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Chapter 1

Introduction

The scale of the December 2004 Indian Ocean Tsunami required a huge humanitarian

relief effort. The participants in that effort were numerous and varied in nature and

resources. Nations, armies, organisations and other groups of people offered their

capabilities, expertise, man power and money for the common cause.

Given the diversity and the numbers of participants in relief efforts such as this,

there is need for central coordination. This task is undertaken by organisations like

the Multinational Planning Augmentation Team (MPAT)1, which helps establish task

command and planning headquarters. One of the roles of MPAT during the response

is to act as an information exchange2 , and as part of this role it acts as a broker for

Requests-for-Assistance (RFAs), attempting to match requests for services or expertise

with the corresponding service-providers and experts. As an example, the following

was one of the RFAs that were successfully brokered during the tsunami relief effort:

Transport 400 MTs (441 tons) of High Energy Biscuits (HEBs) from Bangladesh
(Zia Int’l Airport) to Banda Aceh and Medan, IN.

The brokering of this RFA was performed manually. In other words, a person or

a group of people decided which of the relief effort participants could best meet the

particular RFA. The purpose of this project is to consider ways in which this brokering

task may be formalised and (perhaps partially) automated. This aims to improve the

brokering process, both by achieving more accurate brokering results and by reducing

the amount of time needed for the task to be completed.

Formalizing and automating this brokering process is a very important task: by ad-

equately modelling the RFAs and developing a brokering methodology that is accurate

1http://www2.apan-info.net/mpat/
2https://team.apan-info.net/tsunami
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Chapter 1. Introduction 2

and sound, we may ensure that needs are covered by more adequate or appropriate

resources. Furthermore, during crisis periods, time is a crucial factor. Automating the

RFA brokering may result in accelerating the whole process, which in turn may help

to save lives.

Besides the practical benefits involved, this project has some interesting scientific

aspects as well. As will be seen later in this thesis, one possible way to model RFAs

and capabilities is by using the OWL-S [13] ontology, developed primarily for de-

scribing Web Services. As OWL-S has been mainly used for Web Services, it would

be interesting to test its limitations when describing different types of “real” services

and resources, like capabilities and RFAs.

In Chapter 2, we will attempt to discover the nature of requests that might occur

in an crisis by examining actual RFAs. Furthermore, the brokering procedure that

is currently used by the MPAT will be reviewed. We will conclude by setting some

desiderata for the modelling and brokering methodologies to be proposed.

In Chapter 3, we will consider some approaches for the modelling of RFAs. In

particular, we will present the advantages and disadvantages of databases, RDF and

OWL, and attempt to discover the degree to which they seem to meet the previously set

desiderata. The chapter will continue by considering the use of the OWL-S ontology

and will end by reviewing two service brokering approaches.

In Chapter 4, we will analyse how the OWL-S ontology can be adopted for RFAs.

In particular, we will consider ideas from the two brokering approaches and propose

solutions to problems that might occur. The chapter will end by proposing a method-

ology to model RFAs in OWL-S.

In Chapter 5, we will propose an algorithm to broker RFAs and services. Each

of the three parts of the algorithm will be analysed in detail, and some hypothetical

scenarios will be considered.

In Chapter 6, we will present the RFA Broker, an implementation of the brokering

algorithm of the previous chapter. In particular, we will review its architecture, and

analyse the role and function each of the components.

In Chapter 7, we will attempt to evaluate this project. The evaluation will begin

with some test case scenarios that were processed by the RFA Broker. We will continue

by assessing the degree to which the desiderata of Chapter 2 are met, and conclude with

an analytical evaluation of certain design choices.

In Chapter 8, we will draw some conclusions and propose future work for this

project.



Chapter 2

Requests-For-Assistance

Requests-For-Assistance, or RFAs, are descriptions of local needs that are identified by

or communicated to the MPAT personnel. As mentioned in the previous chapter, one of

the goals of this thesis is to formally model RFAs and enable their automatic brokering.

However, before we discuss their formal modelling, in this chapter there will first be a

review of the current modelling and brokering procedures used by MPAT. The purpose

of this review is to identify factors that may directly or indirectly affect the brokering

process, and also to identity any mistakes or possible areas of confusion in the current

approach, which can then be avoided in the formal approach.

The resources that were available for this “exploration” of the nature of RFAs were

found in the Asia-Pacific Area Network (APAN)1 web portals for particular crises. On

two of these portals, namely the 2004 Tsunami portal2 and the 2006 Mudslide in Leyte

portal3, were published the list of submitted RFAs, as well as some additional material

for describing RFAs and tracking their status.

Unfortunately, crises portals other than the two mentioned have restricted access

to sections that may contain important material for this thesis. For instance, the RFA

repositories in portals of ongoing crises have restricted access to certified users. As a

result, it is not known whether the unavailable RFAs concerned different needs, if the

description form has changed, or if the MPAT has altered their brokering process.

On the other hand, it has to be noted that the material that was put together proved

to be sufficient to reveal several shortcomings of the then current RFA procedures. It

also made possible the proposal of improvements and the development of ideas that

will be presented later in this chapter. To conclude, despite the fact that resources

1http://www2.apan-info.net/apan/
2https://team.apan-info.net/tsunami
3https://www2.apan-info.net/apan/leyte/
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Chapter 2. Requests-For-Assistance 4

Figure 2.1: The RFA process flow chart

which would have clarified certain points were unavailable, the ones that actually were

considered provided valuable insights to guide the modelling and brokering process

attempted during this project.

2.1 Current Brokering Process

Currently, there is no automated method for the brokering of RFAs and available re-

sources. The procedure is implemented by people, and generally comprises the fol-

lowing stages:

1. A person or group of people (who may not be MPAT personnel) identifies a

“local need” and records it on a form that is available on the MPAT website. The

form is then forwarded to MPAT and the information it contains is stored in an

RFA Form (an Excel spreadsheet).

2. An attempt is then made to broker the current RFAs in one of two ways:



Chapter 2. Requests-For-Assistance 5

Figure 2.2: The MPAT RFA Form

• Representatives of organisations who can provide their resources/services

as part of the relief effort can browse through the online RFA directory and

decide whether they can cover some of the needs.

• Additionally, MPAT staff may contact organisations they think might be

able to help address certain RFAs. The request is passed to appropriate

organisations which can then say if they can meet it.

The process of assigning resources to a submitted RFA can be seen in Figure 2.14.

It can be seen that the search for a prospective response to an RFA is escalated through

local and locally sited civilian organizations, through military organizations, all the

way up to a request for a response at the global level. Irrespective of who performs the

brokering, for the purposes of this project the important issue here is that it is always

performed by people. This may hold certain disadvantages:

• The MPAT form, shown in Figure 2.2, provides some structure and uniformity

to information on the RFAs. However, most of this information is recorded in
4The figure was taken from the Combined Support Groups form for RFAs
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natural language, containing acronyms, military jargon and typos. This makes

it prone to misinterpretation, especially when the people involved are not native

English speakers, which is often the case.

• The number of RFAs and available resources and services may be too large for a

person or group of people to process in a reasonable amount of time. This may

cause successful matches between RFAs and resources to be overlooked.

• There are several cases where two or more available resources / services may

be combined to cover an RFA. This composition may be too complicated for

people to perform, especially when the number of participants in the relief effort

is large.

• The MPAT does not have an explicit and formal description of the capabilities of

the relief effort participants. This results in brokering based on the knowledge

and previous experience of the human broker, rather than brokering based on the

actual available resources and capabilities.

The disadvantages listed above can be very limiting and may gravely affect the

results of the brokering. Therefore, they have to be taken into account during the

design of an automated brokering process.

2.2 Issues

In addition to addressing the limitations mentioned above, there are some other aspects

that have to be taken into account. This section examines some of those and attempts

to draw some guidelines that will be followed during the design process.

2.2.1 Types of RFAs

The Combined Support Groups (CSGs) of Indonesia, Sri Lanka and Thailand have

introduced a form for describing RFAs. All RFAs that were submitted to both the

Tsunami portal and the Leyte mudslide portal were recorded using this form. Unfor-

tunately, the 2006 Java earthquake (the most recent MPAT relief effort at the time of

writing) website RFA section was restricted and, consequently, it is not clear whether

the RFA form is still being used. However, the fact that it was used in two distinct inci-

dents, separated in time by over a year, indicates that it may be an established template,

and this is how it will be considered here.
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The form is intended to hold information in a way that humans can broker, whereas

this project aims to allow brokering to be performed or assisted by a machine. There-

fore, the representation contained in this form might not be the most appropriate for

the purposes of this project. However, it gives clear indications and directions of what

the MPAT people believe is enough information to accurately describe a request. And

this will be a common factor, whatever modelling and brokering method is adopted.

The form is a spreadsheet with predefined fields describing who submitted the form

and the type of need to be satisfied. The field named “Type of request” has four prede-

fined choices: “Transportation”, “Information”, “Assets” and “Other”. This, as well as

the fact that the two largest areas of the form are used to describe the passengers and

the commodities that need to be used, shows that the form was created with focus on

particular types of RFAs. In turn, this indicates that these are the types of RFAs that

most commonly occur.

In order to draw a clearer picture of how common transport and provision RFAs

are, actual data had to be used. There are about 80 RFAs in the APAN portals, others

described in RFA forms, others in RFA Status forms. A review of these showed that:

• 90% are RFAs concerning or involving transport of equipment or personnel (and

which sometimes also imply provision of the equipment or personnel). Typical

example:

Transport 400 MTs (441 tons) of High Energy Biscuits (HEBs) from Bangladesh

(Zia Int’l Airport) to Banda Aceh and Medan, IN.

• 4% are RFAs requesting for a certain good to be provided or donated. The

difference to the above category is subtle Typical example:

UNJLC requests donation of mobi-mating. CSF resolution of whether or not the

mating can be donated remains sticking point.

• 2% are RFAs requesting for certain task be carried out. Typical example:

Logistic assessment of NW coast landing sites, Sabang Island and K-Raja port

infrastructure.

• The remaining 4% are RFAs that are not categorized, like more complicated

RFAs. Example:

Require expert in vector control and malaria is needed to provide guidance to

Indonesian vector-control teams. Need person w/experience in leading teams in

the field, familiarity w/Indonesia, ability to speak Bahasa Indonesian.
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It was noted before that the complete set of RFAs across all emergencies was not

available due to restricted access. However, this small survey indicates that the over-

whelmingly dominant type of RFA concerns or involves transportation and sometimes

the provision of goods. Given this, it would be sensible to have as main priority the

correct brokering of transport and provision RFAs, possibly at the expense of adopting

a more generic approach. Of course, success in handling the diversity of RFAs is also

desirable.

The survey also makes apparent that RFAs can vary from expressions with two

or three parameters to more complicated ones, like the last example quoted above.

Therefore, it is desirable for a modelling approach to be able to express both simple

and complicated expressions. Similarly, a brokering method should be robust enough

to handle complicated RFAs without demanding excessive computational resources.

2.2.2 Combining Resources

An interesting attribute of the form that should be pointed out is the fact that more

than one service may be requested to meet the need. This can be done either explicitly,

by filling in more independent requests. However, what the person who fills out the

form perceives as a single RFA may actually require several resources or services to

be invoked. As an example, several of the RFAs were requesting for particular good to

be provided, like in this case (4 Feb 2005, Indian Ocean Tsunami relief effort):

Provide water purification unit to Royal Thai Navy.

Although the action for this request is not clarified in the RFA Status form, it is

reasonable to assume that the purification unit manufacturer / provider may be located

in place different from the destination stipulated by the RFA and furthermore, that this

provider does not necessarily have the capability to ship its products to the destination.

This would create the need for an additional, cargo transporting, service to be invoked

once the purification unit had been secured. Even more, there may not be a sole trans-

port service from the location of the provider to the destination where the commodity

is needed, thus requiring the coordination of several transport services.

It seems logical to assume that the case where an RFA may need the collabora-

tion of multiple service providers is not occasional, but in fact, very common. It was

mentioned earlier that managing large numbers of RFAs and available resources may

be too large for a person to handle. As the number of service combinations may ap-
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proach exponential to the original number of services, the difficulty of the task can

significantly increase, and plausible solutions may be overlooked.

In conclusion, it would be desirable for an automated brokering process to be able

to propose “orchestrations” of resources to satisfy RFAs.

2.2.3 Missing Information

A final remark concerns the fact that several of the fields in the RFA forms of the APAN

portals were found to be left blank. More specifically, while it appeared that all the RFA

forms that were examined contained the minimum information to clearly describe the

request, it is hard to know if this information is enough for all possible matches to

be discovered. The problem presented here is twofold: firstly, it is not obvious to

the person filling out the form exactly which fields will be needed to successfully

broker the RFA. Secondly, even if one knows which fields are actually needed, this

information may not be available to them. To judge by the stages in the brokering

process depicted in Figure 2.1, it seems that no reconsideration of an RFA Form takes

place once it has been submitted.

For example, an RFA submitted on the 24 Feb 2006 for the Leyte Mudslide in-

cident, requests the delivery of temporary latrines for the central evacuation center

(Figure 2.2). One can notice that only the fields of the form describing the asset and

the place of the request are filled in. This information is sufficient to describe the

ongoing need, and possibly find a role-filling service that can satisfy it. However, ad-

ditional role-filling services or groups of services could be discovered if more fields

were available.

In order to cope with this problem, an automated brokering approach could gradu-

ally assign available resources to the RFA, enriching it at the same time with any ad-

ditional information these assignments may entail. The brokering would carry on until

the constantly rephrased RFA is satisfied by the assignment of a group of resources. In

the case presented above, if there is no latrine provider in Leyte, the brokering would

not fail, but rather try assigning a latrine provider located in a remote place. This as-

signment would enrich the RFA with information like the dimensions and the weight

of the latrines, and would enable searching for a service capable of transporting the

latrines to Leyte. Hence, the brokering process now involves elaborating, enriching or

refining the RFA itself.
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2.3 Modelling and Brokering Desiderata

The modelling and brokering of the RFAs are closely interrelated tasks. This is because

the way brokering will be carried out will depend heavily on the model that is used.

Similarly, the RFA model should be designed in such a way that will be possible for

it to being brokered. In an effort to clarify some goals for modelling and brokering,

separate desiderata were set for them.

Based on the issues discussed above, the following properties would be desirable

for an RFA modelling approach:

• it provides a formal description of RFAs that is not prone to misinterpretation.

• it can precisely model at least transportation and provision RFAs, which are the

most common types.

• it is flexible enough to describe many diverse types of RFAs, even new ones that

may emerge.

• it is able to describe RFAs with varying detail.

As far as an RFA brokering approach is concerned, the following properties would

be desirable:

• it can successfully broker at least transportation and provision RFAs, which are

the most common types.

• it can propose complicated solutions to an RFA, in the form of orchestrated re-

sources and services.

• it can cope with large numbers of RFAs and resources.

• it can enrich RFAs with additional information, as the brokering process pro-

gresses.

In a later chapter we shall return to these desiderata to assess the extent to which

the approach to brokering adopted here satisfies them and, hence, use them as some

measure of the adequacy of the approach.



Chapter 3

Background

This chapter contains a review of some commonly used approaches to the task of bro-

kering. These may differ not only in the methodologies they use, but also in the type of

objects they try to model and broker. This chapter will list the advantages and disad-

vantages of each approach, focused particularly on the purpose of this thesis. In order

to achieve this, there will be an attempt to describe the extent to which an RFA could

be modelled and brokered in each of these approaches.

3.1 Non-Semantic approaches

The simplest and most straightforward way to model RFAs and Resources would be

using by using a database. The list of available Resources can be stored in a database

table, with each request occupying a table row and each parameter being stored in a

cell. Another table with similar fields may be used for storing pending RFAs. An RFA

can then be brokered by formulating an appropriate query to the database, asking for

Resources with matching values in corresponding fields.

Databases have some features that would be useful for the purpose of this thesis.

The fact that records can be added, removed and updated, gives direct and low-level

control over the data. They offer some flexibility, in the aspect that they enable the user

to pass custom queries to the database and access the available data in whatever way

is convenient. Finally, the fact that database technology has been evolving for many

decades has helped develop increased speed, scalability and reliability, all of which are

very important for brokering RFAs and Resources.

However, using databases has some drawbacks as well. RFAs have been shown to

vary greatly, which means that it may become apparent that a new design is needed to

11
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uniformly describe the new set of RFAs. This is difficult when using databases, as their

structure is relatively rigid throughout their use. Although new fields and tables can

be easily added and populated at any time, the transfer of existing data to a differently

designed database may be needed. This migration can be troublesome and, in the worst

case, may result in information loss.

The most important drawback of using databases is the fact they typically use string

comparison to match data. This can be a problem when comparing an RFA descrip-

tion to a Resource description, as different words may have been used for the same

information. For instance, an RFA may be requesting for a vehicle to transport injured

people, whereas an appropriate Resource may be providing an ambulance. If this bro-

kering was performed by a person, a match would be identified. However, a database

will only compare the words “vehicle” and “ambulance”, which are different strings.

The same type of error can also be caused by typos or acronyms, which are common

in RFAs.

The underlying reason for this kind of behaviour is that databases make syntactic,

and not semantic comparison. In other words, they only compare strings, and not their

meaning. There is no direct way of taking into account that an ambulance is a type

of vehicle. Workarounds, like creating tables to contain such hierarchical structures

would be very time consuming and inefficient, as there would always be information

that will be left out.

Given the nature of RFA descriptions, using databases or other approaches that rely

on string comparison is inadequate, as it fails meet the most important of the modelling

desiderata: it is error-prone. Furthermore, as far as brokering is concerned, there is no

evident way of creating orchestrated solutions, at least when using databases. For these

reasons, the following methods that are examined are based on semantic descriptions.

3.2 RDF / RDFS

The Resource Description Framework (RDF) [11] is a W3C1 specification for knowl-

edge description. The structural elements of RDF are resources, properties and state-

ments. The idea behind RDF is to model objects as resources, which are described and

interrelated through their properties. The resources and their properties are stated in

the form of triples, called statements. Each statement has a subject, a predicate and

an object, where the subject is a resource, the predicate is a relation and the object is

1http://www.w3.org/
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Figure 3.1: Resource and RFA described in RDF

another resource or a literal.

Resources and properties are uniquely identified by Universal Resource Identifiers

(URIs)2. Although URIs usually begin with the http:// prefix, they don’t have to point

to retrievable documents, but rather they act as a unique identifier. RDF can be rep-

resented in XML [3], from which it inherits several advantages, like extensibility and

the use of namespaces. If the assignment of URIs to objects is seen as a vocabulary,

the use of XML namespaces, along with extensibility, allows the importing and use of

remote vocabularies. In this way the same vocabulary can be used by several parties to

express knowledge of the same domain.

Despite the fact that RDF can be used to detect equality of resources through the

underlying URIs, it cannot express general semantic information about them. This

is the reason it is used in conjunction with RDF Schema (RDFS) [4], an extensible

knowledge representation language. RDFS can define URIs to represent classes and

properties of classes. It also enables the refinement of properties’ definitions by re-

stricting their domain and range. Finally, it allows the definition of hierarchies of both

classes and properties through subclass and subproperty relationships. By using RDFS

definitions in RDF descriptions, one can describe a richer domain of individuals as

members of particular conceptual classes, and can perform simple reasoning based on

their hierarchical and other relationships.

RDF and RDFS can been used for semantic matchmaking of services, which means

assigning a service advertisements to service requests, based on semantic criteria. In

2URLs are just a type of URIs.
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contrast to service matchmaking, service brokering may result to the assignment of

more that one collaborating services to a request, which is called service orchestration.

In [23], the authors propose a way to describe e-commerce services in RDF, as

well as an algorithm that uses these descriptions to conduct semantic matchmaking.

The service advertisements and requests have the same form, which is essentially an

RDF graph. The brokering algorithm can traverse the graphs looking for matching

nodes, where a match would mean equality or subsumption of the two nodes or their

children.

Despite RFAs not being e-commerce services, but rather services in the physical

world, the description and the algorithm presented are generic enough to be adopted.

The first step would be to create class hierarchies for locations, goods and types of

resources and RFAs. If the previously used previously used example is modelled in

the way proposed, the available Resource and the RFA would both have the form of

RDF graphs, as shown in Figure 3.1. Here, vehicle and ambulance are both defined as

classes, with the ambulance class being a subclass of vehicle. There will be no direct

match, as the class URIs are different. However, if the class ambulance is defined as a

subclass of the class vehicle, the subsumption can be detected, which is considered to

be an indirect match.

On the other hand, RDFS has some limitations itself, which unfortunately impringe

on the way RFAs can be described using RDFS:

• The range of a property has to be common for all the classes of a property. As a

result, if VehicleResources are defined to provide Vehicles, some of them cannot

only provide Ambulances.

• Two or more classes cannot be defined to be disjoint. As a result, Vehicles cannot

be defined to be disjoint from, say, Locations.

• A class cannot be defined as the union, intersection or complement of other

classes. As a result, Vehicles cannot be defined as the union of Cars, Motorcy-

cles, etc.

• Cardinality constraints cannot be imposed on properties. As a result, an trans-

porting service cannot be defined to be able to carry at most 3 types of cargo (if

there is such reason).

• Properties cannot be defined to be transitive. As a result, if aircraft A has greater
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radius than aircraft B, and aircraft B has greater radius than aircraft C, it cannot

be inferred that A has greater radius than C.

Some of these RDFS limitations may seem too trivial to be limiting to RFA de-

scriptions. However, the relations between classes can be more complicated than di-

rect subclass relations. If there is no way to express them, this will eventually cause

matches to be overlooked. Although RDFS does use semantic information to do the

brokering, its expressiveness is fairly limited. As a result, it fails to meet the modelling

desiderata.

3.3 OWL

The expressive limitations of RDF led W3C to the development of the Web Ontology

Language (OWL) [20]. There are three ‘species’ of OWL, each with increasing expres-

siveness and computational complexity. This means that there is a trade-off between

expressiveness and efficiency. As a result, the selection between the three varieties of

OWL depends on the need for expressiveness and underlying logic, but also on the

computational resources that are available. The three species of OWL are:

OWL Full : This is the complete OWL, which contains all the primitives of the

language, and also allows the use of RDF and RDFS primitives. OWL Full is the only

variety of OWL where a class can be regarded both as the collection of instances and as

an instance itself. Furthermore, limitations can be applied on the number of subclasses

a class can have, and consequently, on the number of classes in an ontology. The

extended expressiveness of OWL Full comes at the cost of undecidability. As stated

in [16], it is unlikely that any reasoning software will be able to support complete

reasoning for every feature of OWL Full.

OWL DL : OWL DL is the maximum subset of OWL that maintains two important

characteristics: computational completeness (all conclusions can be computed to be

true or false) and decidability (all computations will finish in finite time). All the

expressions of OWL are available in OWL DL, except the ones that could jeopardise

completeness and decidability (i.e. owl:inverseFunctionalProperty). Its name comes

from its correspondence to Description Logics, a decidable subset of First Order Logic.

OWL Lite : OWL Lite is the lightweight subset of OWL DL. It allows the ex-

pression of taxonomies and simple relations among classes and instances. However,

cardinalities other that 0 and 1, disjointness and enumeration of classes are not allowed.
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Figure 3.2: OWL and RDF primitives

In effect, OWL Lite is the simplest subset of OWL from a computational point of view.

About the compatibility between the three (sub-)languages, OWL DL allows all

valid expressions of OWL Lite, as well as some additional ones. Similarly, OWL Full

allows all the valid expressions of OWL Lite and OWL DL, as well as some others.

This results in the following conclusions on compatibility:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL features greater expressiveness than RDF. Some important capabilities not

present in RDFS are:

• OWL can define classes and individuals, like RDF(S) can, through its constructs

owl:Class and owl:Individual respectively. However, in contrast to RDFS, each

property can be either an object property (owl:ObjectProperty), or a datatype

property (owl:DatatypeProperty). The object properties can have a class type as

range, whereas the datatype properties can only have XML Schema datatypes.

The relation of OWL classes and properties to their RDF counterparts can be

seen in Figure 3.2.
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• OWL can define the complement (owl:complementOf), the union (owl:unionOf)

and the intersection (owl:intersectionOf) of classes. Furthermore, two classes

can be defined to be disjoint (owl:disjointWith) or equivalent (owl:equivalentWith).

• Properties can be defined to be inverse (owl:inverseOf) or equivalent (owl:equivalentProperty).

Furthermore, properties can have more than one class for domain or range, like

the union or intersection of classes.

• OWL can define that a class A fulfills certain restrictions on its properties. This

can be done indirectly, by creating a superclass of A (which may be unnamed),

and whose instances fulfill the desirable restrictions. Because of the subsump-

tion, A inherits the restrictions. Such restrictions are defined using the expres-

sion owl:Restriction. Here is an example of a resource that delivering goods in

Indonesia:

<owl:Class rdf:about="resourceDeliverToIndonesia">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="deliveryLocation">

</owl:allValuesFrom rdf:resource="LocationInIndonesia">

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The above resource description places the restriction on members of the class re-

sourceDeliverToIndonesia such that all values of the property deliveryLocation

must be drawn from the set LocationInIndonesia (i.e., in simple English, this

says that a necessary condition of membership of this class is that the individual

delivers something to Indonesia). A similar restriction to owl:allValuesFrom is

owl:someValuesFrom, which is used when at least one value needs to be an in-

stance of a particular class. In addition to restrictions on the range of a property,

cardinality restrictions may be defined, which concern the number of values of a

particular property that an individual has.

• A property can be defined to be transitive, symmetric, functional or inverse func-

tional (only in OWL Full).
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• In contrast to RDF, OWL does not make the Unique Name Assumption. This

means that different concepts can be given the name, and that differently named

concepts may be the same. Naturally, this increases the complexity of the lan-

guage.

OWL seems to be a much better language for modeling RFAs than RDF(S). It is

capable of richer expression than RDF(S), when describing RFAs. For example, a bro-

kering algorithm must be able to distinguish the RFA descriptions from the available

services descriptions. As argued in the next chapter, this may be done by defining two

corresponding classes. Obviously, a description can either be an RFA description or an

available service description (or neither one). In order to make sure that it is not legal

for a profile to be of both types, the two classes must be declared to be disjoint.

Another desirable property for the modelling approach was to be flexible enough

to model types of RFAs that will emerge in the future, along with the existing ones.

Defining new RFA types will probably involve restricting the range of existing proper-

ties. This can be done in OWL, but not in RDF(S).

Another advantage of OWL is that it guarantees decidability and completeness

(when OWL Lite or DL is used). This is important, as it is desirable for a brokering

approach to be able to cope with large numbers of RFAs and resources. If an undecid-

able ontology language is used, there can be no computational guarantees for large, or

even small numbers of RFAs. From the above, OWL seems to meet all the modelling

desiderata, and create the preconditions for the brokering desiderata to be met.

3.4 OWL-S

OWL-S [13] is an ontology for the description of web services. It was originally cre-

ated as DAML-S in 2001 by DARPA, and the current version at the time of writing is

1.2. As its name implies, OWL-S is written in OWL. It aims to enable the discovery,

invocation, composition and monitoring of services by human and computer agents.

OWL-S has three main sub-ontologies: the service profile, the process model and the

grounding. Figure 3.3 shows the top level of the ontology. Although OWL-S is primar-

ily intended for describing web services (that is, services that are invokable through the

web), many of the notions of a service that it contains are sufficiently general that they

might also be applied to ‘real world’ services. The rest of this chapter will attempt to

decide whether OWL-S can be used to describe RFAs in such a way that brokering is
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Figure 3.3: The OWL-S ontology

possible.

Service Profile : The service profile gives a general description of the service,

so that a agent can decide whether the service is suitable for their needs. Typical

information that are given by the service profile are the inputs the service needs and

the outputs its execution will provide. Furthermore, a classification of the service

may be available (using external classification systems, like NAISC and UNSPSC), or

information about the quality of service.

Process Model : The process model contains information about how the service

works. It too describes the inputs and the outputs, but focuses on the stages of ex-

ecution of the service. The process model is able to describe the execution flow of

both atomic (standalone) services and composite ones, and so is intended to be used to

interact with the service appropriately during its execution. This information can also

be used by interested parties to conduct a more fine-grained decision about whether

the service meets their needs, or perhaps to automatically invent a way to combine

more than one services into a composite service. The process model also contains

information that can be used to monitor the service.

Grounding : The service grounding contains information about how the service

can be accessed via the web. Essentially, it binds the abstract definitions given in

the process model to concrete implementations. In other words, it attaches software

engineering information to the semantic definitions of the model. Information that can

typically be found in the grounding may be the address and port where the service can

be accessed, the (computational) types the inputs must have, as well as descriptions of

any messaging protocols that must be employed.
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There have been several attempts to automatically broker services modelled in

OWL-S. Although OWL-S has a specific structure, it will be shown that services can

be modelled in more that one way. The following sections will consider different ap-

proaches to both modelling and brokering of services using the OWL-S ontology.

Some points that may need to be clarified before these approaches are presented:

• Generally, both service advertisements and requests use the OWL-S profile. De-

spite this similarity in modelling, they are semantically different. A advertise-

ment profile describes the properties of an existing service, whereas a request

profile in effect describes a hypothetical service that would meet the requester’s

needs. However, it is convenient to describe them in a uniform way (the OWL-S

profile ontology).

• The fact that the following proposals use the DAML-S ontology and not the

OWL-S is not fundamentally important. DAML-S is an older version of the

OWL-S, and little has changed as far as the essential organisation and structure of

the ontology are concerned; with the appropriate changes to syntax, terminology,

etc, the described proposals should work equally with OWL-S.

• The authors conduct matchmaking of Web Services, whereas this project aims at

brokering RFAs. However, their work is relevant, as the algorithms they propose

use the OWL-S ontology, and at the brokering stage there is little in the service

descriptions that relates exclusively to Web Services.

3.4.1 First approach

In [18], the authors use the DAML-S ontology to conduct semantic matchmaking of

Web Services. In particular, they make use of the service profile to describe adver-

tisements of and requests for Web Services. They also propose an algorithm which

compares the service profiles to determine whether there is a semantic match between

an advertisement and a request.

The algorithm proposed by the authors decides whether there is a match between a

service advertisement and a service request by attempting to match the inputs and the

outputs of the two profiles. More specifically, in order to have a perfect match between

an advertisement and a request, for every output the request specifies, there has to be a

matching output in the advertisement. Furthermore, for every input the advertisement
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specifies in order to function, there has to be a matching input the request declares to

be available.

From the above description, it can be seen that the comparison of service profiles

is reduced to comparing the values of those profiles’ properties. The authors have

adopted a flexible method of matching property values. They identify a perfect match

when the values are identical, but they also identify ‘weaker’ types of matches, depend-

ing on the way the two values are subsumed. In more detail and in order of descreasing

‘goodness’ of match, these are the types of match that are identified, when comparing

outputs (or inputs):

• Exact : If the two outputs are equal (or if the two inputs are equal).

• Plugged In : If the output of the advertisement subsumes the output of the

request (or if the input of the request subsumes the input of the advertisement).

• Subsumed : If the output of the request subsumes the output of the advertise-

ment (or if the input of the advertisement subsumes the input of the request).

For every request that is brokered, points are assigned to each advertisement, de-

pending on the number and type of matches between its inputs and outputs and the

ones of the request. As a result, not only perfect matches will be returned, but also

advertisements that are “sufficiently similar”, as described by the authors.

The fact that the algorithm is flexible and identifies different levels of matching is

important, and could be added to the desiderata listed in a previous chapter.

However, there are some points that need to be addressed, if this algorithm is to

adopted for RFAs. Conducting matchmaking based solely on the comparison of inputs

and outputs may be deceiving. This is because there may exist services with the same

inputs and outputs, which are completely different. For instance, a service that rents

cars and a request for a service that sells cars both may specify the model name as

input and return a receipt number as output. The algorithm proposed by the authors

would identify a match for in this case.

3.4.2 Second approach

Horrocks and Li [12] propose a software framework for semantic matchmaking of

services. As in [18], the ontology used is DAML-S and the services are described

using the DAML-S profile. However, here the matchmaking is not merely based on

inputs and outputs, but on all the properties described in the service profile.
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Figure 3.4: Service profiles for Matchmaking

Instead of sequentially comparing all the request properties against the advertise-

ment properties, the comparison takes place at a higher level. For example, a request

for a service that provides a Mini Cooper would normally be represented as an instance

of the profile class, where the car model input would have Mini Cooper model as range

(Figure 3.4.a). Here, the advertisement and request profiles are not represented as in-

stances of the DAML-S profile class, but rather as subclasses of it (Figure 3.4.b). In

comparison to the DAML-S profile class, they refine themselves by fixating the values

of their properties. Here, the same request is represented as the class of all service

profiles, where the car model input has Mini Cooper as range.

Describing services as classes is somewhat contrary to intuition, as both advertise-

ments and requests refer to specific services, and not categories of services. The reason

for this rather unorthodox approach is to enable TBox3 reasoning, which is more ef-

fective than ABox4 reasoning. More specifically, matchmaking can be conducted by

detecting equality or subsumption on the entire services themselves, which is much

simpler than the previous approach.

Again, there are types of match other than the exact match. If A is the advertise-

ment profile class and R is the request profile class, the types of (overall, in this case)

3TBox is the component of an ontology that contains assertions about concepts and roles.
4ABox is the component of an ontology that contains assertions about individuals.
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match that are identified (again, in decreasing order of ‘goodness’ of match) are:

• Exact : If advertisement A and request R are equivalent classes.

• Plugged In : If request R is a subclass of advertisement A.

• Subsumed : If advertisement A is a subclass of request R.

• Intersection : If the intersection of advertisement A and request R is satisfiable.

In this case there is an additional type of match, the intersection match. This match

will be detected if an advertisement and a request concepts overlap. It has to be noted

that the Plugged In and Subsumed match are expected to be rare, because in order for

them to occur, all the pairs of corresponding properties have to have the same hierar-

chical relation (either all advertisement property values to be subsumed by the corre-

sponding request property values for a Subsumed match, or all request property values

to be subsumed by the corresponding advertisement property values for a Plugged In

match).

The approach followed here partly solves the problem of taking the service type

into account. As all profile properties are used for the comparison, so is the service-

Category property. As a result, in order to have an exact match between an advertise-

ment and a request, these must have the same category value. However, although this

will prevent the exact, plugged in and subsumed match between different services with

identical inputs and outputs, it will not prevent the intersection match. Of course, the

Intersection match is the weakest of the types of match, but is still considered to be a

match.

The fact that both functional and non-functional properties are used for the compar-

ison entails another implication. Functional properties of a service profile are the ones

describing the information needed to actually function the service (like inputs, outputs,

preconditions, effects, service categorisation, etc). On the other hand, non-functional

are the properties that concern additional information, like the provider of the service,

the service name, text descriptions etc. The presence of non-functional properties can

reduce an otherwise exact match to a weaker one. For instance, a request for a service

is unlikely to specify a desired provider. When this request is compared to an almost

identical advertisement, which additionally specifies the actor of the service, there will

be a match, but not an exact one.

In conclusion, modeling services as classes has the advantages of making match-

making much simpler and taking service categorisation into account. It is possible to
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separate non-functional from functional properties by expanding the DAML-S ontol-

ogy with additional classes and roles. However, it would be more adequate conceptu-

ally to model service descriptions as individuals. For this reason, the approach will not

be used.
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Modelling RFAs / Services

The OWL-S ontology was created primarily for Web Services. Although it appears

generic enough to be used for describing and brokering RFAs and relief services, their

diversity and nature required some adjustments. This chapter describes a series of

design issues that arose when modelling RFAs and services as OWL-S profiles, as

well as the decisions that were taken to resolve them.

4.1 OWL-S Profile: Instances Vs. Classes for RFAs /

Services

The previous chapter concluded with an examination of two different approaches for

using OWL-S to model services, which can be considered to apply to RFAs/services

as well. One option is to model RFAs as instances of the profile class, as proposed in

the first approach (section 3.4.1). The second option is to model RFAs as subclasses

of the profile class, as proposed in the second approach (section 3.4.2).

One of the drawbacks of the second approach was that non-functional information

(service name, service provider, test description etc.) would interfere when subsump-

tion was detected between profiles. However, the brokering algorithm can be modified

to overcome this problem. Specifically, a solution would be to detect subsumption be-

tween selected properties of the profiles, rather than the profiles themselves. However,

brokering based on the subsumption of profiles, which seems to have been the reason

profiles were modelled as classes in the first place, will no longer be the case.

In addition to its brokering problems, modelling RFAs/services as classes does not

seem conceptually correct. Semantically, a service advertisement refers to a particular

25
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service, with specific parameters and properties. One could argue that a profile could

be regarded as the class of all individual invocations, with particular inputs, outputs

etc. However, such an interpretation would collide with the OWL-S definition of the

profile.

Modelling RFAs/services as instances of the profile class seems correct from a

semantic point of view. However, this comes at the cost of inventing and using a

fairly complicated brokering algorithm to navigate through the profiles and compare

corresponding properties. On the other hand, greater control would be available over

the way the comparison is made. Specifically, certain types of parameters could be

compared differently than others, in a way defined by the user. This could enable the

detection of matches that would be impossible when relying on mere subsumption.

Based on the above discussion, it was decided to model RFAs and services as

instances.

4.2 Inputs-Outputs Vs. Preconditions-Effects

An important issue concerned the question of which properties of the OWL-S Profile

should be used for matchmaking. The first approach that was considered used only

the inputs and outputs, whereas the second approach used only the functional (inputs,

outputs, service catogory etc.) properties and excluded the non-functional ones (ser-

vice name, service provider, test description etc.). A factor that may have to be taken

into account is that RFAs and available services are primarily services in the physical

world, whereas OWL-S was developed primarily to describe Web Services.

An available service will most naturally need some information in order to function

correctly. For instance, a service transporting air cargo will need to know the departure

airport and the destination airport, as well as the date the transportation needs to take

place. This kind of information can be provided to the service in the form of inputs. In

turn, the service may provide the invoker with a receipt number, or a unique transaction

identifier. This information can be returned in the form of service outputs. Contrast

this with, say, a Web Service that computes the square of a number. In that case,

the number would be naturally modelled as a input, and the result of squaring it as

the output, since this is what the service actually does when invoked. In the ‘real’

physical world of RFAs, however, does not really make sense to think of, say, the

intended destination as the output of the service, but rather as the physical outcome of

the service.
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There is more functional information to an available service than inputs and out-

puts. That information concerns the conditions that need to be met for the service to be

invoked, and the impact the execution of the service will have on the world. In OWL-S,

this kind of information can be expressed through the preconditions and effects of the

profile class. Preconditions and effects are represented as logical formulas, and can

be written in a number of languages, either XML-based (SWRL [10], RDF), or not

(KIF [6], PDDL [15]). In the case of the transporting service, a precondition could

state that the location of the cargo before the execution of the service is the same as

the place of the departure input. Similarly, an effect could state that, should the service

be executed, the location of the cargo will then be the same as the intended destination

input.

It should be clear that the set of inputs, outputs, preconditions and effects (together

called IOPEs in OWL-S) is very important to determine the functionality of a ser-

vice. The inputs and outputs represent the change of data the execution of the service

will cause, whereas the preconditions and effects represent the change in the state of

the world. Matchmaking services using both inputs/outputs and preconditions/effects

seems to be promising, as services are compared in a more complete way.

Despite the fact that the use of preconditions and effects contributes to a precise de-

scription of a service, they would further complicate the brokering process. OWL-S is

written in OWL, and as a result reasoning about it requires reasoning about Description

Logics, a task which is known to be decidable. On the other hand, preconditions and

effects may be written in one of several languages, each corresponding to a different

logic which has its own computational properties (not necessarily including decidabil-

ity) and reasoners. When implementing a service broker, properties would be matched

using the DL reasoner, whereas preconditions and effects would need to be extracted

and, then separately processed using a different type of reasoner. Combining the two

parts of the algorithm to an overall matchmaking algorithm could be overly compli-

cated.

The conclusion is that although preconditions and effects contribute to the com-

pleteness of a service description, they are hard to use when matchmaking and broker-

ing of RFAs and corresponding services are concerned. For this reason, it was decided

to only use inputs, outputs and the rest of the profile properties.
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Figure 4.1: Selected classes of the OWL-S Profile

4.3 Categorization of Services

When the first approach was being considered in Section 3.4.1, it was pointed out that

services of different types may have identical inputs and outputs and yet may not be a

match. Therefore, matchmaking and brokering cannot simply rely on comparison of

inputs and outputs.

One way of overcoming this problem is through the use of preconditions and effects

to constrain further the relationship between inputs and outputs; but their use leads to

the problems outlined earlier in this chapter. Another approach is to pre-define service

categories, where members of a category all conform to some preconceived notion of

the behaviour of services of that type. In order to determine the category of a service

in OWL-S profile, one can use the property serviceCategory (Figure 4.1, from [13]).

The serviceCategory receives as range an instance of the ServiceCategory class, which

describes the category of the service based on some specific taxonomy. Specifically,

an instance of the ServiceCategory class represents a specific service type (i.e. on-line

flower seller) in a specific taxonomy.

The taxonomies most frequently used are NAICS1 [5] and UNSPSC2 [21]. These

taxonomies are not related to OWL-S, and are not written in OWL or any other for-

1http://www.census.gov/epcd/www/naics.html
2http://www.unspsc.org/
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mal ontology language. This means that any semantic subsumption between types of

services, like transporting service and personnel transporting service will not be re-

flected on the ServiceCategory instances. In fact, the two instances will only differ

in the code and categoryName properties, where two unequal string identifiers will be

used. Although it can be determined whether services are of the same type, this can

only happen if both profiles are categorized using the same taxonomy. In conclusion,

the use of the serviceCategory property does not seem to be intended for functional

description, but rather as complementary information, which is outside the scope of

OWL-S.

The problem of classifying services in a way convenient for brokering is solved

in this case by defining a taxonomy of service profiles in OWL. In this way, in order

to ensure that only services of the same type are matched, a brokering algorithm can

only search for available services of the same (or subsuming) profile type as the RFA.

For instance, the OWL-S profile could have the subclass transportationProfile for pro-

files of transportation RFAs and services. When such an RFA would be brokered, the

candidate service profiles would also have to be members of the transportationProfile

class.

Another categorisation is needed to distinguish between RFA profiles and available

services profiles. Like before, there were defined two more subclasses of the OWL-

S profile class: the rfaProfile class and the resProfile class, corresponding to RFA

profiles and resource (available services) profiles respectively. Furthermore, the two

classes were defined to be disjoint, so that a profile can be either an RFA profile or

service profile, but not both. (The fact that disjointness cannot be expressed in RDFS

provides some justification for the use of OWL.)

Some additional classes were defined to combine the two profile hierarchies. For

instance, the rfaTransportProfile is an RFA profile requesting a transporting service.

In analogy, a resProvisionProfile is an available service providing a certain good. It

should be noted that the definition of combinational classes was not mandatory, as

OWL supports multiple class membership for individuals. In other words, a profile

individual can be declared to be a member of both the rfaProfile class and the trans-

portProfile class.
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4.4 Inputs

Both matchmaking approaches that were considered in 3.4 seem to be using any class

as Input or Output, without restriction. This would be very convenient, as the classes

of two instances could be directly compared to detect any subsumption. However, the

hasInput property of the OWL-S profile is defined to range over instances of the class

Input, or XML Schema datatypes. Consequently, for every non-datatype input, the

range has to be member of a class, that is subclass of the Input class. A simplistic ap-

proach would be to define Location, Weight, Good, or any other class to be subclasses

of the Input class. However, this would not be correct for several reasons:

• Conceptually, locations, weight measurements and goods are completely differ-

ent concepts to inputs. Expressing that a service has an input of type Location

means that the actual location is used for input, which does not make sense.

• It will not be possible to define outputs of the same type as inputs, because the

Output class is disjoint to the Input class.

The problem was resolved by defining specialised subclasses of the Input class, like

LocationInput, WeightInput and GoodsInput, to act as mediators between the profiles

and the actual concepts. In addition, corresponding subclasses of the Output class were

created to be used as outputs (LocationOutput, WeightOutput, GoodsOutput). Only

the above three sub-types of Input were defined, because they are the most commonly

used by actual RFAs/services. However, this is by no means restricting, as any service

profile can define and use its own types of Input and Output.

There will now be an examination of the type-specific issues that emerged when

defining the three types of inputs.

4.4.1 Location Inputs

In accordance to the above discussion, the LocationInput class has the property hasLo-

cation to associate the input to a location. However, there is more information about

location inputs than just their location. This becomes apparent in the case of services

that receive more than one location input. When matchmaking such services based on

their Inputs, false matches may be proposed. For example, a location input referring to

the destination point of an RFA may be mistakenly matched to the departure point of

an available service. Although the algorithm would consider this correct (inputs of the

same type are matched), the two location inputs refer to different parameters.
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The above problem indicates that the two types of location inputs (departure and

destination) must somehow be distinguished. For guidance at this point, we may turn

to the “Bravo Air Service”3 profile was adviced, The Bravo Air Service profile is one of

the example profiles published along with every version of OWL-S, and, in this case,

one that should be especially relevant since it too describes a ‘real world’ physical

airline transport service (albeit an imaginary one). Consequently, the way departure

and destination location inputs are distinguished in this profile might be that thought

the most appropriate by the authors of OWL-S. Interestingly enough, they too have

defined a specific type of Location Input. However, they do not distinguish between

the two location inputs of the profile. Instead, they seem to rely on the names of the

location inputs (airport in and airport out) to determine which one of the two inputs

refers to the destination and which to the departure point.

This solution is not applicable when matchmaking, as it would require the broker-

ing algorithm to rely on the names of inputs to determine their identity, and moreover,

that the incoming queries use the same labels to distinguish their inputs. Besides the

fact that naming conventions may be too restricting, the brokering algorithm would es-

sentially be using string comparison to identify matches: this would be syntactic, and

not semantic matchmaking, undermining the use of OWL-S in the first place. Relying

on syntactic matches among the names or part of the names for certain inputs should

be avoided.

Another solution that was considered would be the further subclassing of the Lo-

cationInput class to DepartureLocationInput and DestinationLocationInput. However,

this was not considered to be a good solution either, as unspecified location inputs

(which could arise, for example, for the specification of a service branch by location)

could be matched to any type of location input, possibly producing false matches.

In order to solve the problem, the hasDirection property was added to the Location-

Input class. This property has as range the Direction class, which has two instances:

destinationPoint and departurePoint. By setting both the hasLocation and the hasDi-

rection properties of a LocationInput, there can be no ambiguity between destination

and departure points.

3http://www.ai.sri.com/daml/services/owl-s/1.2/examples.html
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4.4.2 Goods Inputs

Provision services need to be invoked with the type of good that need to be provided,

and the quantity of this good. As provision RFA profiles may contain requests for

multiple goods, it was considered a good strategy to have one type of input to determine

both the type of good and the quantity. This input is the GoodsInput, which has two

properties: the requestGood to determine the good and requestQuantity to determine

the quantity.

One important issue was the semantics of the requestQuantity property. Specifi-

cally, RFAs usually request an exact or minimum number of items. Although descrip-

tions of provision services were not available to us, it seems reasonable to assume that

they would specify the maximum number for items they can provide. In some cases,

they could specify both a maximum and a minimum number of items (provision of

small orders may be too costly). Obviously, the requestQuantity property should be

somehow refined to be able to handle all types of orders.

Like in the LocationInput case, creating subproperties of requestQuantity was not

considered to be a good strategy. Instead, a more generic solution was needed, to apply

for other types of inputs where exact, maximum and minimum values may needed to

be used (like the weight inputs). The problem was solved by creating the class Bound-

Input (subclass of Input) to describe inputs that specify a numeric value. In turn, three

subclasses of the BoundInput class were defined: ExactBoundInput, MaximumBound-

Input and MinimumBoundInput, for inputs specifying exact, maximum and minimum

values, respectively.

An RFA requesting at least 3 water pumps will have a goods input that is a mem-

ber of both GoodsInput and MinimumBoundInput. Similarly, a provision service that

can deliver at most 5 water pumps will have a goods input that is a member of both

GoodsInput and MaximumBoundInput. For convenience, additional classes were cre-

ated to combine the GoodsInput class and the BoundInput hierarchy, like MaxGoodsIn-

put, or MinGoodsInput.

The ExactBoundInput class was defined as the intersection of MaximumBoundIn-

put and MinimumBoundInput. This way, an RFA requesting exactly n items will be

matched by both a service providing at most n items and a service providing at least n

items.
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4.4.3 Weight Inputs

The participants in a relief effort usually originate from several countries. Part of the

confusion this may cause concerns the different measurement systems used. For in-

stance, an input that is commonly used for transporting services is the weight input.

In order to avoid ambiguity, both weight measure and weight unit should be speci-

fied. This is the reason the WeightInput has two properties: the hasWeight and the

hasWeightMeasureUnit. The first one takes as a value a non-negative integer, and the

second takes an instance of the WeightMeasureUnit class.

Like in the goods inputs, there are cases where maximum, minimum or exact

weights must be specified. For instance, a transporting service may have the capac-

ity to carry cargo weighing at most 10 tons. On the other hand, RFAs usually request

an exact number of specific items which, in turn, has an exact weight. In order to

solve the problem, the generic classes MaximumBoundInput, MinimumBoundInput

and ExactBoundInput were used one more. For convenience, some additional classes

were created to combine the WeightInput class and the BoundInput hierachy, like the

MinWeightInput and the ExactWeightInput.

4.5 Using XML Literals for Resources

In general, services do not provide a specific good (a specific item), but rather unspec-

ified goods of a certain type. In accordance, an RFA will most probably request a type

of good and not a particular item. Specific goods ontologically correspond to instances

of the class Good. However, in the case of an unspecified good of a certain type, the

important information is the type of the good, which ontologically corresponds to a

class. The same applies with locations, as a service may be able to transport to either

a particular location (instance of the Location class) or any location of a wider area

(subclass of the Location class). Consequently, there are cases where an instance of

the Input class needs to be associated with a class.

However, OWL ABox statements only relate individuals to individuals. In practice,

this means that there cannot be an RFA where the requestGood property of a GoodsIn-

put can point to the class of vehicles. This issue applies for other types of inputs as

well, like location inputs. For example, a transporting service may be able to deliver

to any place of a country, which conceptually corresponds to the class of all locations

in the particular country.
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In order to solve the problem, there is need for a uniform way to refer to either

instances or classes, which in addition could be used as a range to a property. The solu-

tion adopted for this problem uses the fact that both instances and classes are uniquely

identified by URIs. So, if the properties in question are defined to have range of type

URI (which is an XML Schema datatype), the problem can be solved.

There are some shortcomings to this approach. An input is allowed to have any

valid URI as range, and not only URIs that belong to particular classes or instances. In

other words, valid OWL-S profiles may be defined, which are semantically incorrect.

However, the above method was finally adopted, mostly due to time restrictions which

did not allow a more elegant solution to be found.

4.6 The RFA domain ontology

Most of the above issues can be resolved by extending the original OWL-S ontology

with additional classes and properties. In addition, service profiles need to refer to

concepts outside the scope of OWL-S. For those definitions, an RFA domain ontology

is needed.

The purpose of the RFA domain ontology is not to define every possible class or

property that might be needed to describe an RFA. Such effort would be futile, given

the diversity of the RFAs/services. The RFA domain ontology must only define the

class hierarchies that are needed for the examples created for this project, as well as

the extensions to OWL-S, which are generally used by all RFA and service profiles.

However, the extent of the RFA domain ontology is by no means limited. As an OWL

ontology, it will be able to be imported, extended and used by any OWL document,

allowing new types of RFAs/services to be modelled.

4.7 An RFA profile

Following all the above design decisions, an RFA can be modelled as an OWL-S pro-

file, as shown in Figure 4.2. The rfaProfile is an instance of the class rfaProfile, which is

a subclass of the OWL-S Profile. The rfaProfile has several properties, both functional

(hasInput) and non-functional (hasName, textDescription). As far as the functional

properties are concerned, two of the inputs are instances of the class LocationInput,

which is a subclass of the OWL-S Input, and another input is instance of the class

MaxWeightInput, which is also a subclass of the OWL-S Input. As described above,
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Figure 4.2: An RFA profile

the first of the two location inputs is about the departure point and the other is about

the destination point. Likewise, the weight input describes both the weight value and

the weight unit. Finally, as explained above, XML literals are used to contain the URIs

of resources.
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Brokering RFAs

The purpose of this chapter is to propose an algorithm that is capable of brokering

RFAs described in OWL-S in the manner outlined in the previous chapter. The bro-

kering algorithm is able to identify available services that can independently satisfy an

RFA. Besides this type of “direct brokering”, the algorithm is capable of proposing or-

chestrations of services, for satisfying transportation and provision RFAs. In this case,

sequences of services, called chains, are proposed to satisfy cooperatively an RFA.

5.1 Direct Brokering

Whenever an RFA profile is submitted, the brokering algorithm will look for its type

(the class of which the profile instance is a direct member). In the case where this is

neither a transport nor a provision RFA, there will only be direct brokering attempted,

that is, looking only for services that independently meet the requirements of the RFA.

The first step is to filter out the available services of different type. This is done by

only comparing the RFA profile to ones whose type is a superclass of the type of the

RFA. Generally, in order to identify a match between an RFA profile and an available

resource profile of the same type, there has to be a correspondence between their func-

tional properties. The only functional properties used by the brokering algorithm are

inputs and outputs. In order to identify a match, the following two conditions must be

satisfied:

1. For every input the available resource needs, there has to be a matching input in

the RFA.

2. For every output the RFA requests, there has to be a matching output in the

36



Chapter 5. Brokering RFAs 37

available resource.

The brokering algorithm slightly differentiates itself for inputs and outputs. For

the sake of simplicity, only the case of inputs will be thoroughly analysed here, but the

case of outputs is analogous. The inputs of OWL-S profiles are instances of the class

Input. The first condition to identify an “input match” between an input of the RFA

profile and an input of an available resource profile, is for the two inputs to be of the

same type (e.g. location inputs). The second condition concerns the properties of the

two inputs. In order to identify an input match, there has to be a “property match”, for

all the properties of the RFA inputs.

The property values of the RFA input must be either equal to or subsumud by the

values of the available resource input. Intuitively, this means that the RFA is requesting

something equal, or ‘contained within’ what the available service can provide. How-

ever, the property values of the profile inputs may be either instances or XML literals,

where subsumption is not defined. Depending on whether the inputs are instances or

different types of XML literals, there are the following cases where two properties

match:

1. Property values are instances : A property match is identified only if the two

instances are equal.

2. Property values are URIs : The URIs should either represent an instance or a

class. A property match will be identified in the following cases:

• If both the RFA URI and the available resource URI identify instances,

which are equal.

• If the RFA URI identifies an instance i, the available resource URI identifies

a class C, and i is a member of C.

• If the RFA URI belongs to a class C1, the available resource URI belongs

to a class C2 and C1 is a subclass of C2.

3. Property values are integers : The criteria for a match depend on the kind of

input (whether it declares minimum, maximum or exact value). Specifically:

• In the case where the RFA input is of class MaximumBoundInput, then

there will be a property match if the value of the corresponding available

service is the same or greater, and the class of that service input is Maxi-

mumBoundInput.
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Figure 5.1: Direct Matchmaking of an RFA showing the matches among the individual

terms. The ‘lower’ of the two profiles is the RFA, and the ‘upper’ is the matching service

resource profile.

• In the case where the RFA input is of class MinimumBoundInput, then there

will be a property match if the value of the corresponding available service

input is the same or less, and the class of that service input is Minimum-

BoundInput.

• In the case where the RFA input is an ExactBoundInput, then there will be

a property match in the following cases:

– If the value of the corresponding available service input is the same

and the class of that service input is ExactBoundInput

– If the value of the corresponding available service input is the same or

greater and the class of that service input is MaximumBoundInput

– If the value of the corresponding available service input is the same or

less and the class of that service input is MinimumBoundInput

As far as the outputs are concerned, the brokering algorithm is slightly different. In

order to identify a property match of two outputs, the property of the available service

value must subsume the RFA value, and not the other way around.

An example of an RFA profile and a matching available service profile can be seen

in Figure 5.1. The two profiles match because for every input of the RFA there is a

matching input in the available resource. The departurePhnomPenh input of the RFA
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profile matches the departureCambodia input of the available resource firstly because

they are of the same type (location inputs). Secondly, their URI values in the hasDirec-

tion property are equal (they both identify the departurePoint instance of the Direction

class). Finally, the RFA term indicated by the URI value in the hasLocation property

subsumes the term indicated by the URI value for the same property in the available

service: in this case, the RFA domain ontology defines phnomPenh as an instance of

the class LocationsInCambodia. Similarly there is a match for the other location input

(locationInMedan).

Regarding the weight inputs, the weight50 input of the RFA matches the weight100

input of the available service because firstly, they are both of the same type (maximum

weight inputs). Secondly, the terms indicated by their URI values in the hasUnit prop-

erty are equal (they both identify the ton instance of the WeightUnit class). Finally,

the RFA integer value in the hasWeight property is smaller than the available service

integer value in the same property (MaxWeightInputs are defined as MaximumBound-

Inputs).

5.2 Brokering Transport RFAs

Transport RFAs are one of the two types of RFAs that can be satisfied both directly

and indirectly. In the case of transport RFAs, an indirect match would be a “chain” of

transport services that, when invoked sequentially, can satisfy the RFA cooperatively.

These types of ordered chains will be called transport chains. The brokering algorithm

attempts to search for these chains irrespective of whether any direct matches have

been found or not.

In order to propose orchestrations of transport services, the brokering algorithm

is based on the structure of this particular type of RFAs and services. Specifically,

it follows the convention that a transport RFA has at least three inputs: a departure

location input, a destination location input and a weight location input, describing

the departure point, destination point and weight of cargo, respectively. Based on

these three inputs, any matching chain of transporting services must have the following

characteristics:

1. The destination input of the RFA must be matched by the destination input of

the last transporting service in the chain.

2. The departure input of the RFA must be matched by the departure point of the



Chapter 5. Brokering RFAs 40

first service in the chain.

3. For any two adjacent transporting services, the destination point of the first one

must be matched by the departure point of the second one (i.e., the first one must

arrive at the location from which the second one leaves).

4. Every one of the transporting services of the chain must have a weight input that

matches that specified in the RFA.

The brokering algorithm uses recursion to detect all the matching transport services

and chains. In each run, the algorithm is given a departure location, a destination

location and a weight, and returns the list of all services or chains of services that are

capable of the transportation. There are two steps: In the first step, the algorithm will

detect any directly matching services, and add them to its list of solutions. The second

step is more complicated. Essentially, the algorithm will look for all the services that

can deliver the cargo to the requested location, and then, for each one of them, it will

find all the ways to transport the cargo to a place where it can be picked up. In practice,

the algorithm will select a service that can make deliveries of the specified weight to

the specified destination point, and then call itself to locate any services or chains

of services that can transport the cargo to the departure point of the selected service.

There are checks to ensure that a service can only occur once in each proposed chain.

The solutions of the second step of the algorithm will eventually be added to the list of

solutions, and returned.

Intuitively, when the algorithm first runs, it ‘begins’ from the RFA destination point

and progresses its way to the RFA departure point. It can be seen from the description

above that the search for chains is exhaustive. The algorithm will end after all available

transportation services have been tested for a direct or orchestrated match. After the

execution of the algorithm, every possible chain of transporting services, as well as

every direct match to the RFA will be returned.

An example of a RFA profile and a matching transport chain can be seen in Figure

5.2. For the sake of simplicity, the properties of the profile Inputs are not included.

The RFA requests the transportation of cargo weighing exactly 50 tons from London

to the Polonia International Airport (located in Medan, Indonesia). Having failed to

find a service that directly matches this request, the algorithm will begins to search for

service chains by first finding a services reaching the Polonia airport. Such a service

is the “Transporting Service 3”, which can make deliveries to Indonesia and, hence,

to the Polonia airport. If no such service was found, the algorithm would terminate -
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Figure 5.2: Orchestrating Transportation Services

the RFA can not be satisfied using the current set of available services. Furthermore,

the service is capable of transporting cargo of maximum 85 tons and, thus, is capable

of transporting the requested 50 tons. If the service also had a departure point that

‘included’ London, that would have been a direct match. However, the departure point

can be any place in Bangladesh.

The algorithm will continue by next finding services that reach any place in Bangladesh.

Such a service is the “Transporting Service 2”, which can make deliveries to Dhaka

(located in Bangladesh), and this service also respects the weight restrictions, carrying

weights of maximum 125 tons. Again, the service does not have a departure point

that ‘includes’ London. The algorithm will continue by finding a services that makes

deliveries to Cambodia. Such a service is “Transporting Service 1”, that reaches any

location in Cambodia. The service respects the weight restrictions, carrying weights

of maximum 100 tons. Finally, the service can have any departure point in the United

Kingdon, including London. This concludes the discovery of a chain of transporta-

tion services - these three services, when used sequentially, appear to meet the original

RFA.
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5.3 Brokering Provision RFAs

Provision RFAs are the second type of RFAs that can be matched both directly and

indirectly. An indirect match would be a chain of services, where the first service is

capable of providing the requested good and the remaining ones can transport it to the

destination location of the RFA through intermediate locations where necessary. Es-

sentially, these provision chains consist of a provision service, followed by a transport

chain.

Again, in order to propose orchestrated solutions, the structure of provision RFAs

was taken into account. Typically, a provision RFA has two inputs: a goods input and

a location input, describing the good type and quantity, and the destination location at

which it is required, respectively.

A problem that emerged concerned the fact that in order to determine whether a

transporting service is capable of a particular transportation or not, the weight of the

cargo needs to be known. However, as stated in a previous chapter, this information

may not be available to the person submitting the RFA. This is also reflected in the

way provision RFAs were modelled: they do not have a weight parameter that could

be used to determine which transporting services can be used.

In order to solve this problem, the algorithm will search the domain ontology for

the weight of the good in request, and will compute the total weight of the cargo by

multiplying the weight of a single item by the quantity that is requested. Once this

is done, a virtual weight input can be composed to be used as a matching target to

determine which transporting services can be used. This, in a way, “enriches” the RFA

with additional information, as was proposed in an earlier chapter. Consequently, the

use of different provision services (whose products have different weights) may result

in the selection of different transporters and, ultimately, different chains.

Based on these inputs, a matching chain of services should have the following

characteristics:

1. The destination input of the RFA must be matched by the destination input of

the last transporting service of the chain.

2. The goods input of the RFA must be matched by the goods input of the first

service of the chain.

3. For any two adjacent transporting services, the destination point of the first one

must be matched by the departure point of the second one.
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Figure 5.3: Orchestrating Provision and Transportation Services

4. Once the virtual weight input is composed, every one of the transporting services

of the chain must have a matching weight input to the virtual weight input of the

RFA.

In the case of provision RFAs, the brokering algorithm begins by finding all the

available services that can provide the good requested by the RFA. For every one of

those, it checks for a direct match (in the way described earlier), or for a transport

chain to the RFA destination. A virtual weight input will be composed as described

above and used for the detection of possible transport chains. The provision service

is then appended to the beginning of every transport chain detected, with the resulting

sequence of services then returned as a matching provision chain.

An example of a RFA profile and a matching transport chain can be seen in Figure

5.3. The RFA requests for exactly 4 Mercedes H trucks (this is a hypothetical model)

to be delivered to Banda Aceh (located in Indonesia). The algorithm will begin by

finding a service that can provide the requested quantity of goods. Such a service

is “Provision Service 1”, which can provide and deliver a maximum of 5 vehicles

(including trucks), to any place in Cambodia. As Banda Aceh is not in Cambodia, the

algorithm will next try to find a transportation chain from Cambodia to Banda Aceh.
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The virtual weight input that must be matched will be composed as described above.

The Mercedes H model of the example weighs 10 tons. Consequently, the total weight

of exactly 4 Mercedes H trucks is exactly 40 tons. Note that the virtual weight input

does not belong to the RFA profile, but can be considered to be implied by this profile,

and so is used as if it were part of the profile.

The algorithm will continue by finding a service reaching Banda Aceh. Such a

service is “Transporting Service 2”, which can make deliveries to Indonesia and, thus,

to Banda Aceh. The service is capable of transporting cargo of maximum 75 tons and,

thus, the 40 tons of Mercedes trucks. If the service had a departure point that was in

Cambodia, that would conclude the provision chain. However, the departure point can

only be in Bangladesh. The algorithm will carry on by finding a service that reaches

any place in Bangladesh. Such a service is “Transportation Service 1”, which also

respects the weight restrictions, carrying weights of maximum 100 tons. Furthermore,

the departure point of the service can be any place in Cambodia, which matches the

delivery point of the provision service. This concludes the discovery of a chain of

provision and transportation services.
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Implementation: The RFA Broker

In an attempt to find the extent to which brokering RFAs is feasible, the brokering

algorithm proposed in the previous chapter was implemented in an application named

RFA Broker. The RFA Broker can download service and RFA profiles from user-

specified URLs, and then broker them using the algorithm proposed in a previous

chapter. After the end of brokering, it proposes all services or combinations of services

that can satisfy the brokered RFA.

The system was implemented using the Java programming language. The most

important reason for this choice is that Java features a multitude of APIs and frame-

works for managing and processing OWL ontologies. Furthermore, an object-oriented

language facilitates the partitioning of the system into separate interracting modules.

In turn, this contributes to the development of a structured system, easier debugging

and code re-use. By using Java the same code can run on several platforms, without

significant adjustments and additional compilations. Finally, a number of robust In-

tegrated Development Environments (IDEs) exist, that enable faster development. In

particular, the RFA Broker was implemented in Netbeans1.

One aim of implementation was the separation of functionality from the graphical

interface. This enables the use of the brokering back-end with future interfaces that

may be developed. The architecture of the overall system can be seen in Figure 6.1.

The brokering system comprises two parts: the RFA Broker and a graphical interface,

through which the user controls the brokering process. The RFA Broker uses the Jena

framework to manage the ontologies containing the RFA and service profiles.

1http://www.netbeans.org/

45
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Figure 6.1: The RFA Broker architecture

6.1 Jena Framework

Jena2 [14] is a framework for the deployment of applications for the Semantic Web

[2]. Jena is an open-source project and is being developed by Hewlett-Packard. It is

written in Java and, as of the time of writing, its current version (and the one used

for the implementation) is 2.4. Jena features several APIs, each enabling different

functionalities.

RDF API: Jena features an RDF API to create and manage RDF documents. The

RDF documents are internally represented as graphs, called models. Models are cre-

ated through a “model maker” called model maker. RDF resources and properties are

represented in the model as nodes and edges, respectively. Using the RDF API meth-

ods, the user can create new models or modify existing ones. There is also support

for operations such as the union, intersection and difference of models. Finally, Jena

features an implementation of the SPARQL [22] querying language, which can be used

to query models.

Ontology API: The Jena ontology API is built on the RDF API and supports on-

tology languages such as RDFS, OWL and DAML+OIL [9]. A special type of model,

the ontology model, is used to handle documents of these languages. The ontology

model is also represented as a graph, whose nodes are ontology resources (generally

instances or classes) and edges are ontology properties (datatype properties or object

properties).

Inference support: Jena also features a reasoning module, which can be used

through the ontology API. The Jena internal reasoner supports RDFS and OWL Lite

reasoning. In the case where reasoning support is required for OWL-DL, any external

2http://jena.sourceforge.net/index.html
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Description Logics reasoner implementing the DIG [1] interface can be used (i.e. Pellet

[19], Racer [7] or FaCT [8]). Irrespective of which reasoner is used, different levels of

inferencing can be set. Using higher levels of inference means that more complicated

expressions are can be processed, at the cost of computational load. Finally, in addition

to the internal reasoner, Jena features a general purpose rules engine.

In practice, inferencing is enabled by assigning a reasoner (either an internal or an

external one) to an ontology model upon its creation. Every time inference is needed

for a query to be answered, the reasoner is automatically invoked. This is completely

transparent to the programmer, not requiring him to alter the code, nor to know the

specific syntax each reasoner adopts.

Data persistency: Models and ontology models can be stored in a database, so that

they do not have to be downloaded and parsed every time a Jena application starts. In

order to do this, models are converted into triples of the form subject - predicate - object

(every RDF statement can written in a triple form), where each of the three parts is the

URI of the corresponding resource or property. Database systems that can be used

include MySQL3, Oracle4, PostgreSQL5 and Microsoft SQL Server6. Similarly to the

case of inference support, whether a model will be persistent or not is determined upon

its creation. Consequently, any changes to the model will automatically be stored in

the database.

6.2 Ontologies

In order to test the capabilities of the RFA Broker, several ontologies were created.

The cornerstone of these is the RFA Domain ontology, which contains both the re-

quired extensions to OWL-S, and a number of hierarchies describing locations, types

of goods, directions and other things. The classes of the RFA Domain ontology can

be seen in Figure 6.2. In addition, several RFA and available resource profiles were

created. The RFA Domain ontology, as well as the OWL documents containing the

RFA and service profiles were uploaded to a publicly accessible domain7.

All the ontologies were created using the Protégé8 [17] ontology editor. Protégé

3http://www.mysql.com/
4http://www.oracle.com/technology/products/database/oracle10g/index.html
5http://www.postgresql.org/
6http://www.microsoft.com/sql/default.mspx
7http://homepages.inf.ed.ac.uk/s0570652/ontologies/
8http://protege.stanford.edu/index.html
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Figure 6.2: The RFA Domain ontology

was selected because it features several plugins and extensions for both OWL-S and

OWL that facilitated the creation of the databases. It was also used to check the con-

sistency of the ontologies by connecting to RACER through the DIG interface.

6.3 Graphical Interface

The graphical interface of the RFA Broker (Figure 6.3) was created using the standard

Java Swing library. The user can start by loading available service profiles. This is

done by typing the URL of the OWL documents where the profiles are described. The

two sections on the upper right of the window show the classes and the available service

profiles that were found in the loaded documents. Each time a new OWL document is

loaded, the two lists are updated.

When the user has finished loading available service profiles, an RFA profile can be

brokered. This is done by typing the URL of the OWL document describing the RFA

profile in the “RFA” text field. Clicking on the Broker button then starts the brokering

process (see below). If there are any services or chains of services found to match the

RFA, they will then appear in the “Matches” section of the graphical interface. While

the graphical interface is being used, messages will appear in the bottom text area of
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Figure 6.3: The RFA Broker application

the window. These provide feedback about the progress of the brokering algorithm and

the status of the system.

6.4 The RFA Broker

The RFA Broker is the back-end of the system, where all functionality is implemented.

When the system starts, the RFA Broker initialises the Jena components that will be

used. Specifically, a model maker supporting OWL-DL expressions and reasoning is

created. The model maker is then used to create a central ontology model. The role

of the central model is to act as a container for all the sub-models of the imported

documents. In other words, it can be considered to be a knowledge base where the

profiles of both RFAs and available services can be stored. The sub-models are also

created by the same model maker.

The RFA Broker also initialises the connection to a MySQL database. Afterwards,

the connection was passed to the model maker, so that the models created would be
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persistent. Unfortunately, the transformation of models to triples proved to add signif-

icant computational load. For this reason, data persistency was finally disabled9 and

the models were stored in run-time memory.

Each time the user types the URL of an available service description, the RFA

Broker uses Jena to download the corresponding OWL document, parse it and store it

as a submodel of the central model. The same happens when an RFA URL is typed,

with the difference that the brokering algorithm is initiated after the creation of the

sub-model. In the case where the RFA sub-model contains two or more RFA profiles,

only the first one to be found is brokered. In its current version, the RFA Broker can

only broker one RFA profile during its execution. In other words, the application needs

to be restarted to broker new profiles.

The RFA Broker uses the brokering algorithm that was proposed in a previous

chapter. For instance, when brokering begins, it checks the type of RFA (the class

of which its profile is member) and only compares it to available service profiles of

the same type. In general, the RFA Broker makes use of Jena classes and methods to

navigate through the central model and make the checks that are required to determine

which part of the algorithm should follow next.

Finally, the RFA Broker is responsible for updating the graphical interface. Each

time a new document is loaded, it refreshes the GUI sections that list available services

and classes. Furthermore, after the end of the brokering algorithm, it presents the

matches in the “Matches” section of the interface. Equally importantly, especially

when matches are not found, the RFA Broker prints feedback in the corresponding

section of the interface, which provides the user with some indication of the progress

of the algorithm..

9Data persistency can be enabled by just uncommenting the corresponding part and re-compiling.
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Evaluation

A series of test cases were created to display the capabilities of the proposed modelling

methodology and the brokering algorithm. To a certain extent, the test cases model

real-life scenarios, in the respect that actual RFAs from the 2004 Tsunami relief effort

were modelled. However, as explained in Chapter 2, neither the complete results of

the brokering done by MPAT nor the full set of services available to MPAT at that

time were available. For this reason, fictional services had to be created to be matched

against the RFAs. This action restricts the conclusions that can be drawn about these

tests and their results in several ways.

Firstly, there is no way of knowing whether the modelling used for RFAs is capable

of describing available (real) services as well. Although it seems reasonable to assume

that services and RFAs have the same form, there may be non-apparent attributes of a

service that are not present in RFAs of the same type, which could be difficult to ex-

press as parameters of the OWL-S profile. This would render the modelling approach

inadequate for available services.

Furthermore, one way to evaluate the brokering algorithm would be to compare

the services proposed by the RFA Broker to the services that were actually used to

satisfy RFAs. However, because the manual brokering results and the set of services

that were available to MPAT are not known, this is not possible. Consequently, if

the RFA Broker proposes different services from the ones actually used, this might

be because such services were not available to MPAT. In any case, there is no way to

infer whether the RFA Broker performs better or worse brokering in comparison to the

MPAT manual process.

Despite the afore-mentioned difficulties, these test-cases should provide some in-

sights into the brokering problem and the solution proposed here, leading to a more

51
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general consideration of the strengths and weaknesses of this approach.

7.1 Test Cases

The following scenarios were modelled and tested:

7.1.1 Scenario 1

This scenario concerns the direct brokering of a transportation RFA. The RFA, sub-

mitted on the 8th of January 2005, was: “Transport 10x WFP trucks (40 tons) from

Phnom Penh, Cambodia to Dhaka, Bangladesh”. As described in Section 5.2, trans-

portation profiles have at least three inputs, describing the departure point, destination

point and weight of cargo. The additional information provided by the RFA about the

type of cargo (WFP trucks) and the number of items (10) was not modelled in the pro-

file. Consequently, the RFA that was brokered was equivalent to: “Transport 40 tons

from Phnom Penh, Cambodia to Dhaka, Bangladesh”.

The scenario involves only one available transportation service. When the broker-

ing took place, the following profiles were present (here, and throughout this section,

to make the text more readable the RFAs and services are presented in the equivalent

“English” form of the actual OWL-S description used):

• Service: Can transport cargo of maximum 100 tons from any location in Bangladesh

to any location in Indonesia.

• RFA: Transport 40 tons from Phnom Penh, Cambodia to Dhaka, Bangladesh.

The RFA Broker identified a match between the RFA and the available service.

7.1.2 Scenario 2

This scenario concerns the direct brokering of a provision RFA. The RFA, submitted

on the 13th of January 2005, was: “Request for exactly 4 Mercedes Model 1 trucks in

Banda Aceh (Indonesia), to assist with dual off-load ops for HDR supplies.”. Again,

as described in Section 5.2, provision profiles have at least two inputs, describing the

destination point and the type of good that needs to be provided. The additional in-

formation provided by the RFA about the task for which the particular good is needed
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was not modelled in the profile. Consequently, the RFA that was brokered essentially

was: “Request for exactly 4 Mercedes Model 1 trucks to Banda Aceh (Indonesia).”.

This time there are two provision services, only one of which is capable of satisfy-

ing the RFA. The following profiles were present:

• Service 1: Can provide maximum 20 SUVs to any location in Indonesia.

• Service 2: Can provide maximum 5 vehicles to any location in Indonesia.

• RFA: Request for exactly 4 Mercedes Model 1 trucks to Banda Aceh (Indonesia).

The RFA Broker identified only the second available service as a match.

7.1.3 Scenario 3

There were cases where RFAs requested information about particular places, espe-

cially airports. The RFA of the scenario was, submitted on the 26th of January 2005,

was: “Request any available information on the following airfields on Sumatra. Bland

Pidie, Tapaktuan (Teuku Cut Ali), Singkil, Sinabang (Lasikin) - Polonia.”. The RFA

was split into 5 separate RFA profiles, each requesting information about a particular

airfield. As the 5 RFAs would be brokered in the exact same way, here we consider

only the last one: “Request for information about the Polonia International Airport

(Medan, Indonesia)”.

There are two available services, one of which is capable of satisfying the RFA.

Note that although the services “provide” information, this is not considered to be a

case of brokering provision services. All profiles are defined to be members of in-

formationProfile class, which is disjoint from the provisionProfile class. The central

model contains the following profiles:

• Service 1: Can provide information about Medan.

• Service 2: Can provide information about vehicles.

• RFA: Request for information about the Polonia International Airport (Medan,

Indonesia).

The RFA Broker identified only first service as a match.
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7.1.4 Scenario 4

This scenario concerns the orchestrated brokering of a transport RFA. In fact, this is the

same scenario pictured in Figure 5.2, which is a modification of Scenario 1, presented

above. There are four transportation services available, only one of which is capable of

directly satisfying the RFA. In addition, the remaining three services can be combined

to collaboratively satisfy the RFA. The central model contains the following profiles:

• Service 1: Can transport cargo of maximum 100 tons from any location in the

United Kingdom to any destination in Cambodia.

• Service 2: Can transport cargo of maximum 125 tons from any location in Cam-

bodia to Dhaka (Bangladesh).

• Service 3: Can transport cargo of maximum 85 tons from any location in Bangladesh

to any destination in Indonesia.

• Service 4: Can transport cargo of maximum 75 tons from any location in the

United Kingdom to any destination in Medan (Indonesia).

• RFA: Request for transportation of exactly 50 tons from London to Polonia

(Medan, Indonesia).

The RFA Broker identified two matches:

1. Direct match: Service 4.

2. Orchestrated Match (Chain): Service 1 −→ Service 2 −→ Service 3.

7.1.5 Scenario 5

This scenario concerns the orchestrated brokering of a provision RFA. In fact, this

is the same scenario pictured in Figure 5.3, which is a modification of Scenario 2,

presented above. There are four services available, only one of which is capable of

directly satisfying the RFA. In addition, the remaining three services can be combined

to collaboratively satisfy the RFA. The central model contains the following profiles:

• Service 1: Can provide maximum 5 vehicles to any location in Cambodia.

• Service 2: Can transport cargo of maximum 100 tons from any location in Cam-

bodia to any location in Bangladesh.



Chapter 7. Evaluation 55

• Service 3: Can transport cargo of maximum 75 tons from any location in Bangladesh

to any location in Indonesia.

• Service 4: Can provide maximum 5 trucks at any location in Sumatra (Indone-

sia).

• RFA: Request for exactly 4 trucks to Banda Aceh (Sumatra, Indonesia).

The RFA Broker identified two matches:

1. Direct match: Service 4.

2. Orchestrated Match (Chain): Service 1 −→ Service 2 −→ Service 3.

7.2 Complex RFAs

In some of the scenarios, information in the actual RFA was not modelled in the RFA

profile. This should not necessarily be mistaken for a modelling or brokering short-

coming. For example, the transportation RFA of Scenario 1 was specifying the type of

cargo (WFP trucks) and the quantity of items (10). This information was not included

in the RFA profile mainly because it had no apparent use in brokering. Furthermore, it

could unnecessarily complicate the brokering process. A transportation service would

more likely need to know the weight and dimensions of the cargo, and not the type

of vehicles that are being transferred. However, if for some reason this information

needed to be present in the RFA profile, it could be modelled, say, by having an extra

input specifying the type of cargo and its quantity.

There are other cases where information in transportation RFAs / services could

not be modelled, at least not in the approach proposed in this thesis. For example, the

RFA “Use currently scheduled airlift from Bangkok to move 20 Thai volunteers from

Don Muang Intl (wing 6) to Phucket” requests an already scheduled transportation

to be used. In order to broker this RFA, the transportation schedule should also be

formalised and described in an ontology, and made available to the system. The current

modelling considers brokers RFAs independently of any wider relief context and, as a

result, it cannot associate an RFA with a scheduled flight.

There are cases where modelled information in an RFA profile can be hard to bro-

ker. An RFA, submitted on the 25th of January 2005, requests the transportation of 20

Thai volunteers. Despite the fact that information such as the nationality of the trans-

portees would normally not be used in brokering, there are cases where a human broker
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might take it into account. For instance, a human broker would avoid assigning, say,

a Red Cross transportation service to people from a nation that openly opposes Red

Cross. The same would be the case if the nation that provided a service had political

or cultural differences with the nation of the transportees (for example, any country

that was known to oppose US foreign policy might not be prepared to accept US Army

transportation services).

Such information can, in theory, be modelled in an RFA / service profile, although

the potential extent of such information is so wide-ranging as to make it practically im-

possible to cover all possible socio-cultural factors. For example, a transportation RFA

could model the nationality of the transportees as an extra input. However, brokering

using such information becomes much more complicated. The way the human broker

acted was rather based on general knowledge and intuition, and not on any formalised

general brokering process. The brokering algorithm proposed on this thesis would fail

to broker this kind of information.

7.3 Meeting the Desiderata

In Chapter 2 some desiderable properties were defined for modelling and brokering

RFAs. This section will examine the extent to which these properties have been met

with the approach adopted in this project.

7.3.1 Preventing misinterpretation

As discussed in Chapter 2, one of the desirable characteristics for an RFA / service

modelling approach was to prevent possible misinterpretation that could be caused by

typos, acronyms or other reasons. Using an ontology language such as OWL to model

services, seems to have solved this issue, as RFAs / services are defined in terms of pre-

defined concepts, instead of strings. This means that the RFAs / services, as well as

the concepts that are used to describe them, are expressed in a universal, unambiguous

way.

This, in turn, facilitates correct brokering. For example, consider an RFA request-

ing and a service providing the transportation of a certain good from Cambodia to

Indonesia. Obviously, since they are constructed using the same structure and the

same ontologies, the two profiles are matching. Even if the corresponding location

inputs may be given different labels (strings), the fact that they are both related to the
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same URI unambiguously determines their location. The same would be the case if

the names of the two inputs were written in different languages, or if they were meant

to be identical, but a typo occured.

Consequently, it can be concluded that modelling RFAs / services in OWL prevents

misinterpretation, always assuming that there is agreement on and consistency in the

use of OWL-S and the underlying domain ontologies.

7.3.2 Modelling and Brokering Transportation and Provision RFAs

The most common types of RFAs are the ones requesting the transportation of some

type of cargo from one location to another. One of the desirable characteristics for a

modelling and brokering approach was to be able to handle this type of RFAs and ser-

vices. Scenarios 1 and 4 describe how two transport RFAs are modelled and brokered.

All the information in the RFA textual description (departure point, destination point

and cargo weight) was modelled as inputs of the OWL-S profile, indicating, by this

measure at least, that modelling was successful.

The case was the same for the other common type of RFA, requesting the provision

of a certain good to a location. Scenarios 2 and 5 describe the modelling and brokering

of two provision RFAs. Again, all the information contained in the textual description

of the RFA (quantity and type of good, delivery location) was modelled as inputs of

the OWL-S profile.

The brokering algorithm could only be tested using fictional services to match

against RFAs. As explained before, this probably entails different results from the ac-

tion taken in reality. However, the fact that the matches produced by the RFA Broker

were all reasonable and that all unreasonable solutions were ruled out is encouraging.

Furthermore, whatever the form of actual transportation services may be, they would

most probably have at least the three inputs used in the fictional transportation services

(departure input, destination input, weight input). The fact that brokering of trans-

portation services is based on those inputs is a strong indication that real services will

probably be brokered correctly as well.

7.3.3 Modelling various types of RFAs / Services

The RFAs that involve neither transportation nor provision may have varying natures

and parameters. For this reason, one of the desirable properties for a modelling ap-

proach was to be able to describe diverse types of RFAs and services. The modelling
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approach proposed in this thesis achieves this goal to a certain extent, by defining sub-

classes of the OWL-S profile to describe different types of RFAs. Then, the attributes

of an RFA can usually be expressed in terms of inputs and outputs. In this case, RFAs

are modelled and brokered successfully. An example of such an RFA that was success-

fully modelled and brokered is the one in Scenario 3.

However, there are certain types of RFAs that could not be modelled, at least not

directly. Such a type is the one requesting for a particular task to be carried out. For

instance, an RFA submitted the 10th of January 2005 requests: “Conduct sea-based

UN-WHO health assessment of western Sumatra via helicopter off Abraham Lincoln”.

There is no evident way to directly model this task as inputs of the RFA profile. How-

ever, a task may be decomposable to simpler tasks that can be handled easily. Indeed,

the particular RFA could be split to a request for medical personnel that could carry out

the health assessment, as well as two requests for their transportation from Abraham

Lincoln aircraft carrier to western Sumatra, and back. However, the decomposition of

certain tasks to simpler ones may require domain-specific expertise, which may not be

available to the MPAT personnel.

Finally, there is another subset of RFAs that were too complicated to be modelled.

For example, this RFA was submitted on the 28th of January 2005: “Expert in vector

control and malaria is needed to provide guidance to Indonesian vector-control teams.

Need person with experience in leading teams in the field, familiarity with Indonesia,

ability to speak Bahasa Indonesian”. The modelling and brokering aproach proposed

here could only handle a generic version of the RFA, requesting for an expert in a

particular medical field.

In general, most of the RFAs that were available in the relief efforts web sites

could be modelled using the proposed approach. Unfortunately, certain RFAs had to be

decomposed to simpler ones in order to be modelled, and others could not be modelled

at all. However, these RFAs represented only a small percentage of the RFAs that were

examined.

7.3.4 Modelling RFAs / Services with varying detail

The last of the modelling desiderata was for the modelling approach to allow descrip-

tions of RFAs / services with varying detail. The modelling approach proposed here

achieves that by allowing any number of inputs and outputs to be specified for a pro-

file. In other words, some profiles may be more detailed and contain more information
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than others. However, in order to prevent the existence of too generic profiles that have

very few or no inputs at all, cardinalities can be defined for the inputs of new types of

services. In this way, certain inputs can be defined to be mandatory, whereas others

can be optional.

7.3.5 Coping with large numbers of services

The test cases mentioned earlier on this chapter were run on a laptop with a 1.6 GHz

Intel Centrino processor and 1 GB of RAM. Generally, all the test cases were simple,

with a maximum of four available services present. However, the time needed for the

RFA Broker to broker them was considerably high, varying from 6.2 seconds (Scenario

3) to 15.7 seconds (Scenario 5). Despite the lack of a test case involving search over

numerous available resources, the low performance in the existing test cases shows

that the RFA Broker is unlikely to be able to handle large numbers of resources.

There are several factors that result in high computational load. The main one is

the complexity of the brokering algorithm, which increases significantly in the case of

indirect brokering. There are other factors that contribute to the performance problem.

Firstly, the brokering algorithm makes heavy use of the Jena reasoning module to de-

tect implicit relations between classes and instances. Furthermore, the conversion of

OWL documents to their corresponding models has proved to be a resource consuming

process. Finally, the fact that the RFA Broker and Jena are both written in Java, which

is interpreted and not compiled, has a direct impact on performance.

In a real life scenario, the number of available services and RFAs to be brokered

may rise into the hundreds. As a consequence, the RFA Broker could not be practically

deployed in its present form. There are ways to improve the efficiency of the algorithm,

but this will be discussed in the next chapter.

7.3.6 Enriching RFAs

One of the problems identified in the current brokering process concerned the fact

that several required pieces of information were missing from the RFAs. In order to

solve this, it would be desirable for brokering approach to gradually enrich RFAs with

information, as brokering progresses.

The brokering algorithm that was proposed is achieves to enrich provision and

transportation RFAs. Normally, only direct matches to a provision RFA would be

detected. However, when a provision RFA is brokered indirectly, the total weight of
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the cargo is automatically computed and used to locate transportation services that are

capable of carrying it to the location where it is requested. In other words, the provision

RFA is enriched with additional information that was originally unavailable, allowing

the detection of matches that may not be obvious.

7.4 Analytical Evaluation

In this section two important design decisions will be evaluated: the use of OWL and

OWL-S.

7.4.1 The selection of OWL

In Chapter 3 OWL was selected for the description of RFAs and available services.

This selection was justified in a number of occasions. First of all, OWL provided

the means to avoid misinterpretation. As mentioned in the discussion on desiderata,

through the use of URIs it provided the means to identify resources in an unambiguous

and unique way.

Furthermore, OWL enabled expressions that were not possible in other ontology

languages, such as RDF(S). For instance, some classes were defined as the union or

intersection of other classes (ExactBoundInput ≡MaximumBoundInput uMinimum-

BoundInput). Others were defined to be disjoint (resProfile u rfaProfile ≡⊥). Finally,

cardinalities can be used to refine the definitions of specific types of profile. For exam-

ple, transportation profiles can be defined to have exactly two location inputs, one for

the destination and the other for the departure point.

In conclusion, the use of OWL seems to have enabled modelling capabilities that

would otherwise be impossible. Thus, its selection over RDF(S) can be considered a

good choice.

7.4.2 Evaluation of OWL-S for RFAs

In order to answer the question of whether the use of OWL-S was a correct choice or

not, one must first consider the extent to which it was able to model RFAs (and, by

extension, services). Given that transportation and provision RFAs are very similar to

the ones modelled in the test cases, it would be safe to assume that most of them can

be modelled in OWL-S, in the method proposed in an earlier chapter. In addition, Sce-

nario 3 shows that RFAs of different type and nature can also be modelled, as long as
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their attributes can be ‘mapped’ to inputs and outputs. However, only direct brokering

can be used for these. Generally, OWL-S has proven to be capable of describing the

majority of RFAs, and in a way that can be brokered.

On the other hand, there were RFAs that could not be modelled in OWL-S, at

least not in the proposed methodology. One of the factors for this, is that OWL-S was

designed primarily to describe Web Services, which can have specific attributes and

properties. RFAs, on the other hand, may be requests of virtually any form. Despite

the fact that OWL-S is sufficiently general to model services of other types, there were

cases of RFAs where such modelling was not possible.

Another option was to create and use a custom OWL ontology for RFAs, instead of

OWL-S. However, it would not be possible to guarantee that such an ontology would

be able to model more types of RFAs / services than OWL-S can. Furthermore, it

would be very difficult to create an ontology as well structured and generic as OWL-S,

which has been developed and constantly improved for years. Finally, the design and

creation of such an ontology would require amounts of time that were not available for

this project.

In conclusion, the use of OWL-S has achieved its goal by modelling the majority

of RFAs. The present approach can be further improved in a number of ways, which

will be discussed in the next chapter.
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Conclusions and Future Work

Having presented a modelling and brokering methodology for RFAs, it would be useful

discuss the conclusions we were able to draw. Afterwards, based on the evaluation of

the previous chapter, we will propose ideas for future work on the project.

8.1 Conclusions

In this section we will re-examine the stages of this project discussing any final con-

clusions about what has been achieved. We started by examining several RFAs that

were submitted during 2004 Tsunami relief effort and the 2005 Philippines, in order

to discover what forms an RFA might take. This examination revealed that 90% of

the reviewed RFAs concerned or involved transportation of goods, and 4% concerned

the provision of goods. The remaining 6% of RFAs could vary greatly, making their

categorization difficult. We continued by identifying issues that were believed to di-

rectly or indirectly affect the brokering, as it is currently carried out. Based on the

identified issues and the examination of the RFA types, we concluded on a number of

characteristics that would be desirable for a modelling and brokering approach. The

most important ones were the ability to model and broker at least transport and provi-

sion RFAs and services, flexibility to adequately describe various other types, and the

ability to propose orchestrated solutions.

In Chapter 3 several approaches were considered that could be used to model and

broker RFAs and services. The first one was a non-semantic approach, in particular, the

use of relational database systems to store the parameters of RFAs and services. After

identifying the advantages of this approach, we argued that the syntactic comparison

used in databases and other similar approaches would cause successful matches to be

62
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overlooked. We then concluded that a semantic approach would help overcome the

problem.

The next approach to be considered was RDF in conjunction with RDF-Schema

(together referred to as RDF(S)). We saw how RDF(S) overcame the afore-mentioned

problem through the use of URIs, and considered a rudimentary way of representing

RFAs in RDF(S). Through the discussion that followed, we concluded that the descrip-

tion of RFAs required more expressive power, and listed some particular expressions

that could be used in RFAs but were not available in RDF(S). The last approach that

was considered was OWL. After an analysis of its expressive capabilities, we argued

that the listed unavailable expressions in RDF(S) were allowed in OWL. Therefore, we

concluded that OWL was the most adequate of the considered approaches.

The Chapter ended with a presentation of the OWL-S ontology, created primarily

for Web Services. After an analysis of its parts, we claimed that the OWL-S Profile is

sufficiently general to describe services other than Web Services. We then considered

two modelling and brokering approaches for services, using the OWL-S ontology. For

each one, we identified possible advantages and disadvantages, in case they were to be

adopted for RFAs.

In Chapter 4, a modelling methodology for RFAs using the OWL-S ontology was

proposed. This chapter included an analysis of several design issues that emerged. For

some of them we considered adapting solutions proposed by the reviewed approaches,

and argued on posible ways these would affect RFA modelling. One of the most im-

portant issues concerned the decision of whether instances of the OWL-S Profile of

subclasses of the same class should be used for RFAs and services. After identifying

the advantages and disadvantages of every case, we concluded that modelling RFAs

as instances is more appropriate, at least from a semantic point of view. Another im-

portant issue concerned the use or not of preconditions and effects. It was argued that

modelling would be more complete if preconditions and effects were used. We con-

cluded, however, that this would significantly complicate the brokering algorithm. The

chapter went on by proposing specific structure for the common types of transportation

and provision RFAs and services, by means of the particular OWL-S inputs they will

be using. The chapter ended by giving an example of an RFA modelled as an OWL-S

Profile in the proposed method.

In next two chapters we proposed a brokering algorithm and presented an imple-

mentation of it, called RFA Broker. In Chapter 7 we evaluated the design decisions that

were taken and the modelling and brokering methodologies that were proposed. The
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evaluation began by running a set of tests on the RFA Broker to show that it worked

as expected. Afterwards, we attempted to decide on the degree to which the initial

desiderata were met. Specifically, we concluded that by using OWL, we avoided pos-

sible misinterpretations. We continued to argue that the common types of RFAs and

services can be modelled, with few exceptions. As far as the set of diverse RFAs is con-

cerned, a small percentage proved to be too complicated for the modelling approach to

describe. In general, however, we believe that most RFAs in this group are within the

capabilities of the modelling approach. The project also succeeded in allowing RFAs

to be modelled with different levels of detail. We also displayed that it is possible to

gradually enrich RFAs with information, as their brokering progresses. This project

succeeded in meeting most of the desiderata, at least to certain extent.

The evaluation chapter finishes by concluding that the selection of OWL over

RDF(S) was a correct choice for the description of RFAs. To support this claim, we

listed a number of occasions where OWL expressions with no equivalent in RDF(S)

were used. The chapter ends with a similar consideration for the use of OWL-S. We ar-

gued that, despite the fact that some RFAs could not be modelled, OWL-S was capable

of modelling the majority of RFAs - at least the ones that were available.

8.2 Future work

In this section we consider ways in which the modelling and brokering methodologies

could be improved. The following proposals were not implemented due to the limited

time that was available for this thesis.

8.2.1 The dimension of time

An important parameter that was not taken into account is time, which is particularly

important in the case of transportation RFAs and services. Currently, the transporta-

tion services are matched to RFAs in terms of their departure and destination locations,

and the weight they can carry. In reality, however, an RFA might be requesting for the

transportation to be carried out at or before a particular time. Furthermore, a trans-

portation service is likely to be able to undertake the transportation in specific time

slots, when no other transportation is scheduled. Therefore, it would be more realistic

to broker RFAs in terms of time, as well.

There are many margins for elaboration, as several factors may be taken into ac-
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count. For instance, the number of transportations that a typical service can carry

out simultaneously, depends on the numbers of its aircrafts and pilots. Furthermore,

the duration of transportations could be computed based on the departure and desti-

nation locations, the weight of the cargo, as well as the aircraft to be used. Finally,

the brokering algorithm could be modified to only propose chains whose services have

compatible schedules.

8.2.2 Cost estimation

Another parameter that could be taken into account is the cost of invocation of ser-

vices. In its current form, the algorithm proposes all the services or combinations of

services that are in position to satisfy the RFA. However, all the possible solutions are

not equivalent, at least not from a cost point of view. For example, the transportation of

a person may be carried out by a helicopter, a military C-130 aircraft or a chain of 5 air

transportation services. All three solututions can satisfy the RFA equally well. How-

ever, a human broker would choose the first one, because of its significantly smaller

cost.

The above adaptation would help in the reduction of cost of satisfying RFAs, or

equivalently, in the satisfaction of more RFAs at a certain cost. Furthermore, the above

addition would help in a better distribution of the financial contribution among the

participants in the relief effort.

8.2.3 Degrees of match

In its current form, the brokering algorithm only proposes services that ‘subsume’ an

RFA. In other words, only services that can completely satisfy the RFA are identified

as a match. In practice, however, it may be unrealistic to expect that such services

will always be available. In this case, proposing services that partly satisfy an RFA is

preferable than proposing no services at all.

The problem could be solved in a way similar to the one adopted in the first broker-

ing approach considered in Chapter 3. The ‘goodness’ of a match would be expressed

in terms of points, which would be assigned for every matching parameter between the

RFA and service profile. Only exact matches would reach the highest possible point

values, whereas weaker types of match would be available as well.
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8.2.4 Physical Dimensions

Another refinement to the brokering algorithm concerns transportation services in par-

ticular. As mentioned befire, the brokering of transportation services is based on de-

parture and destination locations, and the weight of the cargo. However, even if these

parameters are met, the physical dimensions of the cargo may prevent it from being

transported by certain services. Therefore, a useful addition to the algorithm would be

to take into account the physical dimensions of the cargo.

A simplistic approach would be to follow the same method that was used for weight

restrictions. However, the problem would be complicated if several goods were to be

transported, as the dimensions of the cargo would also depend on the shape of the

items. Even if a complete solution is too complicated to be found, considering the

dimensions of a single item would still be able to rule out some matches.
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