I-X the sub-ordinate commanders using their
control panels.

2.4 AGENTFLY Integration

The AGENTFLY system [9] was integrated as one of the
individual layers in the planning architecture. AGENTFLY
is a multi-agent air-traffic-control system, focusing on dis-
tributed control and collision avoidance of unmanned aerial
vehicles. It is adopting the free flight concept and in I-
Globe it is primarily used as planner and collision solver of
the aerial units.

In order to seamlessly integrate the two existing systems
an AGENTFLY wrapper was implemented. On one hand,
the wrapper fulfills the needs of the multi-layer planning
architecture and on the other it acts as a control module
of the AGENTFLY pilot agent. Using this wrapper, the I-
Globe system can transparently control the missions of the
simulated UAVs and does not need to implement the plane’s
behavior and simulation on its own. The planner wrapper
is based on an agent-to-agent protocol (Figure 3).

The protocol can handle two main operations: mission
definition with planning and plan execution with replanning.
The initial definition of the mission is repeatable process of
plan duration approximations and planning attempts. The
plan is executed after its agreement from both sides. During
the execution AGENTFLY notifies I-Globe of successfully
achieved mission points and/or of mission spatio-temporal
deviations. I-Globe is able to change a part of the currently
processed AGENTFLY plan. This process takes into ac-
count the time delays between the two planning systems. It
is based on the concept of unchangeable mission point. Such
a point is designated in run-time and lies on the processed
plan in the future. Only the plan part after that point can
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Figure 4: Experimental scenarios setting. There are
three levels of hierarchy — commander, set of builders
and set of trucks

be changed by the replanning, which implies the communi-
cation between the two systems, must be done in the same
time interval as the unchangeable point lag. If the time inter-
val is exceeded the replanning starts again. The replanning
process includes the whole planning process: mission defini-
tion, planning, execution, but the new mission begins at the
unchangeable point. The replanning process is always initi-
ated by I-Globe and it can be at any time I-Globe system
needs it. AGENTFLY can only notify I-Globe of deviated
mission point, but the decision if the replanning is necessary
is on I-Globe system. The replanning necessity is resolved
by the multi-layer planning architecture, concretely by the
commitments modification process.

3. EVALUATION

This section shows the behavior of the system in the com-
plex interaction scenarios. We focus on the planning perfor-
mance and resources utilization in various settings. In the
first experiment the resource utilization and plan quality is
empirically investigated. The second experiment targets the
scalability of the planning and allocation algorithms.

‘We have evaluated the system in various scenario settings.
The three levels of resource allocation problems has been
gauged. We have varied (i) number of actors in the sce-
nario, (ii) levels of planning hierarchy, and (iii) type of task
concurrency. In the experiments the planning and alloca-
tion algorithms are empirically investigated. The plan ex-
ecution duration (lengths of the plans and their deviation
across all actors in the system) is examined. In the sec-
ond experiment we focus on the communication complexity
of the distributed task allocation process. The amount of
contract-net-protocols needed for planning and the speed of
convergence is examined.

The experimental scenario uses the three levels of plan-
ning/allocation hierarchy as described in Figure 4. The
commander represents the abstract unit, which is able to
generate tasks — in this case build houses task. This task
is passed to the construction units of builder type and it is
decomposed to the sequence of requests for transportation
and houses construction. The mobile truck units are able to
handle transportation request.

The tests has been performed on the following settings:

e Scalability test — this test has been performed on
simplified build-houses scenario with no commander.
There are 20 builders in the scenario, each with one
predefined build houses task. The number of trucks

varies from 1 to 20. The construction materials are
present on the construction sites, so only the builder
transportation is needed. Each builder tries to find the
best possible transportation to the construction site.
The trucks are requested by all builders concurrently.

e Over-booking test — this test has been performed
on resources scenario. There are 10 builders in the
scenario, each of them is requested to perform one 1
build houses task. The decomposition of build houses
generates two requests: request transport and request
resources. Those two requests are allocated to the
trucks sequentially. When the builder finds the best
transportation for itself, it request the transportation
of construction materials based on constraints of the
first transport. Due to concurrent allocation, the first
transport constraints should not be ensured and thus
backtracking (reallocation of first transport) may oc-
cur. The number of trucks varies from 1 to 20.

e Cross-booking test — this test has been performed
on multi-task scenario. There are 10 builders in the
scenario, each with predefined sequence of 5 build houses
tasks. The number of trucks varies from 1 to 10. For
each builder the quality of allocation of individual re-
quests are strongly interdependent. Every successive
request allocation constraints depends on previous re-
quest allocation. The criteria function for allocation
optimization is function of all requests allocations. The
optimization of requests allocation in parallel gener-
ates huge backtracking due to massive cross-booking.

e Multi-level test — this test has been performed on
build-houses scenario with commander. The setting is
similar to the scalability test. There is 1 commander
and 4 builders. The number of trucks varies from 1
to 15. The commander requests sequence of 2 to 20
build-houses tasks from builders. The builders requests
transport to the construction site concurrently.

3.1 Execution Length

This section shows the behavior of the system in the com-
plex interaction scenarios. We focus to the planning per-
formance and resources utilization in various settings. The
measured parameter is length of plans (measured in seconds
of simulation) and its deviation across all actors in the sys-
tem. This experiment has been evaluated for the scalability,
over-booking and cross-booking tests

Figure 5 shows the total execution time (a.k.a. length of
plan) in the described settings. All settings provide similar
results. The execution time goes down fast with increasing
number of trucks. Due to overheads needed for truck sharing
(waiting times, empty kilometers, etc.), the improvements
slows down for approx. 7 trucks in the scalability test, 5
trucks in the over-booking test and 4 trucks in the cross-
booking test. The general tendency of the execution time
provides logarithmic dependency on the number of trucks
in all three scenarios. The saturation of trucks is the lowest
(the highest scalability) in the scalability test because of low
dependency of the tasks. In the overbooking scenario the
system is saturated for approx. 10 trucks and then doesn’t
provide execution time reduction (average total execution
time converges to 200s). The cross-booking scenario pro-
vides the worst scalability. The saturation can be observed
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scenario), 20 builders, 1 task, n trucks; (b) over-booking test (resources), 10 builders, 1 task refined to 2
requests, n trucks; (c) cross-booking test (multi-task scenario)), 10 builders, each with sequence of 5 tasks, n

trucks.

for approx. 6 trucks and the average total execution time
converge to 1500s.

3.2 Negotiation Complexity

This section shows the behavior of the system in the com-
plex interaction scenarios. We focus to the negotiation com-
plexity of the distributed task allocation (as a part of the
commitment planning — see Section 2.2.4). We investigate
the number of open contract-net-protocols, successfully closed
protocols and failed protocols (corresponds to backtracking
in planning process) and it’s tendency over the time. The
number of failed CNPs is aggregated number of failures on
the protocol initiator and responders side. The CNP is failed
when one party drops the agreed commitment. The initia-
tor is no longer interested in the commitment (because of
another conflicts) or the responder is not able to fulfill the
commitment (because of overbooking). The values are mea-
sured in time intervals u = 500ms of processor time and
provides the overview of the complexity of task allocation
during planning phase.

The first experiment have been performed on the same
scenarios as in Section 3.1. The number of trucks has been
fixed to 17 for scalability test, 14 for over-booking test, and
10 cross-booking test. The results are presented in Figure 6.

In the scalability test, there are 20 open CNPs on the be-
ginning (corresponds to 20 builders requesting single trans-
port). The number of successful CNPs grows linearly. In
the time u = 40 the conflicts are detected and number of
canceled CNPs starts to grow. The agents replans and thus
number of open CNPs also starts to grow. The number
of open and canceled CNPs grows almost linearly until the
number of successful CNPs converges to the number of open
CNSs in the time u = 100. At this moment, the planning
phase is finished and all transport tasks are allocated to the
trucks. The allocation of 20 transport tasks has been ac-
complished using 49 contract-net-protocols.

In the over-booking test, there are 10 open CNPs on the
beginning (corresponds to 10 builders requesting transport
to the construction site). Sequentially, the builders starts to
request transport of construction materials (resources). The
tendency of the CNPs is similar to the scalability test, but
the number of canceled CNPs is higher because of trucks
overbooking. The conflicts are started detected in the time
u = 12. The planning procedure converges in time u = 65.
The allocation of 20 transport tasks (transporting builders

and materials) has been accomplished using 74 contract-net-
protocols.

The cross-booking test provides the highest number of
CNPs. There are 10 open CNPs on the beginning (corre-
sponds to first transport of each builder). Sequentially, the
builders starts to request transport to second construction
site and following transports. The tendency of the CNPs is
also similar to the scalability test. The curve of the open
CNPs clearly shows the polynomial complexity of the nego-
tiation. because of high cross-booking, the number of failed
CNPs is higher then number of open CNPs (the commit-
ment is dropped by both party simultaneously). The con-
flicts are started detected in the time u = 60 (the number of
open CNPs is 50 — all the transportation are allocated and
builders start to close the CNPs. At this moment, num-
ber of successful CNPs grows, but also the number of failed
CNPs. The horizontal steps of the curves corresponds to
the planning activity and opening new CNPs for previously
failed allocations. The planning procedure converges in time
u = 165. The allocation of 50 transport tasks has been ac-
complished using 275 contract-net-protocols. For compari-
son, the setting of this scenario with 4 builders and 4 trucks
(20 transport tasks total) the total number of contract-net-
protocols is 50.

The second experiment shows the behavior of multi-level
task allocation. Figure 7 shows the dependency of number
of CNPs on number of agents (trucks varying from 1 to 15)
and on number of tasks (varying from 2 to 20). For fixed
number of tasks the number of needed CNPs grows loga-
rithmically with increasing number of truck agents. With
increasing number of simultaneous tasks in the system there
is exponential grow of the needed CNPs.

4. CONCLUSION

The paper describes in a coherent way a complex planning
system, which is based on multi-agent techniques and I-X
systems integration architecture. Into the planning process,
the human operators are involved in the level of commanding
agents. The rest of the planning hierarchy is controlled by
the autonomous planning agents. As the multi-layer plan-
ning architecture is modular enough, the different types of
units can be controlled by different systems on the bottom-
most planning level. The ground unis uses simple path plan-
ning algorithms. In contrary of them, the aerial units are
operated by complex agent-based air-traffic-control system.
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Figure 7: The number of CNPs in multi-level test for (a) 1 to 15 truck agents (1 commander and 4 builders)

and (b) 2 to 20 tasks.

The robustness and the stability of the system has been
verified on extended scenario suite. The performance has
been experimentally evaluated on various scenarios — scal-
ability tests, over-booking tests, cross-booking tests, and
multi-level tests. We have identified exponential complex-
ity of resource allocation problem with increasing number of
concurrent tasks. However the implemented approach pro-
vides polynomial tasks allocation heuristics with complexity
O(n*™/2m) for m-level of planning hierarchy and n-agents
in each level. The observed resource utilization is sufficiently
spread over all actors. The length of plans decrease logarith-
mically with number of available actors.
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