
32 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

S e m a n t i c W e b S e r v i c e s

KAoS Policy
Management for
Semantic Web Services
Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, and Renia Jeffers,
Institute for Human and Machine Cognition

Austin Tate, Jeff Dalton, and Stuart Aitken, University of Edinburgh

D espite rapid advances in Web Services, the user community’s demanding require-

ments continue to outstrip available technology solutions. To help close this gap,

Semantic Web Services advocates are defining and implementing many new and sig-

nificant capabilities (www.swsi.org). These new capabilities should more fully harness

Web Services’ power through explicit representa-
tions of Web resources’ underlying semantics and
the development of an intelligent Web infrastructure
that can fully exploit them. Semantic Web languages,
such as OWL, extend RDF to let users specify
ontologies comprising taxonomies of classes and
inference rules.

Both people and software agents can effectively use
Semantic Web Services.1 Agents will increasingly use
the combination of semantic markup languages and
Semantic Web Services to understand and auton-
omously manipulate Web content in significant ways.
Agents will discover, communicate, and cooperate
with other agents and services and—as we’ll describe
—will rely on policy-based management and control
mechanisms to ensure respect for human-imposed
constraints on agent interaction. Policy-based controls
of Semantic Web Services can also help govern inter-
action with traditional (nonagent) clients.

In the mid 1990s, we began to define the initial
version of KAoS, a set of platform-independent ser-
vices that let people define policies ensuring ade-
quate predictability and controllability of both agents
and traditional distributed systems. With various
research partners, we’re also developing and evalu-
ating a generic model of human-agent teamwork that
includes policies to assure natural and effective inter-
action in mixed teams of people and agents—both
software and robotic.2–4 We’re exploiting the power
of Semantic Web representations to address some of
the challenges currently limiting Semantic Web Ser-
vices’ widespread deployment.

KAoS policy and domain management
services

KAoS is one of the first efforts for representing
policy using a Semantic Web language—in this case,
OWL (see the sidebar on page 36 for more about
policies and the Semantic Web). Gianluca Tonti and
his colleagues have compared two semantically rich
policy representations, KAoS and Rei,5 and a more
traditional policy language, Ponder.6 KAoS services
and tools allow for the specification, management,
conflict resolution, and enforcement of policies in
the specific contexts established by complex orga-
nizational structures represented as domains.2,7–9

Ontological representation
of KAoS policies

KAoS uses ontology concepts (encoded in OWL)
to build policies. During its bootstrap, KAoS first
loads the core KAoS Policy Ontology defining con-
cepts used to describe a generic actor’s environment
and policies in this context (http://ontology.ihmc.us).
Then, KAoS loads additional ontologies on top of
this, extending concepts from the core ontology, with
notions specific to the particular controlled environ-
ment and application domain.

The KAoS Policy Service distinguishes between
positive and negative authorizations (constraints that
permit or forbid some action) and positive and nega-
tive obligations (constraints that require some action
when a state- or event-based trigger occurs or that
serve to waive such a requirement).2,6 Other policy
constructs (for example, delegation or role-based

KAoS policy and

domain services help

with policy

specification, analysis,

disclosure, and

enforcement for

Semantic Web Services.

The authors describe

these capabilities in the

context of three

applications: Grid

Policy Management,

Coalition Search and

Rescue, and the

Semantic Firewall.

authorization) are built from the basic domain
primitives plus the four policy types.

KAoS policy’s OWL definition (see Figure
1) is an instance of one of these four basic pol-
icy classes: PositiveAuthorization, NegativeAuthoriza-
tion, PositiveObligation, or NegativeObligation. The
property values determine management infor-
mation for a particular policy (for example,
its priority). The type of policy instance deter-
mines the kind of constraint KAoS should
apply to the action, while a policy’s action
class is used to determine a policy’s applica-
bility in a given situation. The action class uses
OWL restrictions to narrow scopes-of-action
properties to a particular policy’s needs. Every
action contains a definition of the range of
actors performing it. This range can be defined
using any available OWL construct. For
example, the range can be an enumeration of
actor instances, a class of actors defining its
type, or any description of the actor context
(for instance, the class of actors executed on
some host and possessing a given resource).
The same is true for the action class’s other
properties. Consequently, policy can contain
arbitrarily complex definitions of a situation.
So, KAoS policies represent policies without
conditional rules, relying instead on the con-
text restrictions associated with the action
class to determine policy applicability in a
given situation.

An action class helps classify action
instances that actors intend to take or are
undertaking. Components (such as KAoS
guards) that are interested in checking policy
impact on these actions construct RDF
descriptions of action instances. KAoS clas-
sifies these instances, relying on the inference
capabilities of Stanford University’s Java
Theorem Prover (JTP, www.ksl.stanford.edu/
software/JTP). It then obtains a list of any
policies whose action classes are relevant to
the current situation. In the next step, KAoS
determines the relative precedence of the
obtained policies and sorts them accordingly
to find the dominating authorization policy.
If the dominating authorization is positive,
KAoS then collects, in order of precedence,
obligations from any triggered obligation
policies. KAoS returns the result to the inter-
ested parties—in most cases, these parties are
the enforcement mechanisms that are jointly
responsible for blocking forbidden actions
and assuring the performance of obligations.

Representing policies in OWL facilitates
reasoning about the controlled environment,
policy relations and disclosure, policy con-
flict detection, and harmonization. It also

facilitates reasoning about domain structure
and concepts exploiting the description logic
subsumption and instance classification algo-
rithms. KAoS can identify and, if desired,
harmonize conflicting policies through algo-
rithms that we’ve implemented in JTP.

KAoS features
KAoS has several important features.

Homogeneous policy representation. Be-
cause all aspects of KAoS policy represen-
tation are encoded purely in OWL, any
third-party tool or environment supporting
OWL can perform specialized analyses of
the full knowledge base independently of
KAoS. As the Semantic Web becomes more
widely deployed, this will ease integration
with an increasingly sophisticated range of
new OWL tools and language enhancements.

Maturity. Over the past few years, we’ve used
KAoS services in conjunction with a wide
range of applications and operating platforms.

Comprehensiveness. Unlike many ap-
proaches that deal with only simple forms of
access control or authorization, KAoS sup-
ports both authorization and obligation
policies. Additionally, we’ve implemented
a complete infrastructure for policy man-

agement, including a full range of capabili-
ties from sophisticated user interfaces for
policy specification and analysis to a generic
policy disclosure mechanism. We’re further
developing facilities for policy enforcement
automation (that is, automatic code genera-
tion for enforcers).

Pluggability. A platform-specific and appli-
cation-specific ontology is easily loaded on
top of the core concepts. Moreover, we’ve
straightforwardly adapted the policy enforce-
ment elements to a wide range of computing
environments, both traditional distributed-
computing platforms (for example, Web Ser-
vices, grid computing, and CORBA) and vari-
ous software and robotic agent platforms (for
example, Nomads, Brahms, SFX, CoABS
Grid, and Cougaar).

Scalability and performance. We optimized
the policy disclosure methods such that
response to a query from an enforcer is pro-
vided on average in less than 1 ms. This per-
formance is due in part to our reliance on effi-
cient and logically decideable description
logic subsumption and classification meth-
ods. Furthermore, queries can be executed
concurrently by multiple enforcers, letting
KAoS export multiprocessor machines. In
rigorous evaluations in the DARPA UltraLog

JULY/AUGUST 2004 www.computer.org/intelligent 33

Figure 1. The graphical interface of the OWL policy editor and administration tool, the
KAoS Policy Administration Tool.

program, we’ve found that performance is
acceptable even in large societies of more
than a thousand agents, running on a dozen
or more platforms, with hundreds of policies.
Here, dynamic policy updates can be com-
mitted, deconflicted, and distributed in a mat-
ter of a few seconds. Further enhancements
to underlying reasoners (for example, cur-
rent work on general “untell” mechanisms)
and advances in computer hardware will con-
tinue to improve this performance.

Beyond description logic for
policy representation

Until recently, KAoS used only OWL-DL
(initially DAML) to describe policy-governed
entities and their actions. The semantic rich-
ness OWL enables in comparison to traditional
policy languages allowed us much greater
expressivity in specifying policies. However,
we found ourselves limited in situations where
we needed to define policies in which one ele-
ment of an action’s context depended on the
value of another part of the context. A simple
example is an action of loop communication,
where you must constrain the source and the
destination of communication so that they’re

one and the same. A more complex example
would be when we want to constrain the action
to return the results of a calculation to only the
parties that provided the data used to perform
it (or to the specific entities the data’s providers
authorized). Such an action description might
be needed to specify a policy controlling the
distribution of calculation results. All such
action descriptions go beyond what OWL-DL
can express.

The required missing aspect of representa-
tional semantics has, however, been well stud-
ied under the name of role-value maps.10 These
maps should express equality or containment
of values that has been reached through two
chains of instance properties. The emerging
standard for OWL rules, the Semantic Web
Rule Language (SWRL, www.daml.org/2003/
11/swrl), allows the use of role-value-map
semantics. However, the required syntax is
complex, and we’ve begun to think that an
OWL-based representation expressing this
same semantics might be valuable for a broad
range of uses. For instance, the OWL-S devel-
opers found the need to express similar
dataflow semantics and developed their own
formulation (process:sameValues) that allowed the

representation of such chains, albeit with the
limitation that they could contain only single-
chain elements.11

We’re equipping KAoS with mechanisms
that will allow adding role-value-map seman-
tics to defined policy action using the KAoS
Policy Administration Tool. For the interim,
we’re basing our syntax for this semantics on
the current version of the SWRL OWL ontol-
ogy (www.daml.org/2003/11/swrl/swrl.owl).
However, the code that generates this syntax
is encapsulated in a specialized Java class
allowing later modification if the SWRL
ontology changes or if an OWL-based syntax
eventually emerges. Our classification algo-
rithm can also use this information to clas-
sify action instances. This algorithm verifies
if an instance satisfies the OWL-DL part of
the action class and, if so, checks the appro-
priate role-value-map constraints. For exam-
ple, if KAoS needs to determine whether an
intercepted communication is a loop com-
munication, it would determine whether the
current communication source is also one of
the values of the property describing the
communication’s destination.

To perform more complex policy analyses

S e m a n t i c W e b S e r v i c e s

34 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Policies are a means to dynamically constrain and regulate a
system’s behavior without changing code or requiring the coop-
eration of the components being governed. They are becoming
an increasingly popular approach to dynamic adjustability of
applications in academia and industry (www.policy-workshop.
org). Policy-based approaches have many benefits, including
reusability; efficiency; extensibility; context sensitivity; verifiabil-
ity; support for both simple and sophisticated components; pro-
tection from poorly designed, buggy, or malicious components;
and reasoning about their behavior.1 Policies have important
analogs in animal societies and human cultures.2

Policy-based network and distributed-system management
has been researched extensively over the last decade (www-
dse.doc.ic.ac.uk/research/policies).3 Policies are often applied to
automate network administration tasks, such as configuration,
security, recovery, or quality of service. In network manage-
ment, policies govern choices in a network’s behavior. Addition-
ally, standardization efforts are heading toward common policy
information models and frameworks. The Internet Engineering
Task Force, for instance, has been investigating policies as a way
to manage IP-multiservice networks by focusing on the specifi-
cation of protocols and object-oriented models for represent-
ing policies (www.ietf.org/html.charters/policy-charter.html).

Increasingly, the scope of policy management is going beyond
these traditional applications in significant ways. New challenges
for policy management include

• Sources and methods protection, digital-rights manage-
ment, information filtering and transformation, and

capability-based access
• Active networks, agile computing, disruption-tolerant net-

works, and pervasive and mobile systems
• Organizational modeling, coalition formation, and formaliz-

ing cross-organizational agreements
• Trust models, trust management, provenance, and informa-

tion pedigrees
• Effective human–machine interaction: interruption and noti-

fication management, presence management, adjustable
autonomy, mixed-initiative interaction, teamwork facilita-
tion, and safety

• Support for humans trying to retrieve, understand, and
analyze all policies relevant to some situation

Researchers have proposed multiple approaches for policy
specification. They range from formal policy languages that a
computer can easily and directly process and interpret, to rule-
based policy notation using an if-then-else format, to the repre-
sentation of policies as entries in a table with multiple attributes.

In Web Services, standards for SOAP-based message security
(for example, www-106.ibm.com/developerworks/webservices/
library/ws-secure) and XML-based languages for access control
(for example, the eXtensible Access Control Markup Language,
www.oasis-open.org/committees/tc_home.php?wg_abbrev
=security) have begun to appear. However, the current tools’
immaturity along with the new languages’ limited scope and
semantics make them less-than-ideal candidates for the sophis-
ticated applications that Semantic Web visionaries have imag-
ined for the next decade.4,5

Policies and Semantic Web Services

relying on role-value-map semantics, we’ve
begun joint exploration with Stanford on
extending JTP to allow subsumption reason-
ing on role-value-map semantics.

Example application contexts
We’re extending KAoS to address require-

ments of Semantic Web Services. We
describe three examples of the kinds of roles
that a policy management framework can
play in providing

• Policy management for grid-computing
environments

• Verification of policy compliance for
Semantic Web Services workflow com-
position

• Policy enforcement during workflow
enactment

Policy management for
grid computing

Our first foray into Web Services was devel-
oping an initial OGSA-compliant (Open Grid
Services Architecture) version of KAoS ser-
vices, allowing fine-grained policy-based man-
agement of registered grid-computing services

on the Globus platform.12 OGSA is a Web Ser-
vices-compatible standard for defining grid-
computing services (www.globus.org/ogsa).
We’ve aimed to extend and generalize this
capability to work with Web Services outside
of grid-computing environments.

Globus provides effective resource man-
agement, authentication, and local resource
control for the grid-computing environment
but needs domain and policy services.
KAoS seemed to be a perfect complement
to the Globus system, providing a wide
range of policy management capabilities
that rely on platform-specific enforcement
mechanisms. By providing an interface
between the Globus grid and KAoS, we
enable the use of KAoS mechanisms to
manage Grid Security Infrastructure-
enabled grid services. GSI was the only
component of the Globus Toolkit (GT3) we
used in the integration. The interface itself
is a grid service, which we called a KAoS
grid service. It gives grid clients and ser-
vices the ability to register with KAoS ser-
vices and to check whether a given action
is authorized on the basis of current poli-
cies. Figure 2 shows the basic architecture.

Creating a KAoS grid service. To create a
KAoS grid service, we used tools provided
with GT3 to create a normal grid service,
then added to it the required KAoS frame-
work components to make it KAoS aware.
This framework links grid services to the
KAoS-implemented JAS (Java Agent Ser-
vices, http://sourceforge.net/projects/jas):
naming, message transport, and directory. It

JULY/AUGUST 2004 www.computer.org/intelligent 35

Client

Java
Agent

Services

KAoS

Grid
service

stub

Container

KAoS
grid

service

JAS
service

root

KAoS
guard

Grid
service

stub

Grid
service

stub

Figure 2. The KAoS grid service architecture.

Using XML as a standard for policy expression has advantages
and disadvantages. The major advantage is its straightforward
extensibility (a feature shared with languages such as RDF and
OWL, which use XML as a foundation). The problem with
mere XML is that its semantics are mostly implicit—meaning is
conveyed on the basis of a shared understanding derived
from human consensus. Implicit semantics are ambiguous,
they promote fragmentation into incompatible representation
variations, and they require extra manual work that a richer
representation could eliminate. However, if an implementa-
tion requires the use of an XML approach, you could map
Semantic Web-based policy representations, such as those we
describe, to these lower-level representations by applying
contextual information.

In addition to KAoS, some initial efforts in using Semantic
Web representations for basic security applications (authenti-
cation, access control, data integrity, and encryption) of pol-
icy are bearing fruit. For example, Grit Denker and her col-
leagues have integrated a set of ontologies (credentials and
security mechanisms) and security extensions for OWL-S Ser-
vice profiles with Carnegie Mellon University’s Semantic
Matchmaker5 to enable security brokering between agents
and services. Future work will let security services be com-
posed with other services. Lalana Kagal and her colleagues
are developing Rei, a Semantic Web language-based policy
language they’re using as part of the OWL-S service profiles
extension and other applications.6 In another promising direc-
tion, Ninguhi Li, Benjamin Grosof, and Joan Feigenbaum have

developed a logic-based approach to distributed autho-
rization in large-scale, open, distributed systems.7

References

1. J.M. Bradshaw et al., “Making Agents Acceptable to People,” Intel-
ligent Technologies for Information Analysis: Advances in Agents,
Data Mining, and Statistical Learning, N. Zhong and J. Liu, eds.,
Springer-Verlag, 2004, pp. 355–400.

2. P. Feltovich et al., “Social Order and Adaptability in Animal, Human,
and Agent Communities,” Proc. 4th Int’l Workshop Eng. Societies in
the Agents World, LNAI 3071, Springer-Verlag, 2003, pp. 73–85.

3. S. Wright, R. Chadha, and G. Lapiotis, eds., IEEE Network, special
issue on policy-based networking, vol. 16, no. 2, 2002, pp. 8–56.

4. D. Fensel et al., Spinning the Semantic Web, MIT Press, 2003.

5. K. Sycara et al., “Automated Discovery, Interaction and Composi-
tion of Semantic Web Services,” J. Web Semantics, vol. 1, no. 1,
2003, pp. 27–46.

6. L. Kagal, T. Finin, and A. Joshi, “A Policy-Based Approach to Secu-
rity for the Semantic Web,” Proc. 2nd Int’l Semantic Web Conf.
(ISWC 2003), LNCS 2870, Springer-Verlag, 2003, pp. 402–418.

7. N. Li, B.N. Grosof, and J. Feigenbaum, “Delegation Logic: A Logic-
Based Approach to Distributed Authorization,” ACM Trans. Infor-
mation Systems Security (TISSEC), vol. 6 , no. 1, 2003, pp. 128–171.

K

S e m a n t i c W e b S e r v i c e s

36 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

also associates the KAoS Guard (policy deci-
sion point) with the KAoS grid service that
Figure 2 shows.

Registration. To use domain services, we
needed to establish a method for clients and
resources to register in a KAoS domain. The
clients or resources use their credential to
request registration in one or more domains.
The credential is a standard X.509 certificate
that Globus uses for authentication and is
verified using the GT Grid Security Infra-
structure. If the certificate is valid, the regis-
tration request goes to KAoS for registration
into the desired domains. If the resource uses
an application-specific ontology to describe
its capabilities, it must be loaded into the
KAoS ontology using a utility KAoS pro-
vides. Inside the KAoS grid service, the reg-
istration is handled through the associated
guard. This lets KAoS distribute all applica-
ble policies to the appropriate guard.

Expressing policies. The basic components of
any authorization policy are the actors, action,
and context. A sample policy would read

It is permitted for actor(s) X to perform
action(s) Y in context Z.

Actors requesting to execute an action are
mapped to various actor classes and instances
in the KAoS Policy Ontology (KPO). In this
case, actors consist of various software
clients and the groups they belong to. Reg-
istration adds each client to the existing
KAoS knowledge base stored in JTP, offline
or at runtime, letting policies be written about
the client or its domain.

The system can represent actions at differ-
ent levels of generality. A policy defined on a
more general action might permit or forbid
overall access to a service, which is useful for
simple services or services that don’t provide
varying access levels. For example, a policy
defining overall permissions for a chat service
might use generic communication concepts in
the existing KPO, as in the following:

It is forbidden for Client X to perform a com-
munication action if the action has a destina-
tion of Chat Service Y.

The system would use this policy to pre-
vent Client X from using Chat Service Y.
KAoS already understands the concepts of
“forbidden,” “communication action,” and
“has destination.” It will also understand
“Client X” and “Chat Service Y” once each
entity registers.

More complex services might require new
concepts in the ontologies that map to spe-
cific actions on a grid service. For example,
Reliable File Transfer Service has various
methods that might not map to an existing
ontology. To provide fine-grained control of
this service, we can extend the KAoS ontol-
ogy for the specific domain space and load
it into KAoS using KPAT (KAoS Policy
Administration Tool), a graphical user inter-
face for interacting with KAoS (see Figure 1
for an example of a KPAT window). We’re
working on a tool to automatically generate
an OWL ontology for a given WSDL (Web
Services Description Language, www.w3.
org/TR/wsdl) specification of the OGSI-
compliant grid service.

The context can refer to objects that are the
targets of action, such as clients or services,
or domain-specific entities, such as different
computing resources. The context might also
include other information about the situation
in which the action is performed. Clients and
services are added to the KAoS ontology
when they register in the KAoS Directory
Service, while using domain-specific entities
requires extensions to the ontology, either
before loading into KAoS or using the graph-
ical interface in KPAT.

Policies might be written to restrict a
client’s use of a resource or to restrict the set
of access rights delegated to the KAoS grid
service. Recently, we’ve added the capabil-
ity of defining simple obligation policies.

Checking authorization. Because the KAoS
grid service has full control of access to a
given resource based on the rights permitted
by participating resources, it serves as the pol-
icy enforcer using Globus local-enforcement
mechanisms. The KAoS grid service coor-
dinates with the KAoS guard to determine
authorization for a requested action. Once
registered, clients will have access to the
grid service on the basis of KAoS policies.
As policies are added to KAoS through
KPAT, they’re automatically converted to
OWL for use in reasoning and to a simple
and efficient representation in the guard
associated with the KAoS grid service for
enforcement purposes. When a client requests
a service, the KAoS grid service will check
if the requested action is authorized on the
basis of current policies by querying the
guard. If the guard allows the requested
action, the KAoS grid service initializes a
GIS-restricted proxy certificate by putting
the permissions needed to execute the action

ReferTo

RefersTo
RefersTo

CMU
Matchmaker

Forward

CMU
notification

agent

Notify

Arabello
Coast Guard

cutter
service

Gao
Marine

helicopter
service

US
Army

helicopter
service

US
Marine

helicopter
service

Pi
ck

up
 re

so
ur

ce
s

on
to

lo
gy

Coalition pick-up
rescue resources

Gao
hospital
service

Arabello
hospital
service

Notification
ontology

Policy management

Country
hospitals
ontology

Medical
treatment
ontology

KAoS
Policy

Ontology

CoSAR coalition
search & rescue

coordinator

US downed
pilot KAoS Policy

Administration
Tool

Distribute

Distribute

Distribute

Lookup

Notify

Ad
ve

rtis
e

Use
Notify

Coalition
commander

KAoS
Policy

Service

KAoS
Enforcer 1

Ask

Use

Use

Advertise
Jabber IM

KAoS Enforcer 3

Coalition
medical resources

KAoS
Enforcer 2

CoSAR I-X
agent

Figure 3. A CoSAR-TS demo diagram.

in its own end GIS entity certificate. This
certificate is the one the resource provided
at registration and maps to the local control
mechanism. The KAoS grid service also
sets the proxy lifetime and signs it. It then
returns the restricted proxy certificate to the
client. The client then uses this proxy cer-
tificate to access the given grid service.

When a service receives a request, it checks
the submitted certificate against the local
GIS control mechanism. Services can also
check permissions by querying the KAoS
grid service directly. The service checks to
ensure that action requested is covered by the
intersection of the rights given to the KAoS
service and the rights the KAoS service
embedded in the certificate. This lets the
local resource owner write policies restrict-
ing the rights it lets KAoS delegate.

A current limitation of our implementation
is that no mechanism exists for proxy certifi-
cate revocation. Globus relies on short life-
times to limit proxy credentials. An updated
policy in KAoS wouldn’t take effect until the
current proxy credential expired, forcing the
user to return to KAoS for an update.

Coalition search and rescue
In the Coalition Search and Rescue Task

Support project (CoSAR-TS, www.aiai.ed.
ac.uk/project/cosar-ts), we’re testing the inte-
gration of KAoS and the Artificial Intelli-
gence Applications Institute (AIAI)’s I-X
technology with Semantic Web Services.
Other participants in the CoSAR-TS project
include BBN Technologies, the Space and
Naval Warfare Systems Command, the Air
Force Research Laboratory, and Carnegie
Mellon University.

Search and rescue operations, especially
coalition-based ones, require rapid dynamic
composition of available policy-con-
strained heterogeneous resources. A good
use case is to describe them using Seman-
tic Web technologies. Additionally, mili-
tary operations are usually conducted
according to some well-defined procedure
that must be made concrete and grounded
to the given situation. Such a scenario is
good for illustrating planning under policy-
imposed constraints.

The fictitious scenario (see Figure 3),
which extends the well-known Coalition
Agent Experiment (CoAX, www.aiai.ed.ac.
uk/project/coax), begins with an event that
reports a downed airman between the coast-
lines of four fictional nations bordering the
Red Sea: Agadez, Binni, and Gao (to the

west), and Arabello (to the east). In this ini-
tial scenario, we assume that excellent loca-
tion knowledge is available and that no local
threats exist to counter or avoid in the res-
cue. The airman reports his own injuries via
his suit sensors. Next is an investigation of
the facilities available for rescuing the air-
man. Different possibilities exist: a US ship-
borne helicopter, a Gaoan helicopter from a
land base in Binni, a patrol boat off the Ara-
bello coastline, and so on. Finally, there’s a
process to establish available medical facil-
ities for the specialized injury reported,
using the information provided about the
region’s countries.

Different policies originate from different
coalition partners, which constrains selection
of these resources. If, for instance, a hospital
in Arabello has the best treatment facilities
for dealing with the airman’s injuries, choices
of rescue resources are then restricted. Addi-
tionally, the coalition has a policy prohibiting
members from using Gaoan helicopters to
transport injured airmen.

In addition to relying on KAoS, CoSAR-
TS relies on various I-X technologies from
the AIAI. I-X process panels (http://i-x.
info13,14) provide task support by reasoning
about and exchanging with other agents and
services any combination of Issues, Activi-
ties, Constraints, and Annotations (elements
of the <I-N-C-A> ontology). I-X can there-
fore provide collaborative task support and

exchange of structured messages related to
plans, activity, and such activity’s results. This
information can be exchanged with other
tools using OWL, RDF, or other languages.
The system includes a planner that can com-
pose a suitable plan for the given tasks when
it receives a library of standard operating pro-
cedures or processes and knowledge of other
agents or services that it can use.

Figure 4 shows an I-X process panel (I-P2)
and associated I-X tools. The I-Space tool
maintains agent relationships. I-X can obtain
the relationships from agent services such as
KAoS. I-X process panels can also link to
Semantic Web information and Web Ser-
vices, and can be integrated via “I-Q” adap-
tors11 to appear naturally during planning and
in plan execution support.

I-X work has concentrated on dynamically
determined workflows at execution time,
using knowledge of services, other agent
availability, and so on. However, it also offers
a process editor for creating process models
(I-DE) to populate the domain model and an
AI planner (I-Plan), which allows for hierar-
chical plan creation, precondition achieve-
ment, consistent binding of multiple variables,
temporal-constraint checking, and so forth.

The Semantic Firewall
We developed the Semantic Firewall

(SFW) project in collaboration with the Uni-
versity of Southampton, IT Innovation, and

JULY/AUGUST 2004 www.computer.org/intelligent 37

Figure 4. I-X process panel and task support tools.

Activity editor
Process panel

I-Space

Map tool

Messenger

I-Plan

SRI International.10 (See http://ontology.ihmc.
us/Semant icServices /S-F/Example/
index.html for an example scenario with poli-
cies encoded using the KAoS Policy syntax.)
In addition to performing standard policy man-
agement functions, KAoS will take as an input
a desired client workflow of grid services invo-
cations. It will then verify whether the client
is authorized to execute such a workflow in the
domain controlled by a given instance of the
SFW environment. Additionally, the policy
system might generate obligations in the form
of grid service invocations. These obligations
must execute during the original workflow—
for example, to preserve provenance (www.
pasoa.org/index.html) of the calculation re-
sults. In effect, we can modify and amend the
initial workflow with the policies. The system
will then enforce resulting policies embedded
in the contract governing the transaction as the
workflow is enacted.

Policy compliance verification
in Semantic Web Services
workflow composition

As a research topic, automatic composi-
tion of feasible workflows from a dynamic
set of available Semantic Web Services is
drawing increasing attention. We argue for
applying existing technology and mapping
already developed planners’ input and out-
put formats to the emerging Semantic Web
Services Process Model standard (www.
daml.org/services/owl-s/1.0).15 To this end,
we are extending our implementations of
I-X and KAoS.

The I-K-C tool
In the context of CoSAR-TS, we’ve inte-

grated KAoS and I-X to let I-X obtain
information about the role relationships
among human and software actors (peers,
subordinates, and superiors, for example)
represented in domains and stored in KAoS
as ontological concepts. I-X can also use
the KAoS policy disclosure interface to
learn about policy impact on its planned
actions. This is the first step toward mutual
integration of the planning and policy ver-
ification components.

The new I-K-C tool goes beyond the ini-
tial integration of I-X and KAoS to enable
Semantic Web Services workflow composi-
tion consistent with policies that govern com-
position and enactment (see Figure 5). This
approach lets I-X import services described
in OWL-S into the planner, augmenting any
predefined processes already in the process
library. KAoS verifies constructed partial
plans for policy compliance. We can export
the final plan, represented in OWL-S ontol-
ogy form, and use it in various enactment
systems or to guide the dynamic reactive exe-
cution of those plans in I-P2.

Mapping process to action
The OWL-S concept of process maps

semantically to the KAoS concept of action
(http://ontology.ihmc.us/Action.owl).
Unfortunately, OWL-S dramatically changed
how it represents workflow processes com-
pared with DAML-S. DAML-S represented
processes as classes whose instances were

process executions and whose input and
output parameters were defined as proper-
ties of those classes. It represented para-
meter restrictions as range constraints on
those parameter properties. In contrast,
OWL-S represents processes as instances
and defines parameters as instances of the
class Parameter or its subclasses Input and Out-
put. Processes’ parameter restrictions are
defined by the value of the process:parameter-
Type property for each parameter. This sig-
nificant change doesn’t allow for a straight-
forward mapping between OWL-S and
KAoS concepts using owl:equivalentClass and
owl:equivalentProperty, which had been previ-
ously possible in the case of DAML-S. In
the near future, the OWL-S definition of
process executions should change again and
will be defined as an instance of a ProcessIn-
stance class that refers to the process type.
This approach is similar to that taken in the
Process Specification Language.16

To use KAoS reasoning capabilities, we
must create an OWL class based on the
OWL-S process definition instance. We do
this by changing the process:parameterType to rep-
resent the appropriate restrictions. We’re
using the OWL-S API (www.mindswap.
org/2004/owl-s/api) to load OWL-S process
workflows, find all processes in a workflow,
and then get detailed definitions to build the
corresponding OWL class—a subclass of the
KAoS Action class—using Jena (http://
jena.sourceforge.net).

The change from DAML-S to OWL-S has
other consequences:

• You can’t build process hierarchies at
different abstraction levels using rdfs:sub-
ClassOf, while you can in the KAoS ontol-
ogy of actions.

• You can’t represent an actual instance of a
process—a very concrete realization of the
process. Again, in KAoS we use the instance
of an action to describe the currently enacted
event and then to find whether policies exist
that apply to this situation. The envisioned
process control ontology, announced as part
of OWL-S’s future release, will clearly need
methods to represent actual events and their
relation to processes.

• The process instance doesn’t represent the
actual event anymore, so the fact that the
process in OWL-S is a subclass of time-
entry:IntervalEvent carried over from DAML-S
is a self-contradiction. (OWL-S’s develop-
ers have promised to resolve this issue in
the near future.)

S e m a n t i c W e b S e r v i c e s

38 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

OWL-S KAoS - OWL-S
mapping

KAoS
ontology

ReferTo

I-Plan
(planning service)

KAoS
policy services

Policies
constraining

services usage

Collection of
available
Semantic

Web Services

Select service

<I-N-C-A->

Partial plan
amended with
policy-related
commentary

Goal

Final plan

Consult
policies

Use
Use

Use Use
Use

Use

Use

Use

Partial
plan

Figure 5. Cooperation between I-X and KAoS in the process of semantic workflow
composition.

In short, difficulties related to using
process classes in collections and other issues
motivated changing the representation of
processes between DAML-S and OWL-S.
However, addressing this problem has cre-
ated the challenges in the representation of
policies in KAoS we just mentioned. We
hope that the promised improvements in
future versions of OWL-S will help resolve
these issues.

KAoS capabilities for analyzing
action classes

After KAoS extracts a particular action
from the workflow and converts it to a cor-
responding action class, we examine the
action to determine its compliance with the
relevant policies in force. The process of
workflow policy compliance checking dif-
fers from that of checking authorization and
obligations of an action instance in policy
enforcement, which we described earlier. In
workflow policy compliance checking,
we’re not dealing with an action instance but
an action class. So, we must use subsump-
tion reasoning instead of classification rea-
soning—KAoS must find relations between
the current action class and action classes
associated with policies. Fortunately, we use
this kind of reasoning to perform policy
analyses such as policy deconfliction.6 These
analyses also involve discovering relations
(subsumption or disjointness, for example)
between action classes associated with
policies.

Such analyses will often lead to deter-
ministic conclusions—for example, that a
given process will be authorized or forbid-
den or that it will definitely generate an
obligation. Results will always be deter-
ministic if the given action class represent-
ing the investigated process is a subclass of
either a single policy action class or a union
of some policy action classes, respectively
representing either authorization or obliga-
tion policies.

Sometimes, however, the analyses can be
nondeterministic—that is, we might be able
to conclude only that a given process instance
could possibly be authorized or that it might
generate obligations. This kind of result will
occur if the given action class, representing
the process in question, is neither fully sub-
sumed nor fully disjoint, with a single pol-
icy action class or their unions respectively
representing either authorization or obliga-
tion policies. In this case, KAoS can build a
representation of the action class (either the

class that corresponds to the portion of the
action class in the authorization request or
the one that generates a given obligation) by
computing the difference between the cur-
rent action class and the relevant policy
action class. The algorithm is identical to the
one we previously described7 for policy har-
monization. However, we’re still working out
how to generically translate that new class to
an OWL-S process instance representation.

We’ve developed a first cut of additional
KAoS ontology components, enabling work-
flow annotation with the results of the pol-
icy analyses we described. The appropriate
markup was added to the original OWL-S
workflow using the OWL-S API and sent
back from KAoS to the I-X planner.

Example: Planning a rescue
operation under coalition policy
constraints

Project participants are using the CoSAR-
TS scenario to test the capabilities we just
described. With each new search-and-rescue
situation, the SAR coordinator gathers avail-
able information about the accident and con-
structs an appropriate goal for the planner.
The goal could, for instance, contain infor-
mation about the kind of injuries the victim
sustained and his or her approximate loca-
tion. The planner begins by selecting the best
initial plan template for the given situation.
It then builds OWL-S profiles for each nec-
essary service and queries the Coalition
Matchmaker to learn about OWL-S descrip-
tions of registered SAR resources. This
results in the first approximation of the plan
expressed as the OWL-S Process Model. For
instance, if the downed pilot has serious burn
injuries, the planner will ask the Matchmaker
which services are offered by the burn

injuries treatment unit in each medical care
center. Subsequently, it will ask for available
rescue resources that can pick up a pilot from
the sea and deliver him or her to the chosen
hospital (that is, Arabello). The system
selects the best result and submits the OWL-S
process model for verification. During work-
flow analysis, KAoS determines that an
obligation policy exists requiring that the
coalition commander receive notification
when the downed pilot is successfully recov-
ered. It inserts the appropriate process, invok-
ing the notification service—available in the
environment as the Web Service—into the
model, and returns it to the planner.

Policy enforcement during
workflow enactment

KAoS can’t check every aspect of policy
compliance at planning time. So, we’ve
designed it so that the policy service can
independently enforce policies during work-
flow execution. The policies governing both
authorization and obligation of clients and
servers are stored in KAoS and checked by
authorized parties. Other approaches to
securing Semantic Web Services are limited.
They can mark service advertisements with
requirements for authentication and com-
munication and enforce compliance with
these requirements,17 or they attach condi-
tions to inputs, outputs, and effects of ser-
vices. KAoS, on the other hand, can auto-
matically enforce any sort of policy by
integrating Semantic Web Services with
KAoS enforcers, components that intercept
requests to a service and consult KAoS about
their authorization and obligation. KAoS can
reason about the entire action the services
perform, not just about security credentials
attached to the request. Additionally, KAoS
helps generate obligations created when the
services are used. We describe three applica-
tions of KAoS during workflow enactment:
Matchmaker policy enforcement, a generic
Semantic Web Service enforcer, and agree-
ments and contracts in the Semantic Firewall
application.

Matchmaker policy enforcement—
CoSAR-TS scenario

Although annotating the Semantic Match-
maker service profiles lets registered service
providers describe required security profiles,15

it doesn’t let owners of infrastructure re-
sources (for example, computers or networks),
client organizations (coalition organizations
or national interest groups), or individuals

JULY/AUGUST 2004 www.computer.org/intelligent 39

KAoS can’t check every aspect of

policy compliance at planning

time. So, we’ve designed it

so that the policy service can

independently enforce policies

during workflow execution.

S e m a n t i c W e b S e r v i c e s

40 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

specify or enforce policy from their unique
perspectives. For example, the policy that
coalition members can’t use Gaoan transports
can’t always be anticipated and specified in
the Matchmaker service profile. Neither
would Matchmaker service profile annotations
be an adequate implementation for a US pol-
icy obligating encryption, prioritizing network
bandwidth allocation, or requiring the logging
of certain sorts of messages.

Moreover, these policies’ semantics can’t
currently be expressed in terms of the current
OWL-S specification of conditional con-
straints. Even if they could be, organizations
and individuals might prefer to keep policy
stores, reasoners, and enforcement capabilities
in their private enclaves. This might be moti-
vated by the desire to both maintain secure
control over sensitive components and keep
other coalition members from becoming aware
of private policies. For example, coalition
members might not want Gao to know that pol-
icy will automatically filter out the offer of their
helicopters to rescue the downed airman.

A generic Semantic Web Service
enforcer

We have defined enforcers that intercept
SOAP messages from the Matchmaker and
filter results consistent with coalition poli-
cies. In our CoSAR-TS demonstration, these
policies prevent the use of Gaoan resources.

We’re enhancing the SOAP-enabled
enforcers to understand arbitrary Semantic
Web Service invocations so that they can
apply appropriate authorization policies to
them. The enforcer is equipped with a
mechanism to perform obligation policies,
which are in the form of other Web Service
invocations. For instance, you can imagine
that some policy might require consultation
or registration of performed transactions in
some logging service available as a Web
Service audit entity.

Agreements and contracts—
a Semantic Firewall application

A necessary requirement for supporting
complex, dynamic groups of service providers
in a business context is the notion of a con-
tract. Although KAoS policies represent con-
straints on behavior involuntarily imposed
on software entities, contracts represent vol-
untary agreements that mutually bind the par-
ticipants to various authorizations, obliga-
tions, and modes of interaction. As an
example of the application of contracts to
Semantic Web Services, Benjamin Grosof

and Terrence Poon have developed Sweet-
Deal, a rule-based approach to automating
“law in the small.”18 SweetDeal represents
business contracts to let software agents cre-
ate, evaluate, negotiate, and execute contracts
among themselves for the performance of
Semantic Web Services.

Within KAoS, we plan to extend the
existing representation of policy sets to
include the representation and reasoning
constructs necessary to allow for creating
and executing agreements and contracts. As
part of contract creation, KAoS can already
detect policy conflicts and suggest harmo-
nization. We’re extending these and com-
bining them with new facilities for negoti-
ation and extensions of existing capabilities
for enforcement.

Contracts can be stored in instances of
KAoS (or perhaps some other interopera-
ble policy service) associated with each
Web Service or, when stakeholders prefer,
as independent KAoS instances represent-
ing neutral third parties.

KAoS provides capabilities for verify-
ing and enforcing user-defined policy

when automatically planning and executing
semantically described process workflows.
To advance this, we plan to investigate how
to take a context surrounding the process
(that is, processes and control constructs) in
a given workflow into account during policy
analyses.

Currently, KAoS can analyze OWL-S
encoded workflows; however, we can imag-
ine how to extend it to understand other
forms of descriptions (for example, the Web
Service Modeling Ontology, www.wsmo.org)
that share similar concepts of basic process
and workflow composition abstractions.

Acknowledgments
Our research was sponsored by the DARPA

CoABS, DAML, and UltraLog programs at the US
Air Force Research Laboratory under agreements
F30602-00-2-0577 and F30602-03-2-0014. The
US government, the Institute for Human and
Machine Cognition, and the University of Edin-
burgh are authorized to reproduce and distribute
reprints and online copies for their purposes
notwithstanding any copyright annotation hereon.
Thanks to the other members of the KAoS project
team: Maggie Breedy, Larry Bunch, Hyuckchul
Jung, Shri Kulkarni, James Lott, William Taysom,

and Gianluca Tonti. We are also grateful for the
contributions of Mark Burstein, Pat Hayes, Luc
Moreau, Niranjan Suri, Paul Feltovich, Richard
Fikes, Jessica Jenkins, Bill Millaar, Deborah
McGuinness, Rich Feiertag, Timothy Redmond,
Rebecca Montanari, Sue Rho, Ken Ford, Mark
Greaves, Jack Hansen, James Allen, Ron Ashri,
Terry Payne, Mike Surridge, Darren Marvin, Grit
Denker, Kate Keahey, Katia Sycara, Massimo
Paolucci, Naveen Srinivasan, and Robert Hoffman.

References

1. S.A. McIlraith, T.C. Son, and H. Zeng,
“Semantic Web Services,” IEEE Intelligent
Systems, vol. 16, no. 2, 2001, pp. 46–53.

2. J.M. Bradshaw et al., “Making Agents Accept-
able to People,” Intelligent Technologies for
Information Analysis: Advances in Agents,
Data Mining, and Statistical Learning, N.
Zhong and J. Liu, eds., Springer-Verlag, 2004,
pp. 355–400.

3. J.M. Bradshaw et al., “Dimensions of Adjust-
able Autonomy and Mixed-Initiative Interac-
tion,” to be published in Computational
Anatomy, Springer-Verlag, 2004.

4. G. Klein et al., “Common Ground and Coor-
dination in Joint Activity,” Organizational
Simulation, John Wiley & Sons, 2004.

5. G. Tonti et al., “Semantic Web Languages for
Policy Representation and Reasoning: A
Comparison of KAoS, Rei, and Ponder,” The
Semantic Web–ISWC 2003: 2nd Int’l Seman-
tic Web Conf., LNCS 2870, Springer-Verlag,
2003, pp. 419–437.

6. N. Damianou et al., Ponder: A Language for
Specifying Security and Management Policies
for Distributed Systems, tech. report Doc2000/
1, Dept. of Computing, Imperial College of
Science, Technology and Medicine, 20 Oct.
2000.

7. J.M. Bradshaw et al., “Representation and Rea-
soning for DAML-Based Policy and Domain
Services in KAoS and Nomads,” Proc. 2nd
Int’l Joint Conf. Autonomous Agents and Multi-
Agent Systems (AAMAS 2003), ACM Press,
2003, pp. 835–842.

8. A. Uszok, J.M. Bradshaw, and R. Jeffers,
“KAoS: A Policy and Domain Services
Framework for Grid Computing and Grid
Computing and Semantic Web Services,”
Trust Management: 2nd Int’l Conf. Proc.
(iTrust 2004), LNCS 2995, Springer-Verlag,
2004, pp. 16–26.

9. A. Uszok et al., “KAoS Policy and Domain Ser-
vices: Toward a Description-Logic Approach
to Policy Representation, Deconfliction, and
Enforcement,” Proc. IEEE 4th Int’l Workshop

Policies for Distributed Systems and Net-
works, IEEE CS Press, 2003, pp. 93–96.

10. R. Ashri, T.R. Payne, and M. Surridge,
“Towards a Semantic Web Security Infra-
structure,” Proc. AAAI Spring Symp. Seman-
tic Web Services, AAAI Press, 2004, pp.
84–91.

11. S. Potter, A. Tate, and J. Dalton, “I-X Task
Support on the Semantic Web,” Poster Proc.
2nd Int’l Semantic Web Conf., 2003; http://
i-x.info/documents/2003/2003-iswc-poster-
potter-ix.pdf.

12. M. Johnson et al., “KAoS Semantic Policy
and Domain Services: An Application of
DAML to Web Services-Based Grid Ar-
chitectures,” Proc. AAMAS 03 Workshop
Web Services and Agent-Based Eng., 2003;
www.ihmc.us/research/projects/KAoS/
OGSAIntegration.pdf.

13. A. Tate, “Coalition Task Support Using I-X
and <I-N-C-A>,” Proc. 3rd Int’l Central and
Eastern European Conf. Multi-Agent Systems
(CEEMAS 2003), LNAI 2691, Springer-
Verlag, 2003, pp. 7–16.

14. A. Tate, J. Dalton, and S. Potter, “Intelligible
Messaging: Activity-Oriented Instant Mes-
saging,” submitted to Proc. 14th Int’l Conf.
Automated Planning and Scheduling (ICAPS
2004), AAAI Press, 2004; http://i-x.info/
documents/2004/2004-x-tate-ime.pdf.

15. D. Wu et al., “Automating DAML-S Web Ser-
vices Composition Using SHOP2,” The
Semantic Web—ISWC 2003: 2nd Int’l Seman-
tic Web Conf., LNCS 2870, Springer-Verlag,
pp. 195–210.

16. C. Schlenoff et al., The Process Specification
Language (PSL): Overview and Version 1.0
Specification, NISTIR 6459, Nat’l Inst. Stan-
dards and Technology, 2000.

17. G. Denker et al., “Security for DAML Web
Services:Annotation and Matchmaking,” The
Semantic Web—ISWC 2003: 2nd Int’l
Semantic Web Conf., LNCS 2870, Springer-
Verlag, 2003, pp. 335–350.

18. B.N. Grosof and T.C. Poon, “SweetDeal:
Representing Agent Contracts with Excep-
tions using XML Rules, Ontologies, and
Process Descriptions,” Proc. 12th Int’l Conf.
World Wide Web, ACM Press, 2003, pp.
340–349.

JULY/AUGUST 2004 www.computer.org/intelligent 41

T h e A u t h o r s
Andrzej Uszok is a research scientist at the Institute for Human and Machine
Cognition. His research interests include ontology, policy specification, agent
systems, and transparent interoperability. He received his PhD in computer
science from the AGH University, Krakow. He is a member of the AAAI.
Contact him at the Inst. for Human and Machine Cognition, 40 S. Alcaniz,
Pensacola, FL 32502; auszok@ihmc.us.

Jeffrey M. Bradshaw is a senior research scientist at the Institute for Human
and Machine Cognition. His research interests include knowledge acquisi-
tion, software and robotic agent technology, human–agent teamwork,
adjustable autonomy, and mixed-initiative interaction. He received his PhD
in cognitive science from the University of Washington. He is a member of
the AAAI, the ACM, and the IEEE Computer Society. Contact him at the
Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pensacola, FL 32502;
jbradshaw@ihmc.us.

Renia Jeffers is a research associate at the Institute for Human and Machine
Cognition and a lead designer and developer for the KAoS policy and domain
services. Her research interests include software agent technologies; policy
specification, management, and enforcement; and human–robotic teamwork.
She received her MS in software engineering from Seattle University. Con-
tact her at the Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pen-
sacola, FL 32502; rjeffers@ihmc.us.

Matthew Johnson is a research associate at the Institute for Human and
Machine Cognition. His research interests include human–machine inter-
face, teamwork, policy, and mixed-initiative interactions. He received his MS
in computer science from Texas A&M University at Corpus Christi. Contact
him at the Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pensacola,
FL 32502; mjohnson@ihmc.us.

Austin Tate is the technical director of the Artificial Intelligence Applica-
tions Institute and holds the Personal Chair of Knowledge-Based Systems at
the University of Edinburgh. His research interests include AI planning (O-
Plan and I-X/I-Plan), collaboration and process, and Web Services standards
activities. He received his PhD in machine intelligence at the University of
Edinburgh. He is a fellow of the Royal Society of Edinburgh (Scotland’s
National Academy) and the AAAI. Contact him at the Artificial Intelligence
Applications Inst., Univ. of Edinburgh, Appleton Tower, Crichton St., Edin-
burgh EH8 9LE, UK; a.tate@ed.ac.uk.

Jeff Dalton is a research scientist at the University of Edinburgh’s Artificial Intelligence Applications
Institute. His research interests include planning, simulation, Web-based software, and programming
language design and implementation. He received his BA in mathematics from Dartmouth College.
Contact him at the Artificial Intelligence Applications Inst., Univ. of Edinburgh, Appleton Tower,
Crichton St., Edinburgh EH8 9LE, UK; jeff@inf.ed.ac.uk.

Stuart Aitken is a member of the University of Edinburgh’s Artificial Intel-
ligence Applications Institute. His research interests include ontology, bioin-
formatics, intelligent tools for knowledge acquisition, and machine learning.
He received his PhD in computer science from the University of Glasgow.
Contact him at the Artificial Intelligence Applications Inst., Univ. of Edin-
burgh, Appleton Tower, Crichton St., Edinburgh EH8 9LE, UK; stuart@
aiai.ed.ac.uk.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

