PAGE  
7

A Working Document for Formalising Concepts in EBPML

Jessica Chen-Burger

 June 2002

As part of the AKT project, my work is related to provide formal representation of concepts that are commonly used in a semi-formal modelling language. This includes formal representations for process modelling languages. A formal approach for representing such models has also been developed as part of AKT project. 

For my own interests, I have used EBPML (Edify’s Business Process Modelling Language) as a case study, as it is compliant with several standard process modelling languages and includes many of the commonly used concepts. I have applied the formal approach to produce a formal representation for the core concepts in EBPML. This document describes the initial results from this work. As this document contains logical formulas and due to time limitations, it does not contain many explanations, background in AI logic representation therefore will be needed. The approach that has been used here is similar to and an adaptation from that has been used in [Chen-Burger01a], although the formal approach for representing and integrating semi-formal models has not been developed, a formal representation of a business modelling method of BSDM [IBM] has been developed and described. 

This document demonstrates how such an approach may be used to represent a business process modelling language, such as EBPML. The formal representation given below captures some of the common and higher level concepts and core concepts that have been used in EBPML. Some of the predicates are given with formal definitions. All of the higher level concepts are included in the Context Hierarchy. 
I. Main Predicates: 

1. abstract_class(Class).

   e.g. abstract_class(things).

2. concrete_class(Class). 

   e.g. concrete_class(activity_type).

          concrete_class(creating_activity).

          concrete_class(accept_student_application).    

3. is_a(Sub_class, Super_class). 

    This predicate records the “is_a” or “inheritance” relationship between two classes in the Context Hierarchy. It indicates Sub_class is a subtype of Super_class. 

   e.g. is_a(creating_activity, activity_type).

          is_a(accept_student_application, creating_activity).

   The is_a relationship is transitive: i.e. 

          is_a(A, B) ( is_a(B, C)

          ( is_a(A, C). 

   e.g. 

          is_a(accept_student_application, creating_activity) (
          is_a(creating_activity, activity_type)

          (
          is_a(accept_student_application, activity_type). 

   Is_a is also reflexive: i.e. 

          is_a(X, X) ( true. 

4a. property(Class, Property_name, Property_value).

    The property that has been recorded here is the property for class. That means the property value remain static for all instances of the class, Class. Attributes for instances are recorded separately in predicate instance_att/3. 

4b. attribute(Class, Attribute_name, Attribute_value).

   Object attributes. Attributes whose values are instantiated and updated at run time. 

5. att_domain(Class, Att_name, Domain_for_att_value)

The attribute, Att_name, that is described in the predicate above indicates that Att_name is an attribute for instances in class, Class. The field Domain_for_att_value defines the domain for the attribute, Att_name, which is the same for all instances of the class, Class. The actual attribute value for an instance is described in predicate instance_att/2 that will be described later in the document.

   ( E ( Domain_for_att_value. att_domain(Class, Att_name, Domain_for_att_value)

    (
    is_a(E, string) (
    is_a(E, integer) (
    is_a(E, list) (
    is_a(E, structured_term) (
    is_a(E, template_with_variables) 

    Where the domain for attribute value may be a domain of string, integer, or a list of things. It may also be further defined and refined in separate axioms, e.g. the domain may include integers between n and m, or alphabets between two pre-defined alphabets. It may also specify a pre-determined list of things, e.g. [high, medium, low] ; or a sub-list or subset of a pre-determined list or set of things. It may also be a type of structured terms; or a particular kind of template/schema which includes variables that may be  instantiated by values at run-time. 

6.  instance_of(Instance, Class)

     The instance of a class, e.g. 

          instance_of(accept_1, accept_student_application)

     denotes that accept_1 is an instance of class type, accept_student_application. 

7. instance_att((Instance, Class), Att_name, Att_value).

    This predicate stores attribute value, Att_value, for the attribute, Att_name, of the corresponding instance, Instance, of class type, Class. The domain of Att_value is defined in the field of Domain_for_att_value in the predicate att_domain/3 as described earlier. 

II. Predicates of Temporal Aspects:

8.  time_point(Time_point). 

    Time point on a given timeline. 

9.  begin_time(Process_Instance, Process)

    The function returns the time point when the process instance, Process_Instance, starts execution. Note that the pair, Process_Instance and Process, together identifies a particular process instance of the class Process. 

    begin_time(Process_Instance, Process)

    (
    is_a(Process, activity_type) (
    instance(Process_Instance, Process)   

10. end_time(Process_Instance, Process).

     The function returns the time point when the Process_Instance ends execution. 

11. begin(Process_Instance, Process).  

     The function returns true, if Process_Instance has started its execution; otherwise, it returns false. 

12. end(Process_Instance, Process).  

     The function returns true, if Process_Instance has ended its execution; otherwise, it returns false. 

III. Representation of Processes 

13. tq(Instance, Process)

      Temporally Qualified (TQ): when a process instance has satisfied all of its temporal constraints, it is Temporally Qualified to be executed. Typical temporal constraints are the required finishing of execution of preceding processes or passing of certain time point. In other words, if all of its pre-conditions are also satisfied then the process instance may be executed. 

     tq(Instance, Process)

     (
     is_a(Process, activity_type) (
     instance_of(Instance, Process)

14. Using the predicate tq/2 and end/2, one may represent the semantics of an and-joint junction shown in Figure 1 as below: 

     ( X, Y, Z. end(X, a) ( end(Y, b) ( end(Z, c) 

      (
     ( W. tq(W, d).


[image: image1.png]


 

Figure 1: and-joint

     The graphical notation of an and-joint junction is really a short-hand for a temporal constraint that states the begin_time of process D should be equivalent or after the end_time of the corresponding processes A, B and C. 

15. Syn_begin(Process1, Process2)

      The synchronised start of Process1 and Process2, i.e. the corresponding and synchronised instances of Process1 and Process2 must begin at the same time. 
 
[image: image2.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

Ù

$

Þ

"

Þ

Process2)

,

(Instance2

begin_time

 

)

1

Process

,

1

(Instance

begin_time

)

2

Process

,

2

f(Instance

instance_o

.

2

Instance

)

1

Process

,

1

f(Instance

instance_o

.

1

Instance

)

2

Process

,

1

Process

syn_begin(


16. Syn_end(Process1, Process2)

      The corresponding and synchronised instances of Process1 and Process2 must end at the same time. 

[image: image3.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

Ù

$

Þ

"

Þ

Process2)

 

nstance2,

end_time(I

 

Process1)

 

nstance1,

end_time(I

 

Process2)

 

2,

f(Instance

instance_o

 

Instance2.

Process1)

 

1,

f(Instance

instance_o

 

Instance1.

 

 

Process2)

 

ocess1,

syn_end(Pr


IV.  Attributes for Processes: 

17.  att_domain(Class, trigger, Domain)

       This predicate defines the legal domain for attribute “trigger” for class, Class. As it is defined below in the axiom, the Class must be either an “activity_type” or a sub-type of “activity_type”.  A trigger may be an issue or certain states of the system. In other words, the presence of a particular issue or certain conditions of the system may invoke a process to be executed. On the other hand, a process may also produce new issues that are needed to be resolved by other processes. The variable “Domain” is a part of schema of the activity (type) “Class”. Variables that are included in Domain will be instantiated for each activity instance at run-time.


[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

Ú

Ù

Þ

Î

"

condition)

 

is_a(X,

  

issue)

 

is_a(X,

 

ype)

activity_t

 

,

is_a(Class

 

Domain)

 

 trigger,

(Class,

att_domain

  

Domain.

X

    

18. att_domain(Class, "condition (system)", Domain) 

      This predicate defines the attribute (pre-) ”condition” and that this attribute is only applicable for class “activity_type” and its sub-classes. Again, the content of “Domain” forms part of schema for the activity (type) “Class”.  Variables that are included in Domain will be instantiated for each activity instance at run-time.

      
[image: image5.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

Ú

=

=

Ú

=

Ú

=

Ú

=

Þ

Ù

Ù

=

Ù

=

Ù

Þ

Î

"

Time)

 

ent_time,

equal(Curr

 

 

E

 

Time)

 

rent_time,

before(Cur

 

 

E

Y)

not_exist(

 

E

  

X)

not_exist(

 

E

exist(Y)

 

E

  

exist(X)

 

E

 

time)

 

time,

f(Current_

instance_o

 

 

time)

 

time,

f(Current_

instance_o

Att_value)

 

Att_name,

 

Class1),

 

ce,

tt((Instan

instance_a

 

 

Y

 

Class1)

 

,

f(Instance

instance_o

 

 

X

 

ype)

activity_t

 

,

is_a(Class

 

Domain)

 

,

(system)"

 

condition

"

 

(Class,

att_domain

 

Domain.

E

 


      This axiom states that only classes that are of the type of activity_type or its sub-types may have “condition (system)” as an attribute. One may also specify the presence or truthfulness of something in a conditional statement in the above predicate. Note that we deploy default logic here, that means what is not known to the system is assumed false unless being notified otherwise. 

19.  att_domain(Class, “action (system)”, Domain)

      This predicate defines the attribute “action” that is only applicable for class “activity_type” or its sub-classes. Again, the content of “Domain” forms part of schema for the activity (type) “Class”.  Variables that are included in the Domain will be instantiated for each activity instance at run-time.


[image: image6.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

Þ

=

Ù

=

Ù

=

Ù

=

Ù

=

Ù

=

Ù

=

Ù

=

Ù

=

Ù

=

Þ

Î

Ù

Ù

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

e

Acknowledg

(

akt

_

remove

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

e

Acknowledg

(

akt

_

receive

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

e

Acknowledg

(

ack

_

post

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

Exception

(

exception

_

remove

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

Exception

(

exception

_

receive

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

,

Exception

(

exception

_

post

E

)

ce

tan

ins

_

Act

(

act

_

remove

E

)

ce

tan

ins

_

Act

(

act

_

post

E

  

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

 

ue(Issue,

remove_iss

 

 

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

 

sue(Issue,

receive_is

 

 

E

 

 

le2))

eceiver_ro

Receiver/R

 

nder_role,

(Sender/Se

 

(Issue,

post_issue

 

 

E

 

)

list

_

Action

,

list

_

econd

(Pr

action

_

cond

E

 

audit(Y)

 

 

E

 

 

audit(X)

E

 

refer(Y)

 

 

E

 

 

refer(X)

 

E

 

remove(Y)

 

E

 

 

remove(X)

E

 

update(Y)

E

 

create(Y)

 

E

 

 

create(X)

 

E

)

Context

/

1

Role

,

1

R

(

of

_

ce

tan

ins

role

_

ceiver

Re

 

actor)

 

f(A1,

instance_o

ceiver

Re

)

Context

/

Role

,

R

(

of

_

ce

tan

ins

role

_

Sender

 

actor)

 

f(A,

instance_o

 

Sender

)

ement

acknowledg

,

A

(

of

_

ce

tan

ins

e

Acknowledg

)

exception

,

E

(

of

_

ce

tan

ins

Exception

 

issue)

 

f(I,

instance_o

 

 

Issue

Att_value)

 

Att_name,

 

Class2),

 

ce2,

tt((Instan

instance_a

 

 

Z

 

Att_value)

 

Att_name,

 

Class1),

 

ce1,

tt((Instan

instance_a

 

 

Y

 

Class1)

 

1,

f(Instance

instance_o

 

 

X

Domain

E

)

type

_

activity

,

Class

(

a

_

is

Domain)

 

,

(system)"

 

action

"

 

(Class,

att_domain


 
[image: image7.wmf]2

Domain

Y

Domain1

X

 

Domain2)

 

,

(system)"

 

action

"

 

(Class,

att_domain

Domain1)

 

,

(system)"

 

condition

"

 

(Class,

att_domain

 

t)

Action_lis

 

tion_list,

n(Precondi

cond_actio

t.

Action_lis

Y

 

on_list,

Preconditi

 

X

Î

Ù

Î

Þ

Ù

Ù

Î

Î


   where in Post_issue(Issue, (
[image: image8.wmf]))

2

role

_

Actor

/

2

Actor

,

role

_

Actor

/

Actor

, Issue and Actor are both an instance. An issue may be posted to the WF agent itself or may be posted to other agents (human, broker, other WF agents or normal agents). Actor_role normally exists within a context. A context is the collaboration environment that those agents operate within, e.g. a context may be a project, an informal collaboration, or an organisational structure. Example roles are Project Manager, Project Leader, Researcher, Reviewer, (and external_reviewer and internal_reviewer), Industrial Participants. An agent (human or software agent) may have several different roles in a context. An agent may also play different roles in different contexts. 

An issue is normally occurred upon receiving an external event (that may or may not be known to the system), an issue posted by other agents or by itself (posted by activities).

An WF agent may only post issues to other agents, but not activities. This is to leave flexibilities for other agents to figure how an issue may be solved – since an issue may have a straightforward solution, or may be complex and several processes are required. 

The predicate post_exception and remove_exception handle exceptional events. Exception is a special type of issue that normally requires urgent/special attention. Exceptions are normally occurred as a part of normal operations that un-anticipated circumstances have occurred and additional . 

The predicate post_akt allows a workflow system/agent to acknowledge the “owning-up” of an issue and deal with it. The predicate receive_akt allows a WFS/agent to receive and record the acknowledged “owned-up” issue by another agent. 

The axiom above defines all of the possible actions that may be carried out by an activity.  Note that the post_ and remove_issue are to add a new issue to and update an existing issue in the system, which is similar to the operation of create/1 and update/1. Instead of using create/1 and update/1, two separate predicates, post_issue/2 and remove_issue/2, are used here to highlight their semantic significances. Since they are about the managing of business operations and not to carry out the operations itself, such as to create an applicant’s record or update an data entry. This separation allows additional clarity in the representation and operations in the workflow system. 

V.  Actions for Processes: 

20. delegate(Instance, Process, instance_of(Actor, Class))

      ( 

      instance_of(Instance, Process) (
      is_a(Process, activity_type) (
      instance_of(Actor, Class) (
      is_a(Class, agent)

      Note that the delegate operation is similar to the updating of the field value "actor" for the activity instance. However, since this operation is significant to the management of business processes and the fact that it requires communication mechanism between roles which is significant in itself.  It has, therefore, been given a different predicate. 

21. escalate(Instance, Process, instance_of(Actor, Class))

      (
      instance_of(Instance, Process) (
      is_a(Process, activity_type) (
      instance_of(Actor, Class) (
      is_a(Class, agent)

22.  post_issue(Instance, Class )

       (
       instance_of(Instance, Class) (
       is_a(Class, issue). 

23.  remove_issue(Instance, Class)

       (
       instance_of(Instance, Class) (
       is_a(Class, issue). 

VI.  Issue Management

24.   This axiom below defines the list of attributes for all instances in class Issue.


[image: image9.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

Ú

=

Ú

=

Ú

=

Ú

=

Ú

=

=>

=>

Ù

 

  status

 

Att_name

    

priority 

  

 

Att_name

    

ed_by 

issue_solv

 

 

Att_name

    

ed_by 

issue_rais

  

 

Att_name

    

 

 

 

Att_name

    

 

n

descriptio

  

 

Att_name

    

 

 

Att_value)

 

Att_name,

 

issue),

 

id,

tt((Issue_

instance_a

 

 

issue)

 

,

is_a(Issue

 

Issue)

 

,

f(Issue_id

instance_o

ed_time

issue_rais

 


During operation, the Issue_id becomes Instance_id of the process instance that it invokes, and the priority of the issue becomes the priority for that process instance. If the invoked process has a default priority that is not consistent with the trigger priority, this discrepancy may be reported to the user, and a decision may be made by the user for the newly created process instance. 

25. can_resolve(Activity_class, Issue) 

    This predicate records the capabilities of a process. It reads the activity, Activity_class, has the capability to resolve issue, Issue.        

References:

· [Chen-Burger01a] Yun-Heh Chen-Burger, Formal Support For An Informal Business Modelling Method, Artificial Intelligence, Informatics, The University of Edinburgh, PhD Thesis, 2001.

· [IBM] IBM, Business System Development Method, Introducing BSDM, 2nd edition, 1992.

PAGE  

_1085775179.unknown

_1086510010.unknown

_1086510601.unknown

_1086509888.unknown

_1085928466.unknown

_1071934466.unknown

_1071939235.unknown

_1071936716.unknown

_1071859374.bin

