
Machine Learning and Adaptation of Domain Models
to Support Real Time Planning in Autonomous Systems

Month 6 Report

Austin Tate, Gerhard Wickler
University of Edinburgh

Lee McCluskey, Lukáš Chrpa
University of Huddersfield

Contents

1 Introduction 2

2 Automated Planning 3
2.1 Categories of Planning . 4

2.1.1 Classical Planning . 4
2.1.2 Temporal Planning . 5
2.1.3 Conformant Planning 6
2.1.4 Continuous Planning 6
2.1.5 Hierarchical Task Networks 7
2.1.6 Knowledge-Rich Representations 8

2.2 Representing Domain Knowledge in Planning 10
2.2.1 Basic Definitions . 10
2.2.2 Examples of Existing Representation Languages 11
2.2.3 Domain Modeling: Manual Tools 13
2.2.4 Domain Modeling: Automated Tools and Techniques . 14

2.3 Planning Problem Reformulation 18

3 Simulation Environments 19
3.1 A Virtual Collaboration Environment 19
3.2 Collaborative Development of Procedural Knowledge 21

1

Chapter 1

Introduction

The research hypothesis of this project is as follows:

Automatically learning and adapting an accurate and adequate
domain model for the purposes of symbolic reasoning, in particu-
lar for the processes of automated planning, enables effective, sus-
tained goal-directed behavior for real time dynamic autonomous
systems.

This is a working document which is written to encapsulate much of
the fundamentals of this research project, and existing work underlying the
research hypothesis. It forms deliverable ”D2” in the original proposal. It in-
cludes background material on planning algorithms, domain model languages
and learning methods.

2

Chapter 2

Automated Planning

Automated planning [Ghallab et al., 2004] deals with a problem of find-
ing sequences of actions transforming the environment from some initial
state to a desired goal state. In other words, automated planning is
about reasoning how autonomous entities are going to act to achieve their
goals. Despite belonging to a class of computationally very hard prob-
lems, automated planning has a wide range of practical applications, es-
pecially where applications of autonomous agents or robots are necessary.
In the space exploration, one of the first successful applications of plan-
ning was the Deep Space 1 mission [Bernard et al., 2000]. The mission
featured the application of the Autonomous Remote Agent system [Muscet-
tola et al., 1998], software based on planning techniques. Besides the
space exploration there are many other more mundane applications of plan-
ning, for example planning of manufacturing processes [Nau et al., 1995]

or planning autonomous vehicles in rescue missions [Dave et al., 2003;
Teichteil-Königsbuch and Fabiani, 2006].

Automated planning can be divided into several categories which differs
by levels of expressiveness (as discussed below). Straightforwardly, there is a
correlation between the level of expressiveness and computational complex-
ity in terms of more expressiveness implies higher complexity. Real-world
problems usually require a high level of expressiveness (e.g. time, consum-
able resources, uncertainty, partial observability of the environment etc.) to
encapsulate problems’ properties in the most possible realistic way. Hence,
the question is how to find a reasonable compromise, i.e., having realistic
models of the problems which are also possible to solve.

The prevailing view in the planning community is that planning prob-
lems should be represented in some language (e.g. PDDL) which serves as
a ‘communication protocol’ with generic planning engines (planning prob-
lem solvers). A level of expressiveness will give insights into which language

3

and planning engine(s) can be applied for modeling and solving (real-world)
planning tasks. An inspiration can be taken from tools for modeling plan-
ning tasks (e.g. GIPO), learning planning operator schema (e.g. LOCM) or
learning structural knowledge of planning tasks which can be used for plan-
ning problem reformulation (e.g. macro-operators). We will consider such
systems in more detail later in the document.

For now we make the basic assumption that planning engines (programs
that do planning):

input a planning task which consists of 2 inputs: a domain model
describing the area of planning application (spacecraft manoeu-
vres, lift scheduling, robot manipulation etc) in terms of possible
actions (represented as operators, object classes etc), and a prob-
lem description which is the particular planning task to be solved
(represented as an initial state and a goal or task statement, etc).

2.1 Categories of Planning

This section describes main categories of automated planning which will be
considered in the project.

2.1.1 Classical Planning

Classical planning (in state space) deals with finding a sequence of actions
transforming the static, deterministic and fully observable domain model
from some initial state to a desired goal state [Ghallab et al., 2004].

Features of a domain are described by atoms which are either propositions
or predicates. For example, a situation where a block b is stacked on a block
a can be represented by a predicate on(b,a). States are defined as sets of
(ground) atoms. A planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is a construct, where name(o) = op name(x1, . . . , xk) (op name is an unique
operator name and x1, . . . xk are variable symbols (arguments) appearing in
the operator and pre(o) (a precondition of o) ,eff−(o) (negative effects of o)
and eff+(o) (positive effects of o) are sets of atoms. An action a is applicable
is a state s if and only if pre(a) ⊆ s. Application of a in s (if possible) results
in a state (s \ eff−(a)) ∪ eff+(a). For example, a planning operator for un-
stacking blocks can be defined as follows: o = (name(o)=unstack(?x,?y),
pre(o)={on(?x,?y),clear(?x),handempty},
eff−(o)={on(?x,?y),clear(?x),handempty}, eff+(o)) = {holding(?x),
clear(?y)}). In plain words, it says that we can unstack a block ?x from a

block ?y if ?x is stacked on ?y, ?x is clear (i.e., nothing is stacked on it) and
the robotic hand is empty (i.e., it does not hold any block). Unstacking a
block ?x from a block ?y results in a state where ?x is no longer stacked on
?y, the robotic hand is no longer empty but holds ?x and as a consequence
?y becomes clear because no block is stacked on it (?x is no longer there).
Actions are instances of planning operators, i.e., they can be obtained by
grounding (substituting constants for variables).

A domain model is specified via sets of predicates and planning operators
(alternatively propositions and actions). A planning task is specified via
a planning domain model, a set of objects (constants), an initial state and
set of goal atoms. A plan is a sequence of actions. A plan is a solution of
a planning problem if and only if a consecutive application of the actions in
the plan (starting in the initial state) results in a state, where all the goal
atoms are satisfied.

Despite being the easiest form of automated planning the computational
complexity of classical planning is up to PSPACE-complete [Bylander, 1994].
On the other hand, some classes of classical planning problems can be com-
putationally easy (in P) [Helmert, 2003]. Thanks to the International Plan-
ning Competition (IPC)1 many advanced planning engines have been devel-
oped. Well known and successful planning engines include FF [Hoffmann and
Nebel, 2001], LPG [Gerevini et al., 2004], SATPLAN [Kautz et al., 2006] and
LAMA [Richter and Westphal, 2010].

2.1.2 Temporal Planning

Temporal planning extends classical planning by considering time explicitly.
Actions (or planning operators) do not have immediate effects but their ex-
ecution takes some (pre-defined) time. Those actions are called durative
actions. A definition of a planning operator (or an action) is extended as
follows. dur(o) is a duration of execution of an operator o and is represented
by a non-negative real number or integer. Positive and negative effects are
split into four sets (two sets each) representing effects taking place at time
the operator is executed and effects taking place at the time that execution of
the operator finishes, i.e., eff−

start(o), eff+

start(o), eff−
end(o), eff+

end(o). For ex-

ample, an operator o such that name(o)=move(?r,?l1,?l2) which moves a
robot ?r from a location ?l1 to a location ?l2 can be represented in temporal
planning as follows. dur(o)=1000s, pre(o) = {at(?r,?l1),path(?l1,?l2},
eff−

start(o) = {at(?r,?l1)}, eff+

start(o) = {onway(?r)}, eff−
end(o) =

{onway(?r)} and eff+

end(o) = {at(?r,?l2)}. In plain words it says that

1http://ipc.icaps-conference.org

a robot ?r when started moving is no longer at ?l1 but on the way until it
reaches (after 1000s) ?l2. Contrary to this, in classical planning it is not nec-
essary to consider when the robot is on the way because the robot ‘teleports’
itself between locations instantly.

Temporal planning is often applied together with scheduling because tem-
poral planners provide (partial) ordering of actions (in scheduling also called
activities) while schedulers place these actions (activities) into time windows.

Recent implementations of temporal planners include LPG [Gerevini et
al., 2004], Crickey [Coles et al., 2008] or Filuta [Dvořák and Barták, 2010].

2.1.3 Conformant Planning

Conformant planning extends classical planning by considering uncertainty
in terms of partial observability of the environment and/or non-deterministic
effects of planning operators (or actions). Its goal is to attempt to find a plan
that will work under any of the possible effects or actual configurations of the
initial state (this is a conformant plan). Atoms besides being true (present in
a state) or false (not present in a state) can be also unknown. If an atom is
unknown then there is no evidence (due to incomplete information) whether
the atom is true or false in a given state. Applicability of an action a (or a
planning operator) in a state s is then defined in such a way that ∀p ∈ pre(a)
p is true in s. For example, we might not know whether there is a path
between certain locations l1 and l2. Hence, we cannot execute an action
move(r,l1,l2) until we somehow reveal the existence of the path.

Positive and negative effects of actions can be split into several sets rep-
resenting different alternatives of outcomes of execution of these actions, i.e.,
eff−

1 (o), eff+
1 (o), . . . , eff−

k (o), eff+
k (o). Probabilities of occurrences of particular

alternatives may be pre-defined. For example, the unstack(?x,?y) might
result in a state where either the robotic hand holds ?x, ?x has fallen to the
table or ?y has fallen to the table etc.

Existing conformant planner are, for instance, CPA [Tran et al., 2008],
Gamer [Kissmann and Edelkamp, 2008] or 〈K,K0〉-planner [Albore et al.,
2010].

2.1.4 Continuous Planning

Continuous Planning differs from the previous categories of automated plan-
ning in that continuous changes of object values over time are expressed and
reasoned with by the planner. Thus the “Continuous” in the title relates to
the kind of expressions in the domain model, and not the kind of planning
(i.e. it does not mean continuously planning). Basically, the environment

is represented by a set of object fluents rather than a set of propositions
(or grounded predicates). These fluents are affected by (running) processes
represented by functions of time. Actions are, in this case, used for execut-
ing or stopping processes. Besides actions there are events which are also
used for executing or stopping processes. Events are triggered or may trig-
ger automatically when certain conditions are met. For example, an action
move(r,l1,l2) triggers a process moving(r,l1,l2) which updates the po-
sition of the robot r with respect to an actual distance it traveled from l1 to
l2. An event stopat(r,l2) is eventually triggered after r reaches l2.

Continuous Planning can model real-world problems in a very realistic
way, however, continuous planning problems might be undecidable. Com-
plexity can be reduced by discretizing time and object values (fluents) which
could still keep the model realistic. Continuous planning is quite a new re-
search field, although a stable version of PDDL exists with which to express
such domains (PDDL+ [Fox and Long, 2006]).

2.1.5 Hierarchical Task Networks

All the approaches described so far have the following in common: they
consider plans as homogeneous (“flat”) sets of actions assembled to achieve
a goal. That is, none of the actions in a plan is considered more abstract
than another. On the contrary, hierarchical approaches to planning have
appeared as early as the mid-70s [Sacerdoti, 1974; Tate, 1977]. For this
approach to be most effective, rather than specifying the problem using a
goal to be achieved, we use a task to be carried out. So in a “task based”
scenario, the achieve goal of “thirst quenched” would rather be posed as the
abstract task “consume some water”. For a long time, this type of planner has
been used to implement practical planning applications as other approaches
lacked necessary performance and did not correspond to expert knowledge
in practical domains.

In Hierarchical Task Network (HTN) planning, a planing domain is de-
scribed by a set of operators as defined above. In addition, a set of methods
is defined, where a method consists of a parameterized name (like an opera-
tor name), a task that can be accomplished with the method, a network of
sub-tasks, and a set of constraints. The exact definitions of these components
depend on the planner used and there is no standard.

For example, the task accomplished by a method can be described by
pattern consisting of a task name and some variables describing the pa-
rameters of the task. A task could be to shift a stack of blocks from one
location to another: (shift-stack ?l1 ?l2), where ?l1 and ?l2 represent
the source and target locations. The sub-tasks for this method could be

two tasks, namely shifting the topmost block and shifting the remainder of
the stack: (t1:shift-block ?l1 ?l2) and (t2: shift-stack ?l1 ?l2).
Constraints on this method enforce the order between the two subtasks (t1
〈 t2) and the precondition that there is at least one block at the source loca-
tion: (not (empty ?l1)). Another method to shift the empty stack would
complete this domain.

An important point here is the power of the formalism: different pre-
conditions can render alternative methods applicable, which corresponds to
branching constructs in traditional programming languages; and methods
may have as sub-tasks the same type of task as the overall method ac-
complishes, which corresponds to recursion in traditional programming lan-
guages. Hence, HTN planning problems are in general undecidable.

Planners that handle HTN planning problems are often more concerned
with rich sets of constraints and contain features that allow direct mapping
of parts of the representation to code fragments, which obscures theoretic
concerns like soundness and completeness are not an issue.

The SIPE planner [Wilkins, 1988] and the O-Plan system [Currie and
Tate, 1991] fall into the category of HTN planners that have been used
in many practical application domains. A planner that has a more solid
theoretical foundation is the SHOP system described in [Nau et al., 2001].

2.1.6 Knowledge-Rich Representations

In the 1990s the initiative in Knowledge-Sharing inspired a new strand of
research into knowledge-rich plan representations that could be used to com-
municate plans between agents. The aim here was to have a maximum of
expressivity, though no planners were developed specifically to output these
representations.

The prime motivation for the development of the Core Plan Representa-
tion (CPR) [Pease and Carrico, 1996] was to address the plan interchange
requirements of several military planning systems. Just like there are a num-
ber of different planning problems and approaches in AI, there are different
representations that come with the different systems that implement the
various approaches. Furthermore, systems that process plans, e.g. workflow
systems, control systems, etc., will need to exchange information with the
AI plan-generating systems. And we must not forget the human in the loop:
people need to understand plans in order to execute them in line with the
intent that underlies them.

The result of the CPR effort is a small ontology that defines a few core
concepts that are expected to be shared between most systems that deal with
plans. The way these concepts are defined relies on ontological principles:

Plan

Action Objective

Actor

TimePoint

Resource Evaluation
Criterion

has-a

Figure 2.1: Main concepts of the CPR

each concept is defined by the relations that must hold with other concepts
and some internal structure. Furthermore, there is human-readable text that
explains the concepts, which is not in a form processable by any planning
system.

The main concepts that form the CPR are shown in figure 2.1. The
most important relation that holds between these concepts is the “has a”
relation that indicates that an instance of one concept has a component
that is an instance of the other concept. Alternatively, the second concept
forms a building block for the former. From an ontological point of view
this is slightly unusual as, in most ontologies, the “is a” relation is the most
prominent relation.

The CPR was developed further in various projects, resulting in more
comprehensive ontologies and representations [Tate, 1998].

2.2 Representing Domain Knowledge in

Planning

2.2.1 Basic Definitions

A key part of any Automated Planning activity is to do with “domain model-
ing”, that is creating a formal model of the domain (reality) that the planning
is to occur. Having introduced the idea above, we will discuss this in more
detail, as modeling, and its automation, is a key part of the project.

Assume X is a formal model of Y, and for example assume Y is some
physical domain. Then:

• symbols in X are used to represent features in Y. A symbol in X might
be “above”, which represents the spatial relation in the physical domain
Y.

• statements in X are used to represent what is true in the domain. So
we might state “block a is above block b” in X if that is true in the
physical world.

• action representations in X (often called operators) represent actual
actions in Y. Simulating the operation of some action “put b on a” in
X should make the statement “above b on a” true, as it does in the
physical world.

Clearly, good models conform to the reality that they are modeling. Simulat-
ing the operation of an action in the model should give the results we expect
to see in the real world. The model is “formal” if it has a precise syntax
(which means it can be parsed by a program), and it has precise operational
semantics (which means, amongst other things, that a program can perform
the simulation of the action).

A great deal of effort is needed to precisely model real domains for plan-
ning. For example, it is well known that the domain models used in the
AI Planning operations used at NASA required a team of highly special-
ized knowledge engineers to do the encoding. To consider this area in more
depth, we make some definitions about quality factors of a domain model,
with respect to a set of planning task requirements. A domain model is:

• accurate if the features it contains conform to the requirements. For
example, relationships depicted in the model are deemed true in the
requirements, and the effect of actions in the environment represent the
real effects of actions faithfully.

• adequate if it represents in sufficient detail the planning task. For ex-
ample, we may say that a representation of a domain where all actions
execute instantaneously is inadequate, if there is a need in the require-
ments to represent durative actions. .

• complete if it is adequate and accurate, and it contains sufficient fea-
tures to satisfy the requirements.

Accuracy is therefore related to correctness, but while the latter quality is
generally considered a relationship between two formal expressions, accuracy
relates a formal expression (the domain model) with an informal statement
(the requirements). Domain models can be adequate but not accurate (they
represent the task at the required level of abstraction, but some of the fea-
tures are not represented faithfully) or accurate but not adequate (all the
features present conform to the requirements, but some requirements can-
not be represented at all). A model can be accurate and adequate, but not
complete: this is the case where the model does not contain all the features
required - for example some parts of the requirements may be missing.

These terms are used in a very similar manner in Software Engineering,
when one is interested in creating a formal requirements model out of a set
of informal requirements [?].

2.2.2 Examples of Existing Representation Languages

This section describes existing languages used for modeling planning domains
associated tasks.

PDDL

Planning Domain Definition Language (PDDL) [Ghallab et al., 1998] is the
best-known language which is used for modeling domains and planning prob-
lems. PDDL is a LISP-like language2 and thanks to the IPC PDDL became
very popular in the planning community and majority of the planning en-
gines, therefore, use PDDL. There are three significant milestones in the
development of PDDL.

PDDL 1.2 — This version was introduced on the 1st IPC in 1998. It sepa-
rates planning task description into domain models and planning prob-
lem description. It is suitable for classical planning and incorporates
some additional features such as object types (used in grounding) or
conditional effects.

2LISP is a well-known functional programming language

PDDL 2.1 — This version was introduced on the 3rd IPC in 2002. It
extends the previous version by introducing numeric fluents (used for
representing, for instance, fuel-level, energy, distance etc.) and durative
actions. It is therefore suitable for temporal planning.

PDDL 3.0 — This version was introduced on the 5th IPC in 2006. It
introduces hard constraints in a form of logical expressions, which must
be true during the execution of the plan, soft constraints (preferences)
also in a form of logical expressions, which increases quality of plans if
true during the execution of the plan.

PDDL 3.1 — This version was introduced on the 6th IPC in 2008 and is the
latest. It introduces object fluents whose range in not only numerical
but could be any object type.

There are some extensions of PDDL. A well-known extension is Proba-
bilistic PDDL (PPDDL) [Younes and Littman, 2004] which was introduced
in probabilistic track of the 4th IPC in 2004. PPDDL supports actions with
non-deterministic effects with probability distribution. However, PPDDL
does not support patrial observability, therefore, it covers only a part of con-
formant planning. Another extension of PDDL is PDDL+ [Fox and Long,
2006], a language which allows to model continuous processes and events.
Therefore, it might be suitable for modeling continuous planning tasks.

NDDL

New Domain Definition Language (NDDL) [Frank and Jónsson, 2003] has
been developed by NASA in 2002. NDDL is a successor of HSTS and is
primarily focused to space applications. NDDL mainly differs from PDDL
by using state variable representation (object fluents) rather than propo-
sitional or predicate representation and activities and constraints between
them rather than planning operators (actions). Each activity has a start
and end time interval which encapsulates uncertainty of duration. Object
fluents are affected by these activities and hence their values are developing
through predefined timelines. The expressiveness of NDDL is able to model
continuous planning tasks where time is discretized. NDDL seems to be more
appropriate for modeling CAs, however, there is not a large portfolio of plan-
ning engines which supports NDDL (as it is for PDDL). The only planner
which supports NDDL is NASA’s EUROPA2 [Bernardini and Smith, 2007].

2.2.3 Domain Modeling: Manual Tools

Some of the earliest tools used for knowledge acquisition and modeling in
AI planning came from the O-Plan [Tate et al., 1994] and SIPE [David E.
Wilkins, 1990] projects. O-Plan’s Task Formalism and SIPE’s Act Formal-
ism were HTN domain model languages used in these projects, and both
were written for dedicated planners. SIPE employed a graphical and textual
editor, called the “Act Editor”, to help users create domain models.

GIPO was one of the first general, planner and domain-independent tools
appearing in the literature for supporting knowledge acquisition and model-
ing [Simpson, 2007]. The GIPO interface was designed to overcome syntax
errors, and to make the task of creating a formal specification easier for a
non-expert user. GIPO’s GUI uses diagrams to support the definition of do-
main elements in a object-oriented approach. A significant advance on the
original GUI interface was introduced in the third version of GPO[Simpson
et al., 2001], GIPO III[Simpson et al., 2007]: the Life History Editor pro-
vides an interface where users represent the dynamics of an object class by
constructing and annotating graphical state machines; the interface then au-
tomatically builds a formal specification of the domain in the form of a model
in PDDL. As is often the case with methods where users construct diagrams
within a GUI, however, once a generated domain model has been further
edited outside of the GUI, the graphical construction cannot be regenerated,
and any further maintenance has to be made using a manual method.

itSIMPLE provides tools and methods to support designers during do-
main model creation through an object-oriented approach [Vaquero et al.,
2007]. The user creates UML diagrams to represent aspects of the domain
such as use case diagrams, and refines these into more detailed class diagrams,
state machine diagrams, timing diagrams, and object diagrams etc. As in
GIPO, the dynamics of operators are modeled using state machine diagrams
to represent the states that a class object can go through during its lifetime.
UML’s constraint language (OCL) is used to capture an actions’s pre- and
post-conditions. Both GIPO and itSIMPLE generate PDDL as output, and
have been used widely for creating models.

EUROPA [Barreiro et al., 2012] is NASA’s GUI for encoding domain
models in NDDL. Like GIPO and itSIMPLE, it follows an object-oriented
modeling approach, but focusses on a timeline-based representation of objects
as discussed above in the section describing NDDL. Recently a higher level
language ANML has been introduced in the EUROPA framework, with an
associated editor, so that one can visualize the object type hierarchy and the
relationships between actions, fluents, and objects. In particular, using the
ANML editor, the engineer can inspect and analyze the fluent timelines, and

automatically translate the higher level model into solver-ready NDDL.

2.2.4 Domain Modeling: Automated Tools and Tech-
niques

The key element of this research project in automatically learning domain
models for automated planning. Machine Learning applied to APS has at-
tracted a long history of research, and we point the reader to a recent survey
for a full account [Jiménez et al.,]. This research is aimed at two distinct
areas:

• learning a domain model representing the physics of the world

• learning heuristics to make the use of a planning engine more efficient.

Here we are primarily concerned with the first area, where significant progress
in the automated or semi-automated acquisition of domain models has been
made. Most approaches are aimed at learning representations of actions
in enough detail so that artificial agents can perform deliberative reasoning
with them, and in particular they can be used as inputs to an AI planning
engine. Using techniques from the field of Machine Learning, researchers
have experimented with processes that input training or observation inputs,
and output solver-ready models in languages such as PDDL.

To be successful, these processes have to embody general properties and
constraints about actions and objects, and in most cases the kind of domain
in which they are learning. The key idea within these approaches is that of
inductive generalization - using examples of behaviors of a class of objects
and generalizing these examples to a theory about the whole class of objects.
In the case of planning, a natural training input would be a set of plans that
are observed from the domain itself. These training plans would therefore
be considered part of the requirements specification. Examples of potential
training plans are as follows:

• logs of commands such as operating system instructions

• logs of web service calls

• moves made in a game

• traces of workflow or business process execution

For example, GIPO III embodied an induction technique to aid the acqui-
sition of detailed operator schemata descriptions, called opmaker. The tool

requires an initial structural description of the domain to work - ”static”
knowledge about states of objects and their relations. Given a training prob-
lem instance and a valid solution plan for that instance, opmaker derives
a set of generalized operator descriptions resulting in a full PDDL model
[McCluskey et al., 2010]. This example illustrates the separation of domain
model learning into three concerns:

(i) what language is the learned domain model going to be ex-
pressed in?
(ii) what inputs (training plans, observations, constraints, partial
models etc) are there to the learning process?
(iii) what stage is the learning taking place - initial acquisition,
or incremental, online adaptation?

In the case of opmaker, (i) was PDDL version 2.1, (ii) was a partial model
and one example, and (iii) was initial acquisition. In fact, for much of the
work done up to now the answer to (i) is “some variant of PDDL forming a
domain model that can be input to planning engines” and to (iii) is initial
acquisition. However, adaptation can be viewed as a non-monotonic special
case of initial acquisition, where input to the learning process includes the
current domain model as well as training examples etc, and output is the
updated model. Regarding (ii), systems that learn very expressive domain
models tend to demand most detailed input, often including a partial domain
model, with valid plan examples and detailed state information.

Work in learning domain models for robotic agents [Amir, 2005; Benson,
1996] assumes that a training mechanism exists with rich feedback mech-
anisms. Typically, much a priori knowledge is assumed, such as predicate
descriptions of states, and partial or total state information before and af-
ter action execution. With such rich inputs, systems such as Amir’s SLAF
[Amir, 2005] can learn actions within an expressive action schema language.

In comparison, some recent work on learning domain models has concen-
trated on learning from example plans but with little or no input domain
knowledge. The LAMP system [Zhuo et al., 2010b] can form simple PDDL
domain theories from example plan scripts and associated initial and goal
states only. LAMP [Zhuo et al., 2010a] is a successor of the ARMS algo-
rithm, and designed to learn complex structured domain models containing
quantifiers and logical implications. LAMP requires as input a set of observed
plan traces, a list of actions composed of names and parameters, and a list
of predicates with their corresponding parameters. It is aimed at learning
in a mixed initiative fashion: the authors acknowledge that a model learned
by LAMP needs to be refined by experts in order to produce a final domain
model.

One problem with systems such as LAMP is in their evaluation. In
LAMP’s case, a very simple metric is used: the authors define the error
rates of their algorithm as the number of different predicates in either the
preconditions or the effects of an operator schema, as a proportion of the
total number of predicates. If for example, it was required to show that with
more examples, LAMP would be more accurate, then it would be necessary
to show that one model was “nearer” the hand crafted version than another.
Even with predefined predicates, it could be argued that the evaluation of
LAMP is problematic in that is it not obvious how “near” the models it
produces are using such syntactic distinctions. This measure does not seem
appropriate in the situation where the system learns predicates. Measures
are needed that obey certain rules - for example a measure that is monotonic
in the sense that as the error rate was lower, the domain created was “nearer”
the original domain.

There have been several other notable developments in learning in uncer-
tain or partially known domains. Reinforcement learning, traditionally used
in single goal or policy learning planners, has recently been developed for
symbolic or relational learning, though its potential for learning full models
of the PDDL variety is not yet proven [Jiménez et al.,]. A promising ap-
proach towards learning incomplete and uncertain domain models is ongoing
in the Model-lite project [Yoon and S.Kambhampati, 2007]. Here the authors
use probabilistic logic as the basis for the language of the learned domain
model.

The LOCM System

We focus in this section on LOCM, a system which fully automatically creates
a domain model from training example plans. To investigate this, we con-
sider the following snippet of a plan training example from a “wheel change”
planning function:

open(c2); putaway wrench(wr1,c2); close(c2); open(c1);
fetch jack(j1,c1); fetch wrench(wr1,c1); close(c1); open(c2);
fetch wrench(wr2,c2); fetch jack(j2,c2); close(c2);

Typically, we assume that the first symbol in each expression is the name of
the action, and this stays constant through the trace, the other symbols in
each element are names of “objects” affected or needed in some way by the
action, and examples are presented in a consistent format, hence the same
role is played by every object in the same position of the parameter sequence.

Scripts are input in the form given in the example above, where actions
are referred to by action-name and assumed act on the objects referred to in

the object-list - they either change the object’s state, or leave it where it is.
Objects are assumed to be instances of sorts, where sorts behave the same
when acted on by actions.

As with ARMS, LOCM outputs a planning domain theory in a PDDL
format, but it inputs only plan scripts - such as the example given above - it
does not require representations of initial and goal states, or any descriptions
of predicates, object classes, states etc. Rather, it is assumed that objects
referenced in the plan scripts are acted on by actions, in particular:

• Different instances with the same action name induce classes of objects,
so for example c1 and c2 are in the same class, as they appear in the
same position (1st) after the same action name (open).

• Consecutive actions acting on the same object help form behavior ma-
chines for all objects in a sort. For example, we can assume that the
output state of c2 after action ”open” is the same as the input state of
action ”putaway wrench”

• Where consecutive actions act on the same set of (2,3 or more) objects,
LOCM induces relations between object classes. For example, if in all
examples of actions put away jack(x,y); .. ;fetch jack(x,z); ..., where
x is not referenced between the two actions, have y = z, then LOCM
deduces that a relational predicate between the sort of x and the sort
of y is true at the state of x after put away jack.

• Where subsets of a sort’s objects appear in certain slots of actions, then
a ”static relation” is added to the state on the object.

With these assumptions, and sufficient examples, LOCM can induce a do-
main model in PDDL. LOCM’s most exciting result is to be able to induce
a complete domain theory from observing human Freecell game scripts. The
domain theory was input to a general planner, which was then capable of
playing Freecell.

2.3 Planning Problem Reformulation

Modeling planning tasks is not only about capturing capabilities of au-
tonomous entities in order to provide them sequences of actions they can
execute. Models should be also efficient in terms of being easily solvable by
planning engines. However, there are often differences between realistic and
efficient models. Therefore, there is a need for a concept which bridges a

gap between realistic and efficient models of planning tasks. This concept
has been introduced in [Chrpa et al., 2012a] which provides reformulation
schemes consisting of planning problem reformulation function, which can
be used to obtain an efficient model for the realistic one, and plan reformu-
lation function, which can be used to obtain a solution of the realistic model
from the efficient one. This basically provides a black-box approach which
works as follows:

1. Reformulate a planning problem given at the input.

2. Solve the reformulated planning problem by a common planning engine.

3. Reformulate the solution of the reformulated problem.

4. Return the reformulated solution, which is a solution of the given plan-
ning problem.

Creating macro-operators, which encapsulate sequences of primitive plan-
ning operators, is a well known approach to reformulation which in some cases
can speed up plan generation considerably [Newton et al., 2007; Botea et al.,
2005]. Moreover [Chrpa, 2010] eliminates potentially useless primitive plan-
ning operators replaced by a generated macro-operator, however it might
cause that some reformulated problems become unsolvable. Macro-operators
can be understood as ‘shortcuts’ in the state space which might eventu-
ally result in reduction of computational complexity [Korf, 1985]. However,
a disadvantage of macro-operators is in a huge number of their instances
which causes an increase of the branching factor. The branching factor
may be reduced by recently introduced technique [Chrpa and Barták, 2009;
Chrpa and McCluskey, 2012], entanglements, which stand for relations be-
tween planning operators and predicates in terms of exclusive ‘production’
or ‘requirement’ of predicates.

Post-planning plans optimization can be understood as a specific form
of reformulation technique. In this case plans, often produced by plan-
ners which can retrieve solution in a little time but in very low quality,
can be optimized in a post-processing step. There are different strategies,
for instance, exploring state space around plans in order to find shorter
(and more optimal) plans [Nakhost and Müller, 2010] or determining re-
dundant actions that can be removed from plans [Chrpa et al., 2012b] or
replacing sequences of actions by shorter ones [Estrem and Krebsbach, 2012;
Chrpa et al., 2012c].

Chapter 3

Simulation Environments

In this section we will describe some of the work carried out at AIAI in
Edinburgh investigating the use of planning technology and representations
to support collaboration in simulated, virtual world environments. This has
been applied in the context of emergency response where procedural knowl-
edge often corresponds to the kind of knowledge held in the representations
described above.

3.1 A Virtual Collaboration Environment

Emergency situations usually call for quick and appropriate action to mini-
mize loss of life and property. However, knowing what these actions should
be is not always obvious, even if a current, post-disaster situation were
known. One way to prepare for emergencies of a given type is to develop
so-called Standard Operating Procedures (SOPs), manuals containing pro-
cedural knowledge describing courses of action that should be followed in a
given situation. These SOP manuals represent best-practice knowledge, and
are usually written by one or more experts with extensive experience in the
field. Such procedural knowledge can be used to train emergency managers,
for example. There is a significant amount of procedural knowledge for emer-
gency response available today, mostly in the form of physical manuals and
ranging in size from a few pages to several volumes. While these manuals are
considered valuable where they exist, there are a number of problems with
such documents in practice:

• Access time: While these manuals are useful for teaching the procedures
they contain, they are usually not used during an actual emergency.
This is simply because there is no time to search for information in
large manuals. Emergency managers may have been through the SOPs,

19

but under stressful conditions options may be forgotten or steps may
be omitted.

• Structure: The manuals are often well-structured, but there is no stan-
dard way of structuring these documents. An emergency manager who
needs to be familiar with different SOPs deriving from different sources
may thus find them confusing to use.

• Updating: procedural knowledge should be updated with lessons
learned after every emergency in which they have been applied. This
is a cumbersome task to perform with printed manuals, and even web-
based documents offer limited support for this process.

The OpenVCE project [Hansberger et al., 2010] aimed to develop an
open virtual collaboration environment that facilitates collaborative work in
a virtual space. This environment could, for example, be used to collaborate
on the development of procedural knowledge, or it could be used during an
actual emergency to manage information and courses of action. In fact, this
environment contains a specific piece of software that supports these two
functions: the <I-N-C-A> extension for MediaWiki. The OpenVCE space
consists of two linked environments: a dynamic website and 3D space for
meetings [Tate et al., 2009] as shown in figure 3.1. This space links aspects
of a web-based community portal built on widely available and established
open-source software (Drupal and Mediawiki) with publicly accessible virtual
world 3D spaces in Second Life.

To avoid all this technology overwhelming novice users who are attempt-
ing to collaborate in this space, the project has also developed the Virtual
Collaboration Protocol, which is itself procedural knowledge that describes
how this environment is meant to be used to deal with certain types of emer-
gency. This protocol is itself supported by an extension to the website that
guides users who are following the protocol.

3.2 Collaborative Development of Procedu-

ral Knowledge

The collaborative development of procedural knowledge can be supported in
a number of ways using dynamic web technology. We have based our col-
laborative document editing facility that can be used to write SOP manuals
on MediaWiki [Barrett, 2009]. The reasons for this choice are simple: Medi-
aWiki is open-source (a project requirement), scalable (it powers Wikipedia),

Figure 3.1: OpenVCE Website and 3D Virtual Meeting Space

and there is an active community behind it. However, wiki articles are not
structured to support procedural knowledge, which is why we have devel-
oped an extension that allows for the structuring of an article according to
the principles underlying Hierarchical Task Network (HTN) planning, which
provides a ‘natural’ way of decomposing tasks into sub-tasks, and as such
is the structure found in many existing SOP manuals. A system that uses
a similar approach, namely, representing procedural knowledge in a Wiki is
CoScripter [Leshed et al., 2008]. However, their representation is not based
on AI planning and thus does not support the automated composition of
procedures. The Incidone system [Lijnse et al., 2012] uses Task-Oriented
Programming to represent and use procedural knowledge in emergency re-
sponse, but the representation is closer to the specific programming language
used.

21

Bibliography

[Albore et al., 2010] Alexandre Albore, Héctor Palacios, and Hector Geffner.
Compiling uncertainty away in non-deterministic conformant planning. In
ECAI, pages 465–470, 2010.

[Allen et al., 1990] James Allen, James Hendler, and Austin Tate, editors.
Readings in Planning. Morgan Kaufman, 1990.

[Amir, 2005] E. Amir. Learning partially observable deterministic action
models. In Proc. IJCAI 05, pages 1433–1439, 2005.

[Barreiro et al., 2012] Javier Barreiro, Matthew Boyce, Minh Do, Jeremy
Frank, Michael Iatauro, Tatiana Kichkaylo, Paul Morrisand James Ong,
Emilio Remolina, Tristan Smith, and David Smith. EUROPA: A Platform
for AI Planning, Scheduling, Constraint Programming, and Optimization.
In Proceedings of the 4th International Competition on Knowledge Engi-
neering for Planning and Scheduling, ICAPS 2012, Atibaia, Sao Paulo,
Brazil, 2012.

[Barrett, 2009] D. Barrett, editor. MediaWiki. OReilley, 2009.

[Benson, 1996] S. Benson. Learning Action Models for Reactive Autonomous
Agents. PhD thesis, Stanford University, 1996.

[Bernard et al., 2000] D. E. Bernard, E. B. Gamble, N. F. Rouquette,
B. Smith, Y. W. Tung, N. Muscettola, G. A. Dorias, B. Kanefsky,
J. Kurien, W. Millar, P. Nayal, K. Rajan, and W. Taylor. Remote agent
experiment ds1 technology validation report. Technical report, Ames Re-
search Center and JPL, 2000.

[Bernardini and Smith, 2007] Sara Bernardini and David E. Smith. Devel-
oping domain-independent search control for europa2, 2007.

22

[Botea et al., 2005] Adi Botea, Markus Enzenberger, Martin Müller, and
Jonathan Schaeffer. Macro-ff: Improving ai planning with automati-
cally learned macro-operators. Journal of Artificial Intelligence Research
(JAIR), 24:581–621, 2005.

[Bylander, 1994] T. Bylander. The computational complexity of proposi-
tional strips planning. Artificial Intelligence, 69:165–204, 1994.

[Chrpa and Barták, 2009] L. Chrpa and R. Barták. Reformulating planning
problems by eliminating unpromising actions. In Proceedings of SARA
2009, pages 50–57, 2009.

[Chrpa and McCluskey, 2012] Lukás Chrpa and Thomas Leo McCluskey. On
exploiting structures of classical planning problems: Generalizing entan-
glements. In Proceedings of ECAI, pages 240–245, 2012.

[Chrpa et al., 2012a] L. Chrpa, T. L. McCluskey, and H. Osborne. Reformu-
lating planning problems: A theoretical point of view. In Proceedings of
FLAIRS, pages 14–19, 2012.

[Chrpa et al., 2012b] Lukás Chrpa, Thomas Leo McCluskey, and Hugh Os-
borne. Determining redundant actions in sequential plans. In Proceedings
of ICTAI, 2012. to appear.

[Chrpa et al., 2012c] Lukás Chrpa, Thomas Leo McCluskey, and Hugh Os-
borne. Optimizing plans through analysis of action dependencies and in-
dependencies. In Proceedings of ICAPS, pages 338–342, 2012.

[Chrpa, 2010] Lukas Chrpa. Generation of macro-operators via investiga-
tion of action dependencies in plans. Knowledge Engineering Review,
25(3):281–297, 2010.

[Coles et al., 2008] Andrew Coles, Maria Fox, Derek Long, and Amanda
Smith. Planning with problems requiring temporal coordination. In AAAI,
pages 892–897, 2008.

[Currie and Tate, 1991] Ken Currie and Austin Tate. O-Plan: The open
planning architeture. Artificial Intelligence, 52:49–86, 1991.

[Dave et al., 2003] Rakesh Dave, Subhashini Ganapathy, Mary Fendley, and
Sundaram Narayanan. Dynamic path planning of ground robots and unin-
habited aerial vehicles in human search and rescue missions. In Proceedings
of IICAI 2003, pages 315–322, 2003.

23

[David E. Wilkins, 1990] David E. Wilkins. Can AI Planners Solve Practical
Problems. Computational Intelligence Journal, 1990.

[Dvořák and Barták, 2010] Filip Dvořák and Roman Barták. Integrating
time and resources into planning. In ICTAI (2), pages 71–78, 2010.

[Estrem and Krebsbach, 2012] Sam J. Estrem and Kurt D. Krebsbach. Airs:
Anytime iterative refinement of a solution. In Proceedings of FLAIRS,
pages 26–31, 2012.

[Fox and Long, 2006] Maria Fox and Derek Long. Modelling mixed discrete-
continuous domains for planning. J. Artif. Intell. Res. (JAIR), 27:235–297,
2006.

[Frank and Jónsson, 2003] Jeremy Frank and Ari K. Jónsson. Constraint-
based attribute and interval planning. Constraints, 8(4):339–364, 2003.

[Gerevini et al., 2004] A. Gerevini, A. Saetti, and I. Serina. Planning in
pddl2.2 domains with lpg-td. In Proceedings of the fourth IPC, 2004.

[Ghallab et al., 1998] M. Ghallab, C. Knoblock Isi, S. Penberthy, D. E
Smith, Y. Sun, and D. Weld. Pddl - the planning domain definition lan-
guage. Technical report, 1998.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso. Automated plan-
ning, theory and practice. Morgan Kaufmann Publishers, 2004.

[Hansberger et al., 2010] J. Hansberger, A. Tate, B. Moon, and R. Cross.
Cognitively engineering a virtual collaboration environment for crisis re-
sponse. In Proc. ACM Conference on Computer Supported Cooperative
Working, 2010.

[Helmert, 2003] Malte Helmert. Complexity results for standard benchmark
domains in planning. Artificial Intelligence, 143(2):219–262, 2003.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF planning
system: Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253–302, 2001.

[Jiménez et al.,] S Jiménez, T. De la Rosa, S. Fernández, F. Fernández, and
D. Borrajo. A review of machine learning for automated planning. The
Knowledge Engineering Review (in press).

[Kautz et al., 2006] H. Kautz, B. Selman, and J. Hoffmann. Satplan: Plan-
ning as satisfiability. In Proceedings of the fifth IPC, 2006.

24

[Kissmann and Edelkamp, 2008] Peter Kissmann and Stefan Edelkamp.
Gamer: Fully-observable non-deterministic planning via pddl-translation
into a game. In Proceedings of the sixth IPC, 2008.

[Korf, 1985] R.E. Korf. Macro-operators: A weak method for learning. Ar-
tificial Intelligence, 26(1):35–77, 1985.

[Leshed et al., 2008] G. Leshed, E. Haber, T. Matthews, and T. Lau. Co-
scripter: Automating and sharing how-to knowledge in the enterprise. In
Proc. International Conference on Human-Computer Interaction (CHI),
2008.

[Lijnse et al., 2012] B. Lijnse, J. Jansen, and R. Plasmeijer. Incidone: A
task-oriented incident coordination tool. In Proc. International Conference
on Information Systems for Crisis Response and Management (ISCRAM),
2012.

[McCluskey et al., 2010] T. L. McCluskey, S. N. Cresswell, N. E. Richardson,
and M. M. West. Action Knowledge Acquisition with Opmaker2. In Agents
and Artificial Intelligence, volume 67 of Communications in Computer and
Information Science, pages 137–150. Springer Berlin Heidelberg, 2010.

[Muscettola et al., 1998] Nicola Muscettola, P. Pandurang Nayak, Barney
Pell, and Brian C. Williams. Remote agent: To boldly go where no ai
system has gone before. Artificial Intelligence, 103:5–47, 1998.

[Nakhost and Müller, 2010] Hootan Nakhost and Martin Müller. Action
elimination and plan neighborhood graph search: Two algorithms for plan
improvement. In Proceedings of ICAPS, pages 121–128, 2010.

[Nau et al., 1995] Dana S. Nau, Satyandra K. Gupta, and William C. Regli.
Ai planning versus manufacturing-operation planning: A case study. In
Proceedings of IJCAI 95, pages 1670–1676, 1995.

[Nau et al., 2001] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and
S. Mitchell. Total-order planning with partially ordered subtasks. In
Proc. 17th International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 425–430. Morgan Kaufmann, 2001.

[Newton et al., 2007] Muhammad Abdul Hakim Newton, John Levine,
Maria Fox, and Derek Long. Learning macro-actions for arbitrary planners
and domains. In Proceedings of ICAPS 2007, pages 256–263, 2007.

25

[Pease and Carrico, 1996] R. Adam Pease and Todd M. Carrico. Object
model working group core plan representation. Technical Report AL/HR-
TP-1996-0031, United States Air Force Armstrong Laboratory, Wright-
Patterson AFB, OH, 1996.

[Richter and Westphal, 2010] S. Richter and M. Westphal. The lama plan-
ner: guiding cost-based anytime planning with landmarks. Journal Arti-
ficial Intelligence Research (JAIR), 39:127–177, 2010.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115–135, 1974. Reprinted in [Allen et al.,
1990, pages 98–108].

[Simpson et al., 2001] R. M. Simpson, T. L. McCluskey, W. Zhao, R. S.
Aylett, and C. Doniat. GIPO: An Integrated Graphical Tool to support
Knowledge Engineering in AI Planning. In Proceedings of the 6th European
Conference on Planning, 2001.

[Simpson et al., 2007] R. M. Simpson, D. E. Kitchin, and T. L. McCluskey.
Planning Domain Definition Using GIPO. The Knowledge Engineering
Review, 22(1), 2007.

[Simpson, 2007] R. M. Simpson. Structural Domain Definition using GIPO
IV. In Proceedings of the Second International Competition on Knowledge
Engineering. Providence, Rhode Island, USA., 2007.

[Tate et al., 1994] A. Tate, B. Drabble, and R. Kirby. O-Plan2: an Open Ar-
chitecture for Command, Planning and Control. In M. Fox and M. Zweben,
editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[Tate et al., 2009] A. Tate, S. Potter, and J. Dalton. I-room: a virtual space
for emergency response for the multinational planning augmentation team.
In J. Lawton, J. Patel, and A. Tate, editors, Proc. 5th International Con-
ference on Knowledge Systems for Coalition Operations (KSCO), 2009.

[Tate, 1977] Austin Tate. Generating project networks. In Proc. 5th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 888–893.
Morgan Kaufmann, 1977. Reprinted in [Allen et al., 1990, pages 291–296].

[Tate, 1998] Austin Tate. Roots of SPAR—shared planning and activity
representation. The Knowledge Engineering Review, 13, 1998.

26

[Teichteil-Königsbuch and Fabiani, 2006] Florent Teichteil-Königsbuch and
Patrick Fabiani. Autonomous search and rescue rotorcraft mission stochas-
tic planning with generic dbns. In Proceedings of IFIP AI 2006, pages
483–492, 2006.

[Tran et al., 2008] SDang-Vien Tran, Hoang-Khoi Nguyen, Enrico Pontelli,
and Tran Cao Son. Cpa(c)/(h): Two approximation-based conformant
planners. In Proceedings of the sixth IPC, 2008.

[Vaquero et al., 2007] Tiago Stegun Vaquero, V. Romero, F. Tonidandel, and
Jose Reinaldo Silva. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS 2007). Providence, Rhode
Island, USA., 2007.

[Wilkins, 1988] David Wilkins. Practical Planning: Extending the Classical
AI Planning Paradigm. Morgan Kaufman, 1988.

[Yoon and S.Kambhampati, 2007] S. Yoon and S.Kambhampati. Towards
model-lite planning: A proposal for learning & planning with incomplete
domain models. In Proc. Workshop on AI Planning and Learning, ICAPS,
2007.

[Younes and Littman, 2004] Hakan L. S. Younes and Michael L. Littman.
Ppddl1.0: An extension to pddl for expressing planning domains with
probabilistic effects. Technical report, Carnegie Mellon University, 2004.

[Zhuo et al., 2010a] Hankz H. Zhuo, Qiang Yang, Derek H. Hu, and Lei Li.
Learning complex action models with quantifiers and logical implications.
Artificial Intelligence, 174(18):1540–1569, December 2010.

[Zhuo et al., 2010b] H.H. Zhuo, Q. Yang, D. H. Hu, and L. Li. Learning
complex action models with quantifiers and logical implications. Artificial
Intelligence, 174(18):1540 – 1569, 2010.

27

