
Determining Linearity of Optimal Plans by Operator Schema Analysis

Lukáš Chrpa and Mauro Vallati and Thomas Leo McCluskey
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, m.vallati, t.l.mccluskey}@hud.ac.uk

Abstract

Analysing the structures of solution plans generated by
AI Planning engines is helpful in improving the gen-
erative planning process, as well as shedding light in
the study of its theoretical foundations. We investigate a
specific property of solution plans, that we called lin-
earity, which refers to a situation where each action
achieves an atom (or atoms) for a directly following ac-
tion, or achieves goal atom(s). Similarly, linearity can
be defined for parallel plans where each action in a
set of actions executed at some time step, achieves ei-
ther goal atom(s) or atom(s) for some action executed
in the directly following time step. In this paper, we
present a general and problem-independent theoretical
framework focusing on the analysis of planning opera-
tor schema, namely relations of achiever, clobberer and
independence, in order to determine whether solvable
planning problems using a given operator schema have
as solutions optimal (parallel) plans which are linear.
The findings presented in this paper deepen current the-
oretical knowledge, provide helpful information to en-
gineers of new planning domain models, and suggest
new ways of improving the performance of state-of-the-
art (optimal) planning engines.

Introduction
Automated planning, despite being intractable in gen-
eral (Bylander 1994), is very useful in many real-world
applications (e.g. Space exploration, Manufacture planning
etc.). Therefore, there is a need for novel approaches to
inform heuristic design, as well as deepening theoreti-
cal knowledge. Many promising domain-independent tech-
niques have been developed in recent years, for exam-
ple, heuristic search based planners such as FF (Hoffmann
and Nebel 2001) or LAMA (Richter and Westphal 2010),
SAT based planners (Kautz, Selman, and Hoffmann 2006;
Rintanen 2012) or CSP based planners (Do and Kambham-
pati 2001).

Complexity results of well known benchmark domains
showed that some of these domains are tractable (Helmert
2003; 2006). Despite tractability of some domains, for in-
stance the well known BlocksWorld domain (Slaney and

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Thiébaux 2001), state-of-the-art planning engines tend to
struggle on them. However, when considering domain-
independent planners, it has proven useful to focus on
analysing structures of planning domains and problems. One
of such structures is the Causal Graph (Knoblock 1994)
which describes dependencies between state variables in
the SAS+ representation (Bäckström and Nebel 1995). The
Causal Graph has been studied in terms of computational
complexity (Gimenez and Jonsson 2007; Katz and Domsh-
lak 2007) as well as for developing heuristics (Richter and
Westphal 2010). Analysing mutex relations between ac-
tions, which were exploited in GraphPlan (Blum and Furst
1997), has been studied in order to determine classes of
tractable planning problems (Surynek 2008). Impact of var-
ious restrictions (e.g. number of atoms in actions’ precon-
ditions etc.) on computational complexity has been studied
in both STRIPS (Bylander 1994) and SAS+ (Bäckström and
Nebel 1995) representation. Recent work (Bäckström et al.
2012) shows that planning under certain restrictions can be
tractable in terms of parametrised complexity.

Analysing structures of planning problems is an estab-
lished area. It is good to mention TIM (Fox and Long 1998),
a tool for analysing inference of state invariants, which has
been used within the STAN planner (Fox and Long 2001).
Structural analysis of planning problems can be also useful
in order to prune some unpromising alternatives during the
search. Expansion Cores (Chen and Yao 2009) aim to re-
stricting on relevant Domain Transition Graphs rather than
all of them in the node expansion phase. Other work (Coles
and Coles 2010) prunes irrelevant actions, i.e., actions that
change a value of a variable having no dependants from a
goal value, or exploits ‘tunnel macro-actions’, i.e., if a cer-
tain action is executed, then there we have to consecutively
execute specific actions forming the ‘tunnel’.

In this paper we introduce a property of the set of solution
plans to a planning problem, called linearity. This refers to
a situation where there exists an optimal plan in the set of
solution plans, which is linear, meaning that all actions in
the plan achieve an atom (or atoms) for a directly following
action, or achieve goal atom(s). The property generalises to
parallel plans, where one step may contain a set of indepen-
dent actions. We provide a theoretical analysis of relations
between planning operators (considering the STRIPS repre-
sentation) in terms of whether one operator is an achiever, is

a clobberer, or is independent of another. We use this anal-
ysis to determine sets of conditions under which solution
plans (both sequential and parallel) of problems within a
domain model can be said to satisfy the linearity property.
We relate our findings to other theoretical work in the area,
and show how the property can provide helpful information
to engineers of new planning domain models. Finally, we
show how the property can be operationalised as a planning
heuristic, for use with planning problems satisfying the lin-
earity property.

Preliminaries
Classical planning (in state space) deals with finding a se-
quence of actions transforming the static, deterministic and
fully observable environment from some initial state to a de-
sired goal state (Ghallab, Nau, and Traverso 2004). Alterna-
tively, instead of using sequences of (single) actions we may
use sequences of sets of actions where actions in each set are
independent and can be executed simultaneously or without
a predefined order.

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms spec-
ifying their preconditions, negative and positive effects (i.e.,
a = (pre(a), eff−(a), eff+(a))) and eff−(a) ∩ eff+(a) =
∅. An action a is applicable in a state s if and only
if pre(a) ⊆ s. Application of a in s results in a state
(s \ eff−(a)) ∪ eff+(a) if a is applicable in s, otherwise
the result of the application is undefined. Actions a1 and
a2 are independent if and only if (eff−(a1) ∩ (pre(a2) ∪
eff+(a2)) = ∅) ∧ (eff−(a2) ∩ (pre(a1) ∪ eff+(a1)) = ∅).
A set of independent actions Ax is applicable in a state s
if and only if

⋃
a∈Ax

pre(a) ⊆ s. Application of actions
in a set of independent actions Ax in s results in a state
(s \

⋃
a∈Ax

eff−(a)) ∪
⋃
a∈Ax

eff+(a) if Ax is applicable
in s (undefined otherwise).

In the classical representation atoms are predicates. A
planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is a generalised action (i.e. an action is a grounded instance
of the operator), where name(o) = op name(x1, . . . , xk)
(op name is an unique operator name and x1, . . . xk are
variable symbols (arguments) appearing in the operator de-
scription) and pre(o), eff−(o) and eff+(o) are sets of (un-
grounded) predicates. The set-theoretic representation can
be obtained from the classical representation by grounding.
Two predicates are equal if and only if they have the same
name and identical arguments (including their order). Deter-
mining equality of predicates is important for set operations
which will be used on the top of sets of ungrounded predi-
cates (e.g. operators’ preconditions or effects). Hereinafter,
we will assume that different operators have different argu-
ments (unless otherwise stated). Determining which opera-
tors’ arguments are shared (in other words, having the same
variable symbols) is done by substitutions.

Definition 1. A Substitution is a set of mappings from vari-
able symbols to terms.
We say that a substitution Θ = {v1 → v′1, . . . , vk → v′k}
is relevant w.r.t. planning operators o1, o2 if and only if all

the variable symbols v1, . . . , vk are different and defined in
name(o2) and all the variable symbols v′1, . . . , v

′
k are de-

fined in name(o1).
An inverse substitution to Θ is denoted as Θ−1 and is ob-
tained from Θ by swapping all the variable symbol map-
pings. �

In other words, relevant substitutions are used to deter-
mine which arguments (variable symbols) operators share.
For example, having operators unstack(?x ?y) and put-
down(?z) substitutions ∅, {?z →?x}, {?z →?y}.

A planning domain is specified via sets of predicates and
planning operators (alternatively propositions and actions).
A planning problem is specified via a planning domain, ini-
tial state and set of goal atoms. A plan is a sequence of ac-
tions. A parallel plan is a sequence of sets of independent
actions. A (parallel) plan is a solution of a planning prob-
lem if and only if a consecutive application of the (sets of
independent) actions in the plan (starting in the initial state)
results in a state, where all the goal atoms are satisfied. A so-
lution π of a given problem is optimal if for any solution π′
of the given problem |π| ≤ |π′| (length of the parallel plan
is determined by the number of sets of independent actions).

Relation between Planning Operators
An insight into how actions in plans can be ordered is given
by the fact that some planning operator might achieve an
atom (a predicate) which is required by another planning op-
erator. Following Chapman’s terminology (Chapman 1987)
we define the relation of being an achiever defined between
planning operators in the following way.

Definition 2. Let o1 and o2 be planning operators. We say
that o1 is an achiever for o2 w.r.t a relevant substitution Θ
if and only if eff+(o1) ∩ pre(o2Θ) 6= ∅. We denote this as
o1 .Θ o2. �

Analogously, planning operators influence each other in a
negative way, that is, one operator might ‘clobber’ an atom
(or atoms) required by another operator. We define the rela-
tion of being a clobberer defined between planning operators
in the following way.

Definition 3. Let o1 and o2 be planning operators. We say
that o1 is a clobberer for o2 w.r.t a relevant substitution Θ
if and only if eff−(o1) ∩ pre(o2Θ) 6= ∅. We denote this as
o1OΘo2. �

We extend the independence relation which we have al-
ready defined for actions (see the previous section) also for
planning operators.

Definition 4. Let o1 and o2 be planning operators. We say
that o1 is independent on o2 w.r.t a relevant substitution Θ
if and only if eff−(o1) ∩ (pre(o2Θ) ∪ eff+(o2Θ)) = ∅ and
eff−(o2Θ) ∩ (pre(o1) ∪ eff+(o1)) = ∅. We denote this as
o1 �Θ o2. �

Keep in mind that the above relations might hold with re-
spect to more (relevant) substitutions even for a single pair
of operators.

Linearity of Solution Plans
Achievers or clobberers can be analogously defined for ac-
tions as well. When analysing solution plans, we may ob-
serve that some action provides atoms which are precon-
ditions for some other actions. Hence, a possible achiever
becomes necessary achiever in a given plan (Chapman
1987). Analysing plans by exploring a relation of necessary
achievement between actions has already been successfully
applied in post-planning optimisation (Chrpa, McCluskey,
and Osborne 2012) or macro-operator generation (Chrpa
2010). However, instead of doing post-planning plan anal-
ysis it may be useful to determine specific properties of
optimal plans in advance by analysing planning domains,
which can be useful in improving the planning process,
for instance, by pruning some unpromising alternatives. An
interesting property of a plan is when an action achieves
goal atom(s) or atom(s) to the immediately following action.
Such a plan is denoted as linear.

Definition 5. Let π = 〈a1, . . . , an〉 be a plan, a solution
of some problem P . We say that π is linear if and only if
for every i such that 1 ≤ i ≤ n is the case that eff+(ai) ∩
pre(ai+1) 6= ∅ or (eff+(ai) \

⋃n
j=i+1 eff+(aj)) ∩ g 6= ∅ (g

is a set of goal atoms defined in P). �

Similarly, we can introduce linearity for parallel plans.

Definition 6. Let π = 〈A1, . . . , An〉 be a parallel plan, a
solution of some problem P . We say that π is linear if and
only if for every i such that 1 ≤ i ≤ n is the case that
for every a ∈ Ai there is a′ ∈ Ai+1 such that eff+(a) ∩
pre(a′) 6= ∅ or (eff+(a) \

⋃n
j=i+1

⋃
a′∈Aj

eff+(a′))∩ g 6= ∅
(g is a set of goal atoms defined in P). �

Analysing Planning Operator Schema
Structures that are formed by the achiever (.), clobberer
(O) or independent (�) relations provide an abstract insight
into how optimal (parallel) solution plans might look like.
We can identify when there exists an optimal solution plan
which is linear. Intuitively, it is when an operator is either
achiever or clobberer for another operator (including itself)
with respect to all relevant substitutions. We formalise it in
the following theorem.

Theorem 1. Let O be the set of planning operators defined
in some planning domain Σ. Assume that for every o1, o2 ∈
O and every relevant substitution Θ is the case that o1 .Θ o2

or o1OΘo2. Then, for every solvable planning problem P
defined over Σ, there exists an optimal solution plan which
is linear.

Proof. Let a, a′ be instances of operators o, o′. For any so-
lution plan of P , a can be followed by a′ only if a does not
delete any of the preconditions of a′, otherwise the plan is
not well formed. From the assumption we can deduce that
for any relevant substitution ξ, if not oOξo′, then o .ξ o′. It
follows that for such an action a′ following a in any solu-
tion plan, is the case that a achieves atom(s) for a′, hence
the linearity condition is met.

Unstack

Stack

Pickup

Putdown

Figure 1: The BlocksWorld planning domain, enhanced with
the handfull atom. Full arrows indicate achiever relations,
dashed arrows indicate clobberer relations between the in-
volved operators.

Recall the well known BlocksWorld domain (Slaney and
Thiébaux 2001) with 4 planning operators: pickup(?b), put-
down(?b), unstack(?b1 ?b2) and stack(?b1 ?b2). There
is only one robotic hand which can carry blocks. Hence, an
atom handempty is in preconditions of pickup(?b) and un-
stack(?b1 ?b2) and in positive effects of putdown(?b) and
stack(?b1 ?b2). We can also use atom handfull in the other
way round (at each point of the planning process either han-
dempty or handfull is true). Note that the atom handfull is
not present in the original domain but it is used for ‘high-
lighting’ the fact that in well-defined problems only one
block can be held by the robotic hand at the same time. Oth-
erwise, if a robotic hand initially holds more than one block,
then, for instance, putdown(?b) is neither an achiever nor
clobberer for stack(?b1 ?b2) w.r.t. empty substitution. If
the supplementary handfull is used we can see that, for in-
stance, pickup(?b) is an achiever for stack(?b1 ?b2) and
putdown(?b) (w.r.t. every relevant substitution), and a clob-
berer for unstack(?b1 ?b2) and itself (w.r.t. every relevant
substitution). Similar observations can be done for the other
operators. Hence, we can see that according to Theorem 1
we can find optimal solution plans which are linear. In Fig-
ure 1 the structure of the BlocksWorld domain, enhanced
with the handfull atom is shown.

However, we can straightforwardly deduce that for situ-
ations described by Theorem 1 it holds that every solution
plan follows the linearity conditions. Therefore, it does not
bring any improvement to the planning process since we
cannot prune any of alternatives during the search. On the
other hand, it might reveal that for some problems the goal
atoms have to be achieved in a certain order, which is the
case of BlocksWorld.

It might be observed that different achievers for a given
operator might achieve the same predicate(s) or the given
operator needs more achievers for its precondition. Hence,
we can consider OR achievers which stand for different (sets
of) pairs (operator, substitution) such that we need only one
pair (or set) to achieve atoms for a certain operator. For ex-
ample, the putdown(?b) operator requires a predicate hold-

ing(?b) (we do not consider the atom handfull in this exam-
ple). holding(?b) can be achieved by unstack(?b ?b2) or
pickup(?b). unstack(?b ?b2) and pickup(?b) can be there-
fore understood as OR achievers. We can consider also AND
achievers which stand for a set of pairs (operator, substitu-
tion) such that we need all the pairs to achieve atoms for a
certain operator. For example, the stack(?b1 ?b2) opera-
tor requires predicates holding(?b1) and clear(?b2). These
predicates can be achieved by pickup(?b1) and unstack(?b
?b2) and therefore these operators (with the correspond-
ing substitutions) can be understood as AND achievers. For-
mally:
Definition 7. Let o be a planning operator. Let Ao =
{(o′,Θ) | o′ .Θ o} be a set of o’s achievers. We say that
A+
o is a sufficient set of o’s achievers if and only if A+

o ⊆
Ao and

⋃
(o′,Θ)∈A+

o
(eff+(o′Θ−1) ⊇ pre(o). We say that a

sufficient set o’s of achievers A∗o is compact if and only
if |A∗o| ≤ |pre(o)| and there exists a total mapping χ :
pre(o) → A∗o such that χ(p) = (o′,Θ) if and only if
p ∈ eff+(oΘ−1) ∩ pre(o). We say that all the possible com-
pact sets of o’s achievers are o’s OR sets of achievers. Ele-
ments inA∗o, which is a compact set of o’s achievers, are o’s
AND achievers. �

The above definition might be intuitively understood as
some sort of DNF where literals are couples (operator, sub-
stitution) representing achievers.

The above definition also considers that all precondition
predicates for a given operator must be achieved by other
operators. It is not always true, since some of the predicates
might be only achieved by an initial state. However, such
predicates only limit the number of instances of the oper-
ators (for static predicates) or the number of instances (if
such predicates appear only in preconditions and negative
effects). Static predicates are not important for our analy-
sis because they do not affect the achiever, clobberer and
independence relations. However, the latter kind of predi-
cates might influence clobberer and independence relations.
Since, the achiever relation is not affected by such predicates
we will not consider them while determining OR and AND
achievers.

Situations where each operator in a given operator set
does not need more than one achiever intuitively leads to
the conclusion that using such an operator set leads to an ex-
istence of linear optimal solution plans. However, clobber-
ers influence action ordering in plans but if operators delete
only predicates which are in their preconditions, then as the
following theorem shows that linearity is not affected.
Theorem 2. Let O be the set of planning operators defined
in some planning domain Σ. Assume the following condi-
tions:
1) For every o ∈ O, o’s OR sets of achievers A∗1o , . . . ,A∗ko

are the case that ∀i ∈ {1, . . . , k} : |A∗io | ≤ 1.
2) For every o ∈ O, eff−(o) ⊆ pre(o).
Then, for every solvable planning problem P defined over
Σ, there exists an optimal solution plan which is linear.

Proof. To achieve a precondition for any instance of any
operator o ∈ O we need at most one action, an instance

of some operator from O. This is because according to the
condition 1) any of o’s OR sets of achievers contains at most
one element. For problems with a single goal atom, we can
perform the backward search where we keep selecting non-
deterministically an achiever for an operator the current ac-
tion is an instance, until there is no achiever (the current ac-
tion has an empty precondition), or the initial state has been
reached. Clearly, we can find optimal plans which are linear.

For problems with more goal atoms, we can non-
deterministically choose the order in which the goal atoms
must be achieved in order to sustain optimality of the so-
lutions. However, ‘subplans’ (each ‘subplan’ achieves some
goal atom(s)) must not be interleaving otherwise linearity
might be violated. From this perspective we have to investi-
gate clobberers. From the assumption (both the conditions 1)
and 2)) we can see that (o′′ .Θ o∧oO(Θ′Θ−1)o

′)⇒ o′′ .Θ′ o
′

(note that o may be a clobberer for itself as well). In other
words, an operator (o) might be clobberer to another opera-
tor (o′) only if they have the same achiever (o′′). Let ok be
an operator such that ok .Θ1

k
o1
k and ok .Θ2

k
o2
k. If both o1

k

and o2
k are clobberers to each other, then we cannot execute

o2
k after o1

k and vice versa unless ok (or some other achiever
is executed). Hence, we have to achieve goal(s) by a ‘sub-
plan’ containing o1

k (or o2
k) and after that we can execute a

‘subplan’ containing o2
k (or o1

k). So, linearity is not affected.
If both o1

k and o2
k are not clobberers to each other, then we

might execute o2
k after o1

k and vice versa. However, execut-
ing the whole ‘subplan’ containing o1

k (or o2
k) cannot delete

atom(s) required by o2
k (or o1

k). This is because according
to the assumption if some operator is a clobberer for o2

k (or
o1
k), then ok is its achiever. Thus no instance of such operator

can occur after o1
k (or o2

k) since otherwise the solution plan
containing such a ‘subplan’ is not optimal. Hence, we can
execute the ‘subplan’ containing o1

k (or o2
k) and after that we

can execute a part of the ‘subplan’ commencing o2
k (or o1

k).
So, linearity is not affected as well. If o1

k is a clobberer for
o2
k but not the other way round, then from the above we can

deduce that linearity is also not affected. Note that in this
case the ‘subplan’ containing o2

k is executed before a part of
the ‘subplan’ commencing o1

k. This can be analogously ex-
tended to situations where ok is an achiever for more than
two operators.

The previous theorem concerns situations where we do
not need more than one action in order to achieve atoms
needed by another action. A specific situation of this kind,
where operators have at most one atom (predicate) in their
preconditions, is formalised in the following corollary.

Corollary 1. Let O be the set of planning operators defined
in some planning domain Σ. If ∀o ∈ O : |pre(o)| ≤ 1 ∧
eff−(o) ⊆ pre(o), then every solvable planning problem P
defined over Σ has an optimal solution plan which is linear.

Proof. Straightforwardly, if |pre(o)| ≤ 1 for any operator o,
then none of o’s OR sets of achievers can contain more than
one element.

Theorem 2 can be also applied for optimal parallel plans,
which is proved in the following corollary.

Corollary 2. Following the assumption from Theorem 2 it
also holds that for every solvable planning problem P de-
fined over Σ, there exists a linear optimal parallel plan
which is a solution of P .

Proof. Following the proof of Theorem 2 we have to con-
sider executing ‘subplans’ (sequences of actions achieving
particular goal atoms) in parallel. Clearly, there are only two
possibilities where operators o and o′ may not be indepen-
dent w.r.t. some substitution ξ. That is, if oOξo′ (or vice
versa), or if o .ξ o′ (or vice versa). If o .ξ o′ (or vice versa),
then, straightforwardly, instances of o and o′ can be placed
in adjacent action sets. This does not violate linearity nor op-
timality. For the clobberer situations, we recall the situation
from the proof of Theorem 2. Let ok be an operator such that
ok .Θ1

k
o1
k and ok .Θ2

k
o2
k. If neither o1

k nor o2
k is a clobberer

for each other, then they are independent and can be present
in the same set of actions. Hence, after a prefix which is the
same for both ‘subplans’ the rest of ‘subplans’ can be ex-
ecuted in parallel. So, both optimality and linearity are not
affected. If o1

k and o2
k are clobberers for each other, then they

are not independent and cannot be thus present in the same
set of actions. We can observe that o1

k can be present in at
least a second action set before the action set containing o2

k
(or vice versa). However, this cannot affect optimality since
there is no other option how these ‘subplans’ can be ordered.
Linearity is not affected as well because both the ‘subplans’
do not have to be ‘shredded’. If o1

k is a clobberer for o2
k but

not the other way round, then for optimal solutions it might
happen that o1

k is present in an action set following the set
containing o2

k. In such a situation we do not have to execute
the prefix the ‘subplans’ share but we move o1

k by one (i.e.
to the action set following the one containing o2

k) rather than
by two (as in the previous situation). However, in this situa-
tion linearity is not violated as well because even if o1

k is not
present in the action set following the set containing ok, ok is
an achiever for o2

k which can be present in the action set fol-
lowing the set containing ok. This idea can be analogously
extended for more operators ok is an achiever.

Having at most one element sets of OR achievers for ev-
ery operator in a given operator set we can guarantee for
every solvable problem an existence of an optimal (paral-
lel) solution plan which is linear operator. The main draw-
back of this is that such a situation is very uncommon for
some more practical domains. To the best of our knowledge,
only the nPuzzle domain follows these criteria. Neverthe-
less, Theorem 2 with its corollaries can be applied in further
analysis of AND achievers and also we believe that it might
be extended for problem-specific analysis of linearity (e.g.
in some problems AND achievers might not be necessary).

Dealing with AND achievers, which is very common in
planning domains, brings another dimension into the prob-
lem of determining linearity of optimal (parallel) plans. In-
tuitively, we can see that we have to execute more than one
action (e.g a1, a2) in order to achieve atom(s) required by
another action a. If neither a1 nor a2 achieves atom(s) for
each other, then the linearity conditions are violated. On the
other hand, if we consider optimal parallel plans, a1 and a2

if independent can be executed simultaneously. This idea is
formalised in the following theorem.

Theorem 3. Let O be the set of planning operators defined
in some planning domain Σ. Assume the following condi-
tions:

1) For every o ∈ O, eff−(o) ⊆ pre(o).
2) If oOξo′, then o ≡ o′ξ.

Then, for every solvable planning problem P defined over Σ,
there exists an optimal parallel plan, a solution of P , which
is linear.

Proof. The proof mainly derives from the proofs of The-
orem 2 and Corollary 2. We will therefore focus on AND
achievers. From the assumption (2) we can easily obtain that
no action (an instance of some operator) can clobber for an-
other action. Therefore, the clobberer relation (O) can only
cause that an action might not be present twice (or more
times) in the same action set.

For any operator o and its AND achievers, for instance
o1 and o2, we have two possibilities. Firstly, o1 and o2 can
be in the same action set because they are independent
with respect to the corresponding substitution. Secondly,
o1 is an achiever for o2 (or vice versa) with respect to
the corresponding substitution and, therefore, o1 might be
placed into the action set preceding the action set containing
o2 (or vice versa). However, this does not affect optimality
nor linearity since o1 is an achiever for o2, and o2 is
(together with o1) an achiever for o. Since o1 and o2 can
have their achievers and so on, there might be a situation,
where to achieve atoms for an instance of o we have
to execute sequences 〈a, a0

1, . . . , a
k
1〉 and 〈a, a0

2, . . . , a
l
2〉

commencing by the same action a but having a different
lengths (i.e. k 6= l). Without loss of generality let k > l.
A (part of a) solution parallel plan can be constructed as
〈.., {a}, {a0

1}, . . . , {ak−l−1
1 }, {ak−l1 , a0

2}, . . . , {ak1 , al2}, ..〉.
Optimality is not violated since the (part of the) solution
plan is not greater than the length of the longest sequence.
Linearity is not violated as well because a achieves atom(s)
for a0

1 which is in the successive action set and therefore a0
2

might be placed in some later action set. This idea can be
analogously extended for more o’s AND achievers.

Theorem 3 covers also a fact that delete-relaxed planning
problems (negative effects are omitted) have optimal parallel
solution plans (if solvable) which are linear. It is formally
summarised in the following corollary (note that it directly
follows Theorem 3)

Corollary 3. Let O be the set of planning operators defined
in a planning domain Σ. If ∀o ∈ O : eff−(o) = ∅, then
for every solvable planning problem P defined over Σ, there
exists an optimal parallel plan, a solution of P , which is
linear.

Delete-relaxed Planning Graphs are widely used for de-
termining heuristic estimation from a given state to some
goal state. It is good to mention the well known FF heuris-
tic (Hoffmann and Nebel 2001). Although Theorem 3 is

quite constrained in its current we believe that it can be ex-
tended to allow clobberers which might delete also atoms
for other actions than itself. Clobberers which might com-
promise linearity of optimal parallel plans are these between
AND achievers. For example, if operators o1 and o2 are
AND achievers for an operator o and o1 is a clobberer for
o2 (w.r.t. a corresponding substitution), then instances of o1

and o2 are not independent and therefore cannot be in the
same action set. If an instance an instance of o1 is present
in an action set Ai, then an instance of o2 must be present
at most in an action set Ai−1 while an instance of o must be
present at least in an action set Ai+1. If o2 is not an achiever
for o1 (w.r.t a corresponding substitution), then the linear-
ity is compromised. However, to ensure linearity of optimal
parallel plans we have to consider that none of AND achiev-
ers for all independent operators can be clobberer to some
other AND achiever unless it is also and achiever to it (w.r.t
a corresponding substitution).

In sequential planning (as stated before) AND achievers
threaten linearity of plans. Recalling the situation where ac-
tions a1 and a2 must be executed in order to achieve atoms
for some other action a. However, in a specific case it might
also hold that a1 achieves atom(s) for a2. Then, a (part of)
plan 〈. . . , a1, a2, a, . . . 〉 follows the linearity conditions. We
can generalise this observation for planning operators. We
denote this property as “ordered AND achievers” with re-
spect to a relation ≺ which is defined in the following def-
inition. However, having o1 and o2, AND achievers for an
operator o, we have to consider ‘argument matching’ be-
tween o1,o2 and o, and ‘parity’ of instances of o1,o2 and
o (e.g. multiple instances of o1 and a single instance of o2

are achievers for multiple instances of o). This is explained
in the proof of Theorem 4.

Definition 8. Let o be a planning operator and A∗o its AND
achievers. We say that (oi,Θi) ≺ (oj ,Θj) if and only if all
the following holds:

• (oi,Θi), (oj ,Θj) ∈ A∗o,
• oi .ξ oj such that ξ ⊇ {(vj → vi) | (v′ → vj) ∈ Θj ∧

(v′ → vi) ∈ Θi},
• oiOσi

oi such that {v | v 6= v′ ∧ (v → v′) ∈ σi ∧ (v′′ →
v) ∈ ξ} = ∅,

• ojOσj
oj such that {v | v 6= v′ ∧ (v → v′) ∈ σj ∧ (v →

v′′) ∈ ξ} = ∅
We say that A∗o = {(o1,Θ1), . . . , (ok,Θk)} is ordered if
and only if there exists a permutation λ (over the sequence
〈1, . . . , k〉) such that (oλ(1),Θλ(1)) ≺ (oλ(2),Θλ(2)) ≺
· · · ≺ (oλ(k),Θλ(k)). �

Intuitively, if AND achievers can be ordered, then linear-
ity may not be affected. The following theorem extends The-
orem 2 considering ordered AND achievers.

Theorem 4. Let O be the set of planning operators defined
in some planning domain Σ. Assume the following condi-
tions:

1) For every o ∈ O, and every o’s AND achievers A∗io it is
the case that A∗io is ordered.

2) For every o ∈ O, eff−(o) ⊆ pre(o).

Move

Load

Unload

Move-after-Load Load

UnloadMove-after-Unload

Figure 2: The original Logistics domain (upper graph) and
the modified Logistic domain (lower graph).

Then, for every solvable planning problem P defined over
Σ, there exists a linear optimal plan which is a solution of
P .

Proof. This proof extend the proof of Theorem 2 by dis-
cussing AND achievers. For some operator o, let A∗io be o’s
AND achievers. From the assumption we know that A∗io is
ordered and, therefore, there exists a way how pairs (opera-
tor,substitution) can be ordered with respect to the relation
≺ (see Definition 8). Without loss of generality, assume that
(ox,Θx), (oy,Θy) ∈ A∗io (i.e., ox .Θx

o and oy .Θy
o) and

(ox,Θx) ≺ (oy,Θy). According to ≺ it holds that ox .ξ oy ,
ξ ⊇ {vy → vx | v′ → vy ∈ Θy ∧ v′ → vx ∈ Θx}, oxOσxox
({v | v 6= v′ ∧ v → v′ ∈ σx ∧ v′′ → v ∈ ξ} = ∅) and
oyOσyoy ({v | v 6= v′ ∧ v → v′ ∈ σy ∧ v → v′′ ∈ ξ} = ∅)
Since ox is an achiever for oy and both are achievers for o,
it is straightforward how we can order their corresponding
instances in solution plans. However, linearity depends on
the substitutions Θx,Θy and ξ. {vy → vx | v′ → vy ∈
Θy ∧ v′ → vx ∈ Θx} determines an ‘argument matching’
substitution for operators ox and oy according to atom(s)
they achieve for o. If the ‘argument matching’ substitution is
supported by ξ, i.e., ξ is a superset of the ‘argument match-
ing’, we can see that for all instances of ox and oy achieving
for a certain instance of o, is the case that an instance of ox
is an achiever for the corresponding instance of oy . Hence,
the linearity conditions are not violated. However, optimal-
ity might be affected if more instances of ox and a certain in-
stance of oy (or vice versa) are achievers for more instances
of o. This situation is avoided by the fact that ox and oy are
‘self’-clobberers in such a way that only one instance of ox
which achieves for a certain instance of oy is allowed and
similarly only one instance of oy is allowed after a certain
instance of ox achieves atom(s) for it.

Let us have a (simpler) Logistics domain where we have
only one truck which can carry at most one package. The
domain consists of three operators, move(?l1 ?l2), load(?p
?l) and unload(?p ?l). We can see that for unload we have
two AND achievers, move and load. Although move is an
achiever for load, by analysing particular substitution we
can find out that it does not follow the ordering condition
(Def. 8) and, hence, we cannot use Theorem 4 to deter-
mine linearity (intuitively, linearity does not hold). How-
ever, ‘splitting’ move into operators move-after-load and
move-after-unload might result in fulfilling the conditions
of Theorem 4. This also requires to ‘split’ a predicate at(?l),
which refers to a position of the truck, into at-empty(?l) and
at-full(?l). Note that load and unload must be updated ac-
cording to this as well. The described Logistics domains are
shown in Figure 2.

Discussion
Linearity is useful along several dimensions: it can be oper-
ationalised as a static test for problems and used as a search
heuristic, it can be used as a target property for the (possibly
automated) reconfiguration of domain models, or it can be
taken as a theoretical contribution to the study of planning
problems and planning domain encoding.

Application to Planning Engines
Finding that problems in a domain model have solutions
which are linear results in a pruning heuristic for a planner.
Planning engines based on forward search (e.g. FF (Hoff-
mann and Nebel 2001)) can be augmented as follows. In the
node expansion phase we must allow only such neighbour
nodes which comply with the linearity conditions. Let a be
an action which led to the current state. Then, if eff+(a) ∩
g = ∅ (a does not achieve any goal atom), then we can al-
low only such an action a′ such that eff+(a) ∩ pre(a′) 6= ∅.
Otherwise, that is, eff+(a) ∩ g 6= ∅ we might allow also
actions which do not require atoms from a. However, after
that we have to ensure that at least one atom from eff+(a)∩g
is not consumed and/or re-achieved by any of the following
actions.

Planning engines based on backward search, which are
not that common as the forward search ones, can be aug-
mented to follow linearity in the node expansion phase as
well. Let a be an action which led to the current state s and
gs be a set of ‘open goals’ in s (‘open goals’, similarly to
plan-space planning terminology, are atoms which have not
yet been achieved in s). In the node expansion phase we can
allow only actions a′ such that eff+(a′)∩ (pre(a)∪ gs) 6= ∅.
Note that in the following state, the set of ‘open goals’ is up-
dated as gs \ eff+(a′). From this perspective, we intuitively
believe that applying linearity in backward search planning
is easier than in forward search planning.

For SAT and CSP based planning, linearity can be en-
coded directly in SAT formulae, or constraints. Linear-
ity can be also exploited in some planning focused SAT
solvers (Rintanen 2012). In the case of parallel planning, en-
abling linearity can be done analogously.

Application to Modelling and Reformulation
How planning domains are modelled affects whether or not
solutions of problems might be linear. For example, the eas-
iest way how to provide a domain following the linearity
conditions is to introduce a supplementary atom (proposi-
tion) and place it in the preconditions and positive effects of
all the operators in the domain. However, such a blind refor-
mulation might not reduce the potential search in a planner.

Recalling the BlocksWorld example we can see that we
modified the original operator schema by introducing a sup-
plementary atom handfull. This has not affected the domain
in terms of losing solvability or losing a possibility to find an
optimal solution. However, it enables to (directly) use The-
orem 1 to determine linearity. Recalling the simple Logistic
example we can see that ‘splitting’ an operator move into
operators move-after-load and move-after-unload can en-
able to use Theorem 4 to determine linearity.

Therefore, it seems to be very reasonable to study pos-
sibilities of modelling or reformulating planning domains
in order to support linearity. As the examples above indi-
cated one possibility how to reformulate domains is to cre-
ate an achiever relation between some operators. Another
possibility is to use macro-operators (Botea et al. 2005;
Chrpa 2010), for instance, load-move.

Finally, we believe that reformulating domains in order to
support linearity can be done automatically. A statical anal-
ysis of domain structures, eventually problem structures (if
our general theoretical framework is extended), would be
sufficient to (i) identify if a given domain (and problem)
structure supports linearity and, (ii) propose reformulations.
In case there exists different possible reformulations for a
given domain (problem), it will be important to select the
“best” one, with respect to some properties that are related to
the performance of domain-independent planning systems.

Theoretical Aspects of Linearity
Linearity provides no guarantee of improving the time com-
plexity of planning, as illustrated in the example given
above, where the same proposition was added to the pre-
conditions and positive effects of all operator schema. Al-
though there is no relation between linearity and complexity
of planning, analysing operator schema reveals some inter-
esting aspects. There is a connection between OR and AND
achievers and OR and AND Landmarks (Hoffmann, Porte-
ous, and Sebastia 2004). Landmarks are atoms that, given
any solution plan π, must become true in some state during
the execution of π. If each operator has at most one OR set
of achievers and the operator schema follows Theorem 2, 3
or 4, then we believe that finding optimal solution for some
planning problems might be tractable. To justify this hypoth-
esis we can see that if we apply backward search, then the
search can directly go towards the initial state. However, de-
termining which instances of which operators can achieve
goal atoms, or the order in which goal atoms have to be
achieved might hinder the tractability. Also, one possible
outcome from analysis of operator schema is determining
Shortcut Rules (Karpas and Domshlak 2012) which stand
for mappings from ‘longer’ operator sequences to ‘shorter’

ones such that the sequences achieve the same predicates.
Shortcut Rules might be useful in optimal planning as well
as in post-planning optimisation.

Conclusions
In this paper we introduced a property of sequential and
parallel solution plans to a planning problem, called linear-
ity. This refers to situations where the set of optimal plans
includes a linear plan, that is one in which every action
achieves goal atom(s) or atom(s) for the following action.
In the parallel version, it is where actions from a set of inde-
pendent actions at one step in the parallel plan, all achieve
atoms for the next set of independent actions at the next step.

We analysed planning operator schema by using relations
of being an achiever, a clobberer or being independent of
one another. According to specific properties of these rela-
tions we were able to determine on a problem-independent
basis in which cases we are able to produce optimal (paral-
lel) solution plans which are linear. Though the main focus
of the paper is on a theoretical analysis of the property, we
have shown how linearity can be applied as a heuristic within
typical state space and goal directed planning engines, and
how planning domains can be modified in order to enable
linearity. In the future, we plan to focus on i) augmenting
existing state-of-the-art planning engines in order to exploit
linearity, ii) providing methods for reformulating planning
domains in order to enable linearity, iii) outlining guidelines
for designing new planning domains and iv) extending our
theoretical study, for instance, by further investigating simi-
larities and differences between our work and research into
Landmarks and Learning Shortcut Rules.

Acknowledgements The research was funded by the UK
EPSRC Autonomous and Intelligent Systems Programme
(grant no. EP/J011991/1).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Bäckström, C.; Chen, Y.; Jonsson, P.; Ordyniak, S.; and
Szeider, S. 2012. The complexity of planning revisited -
a parameterized analysis. In Proceedings of AAAI, 1735–
1741.
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1-2):281–300.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333–377.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In Proceedings of IJCAI,
1659–1664.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of ICAPS, 338–342.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.
Coles, A. J., and Coles, A. I. 2010. Completeness-preserving
pruning for optimal planning. In Proceedings of ECAI, 965–
966.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compiling
it into CSP. Artificial Intelligence 132:151–182.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research (JAIR) 9:367–421.
Fox, M., and Long, D. 2001. STAN4: a hybrid planning
strategy based on subproblem abstraction. AI Magazine
22(3):81–84.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Gimenez, O., and Jonsson, A. 2007. On the hardeness of
planning problems with simple causal graphs. In Proceed-
ings of ICAPS, 152–159.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. In Proceedings of ICAPS, 52–62.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search (JAIR) 22:215–278.
Karpas, E., and Domshlak, C. 2012. Optimal search with
inadmissible heuristics. In Proceedings of ICAPS, 92–100.
Katz, M., and Domshlak, C. 2007. Structural patterns of
tracable sequentialy-optimal planning. In Proceedings of
ICAPS, 200–207.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. In Proceedings of the fifth IPC.
Knoblock, C. 1994. Automatically generated abstractions
for planning. Artificial Intelligence 68(2):243–302.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2012. Engineering efficient planners with SAT.
In Proceedings of ECAI, 684–689.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.
Surynek, P. 2008. Tractable class of a problem of goal sat-
isfaction in mutual exclusion network. In Proceedings of
FLAIRS Conference, 561–566.

