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Lukáš Foltýn and Jan Tožička
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pIntroduction

� Joint network without well defined perimeter

� Dynamic network without joint oversight team

� Communication & Interoperability vs Security

� Devices belong to different coalition partners, need for cooperation policies

� Constrained Environment: Hard limitations on reasoning code (i) perfor-
mance, (ii) robustness and (iii) size - requires low runtime complexity → very
good reflection use-case

� Collaborative Agents in Adversarial Environment: Limited competi-
tiveness or self-interestedness – most agents/actions are either collaborative
or adversarial
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pProtection Phases

� Observation: Observe the behavior of the network

− Distributed

− High-Performance

− Low Overhead

− Low Maintenance

− Versatile

� Detection: Analyze the observations and discover the attacks

− Effectiveness - low false positives/negatives

− High-Performance – near-real time

� Reaction: Stage an efficient and effective response to detected attack

− Effectiveness – low false positives/negatives)

− Efficiency – limited performance impact

− Robustness – decentralized, dynamic
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pIDS Architecture Components
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� Sensors:
− Host Sensors: Detect suspected attacks on hosts

− Network Sensors: Connection/Flow Statistics
[NetFlow like] and flow samples

� IDS Agents:
− Correlate alarms from hosts with network flows

with generalized trust modeling

− Generate filters for attacks

− Start filter deployment

� Programmable Network
Elements:
− Collectively deploy filters generated by IDS agents

– distributed task allocation

− Delegate filtering to other devices upon need
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pGoals and Assumptions

� Goals:

− Reduce the impact of attacks based on malicious mobile code

− Our solution does not prevent attacks, it counters their spread and effects

� Assumptions:

− Host alerts correlated in time with attacks

− Heterogenous, protected host population – use diversity for protection

− Random attack spread strategy – all hosts in the system attacked with
approximately identical probability

− Availability of adaptive network elements

− Doctrine change: (i) Humans are no longer directly in the loop and (ii)
we counter mobile malicious code with autonomous collective reflection, i.e.
mobile protective code
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pObservation

� Host Sensors: Detect attacks and suspicious activity on hosts – we only
require the ability to provide binary alert information

− personal firewalls [CA HIPS]

− Host IDS systems [tripwire]

− log analyzers

� NetFlow: and similar sensors provide statistics about connections on the
network

− provided by commercial network components [Cisco,others] and de-facto
standard for research data as well

− data aggregated by {srcIP:srcPrt, dstIP,dstPrt, protocol} over a time
period

� Flow Monitor:

− based on the concept of application identification [AT&T(Haffner)2005]

− identification/separation of applications using the first 256 bytes of flow
payload
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pFlow Modeling

� Characteristics of the flow, using the NetFlow-like identity format and context
(adapted from MINDS [Ertoz2004])

Feature Description
Connection Identity
srcIP Source IP Address.

destIP Destination IP

srcPort Source Port

destPort Destination Port

Protocol Protocol (TCP/UDP/ICMP)

Payload Signature First 256 bytes of the flow content (application headers)

Connection Context
count-dest Number of flows to unique

destinations from the same source.

count-src Number of flows from the unique sources toward the same destina-
tion.

count-serv-src Number of flows from the same IP to the same port.

count-serv-dest Number of flows to the same destination IP using the same source
port.
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pFlow Modeling: Identity and Context (1)
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� During observation, reference centroids are
updated with a weight that decreases with
distance.

� During evaluation, we aggregate the opin-
ions from nearby centroids with respective
weights.

� Trustfulness is not associated with a flow only, but with
an (identity,context) tuple.

� Identity-Context feature space with appropriate dis-
tance function.

� Identity is a property of the flow.

� Context represents information about other similar
flows.

� Centroids are added during the learning process using
the Leader-Follower algorithm.

� On-line process, single parameter required.

� Partially/fully fixed centroid positions in our domain.
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pDecision: Trustfulness Evaluation

� Iterative model based on fuzzy numbers

� Outputs: Score, relative score or binary out-
put.

� Complexity: One fuzzy number per each
centroid

� Aggregation from adjacent centroids in
metric space

� Autonomous adjustment to natural back-
ground alarm level in the system

� Fuzzy trust component based on AFRL
project FA8655-04-1-3044
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pReaction (Reflection)

� Filtering Policy Creation (IDS Agents)

� Filter deployment (Network Elements)

− collective reflection

− distributed task allocation to distribute basic assignment of filtering
responsibilities

− filtering delegation/optimisation using Extended Contract Net Proto-
col to optimize allocation of filters between devices
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pFilter Creation

� Filters are created for all traffic considered as untrusted (malicious) by the
model

� Filters only use the identity of one flow – no access to context

� Regulated by meta-policies
− efficiency - ”do not create a filter if the centroid is defined by < 20 Flows”

− tradeoffs - ”local HTTP traffic to server 192.168.2.253 shall always be allowed”

− threat assessment - ”if the protocol is UDP and number of recent flows in the centroid is high, ban
all UDP traffic”

� Filtering policies are converted into java code and compiled; alternative (e.g
device specific) bytecodes are feasible

� Filters are conceptually similar to SNORT or other rules/policies: defined by
a pattern over packet header and pattern(s) in the application header

� Policy stage can be used to integrate other reaction techniques
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pFilter Allocation Problem
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� Assumption: The threat is
already active within net-
work

� We need to place filter be-
tween each pair of vulnerable
hosts

� Limitation: device process-
ing power/bandwidth
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pDelegated Filter Deployment
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� Delegation of filtering to other network devices

� Requires flow tunnelling for delegated inspec-
tion

� We need to coordinate the effort between all
agents resolve dependencies - bandwidth

� Use of CNP extension - Extended CNP which
allows partial bids, temporary accepts and
backtracking
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pThreat Model: Worm Propagation

� Scanning strategy

� Protocol (TCP/UDP)

� Scanning speed (efficiency vs stealth)

� Requirements from [Moore03] (for Internet-Wide infection)
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pExperimental Results - Detection (Cognition)
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� Cognition experiments establish theo-
retical upper limit on system perfor-
mance (modulo generalization phenom-
ena)

� Performed on simple mathematical
model of worm spread

� Use both Identity and Context informa-
tion

� Suppose 100 % of flows are filtered by
trust model directly

� Results suppose several successive in-
trusions from the same worm from out-
side of the network to random addresses
inside
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pExperimental Results - Detection - Reaction

Experiment First worm Second worm
Experiment % Filtered Flows % Infected Hosts % Filtered Flows % Infected Hosts
1 0.86 0.09 0.19 0.93

2 0.93 0.07 0 0.98

3 0.50 0.22 0 0

4 0.65 0.51 0.33 0.54

5 0.88 0.01 0.44 0.86

6 0.93 0.01 0 0.85

7 0.90 0.03 0.93 0.28

8 0.46 0.39 0.11 0.68

9 0.60 0.07 0 0.51

10 0.90 0.13 0.3 0.30

Avg 0.761 0.153 0.229 0.593

Table 1: Percentage of infected hosts in experimental runs on identical network. Differences are

due to the scanning strategy influence.
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pApplication: Convoy Formation
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pConclusions

� Reflective agent techniques allow fast response to novel threats
− exploit a weak point of worm code: uninformed spread and speed/stealth tradeoff

− use feedback from heterogenous, protected hosts to improve the results of anomaly detection
methods

− evaluated as effective impact-reduction technique

� Weaknesses:
− performance against stealth (very slow scanning) threats

− performance against multiple threats launched at once

− availability of filtering network elements

� Future Work:
− improve the detection

− further optimize filter allocation, combination and deallocation

− notion of network dynamics

− study of system autonomy and improved control mechanism
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