
Enterprise Modelling: A Declarative Approach for
FBPML

Yun-Heh Chen-Burger
�

, Austin Tate
�

, Dave Robertson
�

�

AIAI, The University of Edinburgh
80 South Bridge, Edinburgh, UK

email: jessicac@aiai.ed.ac.uk a.tate@ed.ac.uk
�

Centre for Intelligent Systems and their Applications
The University of Edinburgh, UK

email: dr@dai.ed.ac.uk

Abstract. Enterprise Modelling (EM) methods are well-recognised
for their value in describing complex, informal domains in an or-
ganised structure. EM methods are used in practice, particularly dur-
ing the early stages of software system development, e.g. during the
phase of business requirements elicitation. The built model, however,
has not always provided direct input to software system development.
Despite the provision of adequate training to understand and use EM
methods, informality is often seen in enterprise models and presents
a major obstacle. This paper focuses on one type of EM methods:
business process modelling (BPM) methods. We advocate the use of
a BPM language within a three-layer framework. The BPM language
merges two main and complimentary business process representa-
tions, IDEF3 and PSL, to introduce a Fundamental Business Process
Modelling Language (FBPML) that is designed for simplicity of use
and under-pinned by rich formality that may be used directly to sup-
port software and workflow system development.

Key-words Business Process Modelling, IDEF3, PSL, Workflow Man-
agement, Business Modelling, BSDM, Formal Method, Enterprise Mod-
elling, Collaborative (Web-based) Knowledge Management.

1 Introduction - The Gap

Enterprise modelling (EM) methods are well-recognised for their
value in organising and describing a complex, informal domain
in a more precise semi-formal structure that is intended for more
objective understanding and analysis. Example EM methods are
business modelling method, business modelling of IBM’s BSDM
(Business System Development Method) [13], process modelling
method, IDEF0[18], IDEF3[17], PSL[21], RAD[19], RACD[3],
CommonKADS Communication Model Language (CML)[26], or-
ganisational modelling, Ordit[7] Ulrich[10], capability modelling,
[22] and (Enterprise) Ontology [23], [25], [9].

Despite their use, Enterprise Models have not always provided di-
rect input for software system development. Obstacles include the
necessary training required for users to learn conceptual modelling
in general as well as the specific techniques required for the spe-
cific method applied. Generic knowledge acquisition techniques are
also needed to elicit knowledge from the application domain. One

other main obstacle is the lack of direct mapping from EM methods
to software system development. Since EM methods are normally
described at higher levels of abstraction which are independent of
implementation issues, EM methods are often used merely as a de-
scription and analysis tool of the application domain. However, as
EM methods often describe requirements from the business side, as
opposed to from the technical side, the built Enterprise Models are
natural candidates to provide a “blueprint” for business requirements
when building software systems.

Figure 1 illustrates the gap that exists between Enterprise Models
and common software systems built for organisations. It also pro-
poses three possible means, all of them based on formal methods,
Quality Assurance, Mapping of Data Structure and Workflow System,
to bridge the gap by providing direct mappings between Enterprise
Models and designing and building of software systems.

Figure 1. Bridging Gap between Enterprise Models and Software Systems

Formal methods may be used in various ways to facilitate commu-
nication between modellers and users of models, e.g. to make tacit
information explicit and present it in different (maybe less techni-
cal and/or more familiar) forms, or to provide simulation function-
alities to allow the reader to run through possible user scenarios
in a state machine[2][20][11]. Automatic support such as knowl-

edge sharing and inconsistency checking between different Enter-
prise Models, when a set of EM has been used, may also be done
based on one commonly shared ontology [3]. The automatic sup-
port helps the modeller and user of the model understand a model in
depth, therefore enhances their ability in error detection and model
refinement. As a result, quality of the built models is improved. The
refinement process based on computing support is indicated by the
“Quality Assurance” arrow in the figure. Another way to bridge the
gap is to provide a means to transfer data and knowledge that are held
in the EM, particularly in an ontology, to software systems. This may
be done by mapping an ontology to ER (Entity-Relational) Model
(for Relational Databases) or to Class Diagram (for Object-Oriented
Databases) or other types of data structures. This is indicated by the
“Mapping of Data Structure” arrow.

This paper focuses on one type of EM method: Business Process
Modelling (BPM) Method. One direct and obvious way to make use
of BPM methods and to provide a direct input to software systems
is to build a workflow system that is based on a business process
model[8]. A definition of workflow, that is given by the Workflow
Management Coalition, that describes its relationship with a business
process is given below:

“The automation of a business process, in whole or part,
during which documents, information or tasks are passed from
one participant to another for action, according to a set of pro-
cedural rules.”[8]

Although the above approach seems obvious, in practice not all
workflow systems have received the full benefit from business pro-
cess modelling. The BPM approach towards building a workflow sys-
tem is a recent and gradual approach over the past two years. This
is different from the first generation workflow systems where BPM
was not used[12]. The reasons for such phenomena are the lack of
training and understanding of BPM methods and how they may be
applied in an organisation. The business process when it is used of-
ten does not separate business and implementation logic, and hence,
the resulting workflow system is not flexible in reaction to the dy-
namic and volatile environment within which the workflow system
operates.

Last but not least, while BPM methods are normally described at
a higher level of abstraction that enables flexibility for implementa-
tion, they do not provide sufficient details of additional information
that must be included for process enactment. It is therefore benefi-
cial to provide a means that maintains the flexibility of higher level
descriptions, while at the same time providing sufficient information
and a mechanism to carry out workflow[14].

This paper proposes a layered business process modelling ap-
proach that aims to lessen the above problems, therefore narrowing
the gap. The paper also describes the design of FBPML (Fundamen-
tal Business Process Modelling Language) and how business pro-
cesses based on it may be mapped to a visualisation of dynamic states
of a workflow system in a collaborative enterprise environment.

2 An Ontology based Three-Layer BPM
Framework

Figure 2 describes a layered business process modelling framework
which provides the means to allow higher level business processes,
objectives and policies to be carried forward and realised in the actual
implementation of software (and manual) systems. The upper two
levels of the framework describe business operations at a higher level
of abstraction; the lower level of the framework describes how these

business operations may be implemented in a software system. In
this framework, design rationale of a software system is based on a
company’s objectives, hence the corresponding software system can
be traced back to the initial business requirements and justified. Both
of these enable the system to be coherent with the overall business
aims.

Figure 2. A Three-Layer Business Process Modelling Approach

The first layer, Business Layer, describes business requirements
of an organisation, processes that are to be carried out by the organ-
isation and information used by these processes. Information stored
in this layer are higher level descriptions that may be written in in-
formal or semi-formal documents. Examples are source data files,
mission and organisation goal statements, business plans, and sum-
mary and vision of business operations. In this layer, information
that is consolidated, such as business policies, longer lasting organi-
sational structure and business-level decisions that are used as guide-
lines for developing business process models, is in general robust
against change of technologies and (automated or manual) practices.

The second layer, Logical Layer, expresses a logical description of
business processes. This description dictates the conditions and ac-
tions of business processes, the relationships between them as well
as operational constraints on data that processes operate on. The
Logical Layer is a (semi-formal) business process model that de-
scribes business operations in ordered activities. It extracts and for-
malises business requirements using computer understandable lan-
guages, while leaving the corresponding (informal) source data side
by side in the model for reference and justification of its formal repre-
sentation. It also interprets and elaborates the abstract requirements
described in the Business Layer into more concrete constraints us-
ing the designed language to provide direct design guidelines for the
implementation of the software system. The process modelling lan-
guage, FBPML, that will be described in Section 4 resides in this
layer.

The formality described in this layer allows automatic communi-
cation with the next layer, the Implementation Layer. Logical layer,
however, does not consider the mechanism which may be used to en-
act the described processes. Such issues are dealt with in the Imple-
mentation Layer. Examples of such issues are the software paradigm
deployed, software and hardware systems involved, integration is-
sues, and programming languages used. Descriptions in the Logi-
cal Layer may have multiple mappings to descriptions in the Imple-
mentation Layer. This is particularly applicable in a complex or an
agent architecture system where different components may have dif-
ferent functionalities and means to implement the same logical pro-
cess. They also need to collaborate with each other to accomplish a
business process.

The logical layer specifies all of the process-related and the core

set of data-related integrity constraints so that the implemented sys-
tem does not violate any business or operational constraint. Since a
business process may be enacted by different system components and
they may be carried out concurrently, the business process model pro-
vides a common and sharable knowledge base for process communi-
cation during enactment. Because a business process model captures
operational logic and is independent of technologies used for imple-
mentation, it is more robust against changes of technologies.

The Implementation Layer gives detailed step-by-step algorithmic
procedures for software modules that implement processes described
in the Logical Layer. Such algorithmic procedures may be described
in a process modelling language that is capable of describing im-
plementation details, or languages similar to flow-control and data-
flow diagrams, or other application or system specific languages.
Implementation Layer tends to be technology-dependent, it may be
changed very frequently. For instance, an introduction of a new user
interface, software or hardware system component may or may not
result in a change in the logical layer, but will probably cause a
modification of the corresponding descriptions in the Implementa-
tion Layer. For this reason, processes given in the Implementation
Layer are volatile and disposable, as new technologies become avail-
able. They may be easily changed without disturbing a business’s
operation in a principle way leaving the business a more flexible and
agile system.

Information that is manipulated by logical processes is organised
in a hierarchical fashion, i.e. a Domain Ontology. The Domain On-
tology gives semantics of the information stored and is comparable
to a subset of classes that may be used to store operation related in-
formation in a database. It includes common classes (or a part of the
schema for a “relational system”) that are shared by different logical
processes to allow them to exchange information under a standard-
ised business practice. The Ontology is also mapped to procedures
that are described at the Implementation Layer which allows infor-
mation to be passed between the two levels based on the constraints
prescribed in the logical processes.

As a process may be implemented differently in different system
components, different versions of implementations may read, write,
update or delete the same data sources concurrently following the
explicit data management polices defined in the Logical Layer. The
enacted processes may also communicate with each other through in-
formation that is under-pinned by the Domain Ontology. This mech-
anism enables a close collaboration between different process en-
actments and duplication of actions may be avoided and intelligent
behaviours of the system may be generated.

The overall aim of the layered BPM framework is to provide a
principled way for business process modelling that is flexible and
therefore robust against changes in technology through time. It sepa-
rates business requirements from technical issues when making deci-
sions for developing workflow systems. This separation enables the
workflow system to be more robust and agile in response to change
of requirements in the dynamic environment that it operates within.

3 Requirements and Design of FBPML

To provide a business process modelling language that supports to-
day’s ever changing workflow environment and meets diversified re-
quirements is not an easy task. A few design issues have been con-
sidered and acted upon, and are listed below.

� Standard: Modelling concepts that are described in the new BPM
language should meet their specialised requirements but also need

to be consistent with the current process modelling language stan-
dards. This not only keeps FBPML compliant with standard prac-
tices it also aids communication with other BPM languages and
practitioners in the field. In essence, this means concepts that are
included in standardised process modelling languages are main
candidates to be included in FBPML. As a result, FBPML is an
inherited, specialised and combined version of these standardised
modelling languages. The main languages that have influenced the
design of FBPML are IDEF3, PIF, PSL, RAD, CommonKADS
CML and the Business Modelling method of IBM’s BSDM.

� Accessible: The language should be easy to learn and use for both
IT and business personnel. As one of the main business require-
ments for BPMLs is to enable business personnel to do BPM
WITHOUT IT support.[12] To achieve this, FBPML covers fun-
damental process concepts that minimise complexity introduced
by superfluous notations. It also introduces annotation notations
that are informal and not directly understandable by machine.
Such annotation is not formally a part of the model, but may pro-
vide useful explanation to the model, recording of design rationale
or simply a reminder to assist the modelling process.

� Collaborative: An enterprise today is a virtual entity: it consists
of a variety of enablers that are scattered across different geo-
graphical areas. Some enablers are human whereas others are au-
tonomous agents or system components. Each enabler plays a role
in its activities and is equipped with specialised functions, capabil-
ities and authorities. Those enablers are characterised in their ex-
pertise and often behave in different ways that are best suited for
their tasks and environment. However, to achieve organisational
goals, they need to work collaboratively to accomplish their tasks.
Traditionally, BPM methods do not include or explicitly repre-
sent the concept of such enablers, their responsibilities, authori-
ties, how they collaborate with each other and what their relation-
ships are between each other. The roles that enablers play, the rela-
tionships between them and information about them are captured
in FBPML in the concept of Role.

� Precise: As most of the BPM methods are informal methods, they
do not provide formal semantics for their notations. To avoid po-
tential mis-use of the modelling language and mis-interpretation
of built process models, there is a need for precise definition for
notations so that a model may be interpreted correctly and con-
sistently. IDEF3 provides a mature modelling method, graphical
notations and sound conceptualisation about processes, but there
is no formal semantic for its notation. PSL, on the other hand,
does not have a visual presentation or method, but provides for-
mal definitions of its concepts. This presents a natural opportunity
to merge the two to gain benefits from both - this is the approach
taken by FBPML.

� Executable: Semantics that are defined in the BPM language
should include (or at least imply) operational definitions. This
means the use of common process components, such as trig-
ger, pre-conditions and postconditions, bear prescribed execution
mechanisms. In addition, the types of executable activities also
need to be identified and to be included as a part of the model. Pro-
cess modelling methods are inherently rich in their semantics. The
semantic of links between processes, for instance, are regarded
as dependencies between processes, yet they also bear temporal
constraints, and they may also act as triggers for the following
processes. Junctions, such as AND, OR and XOR, may be inter-
preted differently depending on the use in the diagram, e.g. as a
joint or split node. In addition, if both triggers and pre-conditions
are defined in a process, they may bear distinct implications for

execution. Users of BPM need to understand such implications in
order create a correct and appropriate model.

� Formal: Formality is important to connect a business process
model to its execution phase. Ideally, there is a direct mapping
from semantics of a business process model to application logic
(as described in the logic layer and implementation layer in the
previous section). This enables the separation between process
and application logic, yet maintains declarative design of a work-
flow system. This implies modifications made at the logic layer
automatically update processes at the implementation layer. If any
inconsistency occurs, the system will give warning to the user.
The formal approach has several advantages: automatic/intelligent
analysis, verification, validation, and simulation facilities may be
supported at the business layer[5][4]; once a business process
model is satisfactory stable, it may automatically populate a large
part of processes at the implementation layer.

4 A Declarative Executable FBPML - The
Semantics

4.1 Activity, Decomposition and Specialisation

As mentioned in the previous section, FBPML should conform with
standard practice. IDEF3, being a mature activity modelling method
that largely meets our requirements, provides the foundation for
FBPML. IDEF3[17] defines the concept of decomposition and spe-
cialisation of a process that FBPML also encompasses. Similar to
IDEF3, the concept of decomposition in FBPML allows a process
described at a higher level of abstraction to be decomposed into more
detailed sub-processes that are more explicit for its implementation
procedures. Each sub-process may also be decomposed into more
detailed descriptions. The specialisation of a process indicates the
alternative ways of carrying out a process.

Although there may be more than one alternative way of carrying
out a task; unlike decomposition where all of the sub-processes must
be carried out in order to accomplish the task, specialisation requires
only one alternative sub-process to be carried out to accomplish the
task. However, if one alternative activity does not finish the task due
to some circumstances, another alternative activity may collaborate
with the current one to accomplish the task. The detailed mecha-
nism about how different alternative processes may work together in
a coherent way in all eventualities requires a thorough examination
of implementation methods. Since this is implementation dependent
and outside the scope of this paper, it is not discussed here.

4.2 Notation

Figure 3 depicts the notation of FBPML as it is shown using KBST-
EM (Knowledge Based Support Tool for Enterprise Models)[3].
There are three types of nodes: the Main Node, Junction and An-
notation. Four types of Main Nodes are included: Activity, Primitive
Activity, Role and Time Point. Two types of Annotations are included:
the Idea Note and Navigation Note. Two types of links are provided:
the precedence-link and synchronisation-bar. There are four types of
Junctions: and, or, start and finish.

Main Nodes: As mentioned earlier, an activity node denotes the
type of process that may be decomposed or specialised into sub-
processes. In addition, the notion of Primitive Activity (from PSL)
has been introduced to denote a leaf node activity that may not be
further decomposed or specialised. Primitive activity is useful to
FBPML, as it highlights the connecting point between the higher

Figure 3. FBPML Notation

level process description and lower level implementation details that
are described in the logical and implementation layers, respectively.

Although some process modelling methods distinguish terms be-
tween process, activity and task, as one is a higher level description
of another, like IDEF3 and PSL FBPML does not make the distinc-
tion. Since a process may be further decomposed or specialised into
sub-processes that may be again further decomposed or specialised,
a process at one level is an activity to its “parent” process. As a result,
these terms are used interchangeably in this document.

In FBPML, an activity is uniquely identified by its name (or ID)1.
However, since FBPML (as well as IDEF3) permits the same activ-
ity to be repeated in different places in a process model, that nor-
mally exhibits different relationships between itself to other activi-
ties, the same activity may be enacted differently in a model in dif-
ferent places. Furthermore, since an activity may be a decomposition
or a specialisation of its parent activity, this adds extra meanings de-
pending on the type of sub-activity that it describes.

The semantics of an activity to a model is, therefore, defined
together by its location in the model, its usage in the model and the
content defined within itself, i.e. the Trigger(s), Pre-condition(s) and
Action(s). Post-condition(s) is often defined as a part of a process
and recorded in our model as it gives explicit checking points on
successful execution of a process. However, since it is derivable
from pre-conditions and actions of a process, we do not include it in
our formal representation. In FBPML, the location of an activity is
recorded in the field Hierarchical Position (HP). Therefore, the tuple

���������
	���
���
���� ��������������
� � !�"���#�$�%� 	'&(�*)�
���
�&��+����	,��
�&(�.-

defines an activity (type) in a model using FBPML, where each
HP is unique and there may be more than one trigger, pre-condition
and action. To denote the relevance to and uniqueness in a model, an
activity is formally represented as:

activity(Activity name, Hierarchical Position)

where Activity name is the name of the activity and Hierarchi-
cal Position its location in the model. If A is a primitive activity in
the model, the above predicate name, activity, is changed to primi-
tive activity. Since this paper only discusses semantics of notations
but not their semantics in a model, for simplicity, this section as-
sumes all activities are uniquely used in our examples and therefore

/
For pragmatic reasons, an activity ID is created for each activity to provide
a short hand identity for an activity. Each activity name uniquely maps to
an activity ID and vice versa. Logically, we do not represent it, since it does
not add additional semantics.

uses Activity name instead of the above predicates, activity/2, when
referring to an activity.

The predicate attribute(Activity, Attribute name, Attribute value)
holds the specification for an Activity type where Attribute name
stores the corresponding attribute name, such as trigger, precondition
and action, and Attribute value stores the attribute value that may be
a structured term or template with variables using specific grammar.
Variables that are included in the Attribute value will be instantiated
dynamically by (process or object) instances at run time.2

The concept of Role is adapted from RAD where a Role is de-
scribed as involving a set of activities which carry out a set of respon-
sibilities. Such activities are “generally carried out by an individual
or group within the organisation”. Roles are also types and “there
can be a number of different instances of a role type active at any one
time within an organisation”[19]. In FBPML, the definition of Role
is functional and as described above, it defines the “role” that an en-
abler plays in the context of the described activities. Upon process
enactment, a role may be fulfilled by an individual, a group of peo-
ple or software components, or a combination of the above. Similar
to RAD, although different graphical presentation and process con-
cepts are used, FBPML highlights interactions between roles: each
role may have its own internal as well as communication processes.
The communication processes allow explicit definition of interaction
methods and boundary of communication within processes of each
role. Tasks and issues may be delegated, escalated or transfered be-
tween roles as a part of communication processes.

The notation of time point indicates a particular point in time dur-
ing the enactment of a process model. The reference of time point
may be decided by the implementation method of the model. A du-
ration of a time interval is indicated by two time points. A length of
time may not have association with any particular point of time.

Annotations: Two types of annotations are included: Idea Note
records textual information that is relevant to, but outside the scope
of, a process model, e.g. design rationale or a reminder for analysis
for certain parts of a model; Navigation Note records the relation-
ships between diagrams in a model. In general, annotation nodes do
not contribute semantically to a process model, but they help the or-
ganisation and management of the modelling process.

Links: Two types of links are included: Precedence-link and Syn-
chronisation Bar. Precedence-link is comparable to the more con-
strained Precedence Link, type II, in IDEF3. In FBPML, the spec-
ification that Activity A is preceded by Activity B is denoted by
a Precedence-link from Activity A to B as shown in Figure 3. A
Precedence-link places a temporal constraint on process execution
that the execution of Activity B may NOT start before the execution
of Activity A is finished when the two processes are on the same exe-
cution path. Figure 4 illustrates the concept of path and the execution
of processes[1].3

In Figure 4, “Top Process” transforms from state So to Sn. It
is also a parent process that may be decomposed or specialised
into sub-processes. One way to propagate from state So to Sn
then is to activate the appropriate sub-processes and execute them
along the state path

��� ���+&������%���	����
�

 � � -
by activating the

process sequence � (where several process instances may execute
synchronised or not to transfer from one state to another). We
denote an execution of process instances along a state path

�
in the

predicate activation/2:

�
A separate predicate is used to store process instance attributes.�
This Figure is adapted from [15].

Sn...S1 S2

SnTop ProcessSo

So

State Path: = <So, S1, S2, S3,... Sn>Π
Execution Path:

φ1 φ2 φ3 φ n

nΦ = {φ1, φ2, φ3,.... φ }

Figure 4. Execution Path for Processes

��	,�#
 �����#
 &(�	� � � ��� .
Given the execution path, one can formally specify the temporal

constraint between activity A and B in the formula below:

Axiom 1: Temporal Constraint� �
	���
���
���� �*���
	���
���
���� ��
� �%�"	 �")��") �'������	,��
���
���� � � ��	,��
���
���� � �� �
�������

� � � ��� ���!� ��� �
	���

��! �#����	'� &#"$��� � ��	,�#
 ��
��#� � �&%

��$ '�#�!�*	'� &#"$� � ����	,��
���
���� � �&%
��	,��
�������
�&(�	���
	,�,� � �&%
�('���	,� % � '��
	,��
�"��) ��
����)��� ����	,�#
���
��#� � �	� �� � �
�� �#
 ���*� � �#�!	���
���
���� � �

+�,,,,,,
-

A Precedence-Link suggests natural process flow which is if
Activity A is executed, Activity B should also be executed along
the corresponding execution path unless other conditions interact
with it. We use . to represent this nature of weaker inference that is
pronounced as should be or may be. This definition gives a process
model more flexibility and is slightly different from Precedence-Link
Type II in IDEF3 where strong inference is prescribed. This rule is
described formally below:

Axiom 2: Dependency Constraint� �
	���
���
���� �*���
	���
���
���� �(�� �%�"	 �")��") �'������	,��
���
���� � � ��	,��
���
���� � �� �
������
� � � ��� �
	���

��$ '�#�!�*	'� &#"$��� � ��	,��
���
���� � �&%
��	,��
�������
�&(�	���
	,�,� � �&%
�('���	,�.� � ��
��! �#����	'� &#"$� � ���
	,�#
���
��#� � �&%� '��
	,�

+ ,,,,,
-

A Precedence-Link also indicates that the completion of activity
A invokes Activity B to be activated. We introduce a property Tem-
poral Qualification (TQ) to denote that Activity B is temporally
qualified to be executed. Temporal Qualification, however, does not
guarantee the execution of an activity because it also depends on
the content of trigger and pre-conditions of that activity. We use the
predicate tq(Instance, Process) to indicate this property and end/2 to
indicate that the execution of a process instance is finished.

Axiom 3: Property of Temporal Qualification� ��	,��
���
���� � � �
	���
���
���� ���� ��� 	'�")��) �,�����
	,�#
���
��#� � ���
	,�#
���
��#� � �� �
����
� �

 �! '�����*	 � &#"$��� � ��	,��
���
���� � �&%
�"�*) ��� ����	,�#
 ��
��#� � ��� �

��$ '�#�!�*	'� &#"$� � ����	,�#
 ��
��#� � �&%
� � � � ���
	���
���
���� � �

+�,,,
-

The property of TQ is important as it implies execution logic of a
process model that separates the notation between the execution of
process instances and those that are only temporally qualified to be
executed. We introduce a separate property Full Qualification (FQ)
to define that a process is Fully Qualified, if it is Temporally Qual-
ified and that all of its triggers and pre-conditions are satisfied. A
fully qualified process instance may be executed immediately. Due
to space, we do not describe the formalism here. The properties of
TQ and FQ provide exact semantics for the execution logic that de-
termines the dynamic behaviours of a process model at run time.

The above precise definition of FBPML links signifies how it dif-
fers from most other business process modelling languages. Since
most business process modelling languages focus on the specifica-
tion ability of a process, the actual implementation steps of a process
are left out and are open to interpretation for system developers, e.g.
IDEF3, IDEF0, PSL, Business Process Model in BSDM. Since the
implementation considerations have not been provided by the orig-
inal model, it leaves a question of whether the implemented system
obeys the intended design of the system and/or whether the imple-
mentation has been carried out consistently with respect to the model.
Since such process execution rationale has not been recorded at the
first place, such questions are difficult to evaluate.4

Besides providing precise execution logic and instructions to the
implemented workflow system, the above precise semantics allows
both static as well as dynamic (state) Verification, Validation and
Critiquing (VVC) facilities on the business process model. The static
VVC techniques include error and appropriateness checking and cri-
tiquing based on the examination and comparison of different parts
of the static structure of a business process model without the ac-
tual instantiation of the model. The dynamic VVC involves test runs
of interesting scenarios through the model in an attempt to under-
stand system behaviours at run time. Similar techniques have been
applied and implemented in KBST-BM[2] for IBM’s business model
in BSDM.

As an activity may be decomposed into several sub-processes, the
activation of a top process may be accomplished by activation of its
sub-processes. In this case, the execution of the top process is not
finished unless all of the corresponding sub-processes are finished.
Again, we do not describe the formalism here.

The second type of link is Synchronisation Bar. A Synchroni-
sation Bar places a temporal constraint between two time points.
For example, one may synchronise the starting or finishing of two
processes by synchronising the “begin times” or “end times” of
the two processes. The Synchronisation between two time points is
therefore defined below:� �(' ��
���� � &(
�� �'� � ' ��
���� � &(
�� ��
 �!�*	�� ��&(�*
 "���#
 &(�	��� � � ��� � � �

Junctions: Junctions are special or simplified activities, in that

�
This is a recurrent problem that the authors have to deal with in one of their
commercial business process modelling projects and their research projects.

they do not have triggers and pre-conditions, and their actions have
predetermined decision logic for starting, ending or branching pro-
cess execution. Four types of Junctions are included in FBPML:
start, finish, and, and or junctions.

The “start” and “finish” junctions provide an explicit indication of
the logical starting and finishing points of a process. They may also
isolate a part of a process that can be treated locally as a sub-process.
These two junctions provide a clear indication for the entry and leav-
ing points for the reader and when executing a process. It provides
a natural decomposition for testing a process and a convenient in-
dication for breaking a long complicated process when developing
workflow systems using a divide-and-conquer strategy.

An “and” or “or” junction is a one-to-many relationship that de-
scribes process execution flow and temporal constraint between the
activities that are connecting to it. Figure 5 shows how an “and” or
“or” junction may be used in a process model. As shown in the fig-
ure, there are two types of interpretations of an “and” or “or” junc-
tion: the joint or split type of junction, depending on the topology of
the process model.

Figure 5. FBPML Joint and Split Junctions

An and- or or-joint indicates more than one preceding activity
before the “and” or “or” junction, and only one activity following
the junction. Figure 5(a) and (b) give example graphical representa-
tions of an and- and or-joint where each junction is attached to three
in-coming arrows and only one out-going arrow. A joint type of junc-
tion is sometimes also referred to as a fan-in junction in some pro-
cess modelling languages. Semantically, an and-joint indicates the
process execution flow and the temporal constraint that all of the
preceding activities must be finished before the following activity is
temporally qualified and therefore be executed. An or-joint indicates
only one of the preceding activities is required to be finished before
the following activity becomes temporally qualified and executed.

An and- or or-split indicates that there is only one activity pre-
ceding the junction, but there is more than one activity following the
junction. Figures 5(c) and (d) illustrate example and- and or-splits.
A split junction is sometimes also referred to as a fan-out junction in
some process modelling languages. Semantically, a split junction in-
dicates process flow, temporal as well as dependency constraints. An
and- or or-split indicates that all of the following activities become
temporally qualified when the preceding activity is finished. Further-
more, an and-split also indicates that all of the following activities
must be executed at some point of time after the preceding activity is
finished.

On the other hand, an or-split indicates that at least one of the fol-
lowing activities of the “or” junction will be triggered and executed

when the preceding activity is finished. It is, however, unclear how
many or which of the following activities will be triggered and exe-
cuted, since it depends upon the corresponding dynamic system state
and the trigger and pre-condition statements of the following activ-
ities. For both of the and- and or-split, all of the activities that are
described after the junction may be executed in parallel or sequen-
tially, when appropriate. The precedence-link and the junction do not
specify the exact synchronisation between these activities. Such syn-
chronisation is specified by Synchronisation Bars.

4.3 Combinational Use of Branching Junctions

Figure 6 demonstrates the four common combinational uses of “And”
and “Or” junctions. The four basic cases of combinations are given
in the Figure (a), (b), (c) and (d) accordingly and listed below: And-
And, Or-Or, And-Or, Or-And.

Figure 6. FBPML Junctions Coupled

According to the definitions given for “And” and “Or” junctions in
the previous section, the and-and combination defines that activity B,
C and D must execute at some point of time after but only after ac-
tivity A is finished, and that activity E may not start execution before
B, C and D have finished.

The or-or combination, on the other hand, gives a more loose con-
straint in that, similarly to and-and combination, activity B, C or D
may only start execution after activity A is finished. However, it may
not be the case that all of B, C and D are executed - it depends on the
system dynamics and execution requirements of B, C and D. Never-
theless, since an or-split has been used here, at last one of B, C or D
must be executed. When either activity B, C or D is finished, activity
E may start its execution. The and-and and or-or combinations are
demonstrated in Figures 6(a) and (b), respectively.

Similarly, in Figure 6(c), the and-or junction indicates that activi-
ties B, C and D may start their execution after activity A is finished,
and activity E may start execution as soon as one of activities B, C
or D is finished. What is different compared to Figure 6(b) is that
activities B, C and D must all be executed at some point of time due
to the and-split.

Figure 6(d) indicates that at least one of the activity B, C or D may
be triggered and start execution after activity A is finished. Activity
E may not start its execution unless all of the triggered activities, i.e.
a combinations of B, C and D, are finished. Note that since an or-
split has been used earlier in the process model, it may not be the
case that all activities B, C and D are triggered. Nevertheless, all of
the triggered activities must be finished before activity E may start
its execution.

4.4 Discussion

As it has been described, an “And” or “Or” junction indicates a
temporal constraint between the execution of connected processes.
Furthermore, they also indicate the “execution” constraints that have
been put in the process logic. For instance, an “and-split” indicates
that all of the following activities must be executed when the pre-
ceding activity is finished. However, the model may not specify that
all of the activities must be finished before the “next wave of activi-
ties” are started. One such example is given in Figure 6c, the case of
and-or junction. Activities B, C and D may start execution in parallel
but asynchronously and may finish their execution at different times.
Activity E may start execution, as soon as one of them finishes exe-
cution. This means that activity E and activities following it may be
executing along side the un-finished activity B, C or D. Furthermore,
it is possible that all of the following activities after E are finished be-
fore activity B, C or D are finished. This may lead to an un-desirable
result in the system.

The process model described in Figure 6c, however, is correct and
appropriate when describing a situation where the start and execution
of activity E is not temporally and semantically bound by activity B,
C and D. However, when there is such a constraint at a later stage of
the process that requires the finishing of the corresponding activity B,
C or D, a limitation may be described in the triggers or pre-conditions
of other following activities in the model.

One way to control and avoid “left-over” processes lingering in-
definitely in the system is to define a process that is not finished
until all of its (“left-over”) sub-processes are finished. Under this
definition, the higher level process is not finished unless all of its
sub-processes are finished. This is what has been defined in FBPML.
Another way to control this is to provide a checking, alarming and
repairing mechanism that will be triggered when processes are found
lingering longer than a pre-determined period of time.

4.5 Demonstrating Dynamic Behaviours in Process
Panels

As a part of the AKT project[6], for AKT-TIE5, we have developed
a small PC configuration business process model that accepts cus-
tomer enquires and returns with possible pc-configuration specifica-
tion. A snap shot of the business process model for the role “Edin-
burgh” is given in Figure 7 as it is shown in our support tool KBST-
EM. This model has been successfully translated and displayed in a
workflow stepping system, I-X Process Panel. Upon instantiation, in-
stances of processes appear and are managed in I-X system’s process
panels[24][16].

Figure 7. PC Configuration Business Process Model

�

AKT-TIE is a part of the AKT project collaborating with Peter Gray and
Kit Hui, Computer Science Department, Aberdeen University, UK.

Figure 8. View of I-X System Process Panel

Figure 8 demonstrates how the instantiation of each process
presents an entry in the I-X process panel. Each entry consists of
two components: the name of the process and variables the process
takes. The parent process of processes given in Figure 7, “Perform
Top Level Process for PC Configuration”, is shown at the top row
and in bold face which is decomposed into sub-processes as those
described in Figure 7.

In I-X, for each process instance, several actions may be per-
formed upon them and the execution status of each instance is re-
flected by different colours. In I-X, all process instances may be ex-
ecuted (done), cancelled (Not Applicable), waiting to be processed
(No Action (yet)), or decomposed into sub-processes (Expansion).
Communication processes in our model may also dispatch tasks to
other appropriate “roles” as defined in their processes. Branching of
processes is controlled by the availability of actions that may be per-
formed on the instances. For instance, in Figure 7 all processes on
the second column of the model that are after the or-split may be exe-
cuted in parallel, but this operation is only available after the “Obtain
Requirements for PC configuration” process completed its execution.

It has become apparent that it is not an easy task to provide a
declarative BPML that provides direct support for building and exe-
cuting workflow systems and that more issues are to be investigated
and resolved. Typical action types should be provided by the lan-
guages so that any models built using the language benefit directly
from it, while at the same time one needs to allow flexibility and ease
for addition or modification on existing action types. To safeguard
against inconsistencies at the modelling language level is to provide
some form of (automatic) inconsistency checking on static models
and dynamic environments. Upon executing a process model, it is
also vital that static processes are provided but the workflow system
must be able to allow the users to dynamically modify or add new
processes. Again, this will have to be done within a predetermined
safety level.

5 Conclusion

Enterprise Models need to bridge the gap to software system devel-
opment and execution, but additional mechanisms are needed so that
information that is held within them may be transferred and mapped
onto software execution. To bridge this gap, however, is not a minor
task. Diverse and often conflicting requirements are need to be ad-
dressed. In addition, formality needs to be introduced to the informal
or semi-formal enterprise modelling paradigm to provide precision
and enable automatic support. When domain knowledge is used as a
part of software system development and execution, it is also needed

to ensure that it has been checked for consistency and appropriate-
ness during the phase of enterprise modelling. This paper proposed
a declarative modelling approach in an attempt to bridge the gap be-
tween business process modelling methods to (workflow) software
systems.

Based on this approach, an initially static, high level business pro-
cess specification may be represented formally and automatically.
Based on the formalism, automatic verification, validation and cri-
tiquing may therefore be provided as a part of normal modelling ac-
tivities. Furthermore, the modelling notation bears exact execution
instructions that may be mapped to software modules that are com-
ponents of a workflow system. This gives the prospect of rapid pro-
totyping and testing of a workflow system that is based on the model.
This benefit will not be possible without providing execution seman-
tics in a model.

It will be advantageous that more similar work as reported in
this paper is carried out for all Enterprise Models to narrow the
gap which currently exists at various places between EM methods
and software system development. When this is done, the set of
Enterprise Models together may provide a holistic and clearer
view as well as more direct instructions, particularly from the
business, organisational, knowledge, information and process points
of view, to assist the process of software system development for the
organisation.

Acknowledgement

This work is carried out as a part of the Advanced Knowledge
Technologies (AKT) (IRC) project[6], which is sponsored by the UK
Engineering and Physical Sciences Research Council under grant
number GR/N15764/01. The AKT IRC comprises the Universities
of Aberdeen, Edinburgh, Sheffield, Southampton and the Open Uni-
versity. The EPSRC and the Universities comprising the AKT IRC
are authorised to reproduce and distribute reprints for their purposes
notwithstanding any copyright annotation hereon. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing official policies or endorse-
ments, either express or implied, of the EPSRC or any other member
of the AKT IRC.

REFERENCES

[1] A. J. Bonner, ‘Workflow, transactions, and datalog’, Proceedings of
the Eighteen ACM Symposium on the Principles of Database System
(PODS), Philadelphia, PA., 294–305, (May 1999).

[2] Yun-Heh Chen-Burger, Formal Support for an Informal Business Mod-
elling Method, Phd thesis, Artificial Intelligence, The University of Ed-
inburgh, 2001.

[3] Yun-Heh Chen-Burger, ‘Knowledge sharing and inconsistency check-
ing on multiple enterprise models’, International Joint Conference
on Artificial Intelligence, Knowledge Management and Organizational
Memories Workshop, IJCAI 2001, Seattle, Washington, USA., (August
2001). Also available as Informatics Division Technical Report, Uni-
versity of Edinburgh. In print as a chapter of book, publisher: Kluwer.

[4] Yun-Heh Chen-Burger, Dave Robertson, and Jussi Stader, ‘A case-
based reasoning framework for enterprise model building, sharing and
reusing’, Proceedings of ECAI Workshop: Knowledge Management and
Organizational Memories, Berlin., (August 2000).

[5] Yun-Heh Chen-Burger, David Robertson, and Jussi Stader, ‘Formal
support for an informal business modelling method’, The International
Journal of Software Engineering and Knowledge Engineering, (Febru-
ary 2000).

[6] AKT Consortium. http://www.aktors.org, October 2000. Interdisci-
plinary Research Collaborations (IRC), Advanced Knowledge Tech-

nologies (AKT) Project. Partners: University of Southampton, Ab-
erdeen, Edinburgh, Sheffield and Open University, UK.

[7] J.E. Dobson, A. J. C. Blyth, J. Chudge, and M. R. Strens, ‘The ordit ap-
proach to organisational requirements’, Requirements Engineering: So-
cial and Technical Issues, (1994). London, ed. Jirotka and J.A.Goguen,
Academic Press.

[8] Workflow Handbook 2001, ed., Layna Fischer, Future Strategies Inc.,
2000.

[9] M. S. Fox and M. Gruninger, ‘Enterprise modelling’, AI Magazine,
AAAI press., 109–121, (Fall, 1998).

[10] Ulrich Frank, ‘Multi-perspective enterprise models as a conceptual
foundation for knowledge management’, Proceedings of Hawaii Inter-
national Conference on System Sciences, Honolulu., (2000).

[11] Norbert. E. Fuchs and David Robertson, ‘Declarative specifications’,
The Knowledge Engineering Review, 11(4), 317–331, (1996).

[12] Delphi Group, ‘Bpm 2002: Market milestone report’, Web site:
www.delphigroup.com/ coverage/ bpm webservices.htm, (February
2002).

[13] IBM, UK, Business System Development Method: Business Mapping
Part1: Entities, 2nd edn., May 1992.

[14] Stefan Junginger, Harald Kuhn, Mark Heidenfeld, and Dimitris Kara-
giannis, ‘Building complex workflow applications: How to overcome
the limitations of the waterfall model’, Workflow Handbook 2001, 191–
206, (2000).

[15] Michael Kifer, ‘Introduction to transaction logic’, A tutorial
presented at IPLS’97 (International Logic Programming Sym-
posium), Port Jefferson, Long Island, N.Y., (October 1997).
www.cs.sunnysb.edu/ kifer/dood/tr-tutorial.html.

[16] J. Levine, A. Tate, and J. Dalton, ‘O-P
�
: Supporting the planning pro-

cess using open planning process panels’, IEEE Intelligent Systems,
15(6), (November 2000).

[17] Richard Mayer, Christopher Menzel, Michael Painter, Paula Witte,
Thomas Blinn, and Benjamin Perakath, Information Integration for
Concurrent Engineering (IICE) IDEF3 Process Description Capture
Method Report, Knowledge Based Systems Inc. (KBSI), September
1995. http://www.idef.com/overviews/idef3.htm.

[18] National Institute of Standards and Technology, Integration Definition
for Function Modelling (IDEF0), December 1993.

[19] Martyn A. Ould, Business Processes: Modelling and Analysis for Re-
engineering and Improvement, John Wiley and Sons, 1995.

[20] D. Robertson and J. Augusti, Software Blueprints: Lightweight Uses of
Logic in Conceptual Modelling, Addison Wesley, May 1999. in press.

[21] Craig Schlenoff, Amy Knutilla, and Steven Ray, ‘Proceedings of
the process specification language (psl) roundtable’, NISTIR 6081,
National Institute of Standards and Technology, Gaithersburg, MD,
(1997). http://www.nist.gov/psl/.

[22] Jussi Stader and Ann Macintosh, ‘Capability modelling and knowl-
edge management’, Proceedings of Expert Systems 99, The 19th In-
ternational Conference of the BCS Specialist Group on Expert Systems,
(1999). Springer-Verlay.

[23] A. Tate, ‘Towards a plan ontology’, AI*IA Notizie (Quarterly Publica-
tion of The Associazione Italiana per l’Intelligenza Artificiale), Special
Issue on ”Aspects of Planning Research”, 9(1), 19–26, (March 1996).

[24] Autin Tate, ‘I-X: Technology for intelligent systems’, www.i-x.info,
AIAI, The University of Edinburgh, (2002).

[25] Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios, ‘En-
terprise ontology’, The Knowledge Engineering Review: Special Issue
on Putting Ontologies to Use, 13, (1998). Also available as technical
report from AIAI, The University of Edinburgh (AIAI-TR-195).

[26] Annika Waern, Kristina Hook, Rune Gustavsson, and Peter Holm, ‘The
common-kads communication model’, Kads-ii/m3/sics/tr/006/v2.0,
Swedish Institute of Computer Science, Stockholm, Sweden, (Decem-
ber 1993).

