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Information-gathering: From sensor data to
decision support in three simple steps
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Abstract. In this paper we describe the information-gathering problem which can be characterized as transforming large amounts
of data obtained from sensors into accurate, concise, timely and meaningful information that can be used by decision makers
faced with a specific task and a number of options for performing that task. The approach to this information-gathering problem
as described here consists of three phases: data validation, data aggregation and abstraction, and information interpretation. Each
of these phases will be described in general, and for each of these phases we describe techniques that are reasonably generic to
be applicable in many domains, but domain specific knowledge will of course always be needed too.
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1. Introduction

Effective action in any domain is necessarily found-
ed on the availability of effective, timely and accurate
decision-making information. In complex domains,
however, the acquisition of such information is itself a
complex task, and one that requires the application of
specialised information-gatheringprocesses performed
by information-gatheringagencies. This need becomes
particularly evident when the domain is highly dynam-
ic, and raw data and the information derived from it
must be filtered to extract just that information required
to make the decisions the situation demands.

At a geopolitical level, in military contexts and even
in the business world the need for such information-
gathering agencies (where they are termed ‘intelli-
gence agencies’ or ‘intelligence services’) has long
been recognised; at a smaller scale, or in civilian con-
texts, while their need is no less pressing, lack of re-
sources often leads to inadequate provision of these
services. To redress this balance, the authors have, in
the FireGrid project [1], been exploring the use of new
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technologies to provide (semi-) automated decision-
making support for fire-fighters tackling an emergen-
cy incident within a complex, sensitive or otherwise
high-value building.

In the next section we will give a brief overview of
the FireGrid system and the problem it addresses. We
will then go on to describe the information-gathering
problem as encountered in FireGrid in more detail. The
contribution of this paper is the three phase approach to
the information-gathering described next: data valida-
tion, abstraction and interpretation. We shall describe
general techniques that we expect to be applicable in
the respective phases and illustrate these with examples
from fire experiments conducted in FireGrid.

2. FireGird: Emergency response support for
complex fires

The FireGrid project [1] represents a farsighted at-
tempt to harness recent advances in a number of dis-
parate fields for the express purpose of assisting respon-
ders to tackle emergency incidents, in particular (but
not exclusively so), complex building fires. Currently
fire-fighters, when they arrive on the site of an incident,
generally have to rely on the information provided by
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their own senses, any information that can be provided
by evacuated occupants of the building in question and
their experiences of previous fires in order to decide
on an intervention course. In the UK, the initial deci-
sion is one of choosing the appropriate tactical mode
for tackling the fire: this may be either offensive or
defensive [2]. The former often involves sending fire-
fighters into the building, a decision that is taken if the
potential benefits are felt to outweigh the risks – for
example, if people are thought to be trapped within the
building and fire-fighters are felt to have a reasonable
chance of rescuing them while being exposed to an ac-
ceptable level of risk. Defensive mode, on the other
hand, is adopted when the trade-off of the potential
benefit against the likely risk of offensive mode is not
thought favourable (or, in some situations, where the
current lack of information means that the benefits or
risks cannot yet be assessed).

Hence, the intervention decision can be based on in-
complete or faulty information; in particular, for large-
scale and complex buildings, fire-fighters are rarely
aware of the exact conditions within the building.
Moreover, the lack of experience of complex fires that
many fire-fighters have (simply because such fires oc-
cur relatively rarely), can mean that, even when avail-
able, information is misinterpreted, and fire-fighters are
placed in danger.

Obviously this is an unsatisfactory state of affairs.
However, recent advances in three areas of technology,
when exploited together, suggest a possible solution to
this problem:

– Developments in sensor technology, along with a
reduction in unit cost, offer the prospect of deploy-
ing large-scale, robust and cost-effective sensor
networks within buildings;

– Advances in the understanding of fire and related
phenomena have resulted in sophisticated comput-
er models which might be used to interpret sensor
data;

– The availability of Grid resources and infrastruc-
ture promises to enable these (usually extremely
time- and resource-hungry) models to be run in
real-time, making their use in emergencies a prac-
tical proposition.

The FireGrid vision is to combine these technologies
in a system, underpinned by concepts and techniques
drawn from Artificial Intelligence, that essentially pro-
vides an ‘intelligence service’ for fire-fighters.

2.1. The FireGrid software architecture

The architecture of the FireGrid system is presented
from a command and control (C2) perspective here as
this is the aspect that is intended to directly support
decision makers. The role of the C2 layer of a FireGrid
system is, in brief, to provide a means for users to
interact with the system and steer it towards achieving
their goal – which, in a deployed system, would be
to help with the safe and successful management of
fire incidents in the building in question. The unique
aspect of a FireGrid system is the capture of ‘live’
sensor data from the building and the use of this data by
models to interpret the status and projected course of
the incident for emergency responders. Figure 1 shows
the components of the C2 layer.

There are two primary human interfaces onto the C2
layer, namely the Building C2 (BC2) interface, and the
eResponse C2 (eRC2) interface. The role of these in-
terfaces is to provide their human users with informa-
tion about the current state of the system (and hence
about the state of any incident and of the response to
it), and to assist users to interact with system compo-
nents to acquire additional information or actuate some
response.

The two types of C2 interfaces differ in their applica-
bility, coverage and scope. A BC2 interface is specific
to a particular FireGrid system, and is tailored towards
that system and the building it relates to. Its projected
user is someone who has responsibility for monitoring
the state of the building in question and, in the event
of an incident, for instigating initial response activi-
ties (such evacuating the building), but would not be
expected to tackle anything but the most trivial of fires.

The eRC2 interface, on the other hand, contains
knowledge of agents (such as fire-fighters) and re-
sources (such as standard operating procedures) that
are external to any specific FireGrid system, and which
may be required when the response to incident has to
be escalated beyond the local (that is, BC2) level. The
eRC2 interface is intended to be installed on, for in-
stance, the computer system in an emergency response
command vehicle; when the vehicle arrives at the site
of the incident, it ‘taps into’ the in situ FireGrid system
to access and request information about the incident.
The projected user of the eRC2 interface is (using UK
terminology) a Fire Incident Commander, or – more
likely – a Support Officer detailed to assist the Incident
Commander. The Incident Commander is responsible
for the management of the incident, including tactical
planning, coordination and resource deployment [2].
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Fig. 1. The FireGrid system architecture from a C2 perspective. Arrows show principal communication flows only, with inter-agent communi-
cations indicated by solid arrows.

2.2. Decision support using intelligent agents

Underlying the C2 interface components in FireGrid
are intelligent agents that are based on the I-X frame-
work [4,7]. I-X provides a generic systems architec-
ture (and tool suite) for multi-agent process support,
structured upon an abstract activity-centred ontology
for expressing information and communications within
the system. While this approach has its foundations in
work in AI planning, it is intended for use in systems
of collaborating human and computer agents.

The “intelligence” of an I-X agent stems from a set
of standard operating procedures encoded by domain
experts. These procedures correspond to the structures
called methods in the planning literature [3]. Methods
formally describe how a specific task can be broken
down into sub-tasks. The definition of a method con-
sists of four main parts: task pattern, name, constraints
and network.

The task pattern of a method is used for matching
methods to items in the activity list, the “to-do” list of
the user that describes the current problems that must
be addressed. The name can be used to refer to the
method and thus to distinguish the different methods
available to address the same task. Methods applicable
to the same task are options which require a decision
from the user. The network contains the list of sub-
tasks that will be added as activities when the method
is chosen.

The constraints are used to decide whether a method
is applicable in the current context. Hence, the
constraints provide a formal way for the experts in
the field to stipulate the conditions under which a
method/standard operating procedure is valid, and as
such they form part of the information about the envi-
ronment and state of the task required by the decision
maker in order to decide how to tackle a given problem.
Furthermore, since these constraints have been provid-
ed by an expert we can assume that they will be at a
level of abstraction that is relevant and meaningful to
the task in hand. Thus, we shall assume that such con-
straints describe the kind of information that is the ob-
jective of information-gathering – in other words, it is
the target output of the information-gathering process.

3. The information-gathering problem

In our approach, the information that needs to be
gathered is described by the constraints associated with
different methods in an I-X agent’s library of stan-
dard operating procedures. In FireGrid one source of
the information that is available about the environment
comes in the form of sensor readings that provide large
amounts of dynamically changing data. In this case,
then, the information-gatheringprocess needs to bridge
this gap, taking as input this sensor data and generating
as output the information relevant to a decision maker.
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The data generated by the sensors and the infor-
mation required by the decision maker can differ in
a number of ways that need to be addressed by the
information-gathering process; specifically they can
differ in terms of:

– Accuracy: decision makers require accurate infor-
mation whereas sensors might fail and result in
false readings. This is further complicated in a
situation such as a fire incident in which sensors
can be destroyed while information-gathering is
taking place.

– Concision: decision makers require concise infor-
mation whereas large numbers of sensors can re-
sult in large numbers of sensor readings that di-
rectly reflect the quantities the sensors are measur-
ing.

– Timeliness: decision makers would like to base
their decisions on the latest state of the environ-
ment; however, sensors operate only at a specif-
ic frequency, meaning that the data they provide
might be out of date.

– Meaningfulness: decision makers usually require
information that corresponds to some generalised
and task-specific interpretation of the current state
of the environment whereas sensors provide ob-
jective ‘point-data’ that effectively constitute task-
neutral, specific and localised truths.

4. From sensor data to decision support

In this section, we will describe our view of this
information-gathering process, and our approach to
the information-gathering problem. The process will
be described in the abstract, regardless of context or
domain, or even whether the actors in this process
are human or automated. We shall illustrate this ap-
proach through examples drawn from the FireGrid
project and experiments conducted. In our approach
the information-gathering process can be divided into
three phases as follows:

– Phase 1: Data validation
Observations or facts are collected; and these must
be verified. In the context of FireGrid these ‘ob-
servations’ are provided by the individual sen-
sors within the building; since sensor data may
be noisy, and faulty and failed sensors can pro-
vide incorrect readings (which will invariably hap-
pen in devastating fires as sensors are destroyed),
these observations need to be ratified before they

are passed onto the next phase. Similarly, in oth-
er contexts, ‘facts’ may be provided by humans,
and attempts such should be made to validate or
corroborate these before accepting their veracity.

– Phase 2: Data aggregation and abstraction
Usually – but not always – the observations/facts
provided by phase 1 will need to be processed
to provide information. In the context of Fire-
Grid, the task during this phase is to condense the
sheer quantity of sensor data into abstractions that
are meaningful in the context. In computational
terms, this is achieved by applying different an-
alytical algorithms to the data; these algorithms
can range from the simple – for example, select-
ing the maximum value from a contemporaneous
set of readings from a co-located set of sensors –
through more advanced data fusion algorithms, up
to the highly complex – in the case of FireGrid, the
application of models of the physics of fire spread
to make predictions about the course of the fire.
This phase is necessary when there is a discrepan-
cy between the content or expression of the data
from phase 1 and the content or expression of the
information required for decision support in phase
3; in complex or open systems, this will invariably
be the case. The algorithms applied at this phase
will typically be domain-dependent, and may well
be formulated with the general task (such as emer-
gency response) in mind, but will be independent
(and oblivious) of the wider context for which the
information is required.

– Phase 3: Information interpretation
The information derived from phase 2 (or, where
appropriate, directly from phase 1) must be fur-
ther interpreted in the context of the state of the
current activity and the available choices in order
to select viable courses of action. Hence the in-
formation needs to be interpreted (and presented)
in such a fashion as its relevance to the decision-
maker and the task in hand is readily apparent, and
which takes into account his/her particular knowl-
edge and capabilities along with the specific cir-
cumstances and pressures under which he/she op-
erates. In FireGrid, we support this task by pro-
viding a custom interface and underlying reason-
ing engine tailored to the needs of a particular
decision-maker, representing graphically the af-
flicted building and onto which we superimpose
relevant information.

In any application, we would expect these phases
to be applied cyclically (or, more likely, concurrently)
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until such time as all the goals of the decision-makers
have been achieved. For our purposes we assume that
the communication of data and information from phase
to phase is noise- and error-free; obviously to make
such an assumption in any real situation would be dan-
gerous. The last phase should be seamlessly integrated
with the I-X system and its operating methodology as
described above.

4.1. Phase 1: Data validation using constraint
networks

The first phase involves the gathering of data about
the situation. For building fire incidents, fire-fighters
will be continually taking in direct sensory perceptions
of the incident, collecting and cross-checking state-
ments by eye-witnesses, and so on. To augment this,
a FireGrid system is intended to provide information
about the state of the incident based on readings sup-
plied periodically by a number of sensors of different
types located within the building. These sensors can
include, for instance, fire alarms, smoke detectors, ther-
mocouples (for reading temperatures), CO and CO2

meters. Typically, these sensors will be polled in batch
mode periodically by one or more data loggers, phys-
ical devices with which groups of sensors have some
communications link; in this device and its accompany-
ing software, the signals produced by the sensors will
be converted into their corresponding quantities (so, for
instance, the voltages read from the thermocouples will
be converted into degrees Celsius). In modern systems,
these steps are automatic, and at this point, these data
values can be accessed and stored in a database. To
do this, however, would be to mistakenly assume that
all data values are correct. Since sensors (or their lines

of communication) can be noisy or can fail because of
manufacturing flaws or the extremes of the fire inci-
dent itself, the data first needs to be verified: this is the
sensor grading task.

In this section we will describe an algorithm that can
be used for real-time sensor grading. The expected in-
put is a batch of ‘raw’ sensor readings at some specific
point in time. The algorithm then uses previously as-
serted constraints on the values of the different sensors
to find a set (which may be empty) of sensors that are
considered to have failed or to be failing at that point
in time (a sensor might cease to be reliable when con-
ditions move outside its normal operating range; how-
ever, it is not necessarily the case that any subsequent
reading from that sensor from that time onwards will
be unreliable). Thus, the output of the algorithm is
a binary value for each sensor, indicating whether the
sensor reading is considered correct or not.

To illustrate the algorithm we shall use a controlled
fire experiment that was conducted at the University of
Edinburgh in February 2008. In this experiment a tray
containing a fuel source was placed in the middle of a
small room. Around this fire were placed four vertical
‘trees’, each equipped with 10 thermocouples, allowing
the measurement of the gas temperatures at different
heights. The layout of the experiment and the sensors
is shown in Fig. 2.

Thermocouple readings were taken at a rate of 2Hz
and written to a file and database. The initial grading
was performed by running some preliminary tests be-
fore the fire experiment and having a fire-engineering
expert look at the resulting data. The expert then iden-
tified four of the 40 sensors as failing and they were
excluded manually from further processing – in other
words, in advance of the experiment these sensors were
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flagged so that their values would be ignored by the
computational models that were to be applied to the da-
ta during the experiment. Clearly, this is not a satisfac-
tory approach for a system that can support decisions
during real fires, partly because it is not feasible to ex-
pect that sensors have been thoroughly tested just prior
to a fire breaking out, and also because one should not
assume sensors will remain undamaged during a fire.

The ungraded output from all the sensors at one time
point consists of 40 floating point values representing
temperatures in degrees Celsius. Table 1 illustrates the
output from the sensors, the data arranged in columns
corresponding to each sensor tree, and with each sensor
identified by the unique label shown. Each tree contains
10 thermocouples, with the first sensor located 40 cm
above the ground and the others spaced evenly above
this to the ceiling of the room (note how the values of
the readings increase as we move ‘up’ each sensor tree,
a result of the hot gases rising from the fire towards the
ceiling).

In addition to the readings for each sensor, the data
grading algorithm takes as input a constraint network
that expresses the expected relations among the sensor
readings at any particular time. The simplest type of
constraint is the unary constraint which can be used to
express ranges in which a sensor is expected to operate
(it is a unary constraint since it refers to the values of
that sensor alone). For example, each of the thermo-
couples used in our fire experiment was expected to
return values confined to the range 0◦C to 2000◦C, and
this can be expressed through the following constraint
(where ‘s’ is the reading of any particular sensor, i.e. of
s1001, s1002. . . s1040):

(0 < s) and (s < 2000)

The data grading algorithm starts by first evaluating
each of the unary constraints against the latest batch
of readings. If one of the constraints is violated, the
corresponding reading is graded as unreliable. In the
example data set, the reading provided by sensor s1009
in the first tree can be identified in this way as unreliable
since its value (9.9E + 37) breaks this constraint.

In addition to the unary constraints the algorithm can
take more complex constraints that express relations in-
volving more than one sensor value. For example, since
the trees were equidistant from the fire, it is expected
that sensors at the same height in the room will provide
similar temperature values. This can be expressed by a
set of binary constraints such as:

(similar s1001 s1011) and

(similar s1011 s1021) and
(similar s1021 s1031) and

(similar s1031 s1001)

where the sensor identifiers, s1001 etc., refer to the
readings of those sensors at some particular point in
time. This constraint expresses the knowledge that all
the sensors that are 40cm off the ground should have
similar values. Respective constraints can be added for
the 9 other heights, resulting in 40 different constraints.
Note that this partially exploits the transitivity of the
similarity relation as there is no constraint connecting
s1001 with s1021 or s1011 with s1031.

Another set of constraints can be used to express the
fact that temperature is expected to rise as we move
up each tree. This can be expressed by the following
binary constraints:

(s1001 < s1002) and
(s1002 < s1003) and

. . .
(s1008 < s1009) and

(s1009 < s1010)

That is, the reading of s1001 at some point in time
should be less than that of s1002, which in turn should
be less than that of s1003 and so on. The data grading
algorithm will now attempt to use these binary con-
straints to derive which readings are unreliable. While
the last set of constraints appears to be sufficient, the
transitivity of the ‘<’ relation is not known to the al-
gorithm and this leads to a minor issue. In the exam-
ple above the values for the sensors s1002, s1003, and
s1004 are 22.9, 21.5, and 26.2 respectively, meaning
that temperature is not rising as expressed by the con-
straints. However, only one of the constraints is vio-
lated, namely (s1002 < s1003). The other constraint,
(s1003 < s1004), is satisfied. In general, with only one
constraint violated it is not possible to tell which of the
two sensor readings involved is unreliable. This can
be fixed by adding more domain specific knowledge or
by adding more constraints. We have solved the prob-
lem by adding more constraints, making the transitivity
relation more explicit:

(s1001 < s1003) and
(s1002 < s1004) and

. . .
(s1007 < s1009) and

(s1008 < s1010)

After processing the unary constraints, the algorithm
now proceeds with the n-ary constraints. It first eval-
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Table 1
Sample thermocouple (sensor) readings at a particular point in time for each of the sensors in each ‘tree’ of the fire
experiment

Height Tree 1 Tree 1 Tree 2 Tree 2 Tree 3 Tree 3 Tree 4 Tree 4
labels readings (◦C) labels readings (◦C) labels readings (◦C) labels readings (◦C)

0.4m s1001 22.9 s1011 24.8 s1021 22.4 s1031 20.5
0.6m s1002 22.9 s1012 24.9 s1022 22.2 s1032 20.2
0.8m s1003 21.5 s1013 34.2 s1023 21.5 s1033 20.5
1.0m s1004 26.2 s1014 29.4 s1024 26.2 s1034 23.5
1.2m s1005 29.4 s1015 30.6 s1025 26.6 s1035 27.9
1.4m s1006 42.2 s1016 35.9 s1026 40.9 s1036 31.8
1.6m s1007 21.1 s1017 69.8 s1027 77.9 s1037 84.6
1.8m s1008 72.1 s1018 76.9 s1028 79.4 s1038 85.4
2.0m s1009 9.9 × 1037 s1019 80.5 s1029 83.9 s1039 87
2.2m s1010 82.2 s1020 90.6 s1030 88.7 s1040 21.9

uates all those constraints that do not involve sensors
whose readings at this time have already been identi-
fied as unreliable. If one such constraint is violated the
algorithm collects the sensor labels in a set along with
the number of times each is involved in a constraint
violation. The reading of the sensor that violates the
most constraints is then graded as unreliable and the
process is repeated until no more constraints are found
to be violated.

In the example used here, after having identified the
reading of s1009 to be unreliable using the unary con-
straints, the algorithm now finds the readings of sensors
s1013, s1007, and s1040 to have violated 4 constraints
each. After their readings have been graded as unre-
liable, the reading of sensor s1036 is found to violate
2 constraints and is graded unreliable. As a result no
more constraints are violated and the algorithm termi-
nates, with the overall result as shown in Table 2 where
unreliable readings are highlighted.

This compares to sensors s1007, s1009, s1032, and
s1040 that were identified by the expert as failing. The
reading of sensor s1009 is clearly out of range and re-
quires no further discussion. The readings of s1007,
s1032, and s1040 appeared to the expert to be stuck at
just over 20◦C. The algorithm did not identify s1032 as
faulty as this could well be correct in the situation given
(but perhaps only by coincidence). The algorithm did
however mark as unreliable the readings of two other
sensors that were not identified by the expert. Com-
paring the reading of s1013 to the neighbouring values
shows that it is indeed suspect. It may have worked
better during the preliminary experiments or it may be
correct and just show some unexplained random tem-
perature peak – this cannot be verified now. Sensor
s1036 only violates 2 constraints, indicating some low-
er degree of confidence on the part of the algorithm.
The problem here is probably that this sensor is located
at a height at which during this stage of the experi-

ment the temperature is rapidly changing, making this
reading look suspicious in the current context.

The overall algorithm can be summarized in pseudo-
code as shown in Fig. 3 (with a grading of 0 being used
to indicate that a reading is unreliable).

This algorithm could be improved further by adding
a dynamic component to it. Currently, it looks at each
batch of readings independently of the ones before and
the ones after. However, a sensor that has been de-
stroyed in a fire at one point in time is likely to remain
destroyed for the future. Also, there are trends over
time, e.g. a rise in temperature at a given sensor that
could be used to grade its readings. Thus, it would
make sense to carry such information from one batch
to the next.

4.2. Phase 2: Data aggregation and abstraction

The problem for data grading is to identify in real
time sensor readings that are unreliable. While this
may reduce the amount of data available, this is not the
aim. Data aggregation aims to reduce the amount of
data by eliminating redundancy and lifting it to a higher
level of abstraction. What this means is that a number
of functions will be applied to derive new features from
the given data. Often these features will be – or be very
close to – information that is meaningful to the user.

For example, one of the features that fire modellers
(and fire-fighters) could be interested in is the smoke
layer height in a room such as that used in the experi-
ment described above. The smoke layer is the body of
hot gas that collects near the top of a room. The smoke
layer height is the distance from the ground to the bot-
tom of the hot layer; when this descends too low, occu-
pants are endangered and fire-fighting operations in the
room become perilous. Given the sensor data above,
the rise in temperature can be visualized as shown in
Figs 4 and 5.
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Table 2
As Table 1, but now highlighting (in bold face) those sensor readings that the data validation algorithm has graded as
unreliable

Height Tree 1 Tree 1 Tree 2 Tree 2 Tree 3 Tree 3 Tree 4 Tree 4
labels readings (◦C) labels readings (◦C) labels readings (◦C) labels readings (◦C)

0.4m s1001 22.9 s1011 24.8 s1021 22.4 s1031 20.5
0.6m s1002 22.9 s1012 24.9 s1022 22.2 s1032 20.2
0.8m s1003 21.5 s1013 34.2 s1023 21.5 s1033 20.5
1.0m s1004 26.2 s1014 29.4 s1024 26.2 s1034 23.5
1.2m s1005 29.4 s1015 30.6 s1025 26.6 s1035 27.9
1.4m s1006 42.2 s1016 35.9 s1026 40.9 s1036 31.8
1.6m s1007 21.1 s1017 69.8 s1027 77.9 s1037 84.6
1.8m s1008 72.1 s1018 76.9 s1028 79.4 s1038 85.4
2.0m s1009 9.9 × 1037 s1019 80.5 s1029 83.9 s1039 87
2.2m s1010 82.2 s1020 90.6 s1030 88.7 s1040 21.9

Fig. 3. Pseudo code for constraint-based data grading algorithm.

In the case of the smoke layer height, then, the aim
of data aggregation would be to process this data to
derive a single number corresponding to the height of
the layer. The first step in the data aggregation phase
usually exploits and then eliminates any redundant data
that is collected in order to corroborate values and so
reduce noise.

In our example we can use each group of four sen-
sors that are located at the same height to compute the
average temperatures at the ten different heights (once

again with the underlying assumption that the trees are
equidistant from the fire). The result is shown in Fig. 6.
The height of the smoke layer corresponds to the transi-
tion from the cooler temperatures of the lower region to
the higher temperatures of the hot gases accumulating
at the ceiling. For this example this point is reasonably
easy to pinpoint visually in the graph of the averages;
and in practice, we are looking for a ‘significant’ rising
inflexion in the graph. This point is estimated using
the second derivative of the average values with respect
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Fig. 4. Sensor readings from each tree in Table 1 plotted against sensor height.
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Fig. 5. Graded sensor readings from each tree in Table 2 plotted against sensor height.

to height; with allowances made for local deviations
in the averages, in this example the ‘most significant’
zero crossing of the second derivative is found to occur

at approximately 1.48 m – which gives us a value for
the smoke layer height.

This example illustrates how averaging can be used
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Fig. 6. Processed sensor readings showing averages, first derivative and second derivative.

to remove redundancy from the data and the use of
mathematical models to derive new features that are
not directly available from the data. The result of this
phase should still be numeric data, but the amount of
data should be much lower and describe the situation
in terms of features that are much closer to the features
needed by the decision maker – the preconditions in the
I-X activity model.

4.3. Phase 3: Information interpretation for decision
support

The third phase of our intelligence gathering model
involves interpreting the information that is provided
from the earlier phases in the very particular context
of the task in hand. This interpretation is performed to
establish what – if anything – this information means
for the task, what effect it has, and how it constrains
current and future actions. This task obviously requires
intelligence (in information processing terms) in order
to understand what the relevance of the information and
the implications it has for activity in this domain. In
many contexts this intelligence will be human in na-
ture, relying on the knowledge and experience of the
decision-makers and their support teams to relate the
information to their own situation. An alternative or
supplementary approach is to augment this human in-
telligence with computational tools; this becomes in-

creasingly relevant as the amount or complexity of the
incoming information grows. In this section we will
illustrate this phase of the intelligence gathering task
through the example of a computer system based on
artificial intelligence ideas.

For the FireGrid project, this decision-support func-
tionality is provided through a purpose-built Command,
Control, Communications and Intelligence (C3I) tool
intended for use by the fire incident commander (or,
more likely, by a fire-fighter acting in a role supporting
the commander). The interface provided by this tool,
developed with advice from serving fire-fighters, dis-
plays the interpretations of incoming information in a
manner that is intended to make their relevance to the
task of continuously determining the most appropriate
tactical mode immediately apparent. Note that other
interfaces, intended for other groups of people (say,
medical staff, or occupants of the building) with oth-
er tasks (treatment of casualties or safe evacuation of
the building) could be developed that would interpret
and present the same information in entirely different
ways; this is an important point, and goes some way
to justifying the division – in theory if not always in
practice – between the second and third phases of the
intelligence gathering model presented here.

The primary role of this interface, then, is to convey
succinctly and rapidly to the incident commander the
current ‘hazard level’ at each location within the build-
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ing. ‘Hazard level’ is a concept we introduce that is
intended to express an integrated measure of the degree
of risk to which a fire-fighter operating within that lo-
cation would be exposed. The hazard level is expressed
using a ‘traffic light’ for each location, where a green
light should be interpreted as “the system is unaware
of any specific hazard to fire-fighters operating under
normal safe systems of work at this location”, amber as
“additional control measures may need to be deployed
to manage hazards at this location” and red as “this
location may be dangerous for fire-fighters”. Each of
these indicators is relevant to a particular location; the
definition and extent of a location will be determined by
the standard practice and procedures deployed by the
task in hand; these may not correspond to the physical-
ly differentiated spaces (rooms, corridors, stairwells)
within the building itself. In addition to the current haz-
ard level, a traffic light may also concurrently display
a second colour, when information is received to the
effect that the hazard level in that location is predicted
to worsen. When this happens, the ‘worse’ of the two
lights shown indicates the predicted future hazard level
(so, for instance, a traffic light simultaneously showing
both amber and red lights indicates that the current haz-
ard level at that location is “amber”, and that it is pre-
dicted to become “red” at some time in the future). In
this manner, the traffic light system adopted expresses
both the current state of a location and how this state
is expected to develop in time, vital information for as-
sessing the appropriateness of current activities and for
planning future activities. In addition to this, the floor
of locations where fire has been detected is coloured
red to provide the fundamental information of the fire
position and spread. Figure 7 shows this interface.

The hazard level measure represents an abstract at-
tribute integrating the various individual current and
future hazards that can be inferred to exist from the
incoming information. The secondary role of the in-
terface is to provide textual (and hyperlinked) informa-
tion about these individual hazards, and, more general-
ly, about the state of each location in the building in a
pop-up window. A ‘time-slider’ provides the user with
a means of exploring predicted hazards; by dragging
the slider to any point within a 15-minute timeframe,
he/she can see the hazards that are predicted to be oc-
curring at that time. (15 minutes is chosen for the time-
frame in this case as this is the furthest time that the
available models look into the future.) Figures 8 and 9
show this pop-up display.

Consideration of these individual present and future
hazards leads us to a consideration of the reasoning

underpinning this interface. The reasoning engine op-
erates with two basic concepts: beliefs, propositions
about some time at some location which are held by the
system to be true, and rules, general expressions of the
inferences that can be deduced from believed premises.
The reasoning works in the following manner:

1. models send messages to the C3I tool;
2. the C3I tool revises its beliefs in the light of the

information contained in each new message;
3. the C3I tool applies its set of rules to its revised

beliefs to draw new conclusions;
4. the C3I interface is updated to reflect any changes.

Alongside this continual cycle of revising and updat-
ing, the tool must periodically revise its beliefs in the
light of the passage of time.

To explain what this all means, we first consider the
content of these messages. A message describes its
source and the time it was created along with some con-
tent which will be the description of the state of some
location at some time. An example might be “message
from smoke-layer-height-model at 12:54:32: smoke-
layer-height = 1.2m in room-A at 12:54:32”. The state
description here consists of a value (expressed in con-
ventional units) for a given state parameter (smoke-
layer-height), one of a number of such state parame-
ters. Instead of a state parameter, this description might
have referred to the occurrence of an event (such as
collapse); state parameters and events are defined in
the ontology for the system. An ontology is a formal,
agreed definition of the concepts that occur in the con-
text of the task in hand, along with descriptions of rela-
tionships between these concepts. For building a sys-
tem such as that described here, which ranges over a
number of different fields of expertise – sensor technol-
ogy, fire modelling, fire fighting – an ontology becomes
an almost vital tool for establishing the appropriate ter-
minologies, for defining relationships between the dif-
ferent areas of expertise and later for integrating the
various technologies into a coherent whole (for exam-
ple by providing a formal language for expressing mes-
sages). In most cases, ontology construction requires
manual knowledge engineering to establish the terms
and achieve consensus among available experts.

For FireGrid, the ontology contains terms related to
the physical phenomena surrounding fire, and, impor-
tant in this case, how these relate to space and time. This
gives us the high-level distinction between state param-
eters, quantities that are (in theory at least) continu-
ously measurable for some place and time, and events,
instantaneous occurrences at some location. The sub-
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Fig. 7. C3I tool interface for 4-room (and 4-location) building, with “traffic light” for each location: in this case the green traffic lights indicate
that fire-fighters can operate in every location; however, the red floor in the room under the cursor indicates that a fire has been detected there.

Fig. 8. At a later time, the user has selected more details about the state of the ‘fire’ room: the current hazard level is “now amber”, due to the
combination of belief and rule shown. Moreover the traffic light (and the time slider) indicate that there is a future “red” hazard level predicted
(for approximately 6 minutes into the future).

classes of these two categories (such as smoke layer
height and collapse respectively) correspond to con-
cepts that are both potentially of interest to fire-fighters

and that can be derived from the available data with
the use of models. In addition, the hazard levels (and
their definitions) constitute part of this ontology, and
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Fig. 9. At a still later time, the hazard level is now “red” (and has deteriorated in the other locations), and the presence of multiple hazards is
indicated by the rules. Note the explanation and recommendations attached to one of the rules.

the rules that relate them to values of state parameters
or events represent “axioms” of the ontology.

The name and time of the message help the C3I tool
to assess the effect that the message content should have
on its current beliefs. A belief is a state description or
hazard level that is taken by the tool to be true for some
location and over some durations (hence, beliefs have
start and end times). In addition, every belief must
have one or more justifications, indicating the rationale
for believing it. A justification might be a message (if
that is the basis for the belief) or the combination of the
rule and the beliefs which, taken together, allowed the
belief to be deduced.

When a new message arrives, it has to be considered
in the context of existing beliefs. If, for example, the
tool currently believed nothing about the smoke-layer-
height in room-A and received the example message
given above at 12:54:32 (or, more likely, some time
soon after this, since there will be delays due to infor-
mation processing and message passing) and assuming
that the source of the message (that is the smoke-layer-
height-model) is trusted, this message would be the
justification for the tool believing the contents of the
message. Moreover, since nothing else is known about
the values of this state parameter in this location, the
reasoning would assign a duration to this belief stretch-
ing from the current time to some indefinite time in

the future (that is, since the reasoning engine does not
believe otherwise, it assumes that the values of state
parameters persist, and hence in this case the smoke
layer height is believed to remain at 1.2m indefinitely).

If, on the other hand, something is already believed
either about the current or future values of the smoke-
layer-height, then a more complex train of reasoning
begins, which attempts to reconcile this message with
the existing belief(s). This may involve adjusting du-
rations of beliefs or, where there seems to be a contra-
diction, choosing to adopt one or other of the possibil-
ities and disregarding the other. This might be done
on the basis of, say, one source being ‘more trusted’
than another or due to the general principle of favour-
ing beliefs based on more recent information as being
more likely to be true. Contradictions of this sort occur
when there exist inconsistent state descriptions about
the same location at the same time; due to the inherent
lags and delays between values being read at the sen-
sors and processed information arriving at the C3I tool,
the tool must adopt some fairly relaxed definition of
what is meant by “same time” (in this case descriptions
that have (start) times within 30 seconds of one another
are assumed to be referring to the same time).

A further complexity arises since the content of a
message may be a prediction – that is it purports to
describe the state of some location at some future time.
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While this might be adopted as a belief with a dura-
tion as before, the inexorable flow of time will mean
that, assuming this belief has not been retracted in the
meantime, at some time the prediction will refer to the
current time, and in the absence of other information
a choice must be made about whether or not to accept
the predicted value as an actual current value. While
reasoning of this sort is difficult to justify on grounds
of logical soundness, it can be justified on the basis of
a cautious approach to the safety of fire-fighters.

Assuming that the set of beliefs has been revised
and is consistent, the next step is to apply the set of
rules to these beliefs. There are, generally speaking,
two types of rules: hazard rules and physical rules.
Rules represent expert knowledge about fire-fighting
capabilities and practice (hazard rules) and the nature
and progress of fire and associated physical phenomena
(physical rules). An example hazard rule might be:

IF smoke-layer-height < 1.5m
THEN hazard level = amber

An example physical rule might be:

IF smoke-layer-height < 1.0m
THEN max-temperature > 80◦C

In each case, a rule consists of one or more conditions
and a single conclusion. In the case of a hazard rule, the
conclusion is an interpretation of the conditions in terms
of the hazard level for the time and place in question;
in the case of a physical rule, the conclusion is a state
description that should be consistent with the current
set of beliefs for that time and place (where consistency,
in this sense, may entail the addition or modification of
beliefs). In addition, a hazard rule – especially one that
refers to less commonly encountered hazards – may
have an associated explanation and recommendations.
So, for instance, a rule referring to excessive CO levels
may offer the explanation that CO levels in that range
can “cause headache, fatigue and nausea” alongside
the recommendation to “avoid prolonged exposure or
consider the use of breathing apparatus”.

For each rule, then, a search is made in the set of
beliefs for subsets that both satisfy the conditions and
are contemporaneous (that is, which have overlapping
durations). If such a subset exists, then the conclusion
of the rule can be drawn. An inferred hazard level re-
sults in a new belief (or in the modification of an exist-
ing hazard level belief with an additional justification),
with a duration delimited by the latest start time and
earliest end time among the subset of beliefs satisfying
the conditions. An inferred state description results in

a similar modification to the existing beliefs about state
descriptions.

Finally, since the application of the rules may have
resulted in the inference of multiple simultaneous haz-
ard levels, the inference engine must collate these into a
single hazard level for each location at every time. This
is a (relatively) straightforward matter of determining
the ‘worst’ hazard level that is believed to apply. So,
for instance, if from the state of room-A at the current
time, two “amber” hazards and one “red” hazard had
been inferred, then the current overall hazard level of
room-A is “red”, and this is displayed in the corre-
sponding traffic light. (A similar search through future
states provides future hazards for concurrent display on
the traffic light and on the time slider.)

5. Conclusions

In this paper we have characterized the information-
gathering problem as bridging the gap between ‘raw’
sensor data and information used by decision makers.
The input to the information gathering process is hence
defined by the available sensors, and the desired output
is defined by the precondition constraints to the stan-
dard operating procedures in an I-X agent’s domain
model.

We have described the information-gathering pro-
cess as a three-phase procedure that decomposes the
overall problem into phases requiring different types
of knowledge and information processing capabilities.
The first phase, data validation, aims to remove incor-
rect information from the input data, thereby creating
a consistent view of the current situation. The second
phase, data abstraction and aggregation, applies math-
ematical models to reduce the amount of data, remove
noise from the data, and derive features that are closer
to the terminology of the user. The third phase, infor-
mation interpretation, uses a belief revision and rule-
based approach to make the information actionable for
the decision maker.

In addition to this three-phase information-gathering
process, we have identified reasonably general tech-
niques that we expect to be applicable in general, not
just in the FireGrid scenario we have used to illustrate
our approach. In phase 1 the general idea is to specify
constraints between sensors that must be satisfied for
the resulting set of readings to be consistent. A greedy
algorithm is used to grade sensor readings until maxi-
mally large and consistent set of values remains. Phase
2 requires mathematical modelling techniques that will
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often be domain specific, but statistical methods, for
example, provide a toolset that can be expected to be
applicable in many domains to remove redundancy and
noise. Finally, phase 3 is based on a rule-based system
that reasons over space and time, maintaining a set of
beliefs and their justifications to supply an application-
specific user interface with relevant information.

The evaluation of any system that provides support
during large-scale emergencies is a difficult task, of
course. This is because such emergencies happen rel-
atively rarely and they tend to vary quite a lot. Setting
up experiments on the same scale is very costly, if at all
possible. Thus, we have used a number of small, con-
trolled fires to evaluate our approach. The result shows
that our system performs well and output corresponds
to information generated by experts in hindsight.

We have argued that the results of the information-
gathering process as described here, presented in the
context of an activity-centric model of an incident, rep-
resent a vital source of the sort of accurate, concise,
timely and meaningful information that decision mak-
ers need to make the right choices under difficult con-
ditions.
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