
MUM: A Technique for Maximising the Utility of Macro-operators by
Constrained Generation and Use

Lukáš Chrpa and Mauro Vallati and Thomas Leo McCluskey
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, m.vallati, t.l.mccluskey}@hud.ac.uk

Abstract

Research into techniques that reformulate problems
to make general solvers more efficiently derive solu-
tions has attracted much attention, in particular when
the reformulation process is to some degree solver
and domain independent. There are major challenges
to overcome when applying such techniques to auto-
mated planning, however: reformulation methods such
as adding macro-operators (macros, for short) can be
detrimental because they tend to increase branching fac-
tors during solution search, while other methods such
as learning entanglements can limit a planner’s space
of potentially solvable problems (its coverage) through
over-pruning. These techniques may therefore work
well with some domain-problem-planner combinations,
but work poorly with others.
In this paper we introduce a new learning technique
(MUM) for synthesising macros from training example
plans in order to improve the speed and coverage of do-
main independent automated planning engines. MUM
embodies domain independent constraints for selecting
macro candidates, for generating macros, and for lim-
iting the size of the grounding set of learned macros,
therefore maximising the utility of used macros. Our
empirical results with IPC benchmark domains and a
range of state of the art planners demonstrate the ad-
vance that MUM makes to the increased coverage and
efficiency of the planners. Comparisons with a previous
leading macro learning mechanism further demonstrate
MUM’s capability.

Introduction
A fundamental problem solving technique is to reformulate
a problem to make it easier to solve. In automated planning,
where solution generation is known to be hard in general,
techniques that reformulate planning domains have the po-
tential to increase the speed of solution plan generation, and
increase coverage, that is the number of planning problems
that can be solved within some resource constraint. Where
the reformulation involves encoding knowledge directly into
the same language in which the problem definition is en-
coded, then planning engines do not need to be modified in
order to exploit them.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Macro-operator generation is a well known technique for
encapsulating sequences of original operators, so that they
can be stored and used in future planning problems. Macro-
operators (macros, for short) can be encoded in the same
format as original operators and therefore can be used to re-
formulate planning problem definitions. The idea of using
macros in planning dates back to 1970s where, for example,
it was applied in STRIPS (Fikes and Nilsson 1971) and RE-
FLECT (Dawson and Siklóssy 1977). More recently, sys-
tems such as MacroFF CA-ED version (Botea et al. 2005)
or WIZARD (Newton et al. 2007) are able to extract macros
and reformulate the original domain model, such that stan-
dard planning engines can exploit them.

On the other hand, macros can also be exploited by specif-
ically enhanced algorithms. This is the case for MacroFF
SOL-EP version (Botea et al. 2005) which is able to exploit
offline extracted and ranked macros, and Marvin (Coles,
Fox, and Smith 2007) that generates macros online by
combining sequences of actions previously used for escap-
ing plateaus. Such systems can efficiently deal with draw-
backs of specific planning engines, in this case the FF plan-
ner (Hoffmann and Nebel 2001), however, their adaptability
for different planning engines might be low.

Another type of additional knowledge that can be encoded
into domain/problem definitions and has been exploited
in classical planning are entanglements, relations between
planning operators and predicates (Chrpa and McCluskey
2012). Outer entanglements (Chrpa and Barták 2009), one of
the types of entanglements, capture causal relations between
planning operators and initial or goal predicates which are
used to prune some unpromising instances of planning oper-
ators. Deciding outer entanglements is, however, PSPACE-
complete in general (Chrpa, McCluskey, and Osborne 2012),
therefore they are extracted by an approximation algorithm
which generally does not preserve completeness (solvability
might be lost if incorrect entanglements are applied).

In this paper we introduce MUM, a new learning tech-
nique for synthesising macros from training examples in
order to improve the speed and coverage of domain inde-
pendent planning engines which input encodings in clas-
sical PDDL. MUM utilises constraints which are created
through the generation of outer entanglements, then uses
these entanglements for selecting macro candidates, for gen-
erating macros, and for limiting the size of the ground-



ing set of learned macros. There have been approaches
which utilise macros and outer entanglements indepen-
dently (Chrpa 2010a), however, in contrast to this, MUM is
designed to directly exploit knowledge related to outer en-
tanglements throughout the process of macro learning and
use, thus maximising their utility. Also, MUM preserves
completeness since outer entanglements are applied only
on generated macros, so the original operators remain in-
tact. We present an empirical evaluation on IPC benchmarks
(from the IPC-7 learning track) using a range of 6 planners
and 9 domains. Our empirical results demonstrate the ad-
vance that MUM makes to the increased coverage and ef-
ficiency of the planners, and this improvement is apparent
across planners and domains. Comparisons with a previous
leading macro learning mechanism called WIZARD (New-
ton et al. 2007), further demonstrate MUMs capability.

Background and Related Work
Classical planning (in state space) deals with finding a se-
quence of deterministic actions to transform the fully ob-
servable environment from some initial state to a desired
goal state (Ghallab, Nau, and Traverso 2004).

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms defin-
ing their preconditions, negative and positive effects (i.e.,
a = (pre(a), eff−(a), eff+(a))). An action a is applicable in
a state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ eff−(a)) ∪ eff+(a).

In the classical representation atoms are predicates. A
planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is a generalised action (i.e. an action is a grounded instance
of the operator), where name(o) = op name(x1, . . . , xk)
(op name is an unique operator name and x1, . . . xk are vari-
able symbols (arguments) appearing in the operator) and
pre(o), eff−(o) and eff+(o) are sets of (ungrounded) predi-
cates with variables taken only from x1, . . . xk.

A planning domain model is specified by a set of predi-
cates and a set of planning operators. A planning problem
definition is specified via a domain model, initial state and
set of goal atoms. A plan is a sequence of actions. A plan is
a solution of a planning problem if and only if a consecutive
application of the actions in the plan (starting in the initial
state) results in a state, where all the goal atoms are satis-
fied. An important class of predicates in this paper are static
predicates. For a given domain model, a predicate is called
static if it is not present in the effects of any operator.

Macro-operators
Macro learning and use has been studied for several
decades (Dawson and Siklóssy 1977; Korf 1985; Botea et
al. 2005; Fikes and Nilsson 1971). Here we are concerned
with macros that are encoded in the same way as ordi-
nary planning operators but encapsulate sequences of plan-
ning operators. This gives the technique the potential of be-
ing planner independent as well as being domain indepen-
dent. In the well known BlocksWorld domain (Slaney and
Thiébaux 2001), we can observe, for instance, that the oper-

ator unstack(?x,?y) is often followed by the operator put-
down(?x). Hence, it might be reasonable to create a macro
unstack-putdown(?x,?y) which moves a block ?x from top
of a block ?y directly to the table, bypassing the situation
where the block ?x is held by the robotic hand. Formally, a
macro oi,j is constructed by assembling planning operators
oi and oj (in that order) in the following way:

• pre(oi,j) = pre(oi) ∪ (pre(oj) \ eff+(oi))

• eff−(oi,j) = (eff−(oi) \ eff+(oj)) ∪ eff−(oj)

• eff+(oi,j) = (eff+(oi) \ eff−(oj)) ∪ eff+(oj)

For a macro to be sound oi must not delete any predicate
required by oj . If soundness is violated then corresponding
instances of oi and oj cannot be applied consecutively.

Longer macros, i.e., those encapsulating longer sequences
of original planning operators can be constructed by this ap-
proach iteratively.

Macros can be understood as ‘shortcuts’ in the state space.
This property can be useful since by exploiting them it is
possible to reach the goals in fewer steps. However, the num-
ber of instances of macros is often higher than the num-
ber of instances of the original operators, because they usu-
ally have a large set of parameters, that derives from the
parameters of the operators that are encapsulated. This in-
creases the branching factor in the search space, which can
slow down the planning process and, moreover, increase the
memory consumption. Therefore, it is important that ben-
efits of macros outweigh their drawbacks. This problem is
known as the utility problem (Minton 1988).

Learning Macros
Macro learning techniques often follow the following rules,
when a macro oi,j is being created from operator oi and oj
(in that order):

1) oi adds a predicate needed in the preconditions of oj
2) oi,j is not complex

3) the number of learned macros is small

Rule 1) refers to a sort of coherency between oi and oj .
Theoretically, it is possible to generate a macro from inde-
pendent operators, however, in practice it is not a very useful
approach because then the number of possible instances of
the macro can be very high and, moreover, there may not
be a clear motivation for executing such independent op-
erators in a specific sequence. Rules 2) and 3) ameliorate
the utility problem: complex macros can have many ground-
ings which are likely to introduce overheads which outweigh
the benefits of macro use, and similarly, generation of many
macros may bring the same shortcomings. Recent related
work confirms that the better option is to generate a few
and shorter macros rather than many or longer macros. For
macros which are generated to have the same format as orig-
inal operators, and thus are potentially planner independent,
relevant state-of-the-art systems include MacroFF (Botea et
al. 2005), Wizard (Newton et al. 2007) and the system de-
veloped by Chrpa (2010b). The CA-ED version of MacroFF
uses a component abstraction technique for learning macros.



In brief, abstract components are sets of static predicates
referring to ‘localities’. Static predicates provide a kind of
matching between objects of different or the same types. An
abstract component consists of such static predicates that, in-
formally, can group objects into a single component. For in-
stance, in the Depots domain, each hoist is placed at some lo-
cation. Hence, at(?hoist, ?place) can form an abstract com-
ponent since a hoist can be only at one place, in other words,
we can have a mapping from the set of hoists to the set of
places (locations). On the other hand, supports(?camera,
?mode) cannot form an abstract component since a cam-
era might support more than one mode as well as a specific
mode can be supported by more than one different cameras.
So, we cannot have any mapping from the set of cameras
to the set of modes (or the other way round). Abstract com-
ponents are used to check the locality rule of a generated
macro, that is, whether static predicates in a macro’s pre-
condition belong to the same abstract component. By prun-
ing macros containing cycles and limiting numbers of ar-
guments or predicates in macro preconditions, MacroFF is
able to eliminate complex macros. Limiting the number of
learned macros is done by selecting the n most used macros
in training plans (which are solutions of simple problems).

In Chrpa’s approach, macros are learned from training
plans by considering both adjacent actions, and non-adjacent
actions which can be made adjacent by permutating the
training plans (clearly the permutations considered must pre-
serve the soundness of the plan). Macros are generated ac-
cording to several criteria such as whether instances of one
operator frequently follows (or precedes) instances of the
other operator, and whether the number of the macro’s argu-
ments is small. No limit on how many macros can be gener-
ated is given a priori, but the priority is given to macros that
could replace some original operators. Removing original
operators is, however, incomplete in general, although it has
been empirically shown on IPC benchmarks that solvability
is lost very rarely (Chrpa 2010b). Whereas IPC benchmarks
differ by number of objects, initial and goal situations often
are found to be similar in structure.

Wizard is based on an evolutionary method carried out
in a training phase, which computes macros by combining
operators using a genetic algorithm. This approach allows
Wizard to generate macros that refer to sequences of actions
that do not appear in the considered training plans. Gener-
ated macros are then cross-validated on training problems
and the fitness of the macros, i.e. their usefulness, is deter-
mined according to the performance of planners. Although
macros generated by Wizard have shown to have good qual-
ity, learning time is often very high (typically tens of hours).

Outer Entanglements
Outer Entanglements are relations between planning oper-
ators and initial or goal predicates, and have been intro-
duced as a tool for eliminating potentially unnecessary in-
stances of these operators (Chrpa and McCluskey 2012). In
the BlocksWorld domain1 (Slaney and Thiébaux 2001) we
may observe, for example, that unstacking blocks only oc-

1no space restriction on the table is considered

Figure 1: An illustrative example of outer entanglements.

curs from their initial positions. In this case an entangle-
ment by init will capture that if a predicate onblock(a,b)
is to be achieved for a corresponding instance of opera-
tor unstack(?x,?y) (unstack(a,b)), then the predicate is
present in the initial state. Similarly, it may be observed
that stacking blocks only occurs to their goal position. Then,
an entanglement by goal will capture that a predicate on-
block(b,a) achieved by a corresponding instance of operator
stack(?x,?y) (stack(b,a)) is the goal one. Such an observa-
tion is depicted in Figure 1. Outer entanglements are defined
as follows.
Definition 1. Let P be a planning problem, where I is the
initial situation and G is the goal situation. Let o be a plan-
ning operator and p be a predicate (o and p are defined in
the domain model of P ). We say that operator o is entan-
gled by init (resp. goal) with predicate p in P if and only
if p ∈ pre(o) (resp. p ∈ eff+(o)) and there exists a plan π
that is a solution of P and for every action a ∈ π which
is an instance of o and for every grounded instance pgnd of
the predicate p it holds: pgnd ∈ pre(a) ⇒ pgnd ∈ I (resp.
pgnd ∈ eff+(a)⇒ pgnd ∈ G).
Henceforth, entanglements by init and goal are denoted as
outer entanglements. �

Outer entanglements can be used to prune potentially un-
necessary instances of planning operators. Given the exam-
ple of the BlocksWorld domain (see Figure 1), we can see
that since the unstack operator is entangled by init with
the on predicate only the instances unstack(b,a) and un-
stack(c,b) follow the entanglement conditions and then we
can prune the rest of unstack’s instances because they are
not necessary to find a solution plan. Similarly, we can see
that since the stack operator is entangled by goal with the on
predicate only the instances stack(a,b) and unstack(b,c)
follow the entanglement conditions and then we can prune
the rest of stack’s instances. Usefulness of such pruning can
be demonstrated in the following way. Given n blocks we
can have at most n·(n−1) instances of stack or unstack (we
do not consider instances when the block is unstacked from
or stacked on itself – e.g stack(a,a)). Considering outer en-
tanglements we can have at most n − 1 instances of stack
or unstack (we consider situations where at most one block



can be stacked on the top of another block and no block can
be stacked on more than one block). In summary, while in
the original setting the number of instances grows quadrati-
cally with the number of blocks, considering outer entangle-
ments reduces the instances growth to linear.

Reformulating Planning Problems by Outer
Entanglements
Outer entanglements are directly encoded into a problem
definition, so, similarly to the kind of macros we consider,
are used as a problem reformulation technique. The way
outer entanglements are encoded is inspired by one of their
properties: given a static predicate ps, an operator o is en-
tangled by init with ps if and only if ps ∈ pre(o) (Chrpa
and Barták 2009). Introducing supplementary static predi-
cates and putting them into preconditions of operators in the
outer entanglement relation (both init and goal) will filter
instances of these operators which do not follow the entan-
glement conditions. Formally, let P be a planning problem,
I be its initial state and G its goal situation. Let an oper-
ator o be entangled by init (resp. goal) with a predicate p.
Then the problem P is reformulated as follows (Chrpa and
McCluskey 2012):

1. Create a static predicate p′ (not already defined in the do-
main model of P ) having the same arguments as p and
add p′ to the domain model of P .

2. Modify the operator o by adding p′ into its precondition.
p′ has the same arguments as p which is in precondition
(resp. positive effects) of o.

3. Add instances of p′ which correspond to instances of p in
I (resp. in G) into I .

Detecting Outer Entanglements
Deciding outer entanglements is PSPACE-complete in gen-
eral, i.e., as hard as planning itself (Chrpa, McCluskey, and
Osborne 2012). Detecting outer entanglements is thus done
by using an approximation method which finds the entan-
glements in several training plans, solution of simpler plan-
ning problem, and assumes these entanglements hold for the
whole class of planning problems defined in the same do-
main (e.g. IPC benchmarks) (Chrpa and McCluskey 2012).
Although this approximate method may result in an incor-
rect assumption, it has been shown empirically using IPC
benchmarks that it occurs very rarely, though whether the
technique would show the same success rate in ‘real-world’
problems is an open question.

The method proceeds by iterating through the training
plans counting how many times for an (operator, predicate)
pair the outer entanglement conditions are violated. Because
training plans might consist of ‘flaws’ (e.g. redundant ac-
tions) a flaw ratio η is used to allow some percentage of er-
rors (i.e. when the entanglement conditions are violated). An
entanglement between an operator and a predicate is consid-
ered true if the number of the operator’s instances is non-
zero and the ratio between errors and the number of the op-
erator’s instances is smaller or equal to the flaw ratio. Of
course, having the flaw ratio greater than zero might result

in detecting incorrect entanglements even for training prob-
lems. Hence, these entanglements must be validated on the
training problems and if some of the problems become un-
solvable then the flaw ratio is decreased and the method is
run again.

The MUM Technique: Combining Outer
Entanglements and Macros

The general idea of MUM is to utilise outer entanglements
both in the macro generation and the macro use phase, in or-
der to constrain which macros are generated, and the num-
ber of instances of macros in their use. Adding macros into
a domain model does not affect completeness since macros
can be understood as ‘shortcuts’ in the state space. Because
deciding outer entanglements is intractable in general, an ap-
proximation method is used to extract them. However, there
is no guarantee that all the extracted entanglements are valid.
In other words, applying incorrect entanglements leads to
losing solvability of some problems. If some instances of a
macro are removed due to ’incorrect entanglements’, com-
pleteness is not affected since the corresponding sequence of
instances of original operators can be used instead. Hence,
applying entanglements only on macros (and not on the orig-
inal operator set) ensures completeness is preserved even in
the case where some of the entanglements are incorrect.

It is of course possible to learn macros and outer entangle-
ments separately, and use them both to reformulate planning
problems as distinct techniques. While using such an ap-
proach can bring promising results (Chrpa 2010a), the prob-
lems of completeness not being preserved, or macros having
too many instances, remain. In contrary to this, MUM ex-
ploits outer entanglements directly during the macro learn-
ing process, so we believe that it will lead to generating bet-
ter quality macros. Following these insights, a high level de-
sign of MUM is as follows:

1) Learn outer entanglements
2) Macro Generation: learn macros by exploiting the

knowledge of outer entanglements
3) Macro Use: reformulate a problem definition with

learned macros and their supporting outer entanglements

One useful result we can use in step 2), is that macros
can inherit outer entanglements from original operators as
follows (Chrpa 2010a):

• oi,j is entangled by init with p iff p ∈ pre(oi,j) and oi or
oj is entangled by init with p.

• oi,j is entangled by goal with p iff p ∈ eff+(oi,j) and oi
or oj is entangled by goal with p.

Estimating the potential number of instances of an
operator
Inspired by abstract components used by MacroFF (Botea et
al. 2005) to determine ‘locality’ of objects of different types,
we propose an idea of operator argument matching which
can be used to estimate the number of operator instances.
Static predicates which have at least two arguments denote
relations between objects. For example, in the well known



Depots domain, the static predicate at(?hoist,?place) pro-
vides a relation between hoists and places. In particu-
lar, a hoist can be exactly at one place. This informa-
tion can be useful for estimating how many reachable in-
stances a planning operator (or macro) can have. For ex-
ample, Lift(?hoist,?crate,?surface,?place) can hypothet-
ically have #hoists · #crates · #surfaces · #places in-
stances. Knowing that the static predicate at(?hoist,?place)
is in the precondition of Lift we can deduce that the num-
ber of Lift’s instances is bounded by #hoists · #crates ·
#surfaces because the number of at’s instances in the ini-
tial state is bounded by #hoists.

Recall how outer entanglements are encoded, that is by
introducing supplementary static predicates. If these intro-
duced static predicates have at least two arguments, then
they can be exploited in the same way as other static pred-
icates in order to estimate operator instances. It holds that
if p ∈ pre(o) is static, then o is entangled by init with
p (Chrpa and Barták 2009). In other words, static predi-
cates are special cases of entanglement by init relations.
If Lift(?hoist,?crate,?surface,?place) is entangled by init
with a predicate on(?crate,?surface), then a static predi-
cate on’(?crate,?surface) is created and put into Lift’s pre-
condition. For each problem, its initial state I is modified to
I ′ by adding instances of on’ such that ∀x, y : on′(x, y) ∈
I ′ ⇔ on(x, y) ∈ I .

A similar modification takes place in the case where
Lift(?hoist,?crate,?surface,?place) is entangled by init
with a predicate at(?crate,?place). We can observe that the
number of instances of on’(?crate,?surface) as well as the
number of instances of at’(?crate,?place) (a supplementary
static predicate derived from at(?crate,?place)) is bounded
by the number of crates (#crates). Straightforwardly, at
most one crate can be stacked on a given surface and a crate
can be in at most one place. With the knowledge of these
entanglement relations involving the Lift operator, the esti-
mation of the number of Lift’s instances can be modified to
O(#crates).

Static predicates and outer entanglements provide match-
ing between arguments of planning operators. For every op-
erator we can construct an argument matching graph (or a
simple argument matching graph if only static predicates are
involved) as in the following formal definition:

Definition 2. Let o(x1, . . . , xn) be a planning operator
where x1, . . . , xn are its arguments.
Let G = (N,E) be an undirected graph such that N =
{x1, . . . , xn} and (xi, xj) ∈ E if and only if xi 6= xj
and there is a static predicate p such that p ∈ pre(o) and
xi, xj ∈ args(p). Then, we denote G as the simple argu-
ment matching graph of o.
Let G = (N,E) be an undirected graph such that N =
{x1, . . . , xn} and (xi, xj) ∈ E if and only if xi 6= xj and
there is a predicate p such that xi, xj ∈ args(p) and o is
entangled by init or goal with p. Then, we denote G as the
argument matching graph of o.

Henceforth, we will assume that the number of instances
of predicates having at least one argument in the initial/goal
state of a typical planning problem is bounded by O(n) (n

Algorithm 1 Our method for generating macros
1: macros := {}
2: repeat
3: candidates := ComputeMacroCandidates()
4: candidates := SortMacroCandidates(candidates)
5: candSelected := false
6: while not candSelected and not Empty(candidates)

do
7: cand := PopFirst(candidates)
8: mcr := GenerateMacro(cand)
9: if not Uninformative(mcr) and not Repetitive-

ness(mcr) and AMGComponentCheck(mcr) then
10: candSelected := true
11: end if
12: end while
13: if candSelected then
14: UpdatePlans(mcr)
15: macros := macros ∪{mcr}
16: end if
17: until no more macros have been generated or the no. of

generated macros has reached a prescribed limit
18: FilterGeneratedMacros(macros)

stands for the number of objects). This assumption is made
according to the observation of standard planning bench-
marks and will be used as a heuristic estimation of numbers
of operator or predicate instances. Of course, this assump-
tion might not be always true, hence a predicate which does
not follow the assumption does not have to be considered
when constructing the (simple) argument matching graph.

Using the previous assumption, the (simple) argument
matching graph of an operator o can be therefore used to
estimate the number of o’s instances. Let n be the number of
objects defined in some planning problem, o be a planning
operator and c be the number of components of the (simple)
argument matching graph of o. Then, the number of o’s in-
stances is O(nc). This result will be useful for estimating
impact of generated macros on branching factor.

Generating Macros
Algorithm 1 describes how MUM generates macros (it is

the detail of step 2 in the high level design of MUM provided
earlier in the text). Computing macro candidates (Line 3) is
done according to Chrpa’s approach (2010b). This approach
considers two actions adjacent not only in the original plans
but also their potential permutations. Analogously to Macro-
FF, considered actions are related, i.e., one achieves a pred-
icate (or predicates) required by the other’s precondition.
Plan permutations are computed according to the property
of ‘action independence’ which allows the swapping of ad-
jacent actions in plans following this property. We shall see
later that the outer loop (Line 2) enables the possibility that
generated macros are not of restricted length (that is, they
can encapsulate more than two original operators).

Considering the sorting procedure in Line 4, let oi and oj
be two operators making up a macro candidate, and oi,j be
the macro generated by assembling oi and oj (in this order).



We say that an operator o has a relational entanglement by
init (goal) if o is entangled by init (goal) with a non-static
predicate p which has at least two arguments. The macro
candidates are then sorted (Line 4) as follows. The macro
candidates are ranked according to the following conditions.

(1) oi has a relational entanglement by init

(2) oj has a relational entanglement by goal

If both (1) and (2) are satisfied then the macro candidate is
put to the top rank, if either (1) or (2) is satisfied then the
candidate is put into the middle rank, otherwise the candi-
date is put into the bottom rank. If more than one candidate
lies within the same rank, then those whose instances of cor-
responding operators can become macros (macro-actions) in
the training plans more times are preferred.

The reason for this ranking is that if both (1) and (2) are
satisfied, then the macro is supposed to modify the state of
an object (or objects) directly from its (their) initial to its
(their) goal state. Such a macro is, from our point of view,
very useful. A good example is the macro Pick-Move-Drop
in the Gripper domain. Similarly, if only one of (1) and (2)
is satisfied, the macro is supposed to start from the initial
object state or to reach the goal object state. In other words,
in the Gripper domain, we prefer a potential macro Move-
Drop before a potential macro Move-Pick.

Within the inner loop, the macro candidates are checked
in the given order whether they meet three criteria (Line 9),
i.e., whether the macro is uninformative, repetitive and its
number of possible instances remains within the same or-
der as for the original operators (or macros) the macro is
assembled from (the AMGComponentCheck). A potential
macro oi,j is uninformative if and only if eff+(oi,j) ⊆
pre(oi,j). Clearly, such a macro is of no utility since its ap-
plication will not create any new atom (predicate). Repet-
itiveness of the potential macro is determined by repeat-
ing subsequences of original operators, for example, Move-
Move or Lift-Load-Lift-Load. The last check, AMGCompo-
nentCheck, refers to whether the potential macro will lead to
a significant increase of the branching factor during search.
For this, we have to construct the argument matching graphs
of oi, oj and oi,j . For original operators which will be in-
tact in the reformulated domain models, the simple argu-
ment matching graphs will be considered. Let comp(o) be
the number of components of the (simple) argument match-
ing graph of o (depends whether o is an original operator or
a macro). The AMGComponentCheck succeeds if and only
if comp(oi,j) ≤ comp(oi) or comp(oi,j) ≤ comp(oj). Fail-
ure of the AMGComponentCheck means that the number
of instances of the potential macro oi,j can be significantly
higher than the number of instances of oi and oj , which is
undesirable.

If all the criteria (Line 9) are met, then the macro is con-
sidered and the training plans are updated by replacing the
instances of macro candidates by the new macro (for details,
see (Chrpa 2010b)). If no macro candidate has met all the
criteria, or the number of generated macros has reached the
limit, then the main loop (Lines 6–17) terminates.

Finally, the generated macros are filtered (Line 18) ac-
cording to following conditions. If comp(oi,j) > comp(oi)

FF LAMA LPG Mp Probe Tot
Barman – – – – – –
Blocks – 2 – – 3 3
Depots 2 – – 2 2 2
Gripper 1 1 1 1 1 1
Parking – – – – – –
Rovers 2 2 1 2 1 4
Satellite 1 2 1 1 2 2
Spanner 2 1 2 1 1 3
TPP 1 1 1 1 1 2

Table 1: Number of macros extracted by MUM on a given
domain for a single planner and the total number of different
macros per domain (Tot).

or comp(oi,j) > comp(oj), then oi,j is removed. Note
that the AMGComponentCheck used in the generation
phase is a weaker condition than this, and allows situa-
tions where min(comp(oi), comp(oj)) < comp(oi,j) ≤
max(comp(oi), comp(oj)). The reason is that oi,j may be
used as a ‘building block’ for a longer macro which can
be very useful (for illustration, see the example below). In
the case where one or both of the components of a new
macro ml is also a macro (call it ms), it is desirable to
keep at most one of these. ml does not pass the filter test
of Line 18 if comp(ml) > comp(ms). ml is also filtered if
comp(ml) = comp(ms) and the number of ml’s instances
is not greater than the number of ms’s instances in the up-
dated training plans. Otherwise ml is kept and ms is filtered
out.

As an example to demonstrate how our method works we
take the Gripper domain model (the version from the IPC-
7 learning track). We identified three outer entanglements:
Pick is entangled by init with at(?r,?room) and free(?r,?g)
and Drop is entangled by goal with at(?r,?room). The
numbers of components of the simple argument matching
graphs are as follows: comp(move) = 3 and comp(pick) =
comp(drop) = 4. After calculating the macro candi-
dates we selected at first a potential macro Pick-Drop
since it is the highest candidate after sorting. This macro
is, however, uninformative since Pick and Drop are re-
versing each other’s effects in this case. Then, a poten-
tial macro Move-Drop is selected. It passed all the checks,
comp(move–drop) = 4 (we consider the non-simple ar-
gument matching graph), so the macro is considered and
the training plans are updated by replacing corresponding
instances of Move and Drop with the new macro Move-
Drop. Iterating around the outer repeat loop of Algorithm 1,
macro-candidates are recalculated using the re-represented
training plans. After the candidates have been sorted, the
potential macro Pick-Move-Drop is selected. It passed all
the checks, where comp(pick–move–drop) = 2, hence
the macro is considered and the training plans are up-
dated. Furthermore, two more macros Move-Pick-Move-
Drop and Pick-Move-Drop-Move-Pick-Move-Drop such
that comp(pick–move–drop–move–pick–move–drop) =
comp(move–pick–move–drop) = 3 are considered.
Since the prescribed limit of considered macros was



Solved # Fastest IPC score
O M O M O M

FF 1 36 0 36 0.5 36.0
LAMA 39 116 5 113 30.4 115.7
LPG 99 86 89 24 97.9 67.1
Mp 8 41 2 41 6.9 41.0
Probe 80 86 20 75 63.4 84.3
Total 227 365 116 289 199.1 344.1

Table 2: Number of solved problems, number of problems
solved faster and IPC score achieved by considered planners
on all the benchmark problems, while exploiting the origi-
nal formulation (O) or the formulation extended with MUM
macros (M), whenever available.

4, which is reached, we proceed to the filtering stage.
The macros Move-Pick-Move-Drop and Pick-Move-Drop-
Move-Pick-Move-Drop are pruned since their common
‘submacro’ Pick-Move-Drop has fewer components of ar-
gument matching graph. The macro Pick-Move-Drop has
fewer components than the original operator Pick and the
macro Move-Drop. Hence, the macro Pick-Move-Drop is
kept while its ‘submacro’ Move-Drop is pruned. After the
filtering stage only Pick-Move-Drop remains which is is
then added (with entanglements) into the original Gripper
domain model.

Experimental Analysis
The aims of this experimental analysis were to (a) eval-
uate the effectiveness of the MUM system with respect
to increasing the speed and coverage of plan generation
over a range of domains and planning engine combinations,
and (b) to compare it to a similar state-of-the-art method.
For this purpose, we use the well-known benchmark in-
stances used in the learning track of the last International
Planning Competition (IPC-7) (Coles et al. 2012) that was
held in 2011. Such problems are from the following do-
mains: Barman, BlocksWorld (BW), Depots, Gripper, Park-
ing, Rovers, Satellite, Spanner and TPP. As benchmark-
ing planners we chose Metric-FF (Hoffmann 2003), LPG-
td (Gerevini, Saetti, and Serina 2003), LAMA-11 (Richter
and Westphal 2010; Richter, Westphal, and Helmert 2011),
Mp (Rintanen 2012) and Probe (Lipovetzky and Geffner
2011). All the planners successfully competed in the IPCs
and exploit different techniques for finding satisficing plans.
A runtime cutoff of 900 CPU seconds (15 minutes, as in
learning tracks of IPC) was used for both learning and test-
ing runs. All the experiments were run on 3.0 Ghz ma-
chine CPU with 4GB of RAM. In this experimental anal-
ysis, IPC score as defined in IPC-7 are used. For a plan-
ner C and a problem p, Score(C, p) is 0 if p is unsolved,
and 1/(1 + log10(Tp(C)/T ∗p )), where Tp(C) is the cpu time
needed by planner C to solve problem p and T ∗p is the
cputime needed by the best considered planner, otherwise.
The IPC score on a set of problems is given by the sum of
the scores achieved on each considered problem.

As the training set for learning macros for a given planner

on a specific domain consists of about 5-8 simpler problems
that were generated using the problem generators provided
by the organisers. For a single planner and a single domain,
the learning process required a couple of seconds including
generating the training plans and the execution of MUM.

Results of Macro Generation: In Table 1 the number
of macros generated by MUM for a specific planner, on a
given domain, is shown. Generally, the results show a good
spread across planners and domains. Also, the total number
of macros extracted per domain is usually lower than the pre-
scribed limit of 4. Macros are often of length of 2 or 3, occa-
sionally 4, and in the Spanner domain one macro is of length
5. Often the plans generated by different planners have sim-
ilar structure, reflecting the domain’s structure, resulting in
the opportunity to generate only a low number of different
macros. In Barman and Parking MUM did not generate any
macros. In Barman we observe that there is not a sequence of
operators which is frequently used in a plan, since the ways
for generating different cocktails differ quite significantly,
hence the reason why no macros were generated. In Parking,
no outer entanglements were extracted, therefore potential
macros had more possible instances (according to the num-
ber of components of their argument matching graphs), and
so were filtered out. In BW and Depots, MUM did not gen-
erate macros for some planners because the training plans
produced by these planners were of low quality (they were
too long) which prevented MUM extracting useful outer en-
tanglements at the start of the process. Because of that, po-
tential macros were not constrained enough (the number of
components of the argument matching graph was high), so
they were filtered out.

Results of Macro Use: Cumulative results of the eval-
uation are presented in Table 2, with the performances ex-
ploited in the domain model enhanced with macros, com-
pared to the original problem formulation. Values are com-
puted only in domains in which MUM was able to find a set
of macros for the given planner. The results show that, in
general, exploiting the domain model extended with the ex-
tracted macros leads to a performance improvement in terms
of number of solved problems, number of problems solved
faster and IPC score (that is, improved coverage and speed).
The exception to this are all the domains using the LPG
planner. To investigate why, we ran LPG with entanglement-
supported macros generated by other planners, and observed
that the performance of LPG was usually better than the ones
achieved on the original domain model. Hence, we postulate
this behaviour is caused by (i) low quality solutions found
for training problems by LPG (ii) the use of a local search
algorithm in LPG being oversensitive to even a marginal in-
crease of the branching factor caused by added macros.

Results of Comparison with Wizard: In order to eval-
uate the effectiveness of MUM with regards to the related
state-of-the-art techniques for planner-independent genera-
tion of macros, we compared it to Wizard (Newton et al.
2007). For training Wizard about 90 problems per domain
were used, divided in three sets accordingly to their com-
plexity (assessed by the number of involved objects). De-
fault parameters configuration was used. For a single plan-
ner, the process of generating macros on all the considered



Solved # Fastest IPC score
Barman O W M O W M O W M
FF 0 – – 0 – – 0.0 – –
LAMA 0 – – 0 – – 0.0 – –
LPG 0 – – 0 – – 0.0 – –
Mp 0 0 – 0 0 – 0.0 0.0 –
Probe 1 1 – 1 0 – 1.0 0.9 –
BW O W M O W M O W M
FF 0 – – 0 – – 0.0 – –
LAMA 18 0 27 2 0 25 13.2 0.0 26.8
LPG 20 30 – 0 30 – 9.2 30.0 –
Mp 0 0 – 0 0 – 0.0 0.0 –
Probe 20 18 30 0 0 30 13.6 11.1 30.0
Depots O W M O W M O W M
FF 1 2 4 0 0 4 0.5 1.1 4.0
LAMA 3 – – 3 – – 3.0 – –
LPG 13 – – 13 – – 13.0 – –
Mp 6 5 19 1 2 17 4.7 3.9 18.6
Probe 30 30 30 1 0 29 23.0 23.6 29.9
Gripper O W M O W M O W M
FF 0 – 25 0 – 25 0.0 – 25.0
LAMA 0 – 26 0 – 26 0.0 – 26.0
LPG 10 – 22 10 – 12 10.0 – 18.0
Mp 0 0 0 0 0 0 0.0 0.0 0.0
Probe 0 – 0 0 – 0 0.0 – 0.0
Parking O W M O W M O W M
FF 7 0 – 7 0 – 7.0 0.0 –
LAMA 4 – – 4 – – 4.0 – –
LPG 0 – – 0 – – 0.0 – –
Mp 0 – – 0 – – 0.0 – –
Probe 3 – – 3 – – 3.0 – –
Rovers O W M O W M O W M
FF 0 – 0 0 – 0 0.0 – 0.0
LAMA 6 – 29 0 – 29 4.1 – 29.0
LPG 28 – 27 26 – 2 27.9 – 21.1
Mp 1 – 0 1 – 0 1.0 – 0.0
Probe 20 – 11 19 – 1 20.0 – 9.4
Satellite O W M O W M O W M
FF 0 0 7 0 0 7 0.0 0.0 7.0
LAMA 2 – 18 0 – 18 1.9 – 18.0
LPG 30 – 9 30 – 0 30.0 – 4.0
Mp 0 0 0 0 0 0 0.0 0.0 0.0
Probe 0 – 0 0 – 0 0.0 – 0.0
Spanner O W M O W M O W M
FF 0 – 0 0 – 0 0.0 – 0.0
LAMA 0 – 0 0 – 0 0.0 – 0.0
LPG 30 – 26 22 – 8 29.2 – 22.0
Mp 0 20 20 0 0 20 0.0 18.7 20.0
Probe 0 – 0 0 – 0 0.0 – 0.0
TPP O W M O W M O W M
FF 0 – 0 0 – 0 0.0 – 0.0
LAMA 13 13 16 3 0 15 11.2 10.8 15.9
LPG 1 – 2 1 – 2 0.8 – 2.0
Mp 1 8 2 0 7 1 0.9 8.0 1.9
Probe 10 6 15 0 0 15 6.8 3.4 15.0

Table 3: Number of solved problems, number of problems
solved faster and IPC score achieved by considered plan-
ners on the benchmark domains, while exploiting the origi-
nal formulation (O), the formulation extended with macros
extracted by Wizard (W) or the formulation extended with
macros extracted by MUM (M).

domains took between two and ten cpu-time days. Table
3 shows the detailed results achieved by each planner on
the considered domains, while exploiting the original do-
main formulation, the domain model extended with macros
found by Wizard and the formulation that includes the
entanglement-supported macros extracted by MUM. Since
Wizard is able to provide at most three different sets of
macro operators, resulting from the execution of different
sets of genetic operators, in Table 3 we reported only the
results achieved by the best one. In the results, Wizard is
not able to generate macros in more cases (domain, planner)
than our method. We also observed that wizard macros are
usually ‘long’, in the sense that are composed by several op-
erators. Moreover, some macros generated by Wizard seem
somewhat counter-intuitive and therefore they do not seem
to be very useful, although they might have some effects to,
for instance, delete-relaxation based heuristics (e.g. FF). Ac-
cording to the results shown in Table 3, we can derive that on
the considered domains: (i) MUM is able to generate macros
for most of the considered planners and domains; (ii) MUM
is usually able to generate macros that improve the perfor-
mance of the given planner; (iii) the macros generated by
MUM have a greater impact on planners’ performance than
Wizard’s.

Although MUM uses Chrpa(2010b)’s technique of inves-
tigating action dependencies and independencies to identify
candidates for becoming macros, MUM’s criteria for select-
ing which candidates are suitable is more sophisticated, re-
sulting in an improved set of generated macros. For exam-
ple, in the Gripper domain MUM extracted a useful macro
Pick-Move-Drop while Chrpa’s technique did not extract
any macro. Applying entanglements on macros in an ad-
hoc way (Chrpa 2010a) has some drawbacks, in particular
a macro learning technique may not extract any macros, or
it may not be possible to apply entanglements to extracted
macros. A detailed empirical study is planned for future
work.

One unwelcome side-effect of the use of macros is that
their exploitation could have a negative impact on the qual-
ity of solution plans. In our experimental analysis we did not
observe a significant difference between the quality of plans
found by exploiting the original domain formulation and the
domain model extended with macros; the average number of
actions of plans is 416 in the former case and 422 in the lat-
ter. Often, the difference between length of plans is within
10%. In some cases the solutions using macros were of much
better quality (e.g. where the planner was LPG, and the do-
main was Gripper) and in other cases the solutions using
macros were of worse quality (e.g. where the planner was
LAMA and the domain was BW). In summary, the macros
generated using MUM are able to deliver an impressive im-
provement in the runtime of planners without significantly
decreasing the quality of solutions.

Conclusions
In this paper we presented MUM, a technique for learning
macros while maximising their utility by keeping them in-
formative, though constrained. The number of possible in-
stantiation of macros is limited by using outer entanglements



in their generation and use. Moreover, MUM preserves com-
pleteness since only instances of macros are pruned. Macros
generated by MUM generally improve the performance of
planning engines by reducing the time to generate plans and
increasing the number of solved problems, on the bench-
mark instances of the learning track of IPC-7. Also, macros
generated by MUM have achieved impressive results in
comparison to the macro learning system WIZARD (New-
ton et al. 2007) and we have evidence to show that this is not
at the cost of poor quality solutions. Our experiments also
give us useful insights into the current limitations of MUM:
poor quality solutions used in training (as is the case with
LPG) led to reduced performance, and in 2 of the 9 domains
(Barman and Parking) no useful macro could be generated
using our technique.

For future work, we are interested in investigating pos-
sibilities of learning problem- (or problem class-) specific
macros. Inspired by work of Alhossaini and Beck (2013)
which selects appropriate problem-specific macros from sets
of macros learnt by existing approaches (e.g Wizard) we
believe that implementing similar ideas on MUM will re-
sult in further improvements. We believe that extending our
technique to support, for instance, ADL features (e.g. condi-
tional effects) or durative actions (temporal planning), which
is planned in future, will bring improvements to such kinds
of planning techniques.

Acknowledgements
The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1). The authors would like to acknowledge the
use of the University of Huddersfield Queensgate Grid in
carrying out this work.

References
Alhossaini, M. A., and Beck, J. C. 2013. Instance-specific
remodelling of planning domains by adding macros and re-
moving operators. In Proceedings of SARA, 16–24.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Chrpa, L., and Barták, R. 2009. Reformulating planning
problems by eliminating unpromising actions. In Proceed-
ings of SARA, 50–57.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of ECAI, 240–245.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. Refor-
mulating planning problems: A theoretical point of view. In
Proceedings of FLAIRS, 14–19.
Chrpa, L. 2010a. Combining learning techniques for clas-
sical planning: Macro-operators and entanglements. In Pro-
ceedings of ICTAI, volume 2, 79–86.
Chrpa, L. 2010b. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.

Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; Lòpez, C. L.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33:83–88.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In Proceedings of
ICAPS, 97–104.
Dawson, C., and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of IJCAI,
465–471.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.
Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence 26(1):35–77.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proceedings of ICAPS,
154–161.
Minton, S. 1988. Quantitative results concerning the util-
ity of explanation-based learning. In Proceedings of AAAI,
564–569.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of ICAPS, 256–263.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal Artificial Intelligence Research (JAIR) 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. In Booklet of the 7th International Planning
Competition.
Rintanen, J. 2012. Engineering efficient planners with SAT.
In Proceedings of ECAI, 684–689.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.


