
1

Multi-agent Simulation Approach to Development
of Applications for Decentralized Tactical Missions

Antonı́n Komenda, Michal Čáp, Michal Pěchouček

{komenda,cap,pechoucek}@agents.felk.cvut.cz
Department of Computer Science and Engineering,

Faculty of Electrical Engineering,
Czech Technical University in Prague

Abstract—Development of algorithms and applications for
tactical missions is currently affected by a significant gap between
ways how are artificial intelligence (A.I.) algorithms designed,
and validated and how are applications for real-world or high-
fidelity simulations of tactical mission developed. On the one
hand, we have low-level robotic simulators (or even robotic
field testing). On the other hand, we have synthetic – usually
mathematically defined – environments used for design and
formal testing of A.I. algorithms, lets name randomly generated
problem instances, synthetic graph structures, logical structures,
regular grids, and similar.

In this work, we are proposing a development process and
software support narrowing this gap. Simulation-aided develop-
ment approach is used and tailored towards the domain of tactical
missions. The process is demonstrated on a particular application
scenario, supported by a general software toolkit fitted on the
problem, however utilizing a composition of algorithms primarily
designed as highly abstract.

I. INTRODUCTION

In recent years, we have been witnessing an intensive devel-
opment and deployment of various robotic systems. One of the
fastest-growing application domains for robotic systems are
the Intelligence, Surveillance, Target Acquisition, and Recon-
naissance (ISTAR) military missions performed by remotely
controlled robotic assets. Currently, these robotics assets are
controlled and coordinated exclusively by human operators.
The scalability of such approach is clearly constrained by
the limits of human perception and the limits of inter-human
interactions, similarly as in the other fields, where the human
element was superseded by computerized systems.

To address these constraints, there have been large invest-
ments, both scientific and monetary, aiming at successive
introduction of autonomous multi-robotic systems. In such
systems, the robotic assets use artificial intelligence algorithms
to coordinate their actions and cooperate with each other. We
will use the term Decentralized Tactical Missions to denote the
class of problems, where multi-robotic teams carry out tasks
in ISTAR missions [9], support disaster relief operations or
assist humanitarian missions [16], [10].

The fundamental challenge associated with the multi-robotic
application development is the deployment, validation and
verification of the developed algorithms on the real hardware.
Conducting experiments on real-world robots is expensive both
in terms of time and money. To lower such costs, a simulation
of the target system can be introduced. On the one hand, the

experiments in a simulated world have the advantages of the
reproducibility, direct control over the simulated world, and
usually also the efficiency of experimenting (one can conduct
batch experiments). On the other hand, the fundamental draw-
back of the simulated-world experiments is that the accuracy
of the results depends on the fidelity of the world model em-
ployed by the simulation. Since the computational complexity
of the simulation grows as the function of the fidelity of the
underlying world model, high-fidelity simulations are often
impossible to achieve due to their prohibitive computational
complexity.

A. Problem Addressed

Nowadays, we can identify a significant gap between the
environments typically used by the researchers in the the-
oretical A.I. community and the environments used by the
developers of multi-robotic intelligent applications. On the
one hand, we have synthetic environments used for design
and formal testing of different kinds of A.I. algorithms (e.g.,
randomly generated graphs, regular grids, etc.). One the other
hand, we have high-fidelity real-world-like robotic simulators
(or even mixed-reality simulations involving real robots) used
for a pre-deployment evaluation of the proposed multi-robotic
application.

In our approach, based on the simulation-aided design of
multi-agent systems methodology [15], the key motivation is to
bridge the gap between the theory and the practical application
of the existing A.I. algorithms. Under such motivation, we take
existing A.I. algorithms and starting from a low-fidelity, highly
abstract synthetic environment we incrementally decrease the
level of simulation abstraction to eventually arrive to a high-
fidelity real-world-like environment. During each step, we
adapt the used algorithms and validate the overall function
of the system.

To enable such an iterative process of algorithm design
and validation, we have to implement the algorithms on a
simulation platform that is modular and flexible enough to
provide seamless testing of the algorithms working on different
levels of abstraction.

B. Problem Domain

To demonstrate the key ideas of the proposed approach
based on simulation-aided development, we need a suitable



2

Figure 1. A visual impression of a simulated environment for Decentralized
Tactical Missions.

example domain. As our main motivation is to design and test
primarily algorithms of distributed artificial intelligence for
teams of autonomous robotic assets, we will choose an ISTAR
military mission domain. Such a tactical domain gives us a
wide range of possibilities regarding both the available robotic
assets and the tasks the assets are expected to perform. As
we can see in Figure 1, the environment comprises a mid-size
village, the surrounding uneven landscape, dynamic models of
the available robotic assets, friendly persons and adversarial
persons.

We consider two main groups of assets: unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs). Addi-
tionally, on all levels of fidelity, we distinguish Conventional
Take-off and Landing (CTOL) UAVs and Vertical Take-Off
and Landing (VTOL) UAVs as their movement models fun-
damentally differ. To enrich the set of possible tasks for the
robotic assets, we also simulate the behavior of friendly (blue)
and enemy (red) forces forming teams and convoys. The tasks
carried out by the robotic team include patrolling of allied
convoys, capturing evading adversaries, low-level formation
maintenance, team support by observing local area, or wider
area surveillance.

In the following section we will explain the simulation-aided
iterative development process used to design, implement and
validate the above-presented multi-robotic application. The
details about the mission scenario, implementation and the
A.I. techniques applied will be described in Section III. The
Section IV concludes the paper with final remarks.

II. DEVELOPMENT PROCESS

The main idea of the presented development process is
the following. At the beginning, we employ the classical
theoretical A.I. approach and design the desired algorithm in a
synthetic environment, using general mathematical structures
such as graphs and grids. However, right from the start, we
perform the experiments within the framework of the target
simulation system. This means that the interfaces between the
developed algorithm and the simulated environment must be
general enough to allow straightforward redeployment of the
algorithm to higher fidelity simulation environments. Further,

the synthetic environment should also define sufficiently gen-
eral interfaces to allow future integration with higher fidelity
simulation environments.

The requirement for general interface should not interfere
with the function and the internal principles of the developed
algorithm. In this step the simulation system acts purely as a
validation environment for the developed algorithm respecting
all its simplifying assumptions. After validating and verifying
the algorithm in its pure form, we can iteratively replace
the environment model (or additionally other parts of the
simulation, e.g., time evolution) and re-validate the algorithm
in an environment containing more aspects of the target envi-
ronment, i.e., having a lower level of abstraction. Occasion-
ally, after the abstraction of the simulation environment has
been decreased, the tested algorithm has to be conservatively
adapted. A conservative adaptation of an algorithm is an adap-
tation that preserves all the desired mathematical properties
(e.g. soundness, completeness, etc.) for a price of possibly
newly added domain-specific conditions on the validity of
these properties. The final sum of such adaptations results in
a theoretically-backed algorithm applicable in highly detailed
simulated environments. The mathematical properties of the
algorithm stay valid under the limiting conditions induced by
the applied conservative adaptations.

In the next subsections we will describe the simulation
approaches we use for design and validation of the target
algorithms.

A. Simulation-aided Development

The simulation-aided development (SAD, as described in
[15] and [8]) is based on an iterative process of an approxi-
mated validation using testbeds of increasing fidelity. The goal
of the process is a successful, cost-efficient deployment of the
application on a target system, typically a hardware platform.
The iterative process of the application development is based
on the feedback from approximated testing. The approximation
is based on two dimensions: level of abstraction (how much
is the target system simplified) and scope of abstraction
(which parts of the target system are simplified). Effectively,
the system is iteratively transformed from highly abstract
algorithms to deployable system on a hardware platform with
increasing level of detail in each step.

As we articulated before, the main objective of the work
is to design and experimentally evaluate various decentralized
algorithms for coordination of multi-agent teams and in result
development of applications based on such algorithms using
the principles of simulation-aided development. In contrast
to [15], our final goal is not to deploy the algorithms on
a hardware platform, but on a high-fidelity simulation. This
objective results in three basic requirements on the simulation
system.

Firstly, the simulator must be highly configurable to allow
for high flexibility in terms of both simulation experiment
structure (number of agents, various types of agents, different
initial conditions, etc.) and the executed scenario storyboard,
i.e., the mission to be executed. This requirement is related
mainly to the scope of abstraction in SAD, as we have to



3

State Controller State Controller

Sensor

Sensor Actuator Actuator

Actuator

State Storage State Storage

State v1,v2, ...,vk vk+1,vk+2, ...,vn

Environment

Interface

Figure 2. An example of a simulated environment, described by state
variables v1, ...vn separated into two state storages. The state controllers (e.g.,
agents) perceives and acts in the environment through a set of sensors and
actuators respectively. One of the sensors and one of the actuators (the top
two) acts as high-level abstractions for low-level ones (e.g., autopilot actuator
on top; yoke and pedals actuators on bottom).

be able to seamlessly reconfigure parts of the simulation and
switch between different environment models and different
models of simulated entities.

Secondly, experiments have to comprise of large numbers
of executed simulation instances. To ensure properties of the
tested algorithms during the adaptation process, the simulation
platform has to allow for straightforward and simple building
of experiment suites. Batch experiments represent a basic tech-
nique to a validate wide spectrum of problem instances and
experimentally prove the desired properties of an algorithm.
Conditioned and dynamic experiments can be used for search
of pathological or otherwise important problem instances and
related results.

Finally, the simulator has to allow simulation on various
levels of details of the simulated environment and entities. The
last requirement is closely related to the level of abstraction
in the SAD approach as the algorithms has to be allowed to
fluently move among various levels of abstractions to enable
automated testing. Automated testing ensures that the proper-
ties of an algorithm hold on all levels of abstraction (similarly
to classical automated testing in software development).

B. Environment Modeling

A fundamental part of the simulation platform is a model
of the virtual environment, which comprises the description
of the simulated state and the state controllers animating the
simulated world. The state controllers are driven by a time
management component.

Our model of such an environment (see Figure 2) is based
on special containers called state storages. Each state stor-
age is responsible for holding a certain part of the current
state, i.e., all the state storages together constitute the full
description of the current state of the environment. The
partitioning of the simulated state into the state storages
is variable, however there are two typically used views: i)
over entity types or ii) over state data types. The former

uses one state storage for one simulated entity type, i.e., a
state storage contains a set of state variables for all entities
of one type (e.g., CarStorage, HelicopterStorage,
StreetStorage). The latter is based on a data-
type describing the state variables (e.g., GraphStorage,
KeyValueStorage, BTreeStorage). In this case, one
state storage contains all state variables of the same data
structure and utilizes common properties of such structures,
e.g., a KeyValueStorage can provide algorithms for hash-
based caching, which can be utilized both for key-value
storage of entity properties (size, weight, current fuel status)
or key-value storage of an area weather status (keys represent
area codes, values current weather conditions).

State controllers are functional parts of the environment, in
a sum describing the whole mechanics of the environment.
The controllers use a set of universal interfaces – sensors and
actuators – to read from and write to the state storages, which
effectively means that the controllers control the evolution of
the future states of the environment. There are no a priori
restrictions on the controllers and the controlled state, i.e., a
controller can be a mechanism simulating physical laws of
the environment (e.g. application of the gravity force to all
simulated entities with a mass), or a simple reactive algorithm
(e.g. simulation of swarm systems), or highly deliberative al-
gorithms (e.g., cognitive cooperating agents). Elements of the
environment without any controllers are fixed in their initial
state. These are e.g., the shape of the landscape, buildings,
bridges etc.

In the tactical mission environment, the sensors and actu-
ators are of different levels of complexity. There are basic
sensors informing the controlling agents about their position in
the simulated world (simulation of a on-board/personal GPS).
A basic visual sensor simulates perception of other simulated
entities in close proximity. A complex visual sensor emulates
systems for automated friendly-or-foe detection, and uses 3D
algorithms to simulate visual occlusions caused by buildings
and topology of the map.

To enable high-level control of UGVs, which abstracts
away from the physical reality of the environment, actuators
for discrete time movement of simulated ground vehicles
on a street graph can be used. To enable various levels of
abstraction, the high-level control algorithms use low-level
actuators to steer the cars between waypoints on the street
map (e.g., junctions) based on a state-of-the-art technology
for simulated physics. Such an actuator supports not only
simulated continuous motion of the entity in space, but also
discrete motion on the graph-based representations. Such an
approach to the simulated environment design led to significant
decrease of implementation, as well as debugging complexity
of the individual experimental scenarios on different abstrac-
tion levels. Moreover, it allowed to implement simplified
simulation model employing event-based time management
instead of discrete time ticks or turn based time management
methods.

A requirement to implement aircrafts performing close-
up tracking of mobile targets, such as adversaries and cars,
resulted in a need to incorporate reactively controlled aircrafts
using low-level actuators, be it conventional fixed-wing planes



4

(CTOLs), or helicopters (VTOLs). Such UAVs are able to
change their flight trajectory in a reaction to changes of
movement patterns performed by the ground target. In the
case of fixed-wing aircrafts, which cannot stop in mid-air,
this problem results in a need to perform relatively complex
flight patterns, such as various loops over the target. Together
with a need to implement a fine-grained physical dynamic
feedback control of helicopters respecting a realistic model of
their physical movements, this led to a requirement to adapt
the simulator to a much finer grained time resolutions. In
effect, reactive CTOL actuators use yaw, pitch and velocity
as parameters and limits minimal and maximal values, while
VTOL actuators uses cyclic and collective rotor blade tilt for
the main rotor and tilt for tail rotor using a simplified dynamic
model of a VTOL. The higher level actuators designed for
more abstract control algorithms implements a straight-flight
autopilot and a waypoint autopilot.

C. Simulation Assurances

While abstract mathematical algorithms are well analyzed
and strongly statistically validated on experiments, it is not
so easy to run (and debug) replicable experiments in com-
plex, high-fidelity robotic simulations with lots of dynamic
unpredictable behaviors of the entities and emergent behavior
phenomena. In our approach, the important aspect of simula-
tion development is to keep the reproducibility of simulations
with increasing level of detail. Large-scale simulations involve
various aspects of non-determinism which can lead to non-
reproducible simulation runs. Such factors include parallel and
random processes, as well as limitations of the underlying
hardware, such as CPU scheduling or memory swapping on the
limit of resource utilization, etc. To ensure reproducibility of
experimental runs, we carefully considered and implemented
the concept of in vitro simulation. That is, a simulation
which controls all the aspects of the modeled system, or
carefully accounts for those, which were abstracted away from.
In particular, this means that the simulator has to have an
ability to suspend and later resume the simulation process.
Furthermore, it should have an ability to speed it up, or slow it
down in response to e.g., resource utilization of the underlying
hardware, so that race conditions and different results of pro-
cess scheduling do not affect the simulation outcome. Finally,
the random processes involved in the simulation must be also
under the simulator’s control so that the same sequences of
random events are generated in two independent runs of the
same simulation.

The need to execute large numbers of reproducible exper-
iment runs turned out to hinge on the speed of simulation
run execution and ability to make the runs deterministic on
demand. To tackle this issue, we departed from the exclusive
model of centralized discrete time ticks and implemented
event-based simulation mechanism [1]. This allows the system
to disrespect real-time constraints of the wall clock ticking
mechanism and run the simulation as fast as possible given
the available computational hardware resources (memory and
CPU). However, at the same time the resulting simulator
still features the ability to run at real-time simulation speed

InterpolatedCarStorage

State Controller

Environment

PhysicalCarStorage

DiscreteCarStorageGoToNodeActuator

MoveInDirectionActuator

SteerAndAccelActuator

Interface

Figure 3. State storages and related actuators for description of car models
on three levels of abstraction.

for demonstration purposes. Additionally, we used simulator
enabling complete synchronization of the simulated processes
and thus facilitated high level of control over the simulated
environment.

D. Example of a Multi-level and -scope Abstractions

The model based on state storages, universal sensors, univer-
sal actuators and loosely coupled controllers offers a valuable
property critical for the SAD approach. The property is, the
presented model is highly flexible, as it allows a programmer
to add and remove simulated entities easily (scope of abstrac-
tion). Further, it supports easy switching between the different
types of simulation modes (level of abstraction).

For instance, we can define three types of abstraction for
car entities and represent them by three separate storages
DiscreteCarStorage, InterpolatedCarStorage,
and PhysicalCarStorage. The first one defines the
current state of a car by a node on a street graph. The
second one enriches the by-node state with a position
vector (x, y) representing the position of the car on
a 3d mesh representing the ground surface. The last
abstraction extends the state further with a description
of a fully dynamic state comprising position (x, y, z),
velocity (ẋ, ẏ, ż), acceleration (ẍ, ÿ, z̈) and the rotational
components (ϕ, θ, ψ), (ϕ̇, θ̇, ψ̇), (ϕ̈, θ̈, ψ̈). To control the state
stored in these state storages, we can use three actuators
GoToNodeActuator, MoveInDirectionActuator,
SteerAndAccelerateActuator (listed in an order
reflecting the state storages). One can implement an actuator
to control the respective state storage directly, but it is also
possible to implement an actuator to control storages indirectly
through other actuators. In practice, such coupling will result
in an algorithm that recursively translates higher level control
to lower level control. For example, the way-point car actuator
will control the car using the following control sequence: Go-
ToNodeActuator → MoveInDirectionActuator
→ SteerAndAccelerateActuator (see Figure 3).
As we can see now, we can interchangeably use any of the
presented state storages as long as the controlling algorithm
uses only the top-most actuator, i.e. GoToNodeActuator.
In effect, we can design a high-level algorithm controlling a
car only on node-to-node basis using GoToNodeActuator,
but we can immediately test it in all prepared levels of
abstraction (discrete, interpolated, physical).

Aside from the cars, we can additionally define simu-
lated entities representing ground troops. For this case, we



5

create only two levels of abstraction represented by two
state storages DiscreteTroopStorage and Directed-
TroopStorage. The first level of abstraction is similar to
DiscreteCarStorage (representing only position of a
trooper by a street node), the other level describes ground
position and direction (x, y, ϕ). We create a WalkToNode-
Actuator and MoveAndTurnActuator. In this case we
cannot reuse GoToNodeActuator in place of WalkTo-
NodeActuator as the actuator for a car uses a different
control logic to simulate the movement (although the input
parameters and the results are identical for both the actuators
– both a car and a trooper moves from one node to another –
for a car, the duration of the movement can be computed on
the engine power, for the trooper the duration of the movement
can be, for instance, a function of the weight of his personal
gear). From this point, we have two separate components
of environment model for cars and for troops (analogical to
the scope of abstraction in SAD). In one simulation run, we
can use these components separately (just cars or just troops)
or we can mix them together (e.g., troops following a car).
Moreover, we can mix different levels of abstraction of both
components (for instance, an interpolated car representing a
convoy is followed by physically simulated cars representing
UGVs and accompanied by troops with position and direc-
tion representing support squad protecting the convoy against
discrete adversaries blocking particular junctions/nodes on a
street map).

III. APPLICATION SCENARIO

After proposing an approach to development of multi-
agent applications for decentralized tactical missions using
simulation-aided development process, we present a descrip-
tion of a specific application scenario. The application is a
multi-agent simulation of a heterogeneous cooperative mis-
sion with opponents in a dynamic environment. This section
presents a detailed description of the mission, implementation
details of the underlying system and a summary of algorithms
used to control the behavior of agents, in particular we will
emphasize the role of different levels of abstraction used
during their design and evaluation.

A. Tactical Mission

The mission takes place in a mid-size desert village sur-
rounded by a hilly landscape. The village is described in
terms of a number of static and dynamic objects. There are
three types of static objects: buildings, bridges and a 3D
mesh representing the ground. All the static objects act as
obstacles for the dynamic objects and cause occlusions for the
visual sensors. Additionally, there are virtual static structures:
a street graph representing a navigation map of the village
and forbidden zones representing areas, where the dynamically
simulated entities are not allowed to be (e.g. close to the
buildings, cliffs, bridge-sides, etc.). These virtual structures
can be sensed by the entities, but unlike the obstacles, the
agents can ignore them.

All the dynamic objects in the environment are denoted
as simulation entities. A simulation entity is a simulated

embodiment with a related controlling agent. In this particular
simulated environment, there are no dynamic objects, which
are not deliberately controlled (e.g., moving obstacles, falling
objects, etc.). The simulation entities can be divided into three
main groups: air vehicles, ground vehicles, and simulated
persons. There are three air vehicle types: Aesir Vidar VTOL
UAV, Saab Skeldar VTOL UAV, and Procerus CTOL UAV.
The ground vehicle classes are MDARS UGV and a generic
army cargo truck. The simulated persons represent both the
allied troops (blue forces) and the adversaries (red forces).

The mission is to evacuate a VIP hostage from a safehouse
in the center of the village and relocate to an extraction point at
the edge of the village. During both the ingress and the regress
phase of the mission a highly valuable target (red forces) can
be spotted. If so, the team (allied cargo truck and blue forces)
splits and part of the troops has to capture the evading target in
the streets of the village. There are unknown adversaries (red
forces) in the village, which can endanger the team. These has
to be spotted as soon as possible to minimize the risk of attack
against the team. The robotic support team (Vidars, Skeldars,
Proceruses, and MDARS) autonomously helps with this task
by providing wide and close surveillance of the area, street
and junction cover and others.

B. Implementation

Implementation of the simulation system is based on a
software toolkit Alite designed to facilitate the development
of multi-agent applications using the simulation-aided devel-
opment (SAD) approach.

Alite1 [’eIlaIt] is in general a software toolkit aimed at
simplifying implementation and construction of (not only)
multi-agent simulations and multi-agent systems. The objec-
tives of the toolkit are to provide highly modular, flexible,
and open set of functionality defined by clear and simple
APIs supporting rapid prototyping and fast implementation,
but with focus on highly scalable and complex simulated
environments). The guiding principles underlying the Alite
design are i) modularity, so that the system does not commit
a developer to a specific definition of concepts such as agent,
environment, etc., and ii) composability, so that the various
components of the toolkit can be put together in a rapid and
flexible manner. In result, Alite can be seen as a collection
of highly refined functional elements providing clear and
simple APIs, so that relatively complex multi-agent simulation
scenarios can be put together rapidly.

Alite agents have access to composable interfaces to the
environment (sensors and actuators), while their internal
decision-making process is not bound to any a priori phi-
losophy. Additionally, they can make use of various types
of communication middleware interfaces allowing a devel-
oper to model various types of intra-agent communication
(synchronous, asynchronous, peer-to-peer, broadcasting, multi-
casting, etc.). Further, Alite comes with libraries including
various types of planners (reactive, deliberative) and multi-
agent solvers (e.g., task allocators, solvers for distributed
vehicle routing problem, etc.).

1http://agents.felk.cvut.cz/projects#alite



6

By its compositional nature, Alite provides means for both
rapid prototyping, as well as high-level of elaboration tol-
erance of the implemented systems. E.g., once a simulation
scenario, or a functional multi-agent system is put together
from various components, application-level customizations
and proprietary domain-specific mechanisms, it is very easy
to replace one stock planner, or multi-agent solver by another
one, as far as they share the underlying assumptions for their
use.

Alite addresses the problem of MAS platform resilience in
the face of the need to incorporate various a priori unknown
future requirements by variability in composition of functional
elements. The number of possible combinations allows for
construction a wide spectrum of structurally different multi-
agent applications. This feature distinguishes Alite from the
pre-designed frameworks such as [5], [17], [2]. As multi-
agent application’s requirements evolve, the requirements on
the agent platform itself are changing. Alite does not provide
“a single platform for all”, but rather offers an efficient way
to build a platform that fits the specific needs of the MAS
application under development. The application can make use
of one or more functional elements available in Alite toolkit.
As of writing this paper, Alite provides packages for:

• common-event-queue: a general implementation of
a temporal event queue and temporal events (can be used
for event-based simulations, agent message queues, etc.).

• common-entities: a general description of any entity
in the system. An entity is defined only by its identity, i.e.
name (represent agents, simulated embodiments, etc.).

• common-capability-register: a general imple-
mentation of a simple register of possible capabilities
provided by entities (usable for directory services, register
of simulation components, etc.).

• communication: a component providing communica-
tion interfaces and basic message transports (includes
direct and asynchronous message transport, protocol ab-
straction, abstraction of communication modes, etc.)

• initialization: a component defining basic inter-
faces for initialization scripts and configuration (includes
a config-reader based on Groovy)

• environment: a component of interfaces defining basic
elements for simulated worlds (includes state storages,
and bases for sensors and actuator interfaces).

• simulation: a component mediating event-based sim-
ulation (it is based on the common-event-queue and
enriches it by temporal control).

• visualization: a set of component containing var-
ious visualizers or wrappers to 3rd party visualizing
applications (includes 2D visualization, 3D visualization
based on JME2, a wrapper to Google Earth3, and others).

From the evaluation of basic multi-agent algorithms, it is just
a small step to large-scale multi-agent simulations. In the
general-purpose multi-agent platforms, there is often no easy
way to implement a complex simulated environment, while
in simulation-oriented platforms, it is typically very difficult

2http://jmonkeyengine.com/
3http://earth.google.com/

Environment

State Controller

Actuator

State Storage

Sensor

Interface

Figure 4. A full control loop in a typical Alite simulation architecture.

to implement complex agent behaviors and communication
protocols. Alite stays in between these two approaches en-
abling an application developer to implement a multi-agent
simulation platform targeting both mentioned aspects. On
the one hand, classical multi-agent simulation architecture as
introduced in [7] and implemented e.g. in [17] incorporates
simulation into the multi-agent system as a special agent.
The simulation agent represents the simulated environment,
entities and their interactions with the environment. The agents
control their simulated bodies in the environment transparently
using inter-agent communication. The simulation agent is
responsible for the consistency of the simulated environment
and synchronization of the entities. The reasoning processes of
the individual agents run in separate, independent threads, the
architecture is therefore suitable for parallelization and real-
time simulations. On the other hand, the large-scale multi-
agent simulation platforms such as Mason [13] or NetLogo [6]
provides an easy way to build large environments consisting of
micro-behaviors of thousand individual (usually simple rule-
based) agents that give rise to complex macro-behaviors.

Alite simulation adopting the in vitro principle is a com-
promise between the two presented approaches. Classical
simulation architecture is driven by the agent-point of view
(agents live in the platform and simulation is one of the agents)
but the in vitro multi-agent simulation architecture is driven
by the simulation itself (similarly to large-scale simulation
platforms). Agents, the agent bodies in the environment, ac-
tions and sensors – everything is controlled by the simulation.
Thanks to in vitro design, there is no need for explicit
separation of agent (brain) and entity (body) behavior. This
approach allows to control any desired parameter (even those
not controlled in classical architecture, such as computational
power of agents, parameters of communication links between
the agents and uncertainties). The simulation can be fully
deterministic, featuring simulated non-determinism only if
needed. Finally, this design prevents the simulation from being
affected by the disruptive events on the hosting computer such
as unbalanced processor load, unevenly distributed computa-
tion times to agents, etc.

Simulated environments in Alite consist of building blocks
proposed in Section II-B: state storages, actuators, sensors,
agents as controlling algorithms in form of Alite entities and
an event queue as a time management component. A typical
full control loop (see Figure 4) consists of (sensor →
state controller→ actuator→ state storage
→ sensor→ . . . ) cycle. The state controller can be any Alite
entity (i.e., agent, reactive controller, or others) representing



7

JVM & Scripting

Alite

Environment

Simulator

AgentCtrl

Init (Config & Experiments)

2D Vis

JME
3D Vis

Figure 5. High-level overview of the simulation system for Decentralized
Tactical Missions utilizing Alite toolkit.

behavior of an element in the environment (pilot agent, traffic
light, moving wind, growing three, etc.).

The power of loosely coupled Alite modules has been
validated on the multi-agent systems targeting the proposed
simulation domain of distributed tactical mission. The com-
position of different system architecture layers enabled us to
transparently combine i) highly abstract multi-agent game-
theoretical algorithms providing a) patrolling of the allied
forces and b) pursuit strategies against intelligent, evading
target, ii) reactive continual planning behavior based on plan
repairing techniques and coordination of troops in formations,
and (iii) complex environment simulation, such as physics
of rigid-body models of the entities based on a physical
simulator4.

A predecessor multi-agent system built using Alite for
the domain of multi-agent cooperation and coordination in
complex urban environments is presented in [18]. Thanks
to Alite’s highly modular architecture, there were minimal
implementation overheads during implementation of extended
behavioral models employing special agent-oriented program-
ming languages [19].

Based on the previous work, a final architecture of the
system was designed and it is depicted in Figure 5. The
agent control (AgentCtrl) component represents the agent’s
decision making algorithms. Agents act in an Environment
that consists of entity-type state storages (VidarStorage,
SkeldarStorage, MdarsStorage, etc.) using the related
sensors and state storages utilizing the multi-level and multi-
scope abstraction principle (see Section II-B and Section II-D).
The dynamics of the Environment is implemented using
full control loops (see above) operating on the event queue,
forming a part of the Simulator. Further, the state of the
environment (especially positions of the entities) is visualized
by 2D and 3D Vis-ualizators. Some important “thoughts” of
the agents’ are also visualized (e.g., intentions, plans, personal
estimations of future evolution, etc.). Finally, all the presented
components of the system are initialized by an Init-ialization
component providing experimental infrastructure via flexible

4for more information on the physics simulation see JBullet
(http://jbullet.advel.cz/) – a Java port of Bullet Physics Library
(http://bulletphysics.org)

configuration of the experiment suites (as proposed in Sec-
tion II-A). Alite is written in Java language and other JVM-
compatible languages (particularly Groovy5 and Clojure6).

C. Algorithms and Evaluation

To demonstrate the proposed development process, the fol-
lowing section will discuss design, verification and validation
procedure of four particular A.I. algorithms employed in the
example evacuation mission.

1) Adversarial planning: patrolling of mobile targets: Pro-
tection of the ground team against attacks from the adversaries
was one part of the evacuation tactical mission. Protection was
carried out by a small team of aerial vehicles. For the patrolling
vehicle, it is vital not to execute a predictable movement
strategy. If it acts predictably, the opponents could optimize
their behavior against such strategy and attack the convoy in
the worst timepoint, e.g., when the patrol just left the convoy it
protects. The solution is based on randomized strategies, which
maintain a certain average frequency of visits of each protected
ground team. The algorithm computes optimal strategies for
protecting the mobile targets in adversarial environments. The
basic underlying assumption driving the research was that
the opponent is able to observe the patrol and capable to
attack in any moment when the target convoy is unprotected.
Given a map of an urban environment, positions and plans
of the convoys and a mobility model of opponent units, the
specific goal was to find the optimal randomized strategy for
the patrol, which minimizes the probability of attacks on the
protected teams. More information about the underlying game-
theoretical algorithm for patrolling can be found in [3], [4].

The design, development and validation of the algorithm had
four steps (see Figure 6). In the first step, (a) the algorithm
was analytically designed, based on state-of-the-art solutions,
and optimality assurances were shown on synthetic graph
structures. In the next step, (b) the algorithm was verified on
targets traversing an urban area based on a graph representing
topology of a real village. The patrolling assets were simulated
as idealized models of a CTOL UAV using maneuvers from
a discrete tessellated grid. Afterwards, (c) the idealized model
of a CTOL airplane was replaced by a dynamic model of
a Skeldar VTOL UAV. In the final phase, (d) a Skeldar
UAVs using the optimal patrolling algorithm was used to
provide protection of the ground allied teams in the evacuation
mission.

For the case of the patrolling algorithm, all the adaptations
towards more concrete levels of abstraction, i.e., into envi-
ronment models with higher fidelity, were only a matter of
slight adjustment of the algorithm implementation and posed
no crucial problems. The most likely explanations are the
low computational complexity of the algorithm (the set of
applicable strategies was precomputed) and a fundamental
temporal flexibility in execution of such strategies.

2) Adversarial planning: modeling smart targets: Pursuit
of an evading target was another subgoal of the evacuation
tactical mission. The target was considered smart, i.e., a target,

5http://groovy.codehaus.org/
6http://clojure.org/



8

(a) (b)

(c)

(c) (d)

Figure 6. Levels of abstraction used for design, verification and validation of the algorithm solving problem of patrolling of mobile targets: (a) discrete
movement on a synthetic graph structures, (b) discretized movement of CTOL airplanes using tessellated maneuver pattern, (c) movement based on simplified
dynamic model of Skeldar VTOL UAV, and (d) integrated scenario providing patrolling for ground tactical teams in the final high-fidelity simulator.

who actively monitors its surroundings and acts accordingly.
Smart targets are aware of the fact that they are being tracked
and actively try to avoid the tracking unit. Similarly, we con-
sider trackers to be aware of the fact that the tracked targets are
aware of their activities and try to act in the best response to
the whole setup. Therefore, we need a formal game-theoretical
model of pursuit-evasion scenario with heterogeneous teams
of agents and a resulting algorithm. The concrete goal of the
algorithm was to control a team of assets (pursuers) attempting
to detect, track and finally capture a number of smart targets
(evaders) so that they act in the optimal way even against
prospectively optimal evaders. Details of the used techniques
can be found in [3], [12].

Analogically to the first mentioned algorithm, the analytical
work and the reuse of state-of-the-art techniques led to an
algorithm optimally controlling both the pursuing and evading
parts of the problem (see Figure 7). Firstly, (a) a theoretical
analysis and guarantees on the algorithm were worked out
using artificially generated and randomly generated graph
instances. After that, (b) the algorithm was used on the village
street map with discretely moving pursuers and evader in
constant time steps. Finally, (c) the same algorithms were
integrated into the mission scenario.

The adaptation of the algorithm between the abstraction lev-
els was also straightforward, since the algorithm was designed
as an any-time algorithm from the beginning.

3) Multi-agent re-planning and plan repair: Since tactical
environments are typically highly dynamic, any planning al-
gorithm has to consider failing actions. The more dynamic
an environment is, the more often actions of a plan fail.
Classical-style planning is currently one of the most used
techniques for automation of activities of intelligent agents.
However, such plans are not robust in dynamic environments.
The standard solution, in such cases, is to simply re-plan
the agent’s behavior from scratch and continue its actions
according to the new plan. However, we have designed and
adopted techniques preserving parts of the old plans – plan
repair. The main motivation is based on the assumption that the
costs of communication in multi-agent teams is not negligible
and therefore the algorithm should minimize it. More details
about the employed plan repairing algorithm can be found in
[3], [11].

The multi-agent plan repairing algorithms were based on
classical plan repairing techniques and formally verified. The
algorithms were used to control the Vidar VTOL UAVs,
which provide support for the ground team (see Figure 8).
First tests and experiments were carried out in a synthetic
grid-based environment (a) based on a classical state-of-the-
art planning domain crates-cranes. Adaptation of the plan
repairing algorithm to the VTOLs in the domain of tactical
support (b) led to an introduction of a restricting condition
on the depth of the search tree to limit the computational



9

(a) (b) (c)

Figure 8. Levels of abstraction used for design, verification and validation of the algorithm providing plan repairing ability for robotic assets: (a) synthetic
environment based on a grid structure used for design, verification and validation of the plan repairing algorithms, (b) adaptation of the algorithm to a simplified
dynamic model of Vidar VTOL UAVs providing support for the ground team (white lines represent an initial plan, yellow track represents a repaired plan),
and (c) example of reconnaissance actions carried out by the Vidars in the integrated mission.

(a)

(b)

(c)

Figure 7. Levels of abstraction used for design, verification and validation
of the algorithm solving problem of pursuing a smart target: (a) example of
a graph structure used for analysis of pathological instances of the pursue-
evade game, (b) discrete movement based on a graph representing map of the
streets, and (c) integrated scenario using interpolated movement for two blue
force troops (the blue arrows) dismounted from the team cargo truck pursuing
high-value target adversary (the orange arrow).

complexity of the search. Finally, (c) the restricted algorithm
was used on the integrated mission to provide visual support
for the team. The plan-repairing mechanism is solving the
problems caused by the unpredictable movement of the troops.
The preconditions of the actions contained terms that the team
has to be properly covered and thus the initial plan has to be
appropriately repaired during its movement.

During the adaptation process of the plan repairing algo-
rithm, we have faced the problem with computational tractabil-
ity and thus the algorithm was restricted by a limited depth of
the search tree. Such change conditioned the soundness and
completeness of the algorithm to only a short time horizons
(equivalent to the length of the executed actions).

4) Coordination and teamwork: Reactive planning is an
alternative approach to dealing with dynamics of the environ-
ment, resulting plan failures and unexpected events. It allows
programmers to manually specify behaviors of agents in flex-
ible manner so that agent’s (robot’s) action selection becomes
efficient. The algorithms used extended an existing agent pro-
gramming framework so that it accommodated techniques for
team-level coordination specification in terms of reactive plans
executed jointly by the team members. These techniques were
used in the evacuation mission to coordinate movement of the
allied troops in formations and more importantly transitions
among such formations. For more information about reactive
multi-agent programming techniques used consult [14], [3].

The formation patterns were designed as short algorithms
in a general multi-agent language Jazzyk (see Figure 9). There
were only two levels of abstraction used for verification and
validation of the algorithms: (a) analytical design and synthetic
testing of the patterns and (b) deployment of the algorithms
with the related infrastructure supporting multi-agent language
Jazzyk on the simulated troops.

The adaptation process of the algorithms consisted of imple-
mentation of wrappers between the knowledge-base structures
used in the runtime of the multi-agent language Jazzyk. Since
the used language has been design as highly elaboration
tolerant, the patterns were easily tweaked to fit the integrated
environment and nature of its dynamics, e.g., recovering from
collisions with obstacles and timing of the movements to
synchronize the target formations.



10

(a)

(b)

Figure 9. Levels of abstraction used for design and verification of multi-agent
coordination algorithm: (a) an analytical design of an example coordination
pattern, and (b) implementation of the pattern in the integrated mission
simulation.

IV. FINAL REMARKS

One can come up with various approaches to develop multi-
agent applications for decentralized tactical missions, however
according to our experience such problems are so complex
that the first-shot approaches usually fail. We are providing
a comprehensive description of a well-tried concept based
on simulation-aided development specifically focusing on the
domain of tactical missions in dynamic environments.

We provide details to reproduce the process using any
software solution available and suitable for the problem. More-
over, we give an overview of a general software toolkit and
its tailoring towards a simulation system suitable for adopting
of the simulation-aided development process.

Finally, we conclude the work with an example multi-agent
application based on a small set of algorithms utilizing various
game-theoretic, plan repair and coordination techniques. The
application demonstrates the use of such algorithms to control
a robotic team that supports simulated troops in an evacuation
tactical mission.

The most important direction for a future work is to provide
well grounded processes along with a software support for au-
tomated, or at least semi-automated, design of the multi- level
and -scope abstractions. Currently all the levels have to be
designed by hand and implemented on one-after-another basis,
however, as shown in Section II-D, there are emerging patterns
in the interconnected agent-to-environment interfaces and state
descriptions. Exploitation of such patterns could allow even
more rapid development and faster advancement through the
various abstraction levels towards the target systems during
the development of the system.

ACKNOWLEDGEMENTS

This work was supported by U.S. Army Grant W911NF-
10-1-0112 and by Czech Ministry of Education, Youth and

Sports under Grant MSM6840770038.
The authors’ organizations and research sponsors are autho-

rized to reproduce and distribute reprints and on-line copies
for their purposes notwithstanding any copyright annotation
hereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of other parties.

REFERENCES

[1] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete-
Event System Simulation (4th Edition). Prentice Hall, December 2004.

[2] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE a white
paper.

[3] Branislav Bosansky, Michal Cap, Antonin Komenda, Viliam Lisy, Peter
Novak, and Pechoucek Michal. Tactical AgentScout 2: Deliberative and
reactive planning in adversarial environments – Final Report, April 2011.

[4] Branislav Bosansky, Viliam Lisy, Michal Jakob, and Michal Pechoucek.
Computing time-dependent policies for patrolling games with mobile
targets. In Proceedings of The Tenth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2011), May 2011.

[5] Cougaar project website. http://www.cougaar.org/.
[6] Matthew Dickerson. Multi-agent simulation and netlogo in the introduc-

tory computer science curriculum. J. Comput. Sci. Coll., 27:102–104,
October 2011.

[7] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[8] Michal Jakob, Michal Pěchouček, Peter Novák, Michal Čáp, and Ondra
Vaněk. Towards incremental development of human-agent-robot appli-
cations using mixed-reality testbeds. IEEE Intelligent Systems, Special
Issue on HART: Human-Agent-Robot Teamwork, 2011. (accepted).

[9] Winnefeld A. James and Frank Kendall. Unmanned Systems Integrated
Roadmap FY2011-2036, 2011.

[10] A. Komenda, J. Vokrinek, M. Pechoucek, G. Wickler, J. Dalton, and
A. Tate. I-Globe: Distributed Planning and Coordination of Mixed-
initiative Activities. In Proceedings of Knowledge Systems for Coalition
Operations (KSCO 2009), March-April 2009.

[11] Antonin Komenda and Peter Novak. Multi-agent plan repairing. In
Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, Proceedings of IJCAI 2011 Work-
shop, pages 1–6. AAAI Press, 2011.

[12] Viliam Lisy, Michal Pechoucek, and Bosansky Branislav. Anytime
algorithms for multi-agent visibility-based pursuit-evasion games. In
Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012), 2012 (accepted).

[13] Sean Luke, Claudio Cioffi-revilla, Liviu Panait, and Keith Sullivan.
Mason: A new multi-agent simulation toolkit. In University of Michigan,
2004.

[14] Peter Novák. Jazzyk: A Programming Language for Hybrid Agents
with Heterogeneous Knowledge Representations, pages 72–87. Springer-
Verlag, Berlin, Heidelberg, 2009.

[15] Michal Pěchouček, Michal Jakob, and Peter Novák. Towards simulation-
aided design of multi-agent systems. In Post-proceedings of the eighth
international workshop on programming multi-agent systems, ProMAS
2010, LNAI, Vol. 6599. Springer-Verlag, 2010. (in print).

[16] C. Siebra and A. Tate. I-Rescue: A Coalition Based System to Support
Disaster Relief Operations. In Proceedings of The Third International
Association of Science and Technology for Development (IASTED)
International Conference on Artificial Intelligence and Applications
(AIA-2003), September 2003.

[17] David Šišlák, Milan Rollo, and Michal Pěchouček. A-Globe: Agent
platform with inaccessibility and mobility support. In Matthias Klusch,
Sascha Ossowski, Vipul Kashyap, and Rainer Unland, editors, Coopera-
tive Information Agents VIII, volume 3191 of Lecture Notes in Computer
Science, pages 199–214. Springer, 2004.

[18] Jiřı́ Vokřı́nek, Antonı́n Komenda, and Michal Pěchouček. Cooperative
agent navigation in partially unknown urban environments. In PCAR ’10.
Proceedings of the AAMAS-10 Workshops., pages 46–53, May 2010.

[19] Jiřı́ Vokřı́nek, Peter Novák, and Antonı́n Komenda. Ground Tactical
Mission Support by Multi-agent Control of UAV Operations. volume
6867 of Lecture Notes in Computer Science, pages 225–234. Springer
Berlin / Heidelberg, 2011.


