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Abstract

Identifying the functions of uncharacterised genes is one of the challenges in bioinfor-

matics. Numerous solutions have been proposed for the problem.

This work will outline one possible technique for identifying genes responsible for

a developmental process in the mouse embryo. Our approach consists of analysing the

co-expression of genes in different tissues which where we know a particular process is

happening. We derive our data from GXD and annotate them with Biological Process

terms using the Gene Ontology. Finally we analyse the significance of each term in

order to create a functional view of our co-expressed genes.

We focus on a process that is little understood in the current literature, the mesen-

chymal to epithelial transformation of cells. Yet our approach is theoretically feasible

for any other biological process that occurs in several tissues of an arbitrary organism

during its developmental or gestation period.

Although our methods were proved unable to isolate the set of genes that are re-

sponsible for the mesenchyme-epithelial process, we obtained a number of interesting

results. The principle validity of our approach and the underlying hypothesis remains

questionable. However, the project succeeded in finding numerous candidate genes for

our process of interest, which could be worth subjecting to more rigorous biological

experimentation and analysis.
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Chapter 1

Introduction

Research on the mammalian genome has progressed rapidly over the past decade in

conjunction with advancements in computing technology and the internet. Such a

surge in our understanding of the the genome would have been unthinkable even a

decade ago, before the advent of computer-aided and partially/fully-automated tech-

niques that perform large-scale analyses of vast amounts of biological data.

And yet, despite the wealth of gene expression data that we have acquired in the

post-genome age, biological research has only managed to understand the underlying

processes and functions from a small portion of the gene and gene products we have

sequenced. Consequently, we are still unaware of the functions of most genes, indeed

even the functions themselves in even the most frequently studied mammalian genome

- the laboratory mouse. Needless to say, our basic understanding of the human genome

is equally or even more limited.

1.1 Objective

In this study, we will try to contribute yet another little part to the puzzle by employing

some fairly straight-forward computational techniques to narrow down on the possible

candidate genes for a functional process.

It is our declared objective to identify the set of genes that are responsible for reg-

ulating the transition from mesenchymal to epithelial cells, which happens at different

1



Chapter 1. Introduction 2

stages in various tissues of the gestating mouse embryo. We shall attempt to collate

the genes that are expressed at each of these temporal and spatial points to see whether

there is a common set that could be responsible for the process.

We hypothesize that there is a common set of genes for the mesenchyme-epithelial

transformation that are differentially expressed in various tissues of the mouse embryo.

We also postulate that it should be possible to isolate the set of genes responsible for

this transformation by checking for their expression states in the relevant tissues at the

appropriate embryonic stages of the mouse.

If a gene is differentially expressed across several developing tissues or organs,

we can infer that the gene fulfils some developmental-related purpose at each site.

Consequently, if we equip our technique with enough knowledge of when and where

this takes place, given sufficient expression data, it should be possible to identify the

set of mesenchymal -epithelial genes.

We implement a software package that allows for the simple definition of sets of

tissues within the mouse embryo, the performance of all necessary computations on

these sets, and the derivation of certain expression categories of genes. Lastly, we

utilise an annotation analysis tool, Fatigo+ to return us the significant terms across

these sets and review our results.

1.2 Mesenchyme and Epithelium

The process we are examining in our project is the change in cell differentiation which

is transforming mesenchymal to epithelial cells. While the reverse project (epithelial

to mesenchymal transition) has been well studied (e.g. [1, 2, 3]), the mesenchyme-

epithelium transition has attracted less interest so far.

Mesenchymal cells typically pack in 3-dimensional clusters, while epithelial cells

form 2-dimensional layers - often found in tubules. The mesenchyme-epithelium tran-

sition is therefore a crucial step in the development of many organs and associated

systems. The process is, however, not restricted to the embryo, but can also occur in

adult organisms [4, 5], where it (amongst others) is involved in wound healing and

fibrosis. Disruptions in either of the two transformation processes is also commonly

linked to cancer.
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A good example is formation of the kidney (or metanephros) [6, 7, 8, 9]. Figure

1.1.(a) shows a rough outline of the development of the mouse kidney in the embryo.

Between embryonic days 12.5 and 13.5 we can observe that a condensation of mesen-

chymal cells has transformed into a condensation of epithelial cells which will form

the later nephron tubules. In a an confocal microscope picture taken at E13 (Fig.

1.1.(b), we can find both kinds of cells, mesenchymal and epithelial, as the transition

is currently in progress at that time.

For the purposes of this project, the mesenchyme to epithelium transition is a ade-

quate example process to test our general methodology on, since it occurs across differ-

ent structures at different stages of embryonic development. We will consequently be

able to search for genes which all these structures have in common to obtain candidate

genes potentially responsible for this very process.

1.3 Overview

The remainder of this report is structured as follows:

In the next chapter, we will discuss some of the background behind what we are

doing. We will first briefly review existing literature on co-expression of genes and

how it is linked to gene function prediction and then proceed to a detailed presentation

of the Gene Ontology, which is the basic resource that most gene annotation tools work

with. These gene annotation tools are the topic of the last part of Chapter 2. We discuss

several possible choice and narrow these down to a tool called Fatigo+, which will be

used later on for the analysis of gene function.

Having introduced the basics, we continue with an extensive explanation of the

methodology employed in this study. We clearly define the requirements of the system

to be implemented , together with computations that will be necessary and the source

of data used for discovering genes expressed in tissues, in the first part of the chapter.

Thereafter, we present our solution to the problems outlined, at tool termed Mouse

Genome Intersector. We describe the program’s core components and functionality,

before we conclude the chapter with a concise summary.

The third chapter focuses on the experiments we carried out and the results we ob-

tained. We start by explaining which tissues in the mouse embryo have been studied
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(a)

(b)

Figure 1.1: (a) Formation of the kidney across different stages in the development of

the mouse embryo. Note how a condensation of mesenchymal cells transforms into

epithelial cells between E12.5 and E13.5, (b) Confocal microscope picture of a devel-

oping mouse kidney (E13). Cell nuclei have been marked blue. Note the large tube with

a green/yellow (laminin stain) membrane and the the red (an adhesion molecule stain)

membranes of mesenchymal cells. [6]
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and explain their relation to the mesenchyme-epithelium process. Afterwards, we de-

scribe the different experiments, i.e. the different kinds of intersections that have been

carried out on the datasets and the results we obtained. Realising that the results do not

satisfy our expectations, we then identify potential reason for this failure and further

investigate the data with some promising results. The last part of the chapter com-

prises a biological interpretation of the results contributed by an expert in this field, Dr.

Jonathan Bard.

We conclude the thesis in the fourth chapter with a more higher-level discussion

of our finding and the implications of our results. We investigate the details of all

significant enrichments of GO terms and discuss their meaning. We critically assess

problems we encountered and outline how they connect to opportunities for future

work in this field.

After the discussion, there are two appendices: In Appendix A we describe the

implemented program in a little more detail by providing UML class diagrams of the

code packages, listing database queries and providing a range of screenshots from the

program in action, which may serve as a very basic tutorial to the tool itself. Appendix

B is dedicated to the genes found in the experiments. Full lists of all genes expressed

in the different datasets will be given to provide the possibility for other researchers to

further study the mesenchyme-epithelium transition phenomenon on their basis.



Chapter 2

Background

In this chapter we shall give an overview of the literature relevant to our project. We

start by reviewing previous approaches to analysing gene function from co-expression

profiles, then go on to talk about the structure of the Gene Ontology and present some

of its inherent weaknesses. The last section comprises a brief review of gene annotation

analysis tools and, in particular, focus on one, Fatigo+, which we will employ later in

this study.

2.1 Co-Expression of Genes

It is widely believed that genes sharing the same expression patterns are also more

likely to be responsible for the same biological process. Many gene prediction studies

are based on microarray analyses of gene co-expression across different tissues. Such

types of co-expression can also be referred to as transcriptional co-expression. The

general strategy behind most co-expression studies is to first form groups of genes that

exhibit the same expression patterns. An unidentified gene within the the group is then

assigned the annotations common to the known genes in the group.

A genome wide study on the mouse (Mus Musculus) using 40,000 mRNAs ex-

tracted from 55 tissues by Zhang, Morris, Chang established that transcriptional co-

expression is a powerful tool for predicting gene function [10]. Not surprisingly, genes

which are known to perform tissue specific functions are most prevalent in those tissues

where those biological processes are primarily taking place. For example, ’synaptic

6
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transmission’ were found to have the highest expression levels within the neuronal tis-

sues, while ’learning and memory’ related genes were expressed strongly in the cortex

and striatum. These findings are examples of tissue-specific co-expression. Differ-

ent tissues or organs that require the same biological process can also share common

expression patterns. For example, the lung, bladder and skin, three very different tis-

sue structures that are constantly being exposed to the elements all exhibited the same

expression pattern of ’immune-related’ of genes.

The study also proved that the correlation of gene expression pattern to gene func-

tion can be observed independent of their source tissues. Genes are sorted into clus-

ters based on their expression patterns across tissues without referring to any a priori

knowledge of their origin or functions. They then found that each cluster tended be

associated strongly with a handful of specific annotation categories. These clusters of

genes were then used to train a SVM classifier to predict gene function based on its

expression patterns. The classifier was capable of classifying more than half of 1092

unannotated genes to some known functional category, the rest of the genes did not

have any similarity to any class of pattern. Of the ones that were assigned, manual

reference to literature demonstrated that the classifications were likely to be correct.

Similarly, Lee et al. [11] investigated co-expression in the human genome by build-

ing a network of genes connected by ’co-expression links’ that construct pairs of genes

most similar to each other in terms of their expression patterns. Their research demon-

strated that likewise in the mouse genome, patterns of correlated gene expression exist

across multiple microarrays for humans, and these patterns correspond strongly to dis-

tinct functional categories. Clustered analysis of the gene network reveal functionally

coherent groups of genes.

Nevertheless, the general stance of most researchers towards co-expression is that

it provides only a weak means for the prediction of gene function (e.g., [12], where

co-expression alone is said to provide insufficient basis for gene function prediction).

Only comparably little work has been done to actually investigate this claim, the work

by Allocco et al. [13] being one exception. They assessed the correlation between

common mRNA expression patterns and gene function by comparing genome wide

binding analysis and mRNA expression data with their functional annotations in the

Gene Ontology (see next section). They found that the chances of genes actually shar-

ing a common transcription factor binding even though co-expressing are relatively
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low and one could therefore not necessarily conclude from co-expression to a com-

mon regulatory mechanism. Nevertheless, they also concluded that genes that actually

share transcription factor are more likely to be functionally related (as defined by their

annotations).

In a study on the essentiality (necessity for survival) of genes in yeast, Carlson

et al. [14] formed weighted gene co-expression networks using data from a range of

microarray datasets. Their results proved that the connectivity of genes within these

networks was highly correlated with their essentiality and gene sequence preservation.

In other words, co-expressing genes were found to be involved in the same functional

process. The application of the same technique was said to be promising for a more

detailed prediction of gene involvement in functional compartments.

Similarly, Stuart et al. [15] examined vast amounts of microarray data from dif-

ferent species (humans, flies, worms and yeast) with respect to co-expression and then

investigated which of these had been conserved over evolution. They reason that a

co-expressing set of genes is actually instantiating a common evolutionary selective

advantage and consequently is likely to have a shared function. Further investigations

on a number of examples within the found data confirmed these conclusions.

It should also be mentioned that there are numerous techniques to identify clusters

of co-expressed genes, many of which are much more sophisticated than just pick-

ing genes on a boolean basis (i.e. ’on’ or ’off’) by hand. Existing and prospective

future techniques in development include Self-Organizing Maps, various methods of

hierarchical and qualitative clustering, mixture models and bi-clustering [16]. More

importantly, the cited source also names a number of methods to assess the found clus-

ter quality, one of which - what they call ’enrichment of functional categories’ - can be

used to link found clusters to functional processes.

The theory of co-expression has been tackled from many different angles and

utilised in many approaches for numerous studies. Perhaps one of the studies most

similar in approach to our project is described in a very recently published paper [17].

The authors used supervised learning to analyse genes expressed over a time period us-

ing multiple microarrays. Their aim was to predict new functions not yet documented

in the Gene Ontology for uncharacterised genes using their model. First, the expres-

sion level over times of both characterised and uncharacterised genes were recorded

as a temporal pattern. Next the authors annotated the characterised genes to all their
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biological processes using the Gene Ontology. Using both these aspects of data to train

their model, they hypothesized new biological processes for the unknown genes. The

study discovered that a considerable number of their proposed biological processes

were validated by a manual curation of the available literature and existing homology

information. Finally, it should be said that this is the only study that is conceptually the

most similar to our approach. It includes both the temporal and co-expression aspects

for analysing genes, and it utilises the Biological Process terms in Gene Ontology as

the basis of their predictions. The authors of this paper state that their method has been

unprecedented in the field.

Countless studies have been performed on individual examples or small sets of co-

expressing genes, clearly underlining their functional similarities. In summary, one

can conclude, although linking co-expression with similar gene functions has been

confronted with considerable doubts, previous work has often contradicted this disbe-

lief and, in fact, provided promising results.

2.2 The Gene Ontology

The Gene Ontology (GO) is a structured, precisely defined and controlled vocabulary

used to describe the gene roles in all organisms. Its aim is to standardise the descrip-

tions of gene products in different databases, thus unifying all available information

into a common biological language that can be shared by biologists world wide. GO is

an ongoing project launched and maintained by the GO Consortium, a coalition of bi-

ological databases for various organisms worldwide. The Mouse Genome Informatics

Database, which is the primary data resource for this project, is also a major participant

and primary contributor of Mus Musculus terms to the Gene Ontology project.

2.2.1 Structure of the Ontology

GO dictates that all functions of genes and gene products are a part of one or more of

three basic attributes Biological Process (BP), Molecular Function (MF) and Cellu-

lar Component (CC). Each attribute is an independent ontology on its own. One can

browse within any one of these three ontologies for the related terms to a gene de-

pending on the aspect of information that is required. Since all genes have the three
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aforementioned attributes, it can be annotated within one or more of the separate on-

tologies, and may have multiple GO terms within each ontology to accommodate the

fact that an individual gene may serve more than one function or participate in several

processes.

The vocabulary of GO consists of entities known as ’GO terms’. These are biolog-

ical terms that represent the function of a gene within an organism. All GO terms are

represented by a brief textual description in scientific natural language and also a GO

ID which has a numeric string representing it uniquely in the ontology. There are only

two types of relations in GO, ’is-a’ and ’part-of’. Each GO term may be related to

child GO terms by one and only one of these relations. A GO term with an ’is-a’ rela-

tion is understood to be a specialised instance of its parent in its own right. Otherwise

’part-of’ denotes that the term is a sub-component, and does not constitute the entirety

of the parent term on its own [18]. All GO term other than the three top nodes (BP, MF,

CC) must be related to a more general term. Thus each GO term can be represented as

a node in a multi-level parent-child node network. The entire ontology is commonly

visualised as a hierarchical tree of GO terms that branch out into more GO terms.

However, it is not technically a tree because individual terms may occur as children

of more than one parent node. GO’s architecture is accurately described as a directed

acyclic graph because the nodes are always pointed from ancestor to descendants, no

child is allowed to be a parent of any of its ancestors.

Our knowledge of the genome is constantly increasing and evolving in this era of

genome sequencing. Bearing this in mind, the hierarchical structure of GO facilitates

the organisation of biological knowledge at varying stages of completion [19]. Genes

whose functions are poorly known can still be annotated in the ontology, albeit at a

very high level, represented by only one or a handful of the GO terms it possesses,

whereas genes whose functions are well understood can be represented by a richer

supply of GO terms with progressively detailed associations within the lower levels of

the tree. More importantly for the purposes of this project, the hierarchical and tree-

like representation of GO allow users to specify the depth of queries, so that GO is able

to provide a general overview of the gene, or provide progressively in-depth terms of

the gene by traversing down the branches.
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2.2.2 Potential Problems

Although GO is currently the de facto standard for gene annotation in the biological

community, there are a number of issues which have been criticized about it. We shall

now briefly recapitulate a few of these drawbacks that might affect our project.

2.2.2.1 Ontological and Structural Weaknesses

The structural design of GO has been a topic of debate amongst ontology experts and

biologists alike. The GO Consortium’s philosophy in setting up GO was so that it could

provide a useful framework for the organisation of biological data. The GO Consor-

tium’s main priority in the design phase of GO was to provide a framework that would

allow for the speedy population of the ontology. In comparison, not much focus was

given to developing a framework capable of providing robust support to software appli-

cations [18]. Nevertheless, the GO is an important source of knowledge and reference

for many biological analysis and predictive tools [20]. While the specialisations and

functions of each tool differ, they are collectively termed as ontology-driven functional

analysis programs. Such tools are knowledge-based software that exploit a knowledge

source (the ontology) to infer its own assertions and answer queries. The accuracy

of the software’s inferences depend on the consistency of the ontology [18]. Conse-

quently, the potential reasoning capacity of such tools could ultimately only be limited

by representational adequacy and expressiveness of the ontology. The remainder of

this section shall examine these factors in the GO in relation to our project, and also

outline some anticipatory drawbacks of relying on GO as a primary reference for data

evaluation.

Ontology purists argue that the GO does not qualify as an ontology in the strict

sense [18]. The origin of ontology in Greek means ’the study of being or existence’

[21]. A modern ontology seeks to represent all knowledge about the entities in a given

domain using a set of terms (classes, objects). Relations between entities are described

using a set of defined associations. There are formal axioms in place to dictate what

constitutes each different term [22]. From a practical viewpoint, such a conceptualisa-

tion of the biological domain is difficult even now, because: (1) New discoveries are

constantly changing our understanding of gene function and interaction, (2) Given the

current situation, biologists cannot agree on a set of terms that can completely describe
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everything to everyone’s satisfaction. Instead of waiting for these problems to resolve

themselves in the unforeseeable future, GO solves it now by employing three broad

terms (molecular function, biological process, cellular component) and two relations

(is-a, part-of). As a result, the Gene Ontology was set up and in use much earlier than

it could have been otherwise. The two drawbacks of this approach are: (1) From a biol-

ogist’s viewpoint, the complex nature of genes and subtler relations between different

gene functions are subsequently lost in the generalisation. (2) From an information

scientist’s viewpoint, the lack of rigid logical formalisation provides little support for

reasoning software.

2.2.2.2 Imperfect Knowledge Base

In the project at hand, we are interested in getting all BP annotations that describe the

mesenchyme-epithelial cell transformation process. Since this transformation is not

yet fully understood or thoroughly studied by biologists, we know beforehand that GO

does not have any explicit GO term dedicated exclusively to the process. However

there are many GO terms that describe the separate development of both types of cells,

such as Mesenchymal Cell Development [GO:0048762], and Epithelial Cell Develop-

ment [GO:0016021]. There are also other GO terms where the concept of either one

type of cell development is an underlying theory, even though the terms themselves do

not contain the keywords ’mesenchymal’ or ’epithelial’. Such an example is the GO

term Tube Development [GO:0002064]. A biology expert would know that a tube is

constructed of epithelial cells. Even a layman can infer this by referring to the GO defi-

nition of Tube Development and discovering the keyword ’epithelial’. GO places Tube

Development as a child node of Anatomical Structure Development [GO:0035295].

From a purely logical stance, one could argue that since a tube is constructed of epi-

thelial cells, it would be informative if GO could indicate this by giving the former

some sort of relation to Epithelial Cell Development [GO:0002066]. The two terms

appear in separate branches of the BP ontology with no direct links to indicate that

some form of epithelial cell building is actually taking place in the development of

tubes. (Fig 1). However it would not be logical to classify the node for tube develop-

ment as a child of epithelial cell development. The two biological processes, although

related, are distinctly different. Tube development is neither a part of epithelial cell

development nor is it a specialised process of epithelial cell development. On the other

hand, epithelial cells by no means exist only for the formation of tubes, but form many
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Figure 2.1: An extract of the Biological Process branch of the gene ontology. Note

how Tube Development and Epithelial Cell Development appear in separate branches

without any direct links, although one could argue, that they are clearly related, since

tubes in organisms are formed when mesenchymal cells transform into epithelial cells.

other structures in the body, such as the skin for example. Therein lies the impossi-

bility of linking the two terms together in GO using ’is-a’ or ’part-of’. Indeed many

studies have been conducted to suggest the revision of old terms and introduction of

new relations in order to improve the expressibility of GO [23]. Although it is not

within the scope of this project to suggest or explore new types of relationships to GO,

we have to bear in mind that this situation is hypothetically applicable to other relevant

terms in the ontology.

We have already demonstrated how ’is-a’ and ’part-of’ is insufficient for our pur-

poses of discovering implicitly related terms. It is hoped that the impact this problem

could have on our evaluation can be allayed by manually sifting through the definitions

of interesting annotations. The disadvantages of such an approach are two-fold. Firstly,

it partially defeats the purpose of ontology-driven functional analysis tools, which are

meant to be an automated process. Secondly, the objectivity of the evaluation is called

into question since deciding what constitutes as ’interesting’ annotations is an arbitrary

process prone to human bias.

2.2.2.3 Redundancy and Similarity

Another major factor that could ultimately affect the accurate annotation of genes is

the fact that GO has no protocol for checking how many terms denote the same con-

cept. The rationale behind the sub-classifications of existing terms have also not been

documented sufficiently [18]. One implication of the lack of such of documentation

this is of the lack of such documentation is that a contributor of a new term could find it

difficult to ascertain whether their concept already exists in the tree under a differently

named term. This is especially the case if it was a highly specialised concept and hap-
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pened to be the deepest node in another branch of biology completely different from

the contributor’s area of expertise. Only a curator who happened to have an in depth

knowledge of both areas would be able to detect the duplication of concepts.

This difficulty is further compounded by the fact that many GO terms are com-

posites of other terms [22]. Using a program to measure the similarity of terms by

counting the number of word edits required to transform one term into another term,

Ogren observed that 68.8% of GO terms added within a one year period contain an

existing term as a sub-string. This in itself would not prove a problem if terms sharing

the same sub-strings still denoted different concepts. However by counting the number

of times each GO term was cited in a publication and comparing this with the compo-

sitionality composition of terms, the study also discovered that the more composite a

term, the less likely the annotation was to be cited in the corpus. In fact almost half of

all terms in the GO have never been cited in a manual or automated context. One can

infer from his study that there is a high degree of redundancy in the GO terminology

[22].

To illustrate a potential problem this could cause in our project, imagine if Gene A

has ten annotations containing the keyword ’mesenchymal’. Meanwhile Gene B has

only one such annotation. How accurate is it to conclude that Gene A is more likely to

be involved in the mesenchymal-epithelial process than Gene B? In such a situation, it

would take a biological expert to determine whether the same concept repeats itself in

the ten annotations for Gene A.

2.2.2.4 Levels of Abstraction

Earlier on, we discussed how different levels of GO terms within the hierarchy al-

low us to view functions at various degrees of specialisation. While it is intuitive to

assume that the depth of a node would indicate the specificity of a term, in [24], the au-

thors discovered that depth is not a good semantic gauge of function specialisation. For

example, High-Affinity Tryptophan Transporter [GO:0005300] at Level 14 and Antico-

agulant [GO:0008435] at Level 3 are both instances of equally specialised molecules.

In short, just because some branches traverse longer distances than others, it does not

necessarily connote that many in-depth studies have been performed in the related area

of biology and therefore the discovery of many highly specialisation specialised terms.

The implications of accepting this conclusion is effectively altering our strategy for
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data evaluation so that we do not depend on GO term levels to measure good results.

Yet eliminating the consideration of level depth entirely from our study is counter in-

tuitive we expect that the lower a node, the more specific and detailed information it

gives us about a gene.

2.2.2.5 Curation and Consistency

It has been proven that the inherent design of GO has considerably impeded the anno-

tation and curation capabilities of GO [22]. The GO Consortium itself concedes that

the expansion of new terms to the ontology will increase the difficulty of maintaining

consistency and curation of the semantic relationships between terms [25]. The pre-

ceding section has demonstrated these problems in relation to our project. However the

Gene Ontology is by far still the most reliable and complete source for gene annotation.

Many developers of GO dependent software have accepted these inherent ’flaws’ and

attempted to implement counter-measures in their programs that work around these

problems [18]. In the next section dedicated to the examination of such tools, we shall

discuss some of these devises and their effectiveness.
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2.3 Gene Annotation Analysis

In the previous section we briefly reviewed the capabilities of the Gene Ontology as a

resource for annotations of gene functions. In order to make use of this rich pool of

biological knowledge for the automated analysis of gene data, a tool will be required

that allows us to find the GO terms associated with each gene in the list and to analyse

the occurrence of these terms for the statistical significance in comparison to a list of

randomly chosen genes.

Over the past years, a wide range of software packages for the ontology-based

analysis of gene expression data has been developed. Khatri et al. [26] provide a

comprehensive overview about all tools available at the time the study was performed.

A number of new tools have been published ever since then, yet the most popular

once remain to be the ones considered in the paper and the criteria for choosing an

appropriate one are still the same.

2.3.1 Criteria for Choosing an Annotation Tool

In the project at hand, we are to analyse a comparatively small set of expressed genes

found from intersections of genes from different tissues. It is our main objective to

assess the distinct biological processes these genes are involved in and to find out

whether they exhibit any annotations that can not be explained away as a mere matter

of chance. Hence, we require a tool that will accurately find annotations, analyse

them and provide a useful overview about its findings. Along the line of the criteria

suggested in [26], we consider the following aspects:

2.3.1.1 Input Values

While all tools will in general take a list of expressed genes as an input, they differ

in the types of values they accept, e.g. Affymetrix probe IDs, GenBank accession

numbers or UniProt IDs. The latter are the ones we will have as the outcome of our

experiments, hence we need a tool which is able to read them.
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2.3.1.2 Scope and Level of Abstraction

Many tools restrict their use to only one GO category and only one level within the

tree at a time. While the restriction to one category is not a problem for us, since we

are only interested in biological processes, an simultaneous analysis on all levels of the

BP ontology would be preferable for the ease of analysis.

2.3.1.3 Statistical Test

Numerous statistical models and tests might be employed to judge the significance of

the findings obtained. Amongst the most commonly used approaches are the hyperge-

ometric [27] and binomial distribution, the χ2-test and Fisher’s exact test [28, 29, 30].

The hypergeometric distribution is reported to face problems with large arrays, while

the binomial distribution and the χ2-test, on the other hand, both need the expected

number of records in the lists to be at least 5 [31]. Fisher’s Exact Test, however, can

also be applied for small data sets, which is why we will require a tool supporting this

test, since many of the intersection results are expected to contain only a very small

number of expressed genes.

In order to use Fisher’s Exact Test the data will be arranged into a 2×2 contingency

table (cp. Table 2.1), where the rows represent the presence of a certain GO term

(’present’ vs. ’absent’) and the columns represent the two data sets [31, 28]. Having

filled this table with the values corresponding to a specific GO term in the two data sets

studied, we can calculate the probability of observing this table combination as

P =
N1.!N2.!N.1!N.2!

N..!n11!n12!n21!n22!
.

In order to get a measure of the statistical significance of one finding, we sum up all

P-values that are smaller or equal the P-value observed in the current table. With P the

set of P-values for all possible tables, this amounts to:

p(P∗) = ∑
P∈P

δ(P,P∗)P, where δ(P,P∗) =

{
1 if P≤ P∗

0 otherwise
.

The resulting value is known as the two-sided p-value and is generally believed to be

a good indicator of statistical significance. The lower this value, the more striking is

the enrichment of a GO term in a set in comparison to another set of genes. We would

usually only consider genes with a p ≤ 0.05 to be statistically significant (sometimes
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Gene Set A Gene Set B Row Total

GO Term present n11 n12 N1. = n11 +n12

GO Term absent n21 n22 N2. = n21 +n22

Column Total N.1 = n11 +n21 N.2 = n12 +n22 N.. = ∑i, j ni j

Table 2.1: Fisher’s Exact Test is calculated using an imaginary 2×2 contingency table,

where the rows represent the presence of a certain GO term and the columns represent

the two data sets. For further details, please refer to the text. (adopted from [31])

even more rigorous criteria like p < 0.005 are applied; a result confirming to this

threshold of significance is said to be highly significant).

2.3.1.4 Reference Sets

As briefly mentioned before, for the purpose of the statistical test we require not only

the set of (potentially) interesting genes, but also a reference set. This reference set

will serve as a guideline of the frequency with which an arbitrary GO term will exist in

a random data set. Only by comparing the set of interest to this baseline, it is possible

to assess the actual relevance of the found GO terms.

For microarray experiments, the reference set would typically include either all

the genes probed on the microarray or a randomly chosen subset of these [26]. By

limiting the reference set to genes which are actually involved in the study, it can be

prevented that genes with GO terms occur that would unpredictably alter the results

of the analysis. Many tools provide pre-defined lists of reference sets for microarray

experiments.

Unfortunately, these sets are not usable for our purposes, since they typically come

from post-natal organisms and are consequently not a good reference point for the

study of gene expression and their annotations in the developing mouse embryo. This

is why we require a tool that allows for the input of custom reference sets, so we

can compose a reference set of all genes expressed in all the structures of the mouse

embryo investigated in the study ourselves. In the further study we will either use this

full list of all genes in the mouse embryonic tissues involved, a subset of it or a random

set of genes from the entire gene pool as a reference set.
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2.3.1.5 Correction Method for Multiple Tests

A further crucial issue to consider is, which method is used to correct the results for

multiple experiments. When the gene lists are analysed for their annotations and as-

sessed for their significance, the tools will in fact test hundreds of hypotheses (one for

each GO term occurring). The resulting p-values will not be reliable unless corrected

for this fact [26, 32, 33], because they will contain a high number of false positives,

i.e. hypotheses which have been approved although the observed differences in both

sets were merely a matter of chance. Again, a wide range of approaches have been

proposed in the literature. However, one has to be careful when deciding for one of

them. Several methods, e.g. Bonferroni correction or Holm’s step down adjustment,

will only work properly for independent functional categories [34], all GO terms are,

however, heavily interwoven and many categories depend upon each other.

The use of another method for correction is consequently preferable. Using the

False Discovery Rate (FDR) as a criterion for removing false positives has been found

to be the least conservative of the remaining methods [33], meaning it is the one re-

moving the most of the supposedly irrelevant GO terms from our preliminary analysis

and hence leaving us with the results most likely to be actual findings. However, this

clearly comes at the cost of possibly missing out terms which might have shown up

otherwise.

2.3.1.6 Visualization of Results and General Usability of the Interface

Since we will be dealing with a large amount of different gene lists each to be analysed

for the significantly over-represented GO terms they contain, it is important that the

tool allows for a speedy processing of the data (including the data input, e.g. via saved

text files) and a concise presentation of all relevant results. Some tools present the

results in the form of an ontology-based gradually expandable tree, which is – although

useful for a initial analysis – less usable for a large-scale analysis of many experiments.

A presentation of all important findings in one step would be advantageous.
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UniProt All BP Fisher’s Custom Interface Visualization

Tool Input? Levels? Test? Reference Sets? FDR? Type and Usability

Onto-Express No Yes No No Yes Java GUI Unusable

GoMiner Yes Yes Yes Yes No Java GUI Flat/tree view

GO TreeMachine Yes Yes No Yes No Web-based HTML Flat/tree view

Fatigo/Fatigo+ Yes Yes Yes Yes Yes Web-based HTML Flat view

GoStat No Yes Yes Yes Yes Web-based HTML Unusable

GoSurfer No No No Yes No C/C++ GUI Unusable

Table 2.2: Comparison of various tools considered for the annotation and analysis of

the results of our later gene expression results. We assessed all tools with respect to

the criteria outlined in Section 2.3.1. [26]

2.3.2 Potential Candidates

On the basis of the aforementioned criteria, we considered six tools for our analysis:

Onto-Express [31, 35], GoMiner [36], GO TreeMachine [37], Fatigo/Fatigo+ [38, 39],

GoStat [40] and GoSurfer [33, 41]. Table 2.2 gives an overview of their key fea-

tures. Of all tools that we looked at, only Fatigo+ satisfied all our requirements. Most

remarkably, we found ourselves unable even to use a few programs – namely Onto-

Express, GoStat and GoSurfer – without the need for further conversion of our inputs

and extensive studying of tutorials.

2.3.3 Fatigo+

The tool we found most appropriate to our requirements was Fatigo+ [38, 39]. Ground-

ing on the well-established Fatigo tool [42], Fatigo+ provides a web-based interface

rich set of analysis features of annotations, not just GO terms actually, but also KEGG

pathways, InterPro motifs, SwissProt keywords and text-mined entities related to dis-

eases and chemical compounds. Moreover, it also allows for analysis with respect to

regulatory and structural information, and many more functions whose use would go

far beyond the limited scope of this study.

Fatigo/Fatigo+ has been used extensively by biologists over the past years, e.g. for

the grouping of up-regulated proteins by biological function [43], the identification of

significantly over-represented GO terms associated with microRNAs [44], the system-

atic functional analysis of gene-expression signatures in relation to cancer [45] or [46].

These are just a few arbitrary examples, an comprehensive list is impossible to give
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due to the large amount of publications citing Fatigo/Fatigo+.

Fatigo+ employs Fisher’s Exact Test for identifying relatively enriched categories

of GO terms in a set of expressed genes in comparison to a set of arbitrary reference

genes. Both sets can be provided in the form of text files. Alternatively, it is possible

to choose a reference set from a number of pre-defined records, none of which, un-

fortunately, includes genes from a developing Mouse embryo. Fatigo+ accepts a high

number of different input formats, including most importantly the SwissProt/UniProt

IDs used in this project. Internally, these are all translated to Ensembl identifiers to

create universal cross-references. Apart from Mus Musculus, other species, such as

Home Sapiens, Rattus norvegicus, Drosophila Melanogaster and others are covered

by the functionality of the program.

While we are only interested in GO terms in the BP branch of the ontology, it

is theoretically possible to investigate all three branches simultaneously. In a single

overview page Fatigo+ will present the results of all its test across all GO terms and all

levels of abstraction. Bar graphs for each level of abstraction give a concise overview

about all occurring annotations and the relative frequencies in both sets. Alongside

Fatigo+ shows the result of Fisher’s Test (p-value) as well as the corrected value

accounting for multiple tests adjusted using FDR (adjusted p-value). It is therefore

extremely simple to discover interesting results.

Interestingly, Fatigo+ – unlike all other tools investigated – also provides a brief

summary of the input sets, stating clearly how many genes were in each of them and

how many have been actually used for the analysis. This is important, since a consid-

erable number of genes might have been left out, because either the provided UniProt

ID was unknown or there simply did not exist any annotations for the given term.
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Methodology

It is our overall objective to identify the set of genes responsible for mesenchyme-

epithelium transition process in the developing Mouse embryo. Unquestionably, a

manual, step-wise assessment of individual genes is infeasible even for the most pa-

tient geneticist. Hence, it was our goal to implement a software solution that would

allow researchers to find potentially interesting genes by looking at different biological

structures involved in the processes studied and intersecting genes found within them

to extract a tissue-independent set of genes supposedly responsible for the process (e.g.

mesenchyme-epithelium transition).

In the following chapter we will first assess the specific requirements that a soft-

ware system needed to satisfy in order to be useful as a tool for researchers and after-

wards outline some important points of our solution to the problem. In doing so, we

will focus on the core aspects of the program, rather than explaining every little detail

of the implementation.

3.1 System Requirements

The principal idea is, that we can find genes responsible for a specific biological pro-

cess by finding genes common to different parts of the body that undergo this process

at some stage. Hence, it will first be necessary to retrieve lists of relevant genes from

a reliable source of gene expression information. We chose the GXD database for

this purpose. Having extracted these gene lists, different types of computations can

22
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be performed on them to find subsets of interesting genes, which might thereafter be

analysed for their biological relevance using a tool like Fatigo+ (cp. Sec. 2.3.3). In

the following sections we shall explain these requirements in more detail.

3.1.1 Clarification of Terms

Before we can proceed any further, it will be necessary to clarify the use of a few

ambiguous terms in order to avoid misunderstandings:

Tissues, Structures and Sets of Tissues: A structure (or alternatively tissue) is a lo-

cation in the body, where a developing process is taking place so that the struc-

ture is being transformed. A set of multiple different, but related structures,

when taken as a whole, comprises a functional and distinct component in an or-

gan. This latter component will be termed set of tissues or set of structures. It

is necessary to be aware of the difference of structures and sets of structures to

avoid confusion in the remainder of this paper. In this project, we will investigate

the structures from several different sets of structures.

Stages: Stage refers to a Theiler stage (TS), which is a developmental stage in the

mouse embryo [47]. While it is helpful and not entirely wrong to think of a stage

as a temporal concept, it is also important to note that each stage is constrained

by a distinct biological phase. There are 26 such distinct phases in the mouse

embryo. The first stage TS1 is the state of the one-cell egg at fertilisation and the

final stage TS27 is a new born mouse. The remaining 25 Theiler stages each refer

to the state of the mouse embryo at progressively advanced gestation periods.

While each stage corresponds roughly to a period of time, it is not time itself

that defines a Theiler stage. Individual embryos develop at slightly differing

rates that make time itself an unsuitable gauge of the state of development [48].

Rather each stage has a set of biological criteria that must be fulfilled by the state

of the mouse embryo in order to belong to a given stage. For example, a mouse

embryo with the earliest signs of fingers falls under TS20. Theiler stages are

an essential concept in our basic methodology since we are not collating genes

based on different points in time, but from formed and unformed structures,

which are in turn categorised under different Theiler stages.
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Developmental Processes: Structures change over time to form more specialised com-

ponents. There are many different types of structural changes in embryo devel-

opment. The tissues we are analysing here each undergo a different type of

developmental process, and it is important to note that this is a distinct process

not to be confused with the mesenchymal-epithelial transition process. The latter

is one of the many sub-processes that are participants contributing to the former.

When we talk about a developmental process in the context of this project, we

are always referring to a process specific to the development of a certain tissue

or organ. Conversely, the mesenchymal-epithelial process is common to all our

tissues of interest. During a developmental process, old structures are replaced

by new ones. The former are referred to as the set of Before structures, and the

latter as the set of After structures.

3.1.2 Example: Angiogenesis

In order to further clarify the definitions outlined above, we will have a brief look at

one particular process and how it was to be processed here. Angiogenesis is a develop-

mental process that involves the growth of new blood vessels from pre-existing vessels.

The mesenchymal-epithelium process is responsible for constructing the epithelial cell

layer that form the walls of these new vessels [49]. Moreover, Angiogenesis is the pro-

cess that is responsible for building the system of arteries and veins in the developing

heart. Since a new type of structure is being developed, the same tissues where we

look for the set of Before genes will be replaced by new tissues over time. For the An-

giogenesis process in the heart, the structures that will transform over time into these

new system of blood vessels are the mesoderm, lateral trunk mesenchyme and the yolk

sac of the embryo. Hence we term the set of genes that are expressed in these earlier

structures the Before set. Once Angiogenesis - and thus the mesenchymal-epithelial

transformation as its sub-process - is completed, we look for the set of genes that are

expressed in the later tissues, i.e. the arterial and venous system of the heart and we

label these genes as the After set. By repeatedly asking this question for the different

tissues in the embryo where we know the process to be happening, we can obtain a set

of genes that are common to each of these tissues.
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3.1.3 The GXD as a Data Source

The Mouse Genome Informatics (MGI) project provides integrated access on all as-

pects of biological information about the laboratory mouse. Of the four participant

projects in MGI, the Gene Expression Database (GXD) is the branch responsible for

collecting and integrating different types of expression data [50].

We choose to use GXD for two reasons:

• GXD is a community resource. It is accessible to the public for expression

queries via its website but more importantly, it also provides a public access

SQL interface.

• The GXD standardises the expression data from a wide variety of assays [50, 51].

Part of this standardisation includes a collaboration with the Edinburgh Mouse

Atlas Project (EMAP) to develop an anatomy-based system for classifying gene

expression data from the mouse embryo [48, 52, 53, 54, 55]. The result of this

collaboration is the classification of gene expression data so that information

from assays with different spatial, temporal and expression resolution can be

queried in a standardised manner.

For our software package, it will be necessary to interact with the GXD taking the

way it organizes the data into account.

3.1.3.1 Data Structure

As mentioned earlier, the anatomical dictionary for the mouse is divided into 26 Theiler

stages. There is a distinct set of anatomical terms for each stage to describe the anatom-

ical domains existent at a given stage. These terms correspond exactly to the structures

in our data computations. Each term (or anatomical domain) represents part of a dis-

tinct organ/embryonic material at the given TS of development. In the dictionary, they

are organised in a hierarchical tree not unlike the format used in the Gene Ontology.

Each stage has its own independent tree, where the major components, for example

embryo and extra-embryonic component, form the top nodes. Child nodes represent

more specialised sub-components such as organ system and yolk sac. Unlike the Gene
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Ontology where duplicate nodes of the same term are allowed, the anatomical dictio-

nary for each stage is a true tree because there can only be one instance of a term at

any given stage.

Structures are not continuant across all stages. For example the term yolk sac

exists only in TS9 to TS12. Before TS9 the embryo has not yet developed a yolk sac;

whereas after TS12 it has differentiated to form other structures. Terms themselves

are not unique unless linked to a TS. Yolk sac appears at TS9-12, although the same

structure at each stage, is treated differently in the database, i.e. querying for the set of

genes expressed in the yolk sac at TS9 is not the same as querying for the set of genes

in yolk sac at TS10.

3.1.3.2 Gene Expression in Relation to Data Structure

The expression data of individual genes are represented in binary states ’On’ and ’Off’

to indicate whether the gene is being expressed at a certain stage and structure. Each

gene entry in the database is related to a stage and a structure. Consequently, we may

ask questions like ’Is gene X expressed in structure Y during stage Z?’. As a result, the

database will always return us one off three options: ’On’, ’Off’ or ’Unknown’.

In this study, we will treat genes that do not have entries in the database as being

not present (’Off’), instead of ’Unknown’. To what extent does this affect the accuracy

of the data? Evidently, an implicit ’Off’ is different from explicit ’Off’. The former

assumes that the gene is not expressed simply because there is no entry in the database.

The latter proves that a research team has actually performed some experiment to check

for the presence of the gene, and confirms no such gene being detected. Ideally we

should only include explicit ’Off’-genes in our data, however there are two obstacles

to this:

• There is a practical limitation of not having enough data: The ratio of ’Off’- to

’On’-entries in the GXD database is extremely unequal. Apparently, the database

curators are not considering it worthwhile to enter the gene data for ’Off’-genes1.

• Using only explicit ’Off’-genes might also have negative implications on the data

1One has to remark at his point that experimental data from microarrays contains hundreds, possibly
thousands, of genes. Often researchers might choose to enter only those where expression was found
into the database, whereas genes which were investigated, but not found, get neglected.
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analysis: If we were to enter only explicit ’Off’-genes, we risk creating an arti-

ficial bias of the data by assuming that far more genes are expressed throughout

a whole process that actually present.

By considering only explicit ’On’-genes to be expressed we are employing some

sort of a Closed-Word Assumption, which is a common stance to be taken in computa-

tional reasoning tasks [56].

3.1.3.3 Data Conversion

In a last small step, the data obtained from the database will also have to be trans-

formed into a format recognized by Fatigo+ (or any other gene annotation tool used)

in order to be usable for the further analysis. The GXD database provides accession

keys from a rich variety of databases and ontologies. We therefore directly query for

the UniProt/SwissProt-ID of each gene found.

3.1.4 Computations to Be Performed

We know that some of the genes expressed in all of the structures in certain stages

are involved in the mesenchymal-epithelium process. However it is not feasible nor

helpful for the purposes of proving our hypothesis to investigate each and everyone of

them indiscriminately. Each set of structures is located in different organs or locations

of the embryo and therefore functionally different. Many genes will not be involved

in the process of interest, since most genes will serve tissue-specific functions, which

vary from tissue to tissue, organ to organ. Therefore, the fundamental approach of our

strategy is to find the set of genes that are common to each set of tissues. By taking

the set of genes that are common to all of them, we are able to isolate a smaller set that

might show a strong indication to the mesenchymal-epithelial process by eliminating

genes that perform tissue-specific functions.

Using this basic approach, we formulate several steps to achieve our objective.

We want to gather the genes expressed in each set of tissues so that they collectively

form a meaningful set of genes. In order to do this, we organise the structures to their

respective set. Each set of tissues comprises a set of Before structures and a set of After
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structures. We then perform four types of computations that each return us a different

set of genes:

• Computation 1: ’On’ genes in Before Structures

The first computation is based on the assumption that, if a mesenchymal-epithelium

transition is taking place, the structures will express a set of genes that are re-

sponsible for this process in the Before structures. Therefore, we obtain the set

of genes from the Before structures so that every single gene that is expressed

in one or more of these structures is included once and only once. Technically,

this is the mathematical set known as the union of all the genes in the Before

structures.

• Computation 2: ’On’ genes in After Structures

The second computation is based on a similar assumption, namely that, if the

mesenchymal-epithelium transformation has recently taken place, the structures

may still exhibit expression levels of genes related to the process, or genes that

are responsible for the ’wrapping’ up of the process. We obtain the union of all

the genes in the After structures.

• Computation 3: ’On to Off’ genes

This is a more complex variation of the first computation, based on the assump-

tion that if a mesenchyme-epithelium process is about to take place, the genes

responsible for the process will be expressed only during the beginning and on-

going stages of the process, but should not be expressed once the process is

complete. We begin by performing the same steps in computation 1 to obtain

the ’On’ genes in the Before structures. Next, we look to see whether any of the

genes in this set are still being expressed in the corresponding After structures

of the tissue. We do this by collecting all the genes that are expressed in the

After structures. By comparing the two sets of genes and removing any gene

that appears in both sets from our list, we construct a new list of genes that are

expressed in, and only in the Before structures.

• Computation 4: ’Off to On’ genes

The last computation is based on the assumption that once the mesenchymal

cells have completely differentiated into epithelial cells, there will be a new set
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of genes in place that are responsible for the maintenance of these new cells.

Therefore these genes should not be expressed before the process has begun, but

only after the new epithelial-constructed structures are fully formed. Again, this

computation is similar to that in computation 3. First we perform computation

2 to obtain the list of ’On’ genes in the After structures. Next we compare these

genes with the set of all ’On’ genes from the corresponding Before structure and

eliminate these from the list to give us a new list of genes that are expressed in,

and only in the After structures.

The four computations outlined above will produce sets of genes whose functions

are posited to be related to the developmental process of the structures where they

are expressed. Some of the genes could also be transcription factors that regulate the

expression of other mesenchymal-epithelial related genes. Furthermore, some of the

members within this set of genes should also be related to the mesenchymal-epithelial

process. Each of these computations reflect variations of our strategy, which in turns

stems from our hypothesis. The first two computations for ’On’ genes in the Before

structures and After structures respectively are based on the general assumption that

some genes expressed in the structures, regardless of their expression level prior or

subsequent to the developmental process, should be involved in the developmental

process itself. The last two computations, ’On to Off’ and ’Off to On’ are actually

returning us a list of genes whose expression states have changed during the devel-

opmental process itself. We form these sets based on the reasoning that genes whose

expression states remain stable throughout the developmental process are more likely

to serve other on-going functions and hence are not so likely to be specific to the pro-

cess of our interest.

Once we have performed the four computations above, we have four different sets

of genes from each set of tissues. We then enter the next stage of our strategy, a higher

level comparison between different sets of tissues. We formulate the fifth and final

type of computation:

• Computation 5: Intersection between Sets of Tissues

The computation for this involves first performing one type of computation (one

of computations 1-4 above) on each of the sets of tissues we wish to intersect.

Once we have done this, we compare two or more lists of genes and retain only
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those genes that are common to all the lists in our comparison. In mathematical

terms, this new set of genes is an intersection of sets. In order to obtain a com-

plete set of data, it is desirable to perform all the possible intersections between

the tissues. There is a total of

S =
N

∑
k=2

(
N

k

)

distinct permutations of intersections of this at least two different sets out of N

total sets. Although it is technically possible to intersect sets of genes that were

calculated using different types of computations, such intersections would not re-

turn us any logically meaningful results, furthermore some of these intersections

would be difficult to interpret from the viewpoint of our hypothesis. Therefore

we impose a constrain so that only sets of genes that were obtained using the

same methods are allowed to be intersected.

At this stage, our goal is to compare the genes from different tissues where the

mesenchymal-epithelial transition is happening in order to refine our data even further

so that genes involved in the tissue specific sub-processes of the larger on-going de-

velopmental process are removed from the final mesenchymal-epithelial candidate list.

What we have prior to this stage are sets of genes that are very likely to be involved in

developmental processes, but not all these genes will be involved in the mesenchymal-

epithelium process. We hypothesise that the intersection set of developmental genes

from various tissues will be more likely to be involved in the mesenchymal-epithelium

process compared to the complementary sets.

Figure 3.1 shows an exemplary case how intersections can be performed to obtain

a candidate set of mesenchymal-epithelial related genes.

3.2 Implementation of a Solution

We have implemented Mouse Genome Intersector (Fig. 3.2), a simple, Java-based tool

with a graphical user interface (GUI). The tool allows to create a list of tissues con-

sisting of structures which can be added by dynamically browsing the EMAP ontology

for entries and querying GXD for the genes found in the respective structure. The user
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Figure 3.1: An example of how we can use different set operations on four sets of genes

in order to obtain a candidate set of genes for the mesenchymal-epithelium process.

We start by taking the union of all the genes in the Before structures and separately the

union of all genes in the After structures and repeat this step for all tissues studied. We

then calculate the set of genes which are in the Before but not in the After structures

(computation 3) for each tissue. The intersection of these will yield our candidate set.
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Figure 3.2: An exemplary screenshot from the Mouse Genome Intersector, the tool

implemented in due course of this study. The windows shown are the main window (in

the background) and the details of one BeforeAfterCassette in the foreground.

has the possibility to choose between different options in order to select which of the

computations listed in Sec. 3.1.4 is to be performed. The program will then compute

all the possible intersections of the chosen tissues and present the results to the user,

who may chose to discard, further study or save individual results.

Figures 3.3 and 3.4, give UML class and sequence diagrams of the program respec-

tively. The class diagram has been simplified in order to capture the principal relations

between the important components of the software in a concise manner. The sequence

diagram provides an overview about a typical series of interactions between the user,

the program and the database, as they might be carried out in one round of experimen-

tal analysis. For further details of the program, please refer to Appendix A, where we

provide full class diagrams, as well as screenshots and details about database queries

used.
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Figure 3.3: A massively simplified, conceptual UML class diagram of the main classes

of the project. Note that several unimportant classes and numerous irrelevant methods

(e.g. getter- and setter- methods or event-handling methods from the GUI) have been

left out. Arrows without tails indicate inheritance relations, arrows with tails account for

relational attributes.
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Figure 3.4: This UML sequence diagram depicts a typical flow of actions as they might

be carried out by a scientist using the tool for creating a data set of gene cassettes, for

intersecting these cassettes and then for analysing and saving the results.
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Figure 3.5: Illustration of the different stages of interaction between the program and

the database.

3.2.1 Interaction with the Database

GXD is implemented in the Sybase Relational Database Management System [50].

The database supports direct SQL access for remotely connected programs. JDBC

[57] is the Java API that we implement to connect with GXD. In order to actually

establish and maintain a connection to the server side, we need a client-side adaptor

called a driver. The program utilises a Type 4 driver, JConnect [58], which is a Java

package provided by Sybase. Figure 3.5 depicts the sequence of interactions of the

different components.

3.2.1.1 Accessing Relevant Data

Multiple tables are accessed in the query of a single gene. This part is a brief descrip-

tion of the tables that are involved in our query.

ACC Accession is the master table that holds the MGI ID’s for all existing gene

and gene products. As its name suggests, the table holds the accession numbers all

genes. An accession number is a unique identifier for a sequence. MGI and GXD

creates and uses its own ID strings which all begin with the prefix ’MGI’ followed by

a unique string. Besides listing each gene by their internal MGI ID, ACC Accession

also contains the accession numbers or names that the gene is referred to by different

sources, such as its UniProt/SwissProt and GenBank ID.

GXD Expression is the table that stores the known gene expression states for all

known sequences. The data in GXD Expression is summarised from assays to accom-

modate efficient querying, so that a user can extract an ’On’ or ’Off’ reply for the

presence of a gene in a structure. Each entry contains a gene, its expression state, and

an assay key so that each discovery can be traced to its specific assay. The entry must

also have a structure key, which is a unique number to indicate where and when the

tissue was expressed.
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ACC Accession and GXD Expression are the two primary tables that hold the in-

formation we need. Entries are linked in the table via a marker key, which is another

unique number used to identify the same gene across different tables.

In order to specify the structure and stage where genes should be queried, we re-

quire a third table called GXD Structure. This is the master table for the Mouse

Anatomical Dictionary . It holds the terms of the entire dictionary. Each term is as-

signed a unique number that identifies both the stage and the structure. For example,

the previously mentioned yolk sac at TS10 has structure key of 154 and yolk sac at

TS12 has Structure key 402.

So a gene expression query begins with the selection of a stage and structure by

the user. We then look up the structure key which identifies this stage and structure

in GXD Structure. Having identified the structure key, we search for all genes in

GXD Expression that belong to this structure key and retain only those genes where

expression state is ’On’. However, at this point, the genes are not identified by any

name other than the marker key. Hence for gene, we match the marker key to en-

tries with corresponding marker keys in the ACC Accession table. The corresponding

ACC Accession table entry will return us the proper gene names for all our genes in

the form of MGI ID’s. The result from this query is a list of genes where expression

state is ’On’ for the user selected structure and stage.

3.2.1.2 Converting MGI Accession ID’s to UniProt ID’s

As mentioned earlier, it is desirable to use the UniProt ID’s as our gene naming con-

vention in the program because it is more commonly used than the MGI ID’s. Luckily,

the ACC Accession table also includes UniProt ID’s for almost all entries, so we can

query for the UniProt ID’s instead. Only in a few instances, there will not be a UniProt

ID available for an entry, in which case we use the MGI ID. If one of these happens to

be in the studied candidate sets for the mesenchyme-epithelium transition process later

on, special consideration will have to be paid to this entry.



Chapter 3. Methodology 37

3.2.1.3 Data Organisation

All the genes found in individual stages and structures will be stored in containers

called Cassettes. Several of these cassettes taken together can make up a whole tissue

(with Before and After structures). More details on the data containers will follow in

the next section.

3.2.2 Core Classes

This section describes the classes involved in one round of analysis. A round of anal-

ysis is defined as the user executing the program, creating several lists of genes from

several structures and developmental processes, and then performing the intersections.

We also illustrate how the five types of computations discussed earlier on are imple-

mented from an object oriented point of view. All the core classes implementing the

underlying logic behind the computations are included in the Mouse package of the

software. An entity-relationship diagram (ERD) depicting how the different modules

are linked is shown in Fig. 3.6.

The different classes are:

• Gene

The genes which we queried in the previous section are instantiated as objects of

the class Gene. Each instance has the attribute geneID which stores the accession

number of the gene. The class also has an equals method that checks to see

whether two objects contain the same gene. This concept is important later on

to ensure we have no duplicate genes in one list.

• Cassette

Cassette is a class which contains a vector of genes. Each cassette can be

viewed as a set of genes from a distinct origins. Genes can be grouped in dif-

ferent categories using the cassette class. The most common and basic cassette

is one which lists the genes in a single tissue and stage. We can also create a

cassette of genes from a structure by combining several cassettes of single tissue

genes. The class defines four methods for these combinations:
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Figure 3.6: An entity relationship (ER) diagram of the Mouse package. Note that, pro-

ceeding from top to bottom, we encounter increasingly more complex classes entailing

one or several instances of the object from the previous levels. For further details please

refer to the text.
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– intersectWith(Cassette) returns a new cassette that contains the genes

found in both and only both of the cassettes. This method implements the

concept of what constitutes the common genes from a group of tissues.

– unionWith(Cassette) returns a new cassette that contains the genes found

in either one or both of the cassettes, removing double occurrences of the

same gene. This method implements the concept of what constitutes col-

lective genes from a group of tissues.

– minus(Cassette) returns a new cassette that contains genes found in the

main cassette, but not in the second cassette. This is the implemented con-

cept of ’On to Off’ genes. Alternatively, this method can also be used to

find the ’Off to On’ genes, depending on which object is calling the method

and which object is the argument of the function.

– difference(Cassette) computes a new cassette with all genes expressed

in only one of the cassettes (exclusive or). Hence, it returns both the ’On

to Off’ and ’Off to On’ genes.

• BeforeAfterCassette

This class, as the name implies, contains a first vector of cassettes from the

group of Before tissues, and a second vector of cassettes from the group of

After tissues. The Before and After tissues must belong to the same devel-

opmental process, which is stored in the label attribute of the class. A user

can add or remove cassettes from an object of this class, which calls the meth-

ods addBefore(), removeBefore(), addAfter() and removeAfter(). The

BeforeAfterCassette is an inherited class of Cassette, thus it is similar in

structure to a cassette. It differs from a cassette not only because it contains

multiple cassettes, but also because it can compute the list of genes we are in-

vestigating in the developmental process by calling the four inherited methods

previously described in the Cassette class. It stores this new list of genes in a

vector attribute. Thus by specifying the After tissues, the Before tissues and the

methods of computation, a BeforeAfterCassette class can return us the genes

that are either ’On to Off’, ’Off to On’ or both in a given developmental process.

If there are no cassettes of After tissues, it can simply return the set of genes that

are ’On’ from a group of tissues. Depending on whether the user specifies any

Before and After cassettes, an object of this class can either be an instance of a

developmental process or a simply a group of cassettes.
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Theoretically it is possible to compute sets of genes in a developmental process

using the Cassette class alone. However the user would have no way of de-

ciphering how a list of developmental process genes was computed because the

underlying information used to build and compute the list would be lost. If the

list was computed from many structures it would be tedious to rebuild as well.

The BeforeAfterCassette provides a framework for editing or referring to the

group of Before and After tissues used in a computation. By implementing the

BeforeAfterCassette class, which is a serialisable object in our program, all

cassettes and computations linked to the developmental process can be loaded

systematically by the program so that the user can trace the origin of the genes

computed by this class, or edit the computation by adding and removing new

cassettes.

• IntersectionCassette

An object from this class stores the results from the intersection of two or more

BeforeAfterCassettes. Again this class is inherited from Cassette, so it

ultimately returns us a list of genes. However, the previous classes only stored

genes from tissues, groups of tissues, or genes derived from a developmental

process. By instantiating this class, two or more such cassettes can be intersected

so that a new set of genes is returned by the intersection.

For example, an object from this class would store the set of genes common to

the three developmental processes in Angiogenesis, Somites and Cardiac Endo-

thelium. The IntersectionCassette object only lists genes that are strictly

common to all of the cassettes in the intersection, therefore it is called at the last

stage of our analysis, only after we have used Genes, Cassettes and Before-

After-Cassettes to return us the lists of genes from developmental processes.

• IntersectionSet

This is the final class to implement in the analysis. It represents the set of all

possible intersections from one analysis round. If there are, for example, five

BeforeAfterCassette objects that have been defined by the user, this class

stores the list of genes resulting from each and every intersection that can be

performed between two or more of the objects. Thus it is essentially a list of

all possible IntersectionCassette objects. There will be only one instance of this

class at any one execution of the project.
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The IntersectionSet defines a method called calculateIntersections that

computes all different ways to intersect a given list of sets, and lists out all the

possible permutations. For example for a list of sets (A,B,C,D) it would re-

turn us the permutations (AB), (AC), (AD), (BC), (BD), (CD), (ABC), (ACD),

(BCD), (ABD) and (ABCD). The program then proceeds to create an instance of

IntersectionCassette for each permutation, thereby creating a set of Intersection-

Cassette objects.

By the end of instantiating the fifth class, we have obtained the final results for our

analysis. The program is designed to enable the saving of individual as well as lists

of BeforeAfterCassettes as serialised Java object files so that it can be reloaded as

an entire project when the program is restarted. This allows the user to refer and edit

the original source of computations. Furthermore, because the program is dynamically

connected to the GXD database, we also implemented a refresh function which per-

forms all the queries related to the loaded project or BeforeAfterCassette to obtain

the most up-to-date genes from the database. This is especially useful if the user wants

to check whether the database has been recently updated with any new genes relating

to any of the structures being analysed without having to re-build an entire project.

3.3 Summary

Our methodology for finding genes responsible for a specific biological process (e.g.

mesenchyme-epithelium transition) can be summarized briefly as follows:

1. Specify all tissues in which the studied process takes place by repeatedly adding

the genes from all Before and After structures in this tissue.

2. Depending on which part of the tissues we want to study at the moment, retain

only the Before or After component of the tissues, or define the genes of which

of the two components is to be subtracted from the other one.

3. Calculate the intersections of all gene lists.

4. Analyse the found genes using an gene annotation tool on the basis of the GO,

e.g. Fatigo+.
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In the Mouse Genome Intersector software we have implemented a tool that allows

us to easily carry out steps 1-3 and to produce the results in a format that can be used

directly as an input for Fatigo+.



Chapter 4

Experiments and Results

This chapter will present the results obtained using our program and the results of our

evaluations. There are two aspects to our evaluation. The first aspect is an computa-

tional analysis of the annotations for the sets of interest using Fatigo+. The second as-

pect is a biological review of the intersections to manually identify possible candidate

genes for the mesenchymal-epithelial process. The latter section has been contributed

by Dr. Jonathan Bard, an expert the field.

As the first type of analysis will form the bulk of this section, I shall outline the

procedures for this section and our expectations. From our intersections, we hope to

obtain substantial numbers of genes to analyse with Fatigo+. Next we hope to find

significant terms for each of the intersections. The fact that an intersection is more

related to one or more biological processes than a randomly selected list of genes is

a good indication that the set as a whole has some specialised functionality. We also

want to compare our intersections against other types of reference sets that could be

more meaningful than random sets.

4.1 Computational Analysis

4.1.1 Results

In this section we will present the tissues and developmental process from which we

derived our results.

43
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Tissues

Process Before After

Angiogenesis TS11: Mesoderm TS13-14: Arterial System

TS12: Lateral Plate Mesenchyme TS13-14: Venous System

TS11-12: Yolk Sac

Cardiac TS11: Mesoderm TS12: Early Primitive Heart

Endothelium TS12: Lateral Plate Mesenchyme TS12: Primitive Heart Tube

TS11-12: Yolk Sac TS13: Endocardial Tube

TS13: Outflow Tract, Endocardial Tube

Somites TS12-20: Unsegmented Mesenchyme TS12-22: Somite

Mesonephric TS13: Interm. Mesenchyme TS15-16: Tubule

Tubules TS14: Nephric Cord

Nephrons TS20: Mesonephros, Assoc. Mesenchyme TS21-25: Metanephros, Execretory Component

TS21-25: Metanephros, Assoc. Mesenchyme

Nephric Duct TS12: Trunk Mesenchyme, Intermediate Mesenchyme TS15: Nephric Duct

TS13: Nephric Duct

Table 4.1: Overview of the different structures studied.

4.1.1.1 Developmental Processes and Tissues Investigated

We compare the gene expression data from six sets of tissues each undergoing a differ-

ent developmental process. Each developmental process is related to a defined set of

Before tissues and After tissues as listed in Tbl. 4.1. This is the gene pool, from which

all the subsequent intersection results shall be obtained.

4.1.1.2 Categories of Results

As outlined before, we compute and store four separate lists of genes for each develop-

mental process. A gene can belong to one or more of these lists, which are categorised

based on whether the gene is expressed as:

1. ’On’ genes from Before tissues

2. ’On’ genes from After tissues

3. ’On to Off’ genes from Before and After tissues

4. ’Off to ON’ genes from Before and After tissues

Hence we obtain 24 separate lists of genes from the six developmental processes.

This is the collective raw data on which we will perform the intersections. We will also
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be utilising these lists of genes in our compilation of reference sets for evaluation, as

demonstrated later on in this chapter. Please refer to Appendix B for a full list of all

the genes in these lists.

The lists of genes for Nephrons, Nephric Duct and Mesonephric Tubules are dis-

proportionately smaller than Angiogenesis, Cardiac Endothelium and Somites. This is

probably because there were more tissues defined for each of the latter processes.

4.1.1.3 Intersections

We identify the genes that are common to more than one tissue by performing all pos-

sible intersections. Intersections are only allowed between lists falling under the same

category (see previous section). For example, we do not compute the intersection of

’On’ genes in Before Angiogenesis and ’On-Off’ genes in Somites, since the genes re-

sulting from cross-category intersections would be extremely difficult or even impos-

sible to interpret for the purposes of inferring our mesenchymal-epithelial candidate

genes.

Having this constraint in place, we then compute the various intersections that can

take place for six developmental processes. Due to the small size of some of the pre-

intersection lists, many of our intersections were empty sets. We also did not obtain any

genes from intersections of four or more tissues. The majority of intersections which

did return any results did not contain more than 5 genes. In general, intersections

falling under the category ’On’ genes in Before structures returned the most genes.

We summarise the results of our intersections in the Tbl. 4.2. The full list of genes

found in the intersections can be found in the Appendix B. Permutations which did

not yield any genes in any category (i.e. A∩C∩S∩Nd) are excluded from the table.

Intersections involving less than three tissues are also not listed since they will not be

considered in our evaluation.

4.1.1.4 Candidate Sets

The aim of our evaluation is to find statistically significant terms for the intersected

genes. We wish to run each separate intersection through Fatigo+. Each non-empty
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Intersection of 4 Tissues Intersection of 3 Tissues

Angiogenesis A A A A A A A A A

Cardiac Endothelium C C C C C C C C C

Somites S S S S S S S S

Mesonephric Tubules M M M M M M M

Nephrons N N N N N

Nephric Duct Nd Nd Nd Nd

Category of genes

ON genes in Before 2 2 3 34 8 3 3 2 2 2 2 1 1

ON genes in After 1 1 1

ON to OFF 5 5 1

OF to ON

Table 4.2: Summary of the number of genes found in each of the intersections.

Figure 4.1: Illustration of the union of sets.

intersection involving three tissues and above is a separate candidate set to be consid-

ered.

Other than using individual intersections as candidate sets, we also form an ’over-

all’ intersection set that comprises of the union of all intersections (cp. Fig. 4.1). Note

that this is different from the union of all lists of genes themselves, because we first

perform the intersections before taking the union itself. The difference is illustrated in

Fig. 4.1 using the three intersections of ’On genes in Before tissues’ shown in the Tbl.

4.2.

4.1.1.5 Reference Sets

The reference set we use depends on the candidate set it is being compared against. In

general, for each candidate set, there are three types of comparisons we want to make:

Random Sets – Using a Java program and its inbuilt random() method, we compile

sets of randomly selected genes taken from the same source as our results, i.e.

the GXD Expression table in GXD. We use three sizes of random sets contain-
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Figure 4.2: Illustration of complement sets.

ing 1000, 500 and 100 genes respectively. This is in part to cater to some of

the smaller candidate sets. However, 100 genes may not be a statistically fair

distribution of genes across various functional categories, thus random sets of

1000 and 500 genes are the most frequently used in our evaluation. In order to

perform the same type of comparison more than once, we also compile second

and third random sets for the sizes 1000 and 500.

Complement Sets – A complement set is a list of genes that are not in the intersection

which forms the candidate set, but expressed somewhere in the tissues involved.

There are different complement sets for each permutation and each category of

gene expression data studied in our evaluation. For example, the permutation

(A,C,S) returns two non-empty intersections - one for the list of common ’On

genes in Before structures’, and one for the list of common ’On to Off genes’.

The reference set used for the former is all the ’On genes in Before structures’

that are expressed in either one or two, but not all three sets of tissues involved in

the developmental processes Angiogenesis, Cardiac Endothelium and Somites.

The reference set for the latter follows the same theory but uses the ’On to Off’

genes instead. Mathematically, the complement set described above can be pre-

sented as (A∪C∪S) (A∩C∩S), as illustrated in Fig. 4.2.

In theory, complement sets provide a more stringent reference than the random

set, because we only consider genes originating from the tissues participating in

the intersection we wish to compare. The purpose of complement sets as part

of our comparisons is based on an issue for similar comparisons of microarray

data in [26]. They point out that, if a gene is never included as a probe in a

microarray set, its expression will never be detected, therefore using these genes

in a reference set may prove inappropriate for the comparison. Similarly if a gene

is never expressed in any of the tissues involved in our intersections, comparing

our candidate sets against such genes could give an inaccurate, or over-optimistic

picture of their functionality. Genes in our random sets are derived from the
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entire mouse genome, some of which are never expressed in the tissues we are

investigating. By comparing our candidate sets to the random sets we will be

able to get an overall picture of how these genes are functionally different from

genes expressed in the whole genome. However, random sets cannot provide us

with an in depth view of how commonly expressed genes in several tissues are

different from other genes in the tissues. By using complement sets for a part

of our evaluation, we acknowledge that even if an intersection of genes is more

functionally specialised then the entire mouse genome pool, it may not be any

more specialised than other genes expressed in the tissues used to derived the

intersection.

Combined Complement Sets – Obtaining these sets is a matter of joining the lists of

genes from all six tissues. There are four combined complement sets – one for

each of the four overall candidate sets. Each reference is a list of genes from one

out of the four categories of genes. After joining these lists, we remove any genes

that are found in the corresponding overall candidate set. The reasons for using

these sets are similar to those discussed in for the simple complement sets. As a

result, these lists are the inverse of the overall candidate set, i.e. genes that are

only exclusively expressed in one of the tissues, or even if they are co-expressed,

then it is only in two tissues.

4.1.2 Criteria and Expectations for Comparisons

First of all, we hope to obtain sets of interest that are large enough to withstand the

statistical analysis of Fatigo+. We limit our sets of interests to intersections of three

tissues and above. Although there were many intersections of two tissues that returned

significantly larger sets of genes, it was deemed that such genes which are co-expressed

in only two out of the six tissues are not ’common’ enough to be worth investigating

for our hypothesis.

4.1.2.1 Significant Terms

For each of the candidate sets, we will look for any significant annotations in the Bi-

ological Process ontology of the Gene Ontology. The idea of what constitutes a ’sig-

nificant’ term is to see whether a given set contains more genes related to a certain
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function than one would expect to find and to ensure that this difference is not just a

matter of random fluctuations (cp. Sec. 2.3.1.3).

A term that is annotated at a higher or lower percentage than the expected value

might qualify for significance. Fatigo+ does not set a threshold for how large the dif-

ference in percentage must be in order for a term to be considered significant. Quan-

titative values of percentages are not a reliable indicator for determining whether it is

a significant enrichment. This largely in part due to the fact that Fatigo+ allows can-

didate and reference sets of varying sizes, this is particularly true for our case because

there is a vast difference between the sizes of our candidate sets and reference sets.

In hind sight, most of the significant terms obtained in our comparisons possess

percentage differences of at least 10% and above. In rare cases where the difference

is smaller than 5%, the expected percentage is also smaller than 10%, in which case a

difference of even 2 or 3% is considered significant enough to qualify the term. Cases

of such assessments are not uncommon because Fatigo+ uses p-values obtained by

Fisher’s Exact Test and adjusted by FDR in conjunction with percentages to measure

for significance.

For all comparisons in the subsequent section, we use an FDR-adjusted p-value of

0.05 as a cut off point for determining significant terms. This is also the default value

used by Fatigo+. Terms that are larger than 0.05 are discarded regardless of how large

the difference in percentages.

We only record the occurrence of non-redundant significant terms in our compar-

isons. The candidate set could be related to multiple terms where each of these terms is

actually a more specific instance of the previous term. For example, a set could have an

enrichment for all three terms, Ear Development [GO:0043583], Inner Ear Develop-

ment[GO:0048839] and Inner Ear Morphogenesis [GO:0042472], the last term being

a grand-child of the first. In this instance, Fatigo+ reports all three of them, but selects

the term at the deepest node to include in the summary of non-redundant terms. This

simplifies our task of sifting through the terms for each comparison to find the most

specialised instances of related biological processes.
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4.1.3 Comparisons

We run four rounds of comparison for each of the four categories of genes where there

are non-empty intersections of three tissues or more. Due to the sparse data returned

from some of our categories, we also ran the same comparisons for intersections of two

tissues just to see whether anything interesting would turn up. The next four sections

shall be a summary of each comparison .

4.1.3.1 Intersections vs. Random Sets(1000, 500, 100)

1. ON Genes in Before Tissues – Significant terms were only found in two intersec-

tions, A∩C∩S and A∩C∩N. However it is noted that the sets of Before tissues

for Angiogenesis and Cardiac Endothelium are exactly the same, hence we are

effectively only taking the intersection of two sets of genes.

2. ON to OFF Genes – no significant results.

3. ON Genes in After Tissues – no significant results.

4. OFF to ON Genes – no significant results.

4.1.3.2 Intersections vs. Complement Sets

1. ON Genes in Before Tissues – no significant results.

2. ON to OFF Genes – no significant results.

3. ON Genes in After Tissues – no significant results.

4. OFF to ON Genes – no significant results.

4.1.3.3 Changing Genes vs. Static Genes

1. ON-OFF and OFF-ON genes in the a set of developmental process tissues – no

significant results.

2. Intersections of ON-OFF/OFF-ON genes vs. all ON-OFF/OFF-ON genes from

the same tissues but not in the intersections themselves – no significant results.
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4.1.3.4 Functional Profiles of Common Genes and Non-Common Genes

One problem with the previous comparisons was that most of our individual intersec-

tions were simply too small to return any statistically significant results. This does not

necessarily mean that the genes themselves are not more functionally related to some

processes more than others.

In this section, we discuss a means of employing our results to obtain some mean-

ingful results. The most obvious way of using the data from small candidate sets is

to combine all the lists to form a larger set. We take the precautionary measure of

acknowledging beforehand that if we do obtain any significant terms from such a com-

bined list, such terms can only apply to the entire set of genes as a whole and should

not be assumed to be related to any individual intersection.

For this task, we focus on the category of ’On genes in Before tissues’ because:

(1) the intersections from this category returned us the most results to work with, and

evaluations of individual intersections proved more promising than the intersections

from other categories, (2) from a biological aspect evaluation (which shall be discussed

in detail in Sec.4.2) genes from this category were deemed the most interesting.

The method we use to combine the intersections to form what we shall call the

’combined intersection set’ has already been discussed in Sec. 4.1.1.5 above. It is

worth mentioning again that all of the genes found in this set are common to three or

four of the tissues, thus we are actually investigating the collective set of co-expressed

genes. We compare this candidate set against five different random sets, two of these

have 500 genes in them, and the remaining three consist of 1000 genes each. It has to

be noted here that the five random sets are not disjoint, i.e. genes found in one set can

occur in other sets. However since the gene pool we use for our random sets consists of

virtually the entire mouse genome, the chances and frequencies of re-occurring genes

across sets are very low. The results that we obtain here are probably reproducible

using disjoint random sets.

The combined intersection set contains 43 genes. While this is still disproportion-

ate in size to the reference sets, they proved large enough to capture a list of significant

terms in each round. As is expected when different reference sets are used, not all

five comparisons returned the exactly same terms. We recorded the significant terms

for each of the five rounds. In each case, only the non-redundant terms were noted.
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This resulted in a compilation of only the most specific biological processes where our

candidate set was enriched. If one of the later comparisons introduced a less specific

process as a new significant term, we check each of the previous comparisons to see

whether this process was a significant term albeit in the redundant list, and record it

accordingly. Using this reiterative method, we created a functional profile of our co-

expressed genes using a total of 51 biological processes in which our overall candidate

set were enriched.

One challenge of interpreting the results at this stage is that a majority of these

terms do not show any obvious indication to the mesenchymal-epithelial transforma-

tion, although we did not investigate each significant term in depth because such an at-

tempt would not be feasible. Given enough resources, the functional profile we formed

with the 51 terms alone may be sufficient for a biological expert to tell whether our co-

expressed genes as a whole, contain any significant terms related to the mesenchymal-

epithelial process. However, the terms themselves are not informative enough for a

layman to evaluate objectively. Relying on manual assessment alone would also be

very time consuming even for the most experienced biologist, and ultimately not an

objective evaluation from an informatician’s point of view until irrefutable evidence

from laboratory experiments could be produced.

The problem we faced is also compounded by the fact that any random selection

of genes could also yield significant terms when compared against another random set.

In short, simply proving that our set of co-expressed genes are functionally enriched

is not enough. Thus at this stage although we know that our co-expressed genes were

definitely enriched in various biological processes, we cannot interpret the results to

contribute anything towards our hypothesis.

In order to overcome this problem, we proposed overlapping the functional profile

we have against a different functional profile to see whether we could get a contrast.

The advantages of such a comparison are two fold: First of all, even a layman will be

able to spot an obvious difference between the two profiles; secondly, such a compar-

ison is more objective and less time consuming than exhaustively investigating each

term manually. The final question then is what type of functional profile should we

choose?

The most obvious choice at first would be a functional profile of randomly se-

lected genes. However this would not contribute any further information to what we
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already know - that our candidate set contains enriched terms. What we need at this

point is some way of telling whether our co-expressed genes are any different from the

not co-expressed genes in the same tissues (complementary genes). When we ran the

comparison directly between individual intersections as candidates and corresponding

complement as references which we described in Sec. 4.1.3.2, no significant terms

were found. At this point it is tempting to assume that the two groups of genes are no

different from one another. However, from an objective point of view without any a

priori speculation, it is still the most logical choice to contrast our functional profile

against.

The term ’complementary genes’ is a little misleading because the list may contain

genes originating only from one set of tissues, or they may be genes occurring in not

more than two tissues at the most. In any case, these genes are less ’common’ than

our co-expressed genes which have to belong to at least three tissues. The list of these

genes is actually the combined complement set as presented in Sec. 4.1.1.5. There is a

total of 250 genes in this set.

We constructed the functional profile for our combined complement using the same

iterative process discussed above. In order to ensure consistency, we also used the same

five random sets in the previous comparison as reference sets here. Approximately

half of the significant terms annotated to this set were already included in the previous

set. However, the five rounds of comparisons introduced a total of 34 new terms to

our existing compilation of non-redundant terms used for the first functional profile.

We also ensure by repeating the previous five comparisons for co-expressed genes to

ensure that none of these 34 terms are significant.

As a result, the two combined functional profiles use a total of 81 non-redundant

terms. Fig. 4.3 shows the two functional profiles side by side as well as a compre-

hensive list of all the non-redundant terms and ten comparisons in total for both sets

of genes. A cursory glance at the table is sufficient to tell that the two profiles are

different. While both sets share approximately a third of the 81 biological processes

listed, each set shows a distinct pattern of functional enrichment. It is also important to

note that the set of co-expressed genes and the set of complements are disjoint, so the

occurrence of one gene in both sets as a factor in overlapping of terms is impossible.

The set of co-expressed genes have eleven significant terms not found in the other

set. Out of these eleven terms, seven terms that have been highlighted in the table are
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Figure 4.3: The functional profiles of the collective set of co-expressed genes (in red)

and the complementary genes (in blue).
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the strongest indicators that our co-expressed gene set possesses a different functional

profile from exclusively expressed gene set. All seven significant terms occur in each

of the comparison for the former set and not once in any of the latter set’s comparison.

Similarly, the exclusively expressed gene profile contain three such terms:

• Seven terms most likely to be enriched only for the co-expressed set:

– Level 6:

GO:0007417 central nervous system development

GO:0001709 cell fate determination

– Level 7:

GO:0007417 central nervous system development

GO:0001709 cell fate determination

GO:0048729 tissue morphogenesis

– Level 8:

GO:0042475 odontogenesis (sensu Vertebrata)

• Three terms most likely to be enriched only for the complementary gene set:

– Level 5:

GO:0006811 ion transport

GO:0008643 carbohydrate transport

GO:0043009 embryonic development (sensu Vertebrata)

One inference we make here is: the more frequent a significant term appears across

comparisons using different random sets, the more likely that the candidate set is en-

riched with the term. For example, the term Skeletal Development [GO:0001501] is

only found significant in one of the comparisons for the co-expressed gene set. We

attribute the single occurrence to the inherent vagaries of each random set, rather than

any kind of indication that our co-expressed genes are related to skeletal development.

There are other cases of such anomalies in both sets of genes. While the contribution

of such single and dual occurrences contribute to form the overall functional profile

of the set, such terms are not worthwhile investigating separately to see whether they

have any relation to the mesenchymal-epithelial transformation. This is based on the

reasoning that if a candidate set has a robust percentage of genes related to a significant
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term, then it should be picked up by Fatigo+ using the adjusted p-values every single

time, regardless of the random set we use.

Another observation is that both sets of genes contain many of the same significant

terms. There are 10 biological processes that are returned as significant in all five

comparisons for each of the two candidate sets. Approximately 40% of the genes in

both sets are annotated to Organ Morphogenesis [GO:0009887] . These, and several

other overlapping terms with similar values give a strong indication that both sets of

genes share some common functions.

With this hindsight, one explanation for why the comparisons using the co-expressed

genes as candidates versus the complementary genes as references failed to return us

any significant terms is, because both sets shared many of the same terms as proven

here via their functional profiles. Following up on this line of reasoning, the aforemen-

tioned comparisons also failed to pick up any of the five terms listed here as ’very likely

to be significant’ because either (1) their significance in smaller sets went undetected

by Fatigo+ after the adjusted p-values were considered, or/and (2) the significance of

these terms depend on what kind of set is used as reference.
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4.2 Biological Interpretation

This section, which was contributed almost unedited by Dr. Jonathan Bard (Depart-

ment of Biomedical Sciences, University of Edinburgh), shall highlight the biological

implications of the results we obtained from our intersection experiments.

The original reason for doing the project was that there was not enough literature

on mesenchyme-epithelial transitions available and there were no tools available to in-

vestigate the genes involved in this process. It was therefore not possible to assess what

genes might emerge from an analysis of GXD prior to developing the computational

tools. GXD, it should be said, is populated by assays on individual genes that have

interested individual researchers, and not by high-throughput data; hence it has only

sporadic coverage of transcriptomes, the sets of genes expressed by individual tissues

at particular stages (N.B. All background material is in [59]).

As a general observation, the data in GXD on genes involved in the mesenchyme-

epithelium transition turned out not to be as comprehensive as we had hoped. We had

looked for:

1. Common genes expressed before the transition – some were found.

2. Common genes expressed after the transition – only two were found.

3. Genes that needed to be switched off before development could take place. None

were necessarily expected and nothing of obvious interest emerged from the

analysis, but time has not permitted a full analysis of the results.

4. New genes produced as a result of transcriptional activity on the stage before

development – there were none.

The genes expressed just before the transition (1) fall into three interesting func-

tional classes:

• Signalling pathway proteins: It looks as if common genes include those involved

in the BMP (SMADs), wnt (Dll, DACT1, etc.) and notch-delta (jagged, dll, etc.)

pathways. There are also slight indications that the eph-ephrin pathway may

play a role. The notch-delta and eph-ephrin pathways require direct contact

between cells (a property of epithelial cells), the wnt pathway is very short range
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(a few cell diameters) while the BMP pathway is relatively long-range (tens of

cell diameters).

• Retinoic acid blocking protein: It is noticeable that cellular retinoic binding pro-

tein 1 (CRAPB1) is expressed in paraxial mesoderm, nephrons, early heart and

presumptive blood vessels. However, CRABP1 is very widely expressed during

early development. This protein seems to mop up retinoic acid, a potent activa-

tor, and stops it getting to the nucleus. One possibility is that retinoic acid may

block the mesenchyme-epithelium transition, but it is probably better to view

CRABP1 as a housekeeping gene.

• Transcription regulation proteins: This is a particularly important class of pro-

tein as it is responsible for the production of new proteins and hence for gen-

erating change. These proteins are therefore well represented in the database.

The subtraction analysis yielded the following Uniprot IDs as being commonly

represented:

– Q543E8 = Meox1

Meox1 was expressed in the early heart, presumptive blood vessels, somites

and mesonephric mesenchyme – its presence has not been looked for in

the early kidney or other potential tissues undergoing an mesenchymal-

epithelial transition.

– Q3UGA1 = Cited1 and Q6PGA9 = Cited2

Cited 1, 2 may well be involved in transcriptional regulation – they are

already known to be expressed in early heart, prevascular material and un-

segmented paraxial mesoderm, but there was no entry for metanephric me-

senchyme or mesonephros. A follow-up of this gene in PubMed showed

that [60] say that cited1 and cited2 are both expressed in cells about to un-

dergo an mesenchyme-epithelium conversion, but that their deletion has no

effect, presumably because of redundancy.

– Q8CCU9 = Lhx1

LHX1 is known to be expressed in prevascular material, the early heart,

the nephric duct and the mesonephros. It has not been reported either way

for paraxial mesoderm, and is not present in the metanephric mesenchyme

(MM), but is in the ureteric bud of the metanephros (the immediately adja-

cent tissue that interacts with the MM).
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The results as a whole show that the methodology works in principal, but that

there are too few genes currently in GXD for a full analysis to be done and that the

analysis produced, for the first time, a set of candidate transcriptional activators for the

mesenchyme-to-epithelium conversion.
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Discussion

The results returned in Sec. 4.1.3.4 show that genes co-expressed in three or more

Before sets of tissues have a distinctly different functional profile from the rest of the

genes found in these tissues. We established seven significant terms of the co-expressed

set and three for the complement set that are the strongest indicators for their respective

profiles. The universal characteristic of these terms is that they are all absent for either

one of the sets but always present for the other set. Six of the terms from the co-

expressed set are descendants of the node ’Developmental Process’, whereas only one

such term was found in the complement set.

5.1 Interpretation of Results

How these developmental processes are linked to the mesenchymal-epithelial process

is unclear. In this section we highlight issues that would be worthwhile investigating

further from a biological aspect. All percentages and p-values mentioned henceforth

are averages taken across all five comparisons.

5.1.1 Set of Co-expressed Genes

Compartment Specification [GO:0007386] is annotated to roughly 8% of our co-expressed

genes, the expected percentage from the random sets is less than 0.5%. GO defines the

term as:

60
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The regionalization process by which embryonic segments are divided into
compartments that will result in differences in cell differentiation.

The keyword ’regionalization’ here is itself another significant term, i.e. Regional-

ization [GO:0003002 ], that was common to both the co-expressed and complement

genes. Both terms are involved in cell differentiation, and defining the spaces or areas

of cells where this takes place. Since most of the cells in our Before tissues are in the

process of developing into more specialised tissues or organs, it is not surprising to

see Regionalization annotated in both sets. For example, this process would take place

in the yolk sac and mesoderm (two important tissues in our Before sets), where cells

are differentiating into more specific types of cells. More interestingly, Compartment

Specification is a grandchild of Regionalization linked by the is-a relation. Therefore

the former process is a more specialised instance of the latter. There are several other

less obvious cases where both sets are annotated to a more general process, whereas

only one of them is involved in a lower level related process.

Before we proceed to discuss the implications of the Compartment Specification

case, it is important to note that such occurrences are not because our sets of genes

happen to have multiple terms referring to the same process. We took every precaution

in our comparisons to ensure that such redundancy would not happen by taking only

the most specific processes possible in our table of ’non-redundant’ terms. Rather, this

phenomenon happens only when one set is linked to a less specific term, while the

other set is linked to a more specific term, in which case we have no choice but to

include both terms even if they are parent-child nodes because in this case the more

general term is not redundant since it indicates the lowest level of annotation for one

set.

When a term occurs with a very high frequency in one set as is the case of Com-

partment Specification, there are several inferences one can make:

1. There is one general biological process that is happening in all the tissues.

2. There are some co-expressed and non-co-expressed genes responsible for this

process (as shown by the functional profile table, cp. 4.3).

3. There is a more specific instance of this process that is happening in all the

tissues where the genes are co-expressed.
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4. Only co-expressed genes are responsible for this second process. (cp. 4.3)

In order to make these inferences, we assume that each set of intersected tissues has

a roughly equal number of genes with the annotation ’Regionalization’, this may not

necessarily be the case since our findings were based on combined sets of genes from

multiple tissues, thus we have no way of ascertaining which tissues the genes originate

from. This would be one point worth investigating in the future work. However, if our

assumption is true, then all four inferences are valid. We can then ask the question:

Is it possible that these co-expressed genes could also be related to the mesenchymal-

epithelial process, since we know that it is a biological process related to cell differ-

entiation, and our analysis has already proven that our set of genes are responsible for

one such process?

Formation of Primary Germ Layer [GO:0001704] is defined by GO as:

The formation of the ectoderm, mesoderm and endoderm during gastrula-
tion.

About 11% of the genes from our co-expressed set are linked to this term, whereas the

overall expected value is smaller than 0.5%. We know that mesenchymal cells are a

derivative of the mesoderm. At this point we do not know for sure whether the genes

responsible for the entire mesenchymal-epithelial transformation is responsible for the

entire process from start to beginning, or whether different genes are responsible for

different parts of it. Again, there are several questions worthwhile investigating:

• Is it possible that with our co-expressed set we have managed to isolate the genes

that are responsible for the first stage of the mesenchymal-epithelial transforma-

tion? Since none of the comparisons for the complement set returned this term,

there is probably a common set of genes responsible for this process.

• On the other hand, since the mesenchymal-epithelial process has not been docu-

mented in GO, could the same set of genes be responsible for both functions?

• If there is the same set of genes responsible for this function are being co-

expressed, and we have managed to capture this set in our intersections, is it

likely that the same intersections have also managed to capture the set responsi-

ble for mesenchymal-epithelial transformation?
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The same questions would also apply for Cell Fate Determination [GO:0001709].

Answering them would again require investigating the individual genes which were

annotated to this process, and tracing the tissues from which they were expressed from

our set of co-expressed genes. After doing this, the genes would have to be subject to

laboratory tests or curation from genome sources other than the GO in order to answer

the questions above.

5.1.2 Set of Complementary Genes

One important observation is that many of the significant terms found in the comple-

ment set contain the keyword (or derivatives of) ’epithelial’: Establishment and/or

Maintenance of Epithelial Cell Polarity [GO:0045197] , Epithelial Cell Differentia-

tion [GO:0030855], Morphogenesis of Embryonic Epithelium [GO:0016331]. There

is only one occurrence each for the first two terms, but Morphogenesis of Embryonic

Epithelium was detected in four out of five comparisons. GO defines it as:

The process by which the anatomical structures of embryonic epithelia are
generated and organized. Morphogenesis pertains to the creation of form.

The high frequency of these terms is generally not encouraging news for our investi-

gation, since we would have hoped to find they occur in our co-expressed set. Never-

theless we have to concede that in all cases, especially Morphogenesis of Embryonic

Epithelium, it would seem that these functions are highly related to the mesenchymal-

epithelial transformation. None of these terms were found across all five sets, although

four occurrences for the last term is still a high number, the fact that none of the com-

parisons for the co-expressed set returned any of these genes is also indicative that

more comparisons are likely to confirm that the set of complement genes are in fact

more functionally related to the terms than the co-expressed genes.

5.1.3 Conclusion

In conclusion, our findings are subject to a wide variety of questions based on conjec-

tures that need to be further investigated to provide any real answers. What we have es-

tablished is that our co-expressed set of genes are functionally different from the genes

which are not co-expressed. Amongst the functions exclusive to the co-expressed
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genes, a number of them are specialised instances of developmental processes. On the

other hand, functions that are exclusive only to the expressed genes include keywords

that are highly indicative of their relation to the epithelial-mesenchymal transforma-

tion.

5.2 Analysis of Problems

In this section, we will try to shed some light on the reasons why we obtained such

dissatisfying results. We hope to provide some insights that might help future research

to be more successful than the one at hand.

5.2.1 Lack of Data

Throughout the comparisons, we noted that many results returned lay just below the

accepted threshold for the adjusted p-value. Many annotations had values like 0.05

and 0.06 and are therefore rejected by Fatigo+. Unadjusted p-values were also far

better than their FDR adjusted counterparts.

Since many of our intersections contained only one, two or three genes, it is highly

unlikely that such sets will return any significant terms, regardless of the types of

reference sets we use. In rare cases where we managed to find any significant terms,

these same results were not reproducible using different random sets and therefore had

to be rejected as well. There are several explanations for our lack of data. The most

obvious reason is that the GXD tables we use do not contain high throughput data.

Thus the number of genes we obtain even before intersections are very small to begin

with. Annotation analysis tools like Fatigo+ are mainly designed with high throughput

data in mind, thus our candidate sets are not large enough to withstand the statistical

tests of such tools.

A second contributing factor is due to the low number of tissues in some of our

developmental processes. For example, there is only one After tissue in our set for

Nephric Duct. Therefore some of our pre-intersection sets consist of only 10 genes or

less. The size of intersection are dependent on the sizes of the sets involved. At best,

an intersection can only return as many genes as there are in the smallest set.
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5.2.2 Weaknesses of the Functional Profile Approach

Our findings are primarily based on the functional profiles of the co-expressed genes

and the complement genes. There are several inherent disadvantages of this compari-

son. Firstly, the functional profiles do not tell us which tissues the genes are originating

from. For instance, we only know that the nature of the sets are either ’co-expressed’

or ’not co-expressed’. In the case of the former, we also combined intersections of

three and four in the same list. Therefore, our comparison fails to make a distinction

between co-expressed genes in three and four tissues respectively.

Secondly, the data in this kind of set can lead to misleading conclusions. For exam-

ple, the comparison shows that 40% of the genes are related to Organ Morphogenesis.

This does not necessarily mean 40% of genes in each and every different set of tissues

have the annotation. It could be the case that the bulk of the 40% were contributed

from one set. The problem is not so easily missed in the case of our co-expression sets,

where we know that each gene must occur in three tissues at the very least. However

it is especially hard to detect in the case of our complement sets, where each gene is

expressed in at most two tissues. Thus it is difficult to make inferences that rely on

such ’universal’ judgements of the tissues. More investigation needs to be done in this

area, which shall be discussed in the future work section.

5.2.3 Relying on the Gene Ontology

The biggest challenge we faced with trying to relate significant terms to the mesenchymal-

epithelial process hinged on the fact that we were only relying on the Gene Ontology

for information. As discussed in the Sec. 2.2, we know that the GO does not have any

consistent documentation of how terms are derived and related to each other. Inter-

esting annotations may have went undetected in the generic pool of non-outstanding

terms.

Furthermore, it is difficult to pinpoint any one branch of biological process where

our process of interest is most likely to occur, other than determining that any pro-

cess falling under Level 4, Developmental Process is a ’preferable’ indication. This

problem is compounded by the fact that the process of interest is common to so many

different types of tissues. As a result, our comparisons returned annotations situated in
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a variety of branches that are related to different locations, such as the heart, kidney,

more specific ones like blood vessels, and even highly unlikely places like the brain,

teeth and skeleton.

At this point, one may pose the question: Is it correct to discount significant terms

like Skeletal Development and Lung Development as having absolutely no relation to

the set of genes we are interested in locating? Although one could argue that it is

highly unlikely that the same gene responsible for transforming mesenchymal cells to

epithelium could also be performing other biological processes that are so radically

different, ultimately one cannot prove this unless supported by laboratory evidence.

Apart from referring to the definitions of each term provided by the Gene Ontology,

we did not have any other reliable source of data to guide us in this aspect.

5.3 Future Work

In this section we propose several tasks that can be undertaken to improve the validity

of our results so that more robust interpretations and inferences can be made from our

data.

5.3.1 Relation of Mesenchymal-Epithelial Transformation to the Sig-

nificant Terms

First of all, we need to establish a systematic method for determining whether an ex-

isting GO term is related to the mesenchymal-epithelial transformation. At this point,

we are relying on the occurrences of certain keywords, or a very rudimentary under-

standing of the process to infer any possible relations. Without any proper knowledge

or research in the area, such a method is subject to a lot of speculation, and is clearly

not suitable for objective evaluation.

Since the mesenchymal-epithelial transformation has not been documented per se

in GO, and since the genes that are responsible for this process have not been iden-

tified, it would be highly unlikely that any annotation-based analysis that relies on

the curation of literature would be helpful in this aspect. The most effective method

would be a manual assessment of each term by an informed biological expert. If the
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task of relating mesenchymal-epithelial function to existing GO terms is achievable,

it would also be desirable to set a scale of such ’relatedness’ so that further statistical

tests can utilise this scale to rate the desirability of each term in relation to our process

of interest.

5.3.2 De-Constructing the Functional Profile

Because we combined all our intersections for this comparison, certain inferences that

were made in the discussion can only be validated by performing various traces on our

results. In order to answer questions like ’Is it true that 40% of the genes expressed in

every individual sets of tissues (i.e. Angiogenesis, Cardiac Endothelium, Somites etc.)

are related Organ Morphogenesis?’, we need to reverse engineer the procedures used

to obtain our functional profiles so that we can trace the results of each comparison

back to their source of data.

In order to do this, we need to systematically trace each significant term back to

its source. The first step is to find, for each significant term, all the genes that are

actually annotated with it. After this, for each gene, we record the set or sets of tissues

where they were expressed. We can then combine these two aspects of information to

give us a more accurate functional view of each intersection. It would be interesting

to find out whether the functional profile of individual properties are correlated to the

overall functional profile we already have. This is probably more likely for the larger

intersections but may not always be the case for smaller intersections.

5.4 Critical Assessment

Statistically the hypothesis clearly needs to be rejected for each individual intersec-

tion as we did not obtain any significant terms in most cases. Our functional profiles,

however, managed to prove that the genes obtained from our intersections are signifi-

cantly different in overall function than genes not included in the intersections. A large

portion of the differing functions are instances of developmental processes.

Overall, we failed to establish a strong relationship between the intersections and

the mesenchymal-epithelial transformation. Although we managed to find several in-
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teresting aspects in our results both from a computational analysis and a biological

assessment, the evidence presented in both instances were not solid enough to validate

our hypothesis.

This project has managed to raise several issues related to the mesenchymal-epithelial

transformation that could be worth further investigation. Several candidate genes for

the process were also identified.



Appendix A

The Mouse Genome Intersector Tool

In this chapter, we shall give a few more details about the program implemented. We
start with giving UML class diagrams of the two packages, Mouse and MouseGui,
that the tool consists of, continue with a list of SQL queries used by the program and
conclude with a small selection of screenshots which provide a short walk-through of
the program’s graphical user interface (GUI).

A.1 Complete UML Class Diagrams

We have earlier presented a massively simplified version of the UML class diagram in
Figure 3.3. For the sake of conciseness, this had been crucially truncated and, on the
other hand, a few additional links had been invented to clarify the mutual dependencies
of the individual classes. For completeness, we now present the entire class diagram
of the Mouse package, as well as a more detailed version of the class diagram for the
MouseGui package.

Figure A.1 shows the complete UML class diagram of the Mouse package of the
software. This package holds all the underlying logic for the operations on gene
sets performed using the GUI, i.e. it provides a container for storing distinct Genes
(Cassette), a higher level container storing two lists of Cassettes for Before and Af-
ter structures, namely BeforeAfterCassette, and another high level container, called
IntersectionCassette, which is used to compute the intersections of (other) cas-
settes while remembering where the intersected genes came from. The IntersectionSet
class is used to calculate all possible permutations of intersection of N tissues and store
the results of each of them.

Figure A.2 shows a slightly simplified version of the UML class diagram of the
MouseGui package. Unfortunately, due to the vast amount of variables and methods
that happen to occur with GUI’s, we again had to concede to leave out a few less im-
portant classes and methods. Consequently, some irrelevant classes (small dialogues,
help, ...) and purely GUI-related methods and fields (buttons, labels, event handlers,
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...) have been dropped for the sake of clarity. The whole GUI is built around the
MouseMainWindow class, from which several other windows can be opened according
to which state of the analysis process the program is in at the moment.
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Figure A.1: UML Class Diagram of the Mouse package.
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Figure A.2: Simplified UML Class Diagram of the MouseGui package.
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A.2 SQL Queries

The whole program actually uses only three different queries for the interaction with
the GXD database. The first one is used to create a map of child/parent relations be-
tween biological structures in the database, for quicker accessibility of the tree brows-
ing feature later on:

SELECT _Structure_key, _Parent_key, printName, edinburghKey
FROM GXD_Structure

The second query is employed to select the root node of the tree corresponding to
the stage which has been selected in the GUI (the question mark (?) in the code will
be dynamically replaced with the key of the stage in question):

SELECT _Structure_key
FROM GXD_Structure
WHERE _Stage_key = ? AND _Parent_key IS NULL

The third query is used to actually retrieve the the genes expressed in a certain
structure. Note that – again – the question mark (?) will be replaced dynamically
by the key of the structure in question. Furthermore, this query will be recursively
repeated for all the structure’s children in order to find all genes expressed (some genes
have only been identified in substructures, but are hence also expressed in the parent
structures).

SELECT MAX(a.accID)
FROM

MRK_Mouse_View m,
ACC_Accession a,
GXD_Expression e,
GXD_Structure s

WHERE
m._Marker_key = a._Object_key AND
a._MGIType_key = 2 AND
a._LogicalDB_key in (13, 41, 1) AND
a.preferred = 1 AND
a._Object_key = e._Marker_key AND
e.expressed = 1 AND
e._Structure_key = s._Structure_key AND
s._Structure_key = ? AND
NOT EXISTS
(SELECT 1
FROM GXD_AlleleGenotype g
WHERE e._Genotype_key = g._Genotype_key
)

GROUP BY a._Object_key
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A.3 Screenshots

The following screenshots are taken at several stages during a typical analysis run us-
ing the Mouse Genome Intersector tool. The fully functional tool as well as the source
code is available from the author on request.

Figure A.3: MainWindow: Once the user starts the program he will be brought to this
window. The user can now choose between loading an existing project or creating a
new one by adding adding tissues to the empty project. Of course, he may save his
progress at any stage. The user can change the properties of all the individual datasets
on a global level by choosing the methods used for intersecting gene cassettes and
applying the changes to all tissues in the current project. It is also possible to update the
structures and genes in the project with most up-to-date values from the GXD database
by just a few clicks.
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Figure A.4: DatasetDetails and DatasetDetailsOptions: This window represents
the basic interface for adding new or modifying existing tissues. The user can browse
the EMAP ontology for structure terms and add the corresponding gene cassettes to
either the Before or After tissues. Alternatively, the user may choose to enter only
one list of cassettes by setting the BeforeAfterCassette to be a ’structure’ (rather than a
’process’). It is also possible to change the intersection methods used for this dataset in
an advanced options dialogue. Note, how the currently selected methods are displayed
in the lower left part of the window. Worthwhile mentioning, the gene list on the right is
updated on-the-fly with every cassette or option changed in the process.
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Figure A.5: DatasetDetailsHelp: Since we realized that the different options for
Within- and Between-Group methods can be rather confusing, we also added a small
help dialogue which summarizes the differences between the different options. This
dialogue can be accessed from the DatasetDetails window (cp. Fig. A.4).
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Figure A.6: DisplayResults: Once the user has added all datasets his is interested in,
he can click the button labelled ’Do Intersections’ in the main window, to be forwarded
to this window. In a table, the results of all possible permutations of intersections be-
tween the selected datasets are displayed. It is possible to sort the results according to
different criteria (arguably most useful, by the number of tissues intersected or by the
number of genes in the intersection). The user can select to save individual results to
text files, remove uninteresting rows from the table or to display a special report form
contrasting the results from a number of selected rows (cp. Fig. A.7).
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Figure A.7: ContrastReport (incl. ContrastDataset): This window provides a con-
cise overview over a number of selected results. The datasets involved are briefly sum-
marized in the upper part of the window and below we find a table with each columns
corresponding to one intersection and each row corresponding to one gene. This report
can also be saved to a text file.



Appendix B

Full List of Experimental Results

In this chapter, a comprehensive overview about all genes found in the different stages
of our analysis shall be given. The interested reader may study the lists himself and
draw his own conclusions. In summary, we have studied genes in four different set-
tings:

• Genes that are expressed in Before structures (Tab. B.1).

• Genes that are expressed in After structures (Tab. B.3).

• Genes that are turned off during the process, i.e. that are expressed in Before,
but not expressed in After (Tab. B.5).

• Genes that are turned on during the process, i.e. that are not expressed in Before,
but expressed in After (Tab. B.7).

In each of these scenarios, we then looked at all possible intersections of three or more
of the gene lists and recorded all non-empty gene sets found (Tbl. B.2, B.4, B.6).
There were no genes found in any of these intersections for genes that turn on during
the process!

For the sake of conciseness, we will abbreviate the full tissue names in the fol-
lowing in some places. The abbreviations used are: A = Angiogenesis, C = Cardiac
Endothelium, M = Mesonephric Tubules, N = Nephrons, Nd = Nephric Duct and S =
Somites.
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Table B.1: This table lists all genes expressed in the Before structures of the individual tissues. Note that
Angiogenesis and Cardiac Endothelium share the same Before structures and hence express exactly the
same genes (yet the order is different due to random processes involved in data retrieval). Furthermore,
genes which have been tagged as ’unknown’ by Fatigo+ have been marked with an asterisk.

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q99MK8 Q99MK8 Q80X37 P19091 Q04744 Q8CCU9
Q497W8 Q497W8 Q6P071 Q9QWQ1 P48540 Q543E8
Q3ULR1 Q3ULR1 P22935 Q9QWR9 Q8BM75 Q3UY25
Q8CCE0 Q8CCE0 Q9R1A2 Q61850 Q8CCU9 Q9WVG7
P18111 P18111 Q8BNI8 Q3UQJ4 P97766 Q9QWR9
P02463 P02463 Q9R2A7∗ Q3TWK8 Q61850
Q542N0 Q542N0 Q8K428 P31310 Q8BSP4
P15656 P15656 Q4FK48 P31311 Q8R4A3
Q9R1A2 Q9R1A2 Q5SDA2 Q496Q8∗ Q8BM75
Q5BJ23 Q5BJ23 Q543E8 Q8BZY5
Q8BNY0 Q8BNY0 Q6PFV7 P31313
Q8VI87 Q8VI87 Q8BSB3 Q08624
P82976 P82976 Q08EF2 P32043
Q3UUJ3 Q3UUJ3 Q99KA8 Q543H4
Q02591 Q02591 Q8C5P2 Q8BQA3
Q9R1X2 Q9R1X2 Q9CRD0 P09633
Q8BNI8 Q8BNI8 Q9EPZ6 P28359
P02831 P02831 Q80U19 P23813
Q61681 Q61681 Q8BZA0 Q8BSN0
Q3ZAX9∗ Q3ZAX9∗ Q58EU7 Q8VHP0
P09632 P09632 Q9WUL2∗ Q3U1N3
Q8BV11∗ Q8BV11∗ Q60756 Q62438
Q3UJB6 Q3UJB6 Q499J8 Q8C2P1
Q8VCD0 Q8VCD0 P70658 Q8CC31
Q9CRX6 Q9CRX6 Q6R5E9 O55222
Q6P8P3 Q6P8P3 O55233 Q9Z0Y6
Q9EQ12 Q9EQ12 Q6PGA9 Q9ER74
Q9R2A7∗ Q9R2A7∗ Q3UGA1 Q9CTF6
Q925V3 Q925V3 Q61553 Q920C1
Q8K428 Q8K428 Q8R4A3 Q9R0R2
Q8VD35 Q8VD35 Q9DBB1 Q3KQI1∗

Q9CU96 Q9CU96 Q8BKG3 Q6P071
Q8CGH8 Q8CGH8 Q9CWM2 Q9WVF5
Q9CY80 Q9CY80 Q7TS73 Q9R1A2
Q8C765 Q8C765 Q8CAT6 Q9CZD6
Q4FK48 Q4FK48 Q3ZAX9∗ Q5BLJ8
Q78ZW9 Q78ZW9 Q8BV11∗ Q91ZN8
Q7TQ06 Q7TQ06 Q6GTZ3 Q199A7
P26687 P26687 Q9Z197 Q80ZS9
Q8VCV6 Q8VCV6 Q91YX2 Q62219
Q3UMZ6 Q3UMZ6 Q922Z8 P23359
Q80ZL6 Q80ZL6 Q3UMZ6 Q8VIK0
Q8CCU9 Q8CCU9 Q8BSP4 P48540
P19137 P19137 Q3V1C5 Q9Z1W4
Q8K1X3∗ Q8K1X3∗ Q68EF7 Q80UW0
P20263∗ P20263∗ Q9QZX5∗ Q925H1
Q5SDA2 Q5SDA2 Q9D7K8 Q6AZB0
Q543E8 Q543E8 Q9CXC9 Q6PCX9
P23359 P23359 Q62392 Q6PAS4
Q5SRD8 Q5SRD8 Q9Z2C5 Q8CD68
Q9WUL2∗ Q9WUL2∗ Q6PEB3 Q3ULR1
Q80TC1 Q80TC1 Q6PFZ9 Q3UNK5
Q6PFV7 Q6PFV7 Q80UL5 Q6PFV7
Q60756 Q60756 Q9QX13 Q811W8
Q9DCA0 Q9DCA0 Q9WV93 O35253
P51655 P51655 Q9QXV8 Q8BUN5
Q8BSB3 Q8BSB3 Q9JLL3 Q9CRR7∗

Q3UQH0 Q3UQH0 Q9JLF7∗ Q80ZV9
Q923Z1 Q923Z1 Q9R205 Q9JIW5
Q62318 Q62318 Q9JHX2 Q8CDB8
P97766 P97766 Q9EQW1 Q91ZD6
Q8CC31 Q8CC31 Q8BHS3 Q99LS8
P70658 P70658 Q9CZM1∗ Q99J48



Appendix B. Full List of Experimental Results 81

Table B.1: Expressed genes in Before structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q8BTM5 Q8BTM5 Q8R3I2 O09009
Q9QXX0 Q9QXX0 Q8K0C8 Q3UPI0
Q8R381 Q8R381 Q99J68
Q9D7K8 Q9D7K8 Q9CYI8
Q99KA8 Q99KA8 Q91ZJ5
Q91VZ3∗ Q91VZ3∗ Q91WG3
O55127 O55127 Q9QX46
Q9CXC9 Q9CXC9 Q8BQI5
Q3UND5 Q3UND5 Q99K36
Q80UL7 Q80UL7 Q8BNY0
O55233 O55233 P47856
Q9JJL1 Q9JJL1 Q4L141∗

Q9EQM2 Q9EQM2 Q8BS81
Q6PFZ9 Q6PFZ9 Q99LA0
Q544L3 Q544L3 Q9JL41∗

Q8R5G0 Q8R5G0 P49817
Q6PGA9 Q6PGA9 Q9DCR3
Q9Z0E2 Q9Z0E2 Q8C313
Q9R1X4 Q9R1X4 Q80WX0∗

Q80UL5 Q80UL5 Q9CU49
Q3UGA1 Q3UGA1 Q3UUM9
Q61271 Q61271 Q62318
Q9WVC6 Q9WVC6 Q8C4U3
Q8K0H5 Q8K0H5 P97401
Q60688 Q60688 Q80UF3
Q61583 Q61583 Q71V68
Q9QXP9 Q9QXP9 Q9QXX0
Q3V1F2 Q3V1F2 Q544L9
Q9WUI0 Q9WUI0 O08574
Q9QXN0 Q9QXN0 Q3UND5
Q9Z0Z7 Q9Z0Z7 Q922L1
Q8R357 Q8R357 Q8BSU4
Q9JI57 Q9JI57 Q9QZR5
Q8R4A3 Q8R4A3 Q9WVM0
Q9JHX2 Q9JHX2 Q8VCN8∗

Q8R044∗ Q8R044∗ Q9QXV9
Q80U19 Q80U19 Q9WTP2
Q91XQ5 Q91XQ5 Q9R001
Q9ESD2 Q9ESD2 Q9QWR9
Q8QZV2 Q8QZV2 Q61850
Q6P071 Q61639 Q9Z138
Q8QZY0 P09631 Q9ER74
Q91YX2 P09633 Q9WTK0
Q8BS64 Q545I7 Q9DC72
Q5U3K8 Q5EEX1 Q9D1X9
Q64280 Q9QUM0 Q8BKT2
Q8C5P2 Q6LEB3 Q91YE5
Q61080 Q8CCN5 Q80SY4
Q9ES03 Q8BLF7 Q7TMY7
P57785 P14246 Q811G8
Q921T1 Q9CRR7∗ Q80TF3
Q544Z2 Q9QXT5 Q99LW6
Q9D2A8 Q922E0 Q8CGH8
Q3U223 Q544Z2 O55003
Q9JKQ8 Q3ULW0 Q5SQB3
Q60636 Q920W1 Q8BSS2
Q7TMX8 Q9D8L6
P17439 Q6P071
Q9R1L3 Q8QZY0
Q9CZK5 Q91YX2
Q9R2A1 Q8BS64
Q9QUM0 Q5U3K8
Q5SQP3 Q64280
Q925F5∗ Q8C5P2
Q922E0 Q61080
Q8VIL9∗ Q9ES03
Q9JK33 P57785
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Table B.1: Expressed genes in Before structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q543R9 Q921T1
MGI:106910∗ Q9D2A8
Q9CRR7∗ Q3U223
Q9D5V4 Q9JKQ8
Q91X98 Q60636
Q9Z1Z8 Q7TMX8
Q3KP84 P17439
Q61639 Q9R1L3
P09631 Q9CZK5
P09633 Q9R2A1
Q545I7 Q5SQP3
Q5EEX1 Q925F5∗

Q6LEB3 Q8VIL9∗

Q8CCN5 Q9JK33
Q8BLF7 Q543R9
P14246 MGI:106910∗

Q9QXT5 Q9D5V4
Q3ULW0 Q91X98
Q920W1 Q9Z1Z8
Q9D8L6 Q3KP84
150 150 119 65 5 9

Table B.2: The table lists all possible intersections of three or more of the gene lists in Tbl. B.1. Note, that
the list of genes for Angiogenesis (A) and Cardiac Endothelium (C) in the Before structures was identical,
hence many of the intersections were redundant and have been left out in this table. Furthermore, genes
which have been tagged as ’unknown’ by Fatigo+ have been marked with an asterisk.

A∩C∩M∩S A ∩C ∩ M ∩
Nd

A∩C∩N∩S A∩C∩Nd A∩C∩S A∩C∩M A∩C∩N M∩N∩S

Q543E8 Q8CCU9 Q6P071 Q8CCU9 Q6P071 Q8CCU9 P09633 Q9QWR9
Q8R4A3 Q9R1A2 P97766 Q9R1A2 Q543E8 Q8CC31 Q61850

Q6PFV7 Q8BNI8 Q8R4A3 Q6P071
Q9R2A7∗ Q9R1A2
Q8K428 P23359
Q4FK48 Q3ULR1
Q5SDA2 Q6PFV7
Q543E8 Q9CRR7∗

Q6PFV7
Q8BSB3
Q99KA8
Q8C5P2
Q80U19
Q9WUL2∗

Q60756
P70658
O55233
Q6PGA9
Q3UGA1
Q8R4A3
Q3ZAX9∗

Q8BV11∗

Q91YX2
Q3UMZ6
Q9D7K8
Q9CXC9
Q6PFZ9
Q80UL5
Q9JHX2
Q8BNY0
Q62318
Q9QXX0
Q3UND5
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Table B.2: Intersections of expressed genes in Before structures (cont.)

A∩C∩M∩S A ∩C ∩ M ∩
Nd

A∩C∩N∩S A∩C∩Nd A∩C∩S A∩C∩M A∩C∩N M∩N∩S

Q8CGH8
2 1 3 2 34 3 8 2

Table B.3: This table lists all genes expressed in the After structures of the individual tissues. Furthermore,
genes which have been tagged as ’unknown’ by Fatigo+ have been marked with an asterisk.

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q544Z2 Q8VI87 Q80X37 P31310 Q04744 P18111
Q60753 Q921T1 P18111 P31311 Q8BNI8 Q8BM75
Q61614 Q9QVP4 Q5BJ23 P09631 Q3ZAX9∗

Q8C2P1 Q9R074 Q9Z1Z8 P09023 Q8VHP0
Q61824 Q8BS64 Q9CT20 P32043 Q8C8Q7
Q8C6E4 Q80UL7 Q8BNI8 P28359 Q8CCU9
Q3UQJ4 Q9CWL2 Q9R2A7∗ P10628 Q3UTY8
Q9Z1Z8 Q3UGA1 Q9CU96 Q3UMQ3 Q9QWR9
Q71V84 Q8CJ69 Q8CGH8 Q8R1P3 Q9DCI0
Q8VCD0 Q3UNK5 Q3UTY8 Q3V0Z9 Q80TF3
Q922E0 Q925V3 Q544Z2 Q8C2P1
Q9D7K8 Q8BLK4 Q543E8 Q8CC31
Q9CRD0 Q61272 Q60756 Q923S6
Q9QXT5 Q9CXK3 Q8R381 Q9ER74
Q9R1X2 Q8VCD0 Q9WV08 Q8K428
Q91XQ5 Q3KP84 Q9QXN0 Q6PCM9
Q8VI87 P19123 Q61553 Q99L24
Q80UL5 Q6ZWX2 Q9ER74 Q6PFV7
Q9WV08 Q8VHX6 Q9JHX2 Q7TQI8
Q8BM75 Q9ES03 Q80U19 Q08EF2
Q8R4A3 Q99MV5 Q9R1A2 Q9QXX0
Q0PHV7∗ Q99K17 Q8BNY0 Q9WV93
Q3U223 Q922E0 P47806 Q9DBX7
Q9EPN2 Q3UE22 Q3UJB6 Q9D1D6
Q6GUA3 Q9D7K8 Q923F4 Q6PCX9
Q3ULR1 MGI:1344335∗ Q8K428 Q61045
Q8BHZ7 Q9D2T3 Q8K4Q2 Q199A7

Q99KE3 Q9CZK7 Q91ZD6
Q921D9 Q4FK48 Q9D586

Q921T1 Q99MU3
Q80TC1 Q9QZM3
Q6PFV7 Q920W1
Q61115 Q62433
Q9D2N4 O35437
Q7TNN4
Q3UZ96
Q6R5E9
Q3UGA1
Q3UY25
Q9QWR9
Q61850
Q3V1F2
Q80UW0
Q9JI57
Q8BTF1
Q8BKG3
Q8BM75
Q08EF2
Q9EPZ6
Q8BYL5
P02831
Q9CXK3
Q8CCE0
Q6P071
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Table B.3: Genes expressed in After structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q9ESV5∗

P12979
Q5BLJ8
Q8CFN5∗

Q8BSB3
Q78DU3
O35392
MGI:2443183
Q496Q8∗

Q58EU7
Q9WUL2∗

Q8C2P1
O55233
Q6PGA9
Q3ULW0
Q61477
Q9JII6
Q8CD62
Q8CF69
Q3ZAX9∗

Q61685
Q6TDG5∗

Q80ZL6
Q8BSP4
Q9QXA3
Q9JLL0
Q8R4A3
Q9EQW1
Q8BHZ7
Q91XQ5
Q5SYC7
Q8BZA0
Q0PHV7∗

Q61272
Q60636
Q9D748
Q3URE6
Q3UBP0
Q9QX46
Q8BSI9
P39061
Q99LW4
Q3USF7
Q99K36
Q542N0
Q8C399
P47856
P10284
P09024
Q8BQ25
Q4L141∗

Q6Q533
Q8VHZ2
Q7TPG3
Q8BS81
Q99LA0
Q9Z2D6
Q9JL41∗

P49817
Q62219
Q9DCR3
Q8C313
Q3V1C5
P52955
Q499J8
Q5SSV4
Q60753
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Table B.3: Genes expressed in After structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q80WX0∗

Q9CU49
Q62318
Q99KF3
P97401
Q80UF3
Q71V68
Q9QXX0
O08574
Q3UND5
Q922L1
O35085
Q3TV22
Q9QZR5
Q9D8U0
Q545G3
Q9WVM0
Q8VCN8∗

Q3U8E7
Q8C5P2
Q9WTS6
Q9CS91
Q3UMW5
Q4VBC9
Q9JLL3
Q9R0R4
Q9WUZ7
Q9WTK0
Q9CS81
Q9DBB1
Q9CRD0
Q9D1D6
Q7TQ32
Q7TT16
Q9EPK5
Q8BGT1
Q9D8G2
Q9DC72
Q8BKT2
Q8R3I6
Q9ESD2
Q91YE5
Q6AZB0
Q8CCN5
Q6T264
Q8R0M1
Q7TMY7
Q8QZV2
Q811G8
Q68BG2
MGI:2183691∗

P10628
P09632
Q8BQA3
Q9CUQ8
Q3TYD9
Q80YP5
Q8CC06
Q545G1
Q8C6B1
Q61045
Q3UUM9
Q8C4U3
Q640N1
O08665
Q9JHE6
Q6NZL8
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Table B.3: Genes expressed in After structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q8BIA3
Q66PY1
P28481
Q99M23
Q9CXC9
Q8BG74
Q9ERH7
Q3U223
Q9Z0F1
P31311
Q8BV11∗

P51655
Q8QZY9
Q9QXV8
Q9WVF2
Q811E4
Q8JZL1
Q3TZM2
Q9ERF6
Q8BYL6
Q99LW6
Q8BQ62
Q9JJY2
Q6DI71∗

Q543H4
P09633
Q3UMQ3
Q05DD2∗

Q3UVH8
Q6P6L3
P54823
Q61809
Q8C2A8
Q9EQW7
Q80VZ1
Q3UZB9
Q9JLL4∗

O88876
Q62433
Q9WTP2
Q9Z1S5
MGI:1861674∗

Q9QZ26
Q99N11
Q9JM62
Q9CWM2
Q8CFG0
Q8K1S7
Q99N43
Q8K350
Q8C4C4
Q9DBJ9
Q3TZE7
P22935
P82976
Q8C9K1
Q9JL91
Q99LS8
Q9D6N4
P26687
Q9D080
Q8R228
Q8K3G6
Q76LY2
Q8VHX6
Q3ZAZ1
Q61824
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Table B.3: Genes expressed in After structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q6NXW7
Q99LQ5
Q9Z139
Q9Z138
Q9R0G8
Q9JLI1
Q9JJZ5
Q9ERP3
Q99PV5
Q571J2
Q6P5N9
Q61080
Q8CJ69
Q8BYQ8
Q8BMD9
Q8BLU0
Q3UYE4
Q9JI91
Q99N13
Q78TF3
Q60932
Q9QZX5∗

Q9Z0Z7
Q9CZP5
Q8K2P6
Q61321
Q9QX23
Q9DC41
Q8VHX3∗

Q0VEJ7
Q9CZ19
Q6PCW9∗

Q91YX2
Q05DE6∗

Q8BRJ5
Q8C6B5
Q62232
Q8C766
Q9Z2G6
Q8VHZ3
Q9QXV9
Q8BSS2
Q8CFR7
Q9D677
Q8BZ84
Q9EPR5
Q9JKB3
Q8R419
Q8CJG1
Q8R3Q7
Q8CJF9
MGI:2676881∗

Q3KP84
Q8R145
Q9CUZ5
Q9D030
Q80W09
Q80UF6
Q9WUU4
Q9JKV7
Q8CGN4∗

P23813
P70217
P70323
Q810F8
Q8BSF9
Q921F1
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Table B.3: Genes expressed in After structures (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q80TF3
P97938
Q8C7A7
P09631
Q3TX21
O70373∗

Q9D9B2
O55127

27 29 331 34 10 2

Table B.4: The table lists all possible intersections of three or more of the gene lists in Tbl. B.3.

A∩M∩S A∩N∩S
Q8BM75 Q8C2P1
1 1

Table B.5: The table lists the UniProt ID’s (or the MGI Accession Key, if there is no UniProt ID available) of
all genes that were expressed in the Before structures, but have turned off in the After structures.

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q99MK8 Q99MK8 Q5SDA2 P19091 P48540
Q497W8 Q497W8 Q99KA8 Q9QWQ1 Q8BM75
Q8CCE0 Q3ULR1 P70658 Q9QWR9 P97766
P18111 Q8CCE0 Q7TS73 Q61850
P02463 P18111 Q8CAT6 Q3UQJ4
Q542N0 P02463 Q6GTZ3 Q3TWK8
P15656 Q542N0 Q9Z197 Q496Q8∗

Q9R1A2 P15656 Q922Z8 Q8BZY5
Q5BJ23 Q9R1A2 Q3UMZ6 P31313
Q8BNY0 Q5BJ23 Q68EF7 Q08624
P82976 Q8BNY0 Q9D7K8 Q543H4
Q3UUJ3 P82976 Q62392 Q8BQA3
Q02591 Q3UUJ3 Q9Z2C5 P09633
Q8BNI8 Q02591 Q6PEB3 P23813
P02831 Q9R1X2 Q6PFZ9 Q8BSN0
Q61681 Q8BNI8 Q80UL5 Q8VHP0
Q3ZAX9∗ P02831 Q9QX13 Q3U1N3
P09632 Q61681 Q9WV93 Q62438
Q8BV11∗ Q3ZAX9∗ Q9JLF7∗ O55222
Q3UJB6 P09632 Q9R205 Q9Z0Y6
Q9CRX6 Q8BV11∗ Q8BHS3 Q9CTF6
Q6P8P3 Q3UJB6 Q9CZM1∗ Q920C1
Q9EQ12 Q9CRX6 Q8R3I2 Q9R0R2
Q9R2A7∗ Q6P8P3 Q8K0C8 Q3KQI1∗

Q925V3 Q9EQ12 Q99J68 Q6P071
Q8K428 Q9R2A7∗ Q9CYI8 Q9WVF5
Q8VD35 Q8K428 Q91ZJ5 Q9R1A2
Q9CU96 Q8VD35 Q91WG3 Q9CZD6
Q8CGH8 Q9CU96 Q8BQI5 Q5BLJ8
Q9CY80 Q8CGH8 Q544L9 Q91ZN8
Q8C765 Q9CY80 Q8BSU4 Q80ZS9
Q4FK48 Q8C765 Q9R001 Q62219
Q78ZW9 Q4FK48 Q9D1X9 P23359
Q7TQ06 Q78ZW9 Q80SY4 Q8VIK0
P26687 Q7TQ06 O55003 P48540
Q8VCV6 P26687 Q5SQB3 Q9Z1W4
Q3UMZ6 Q8VCV6 Q80UW0
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Table B.5: Genes that turn off during the processes (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q80ZL6 Q3UMZ6 Q925H1
Q8CCU9 Q80ZL6 Q6AZB0
P19137 Q8CCU9 Q6PAS4
Q8K1X3∗ P19137 Q8CD68
P20263∗ Q8K1X3∗ Q3ULR1
Q5SDA2 P20263∗ Q3UNK5
Q543E8 Q5SDA2 Q811W8
P23359 Q543E8 O35253
Q5SRD8 P23359 Q8BUN5
Q9WUL2∗ Q5SRD8 Q9CRR7∗

Q80TC1 Q9WUL2∗ Q80ZV9
Q6PFV7 Q80TC1 Q9JIW5
Q60756 Q6PFV7 Q8CDB8
Q9DCA0 Q60756 Q99LS8
P51655 Q9DCA0 Q99J48
Q8BSB3 P51655 O09009
Q3UQH0 Q8BSB3 Q3UPI0
Q923Z1 Q3UQH0
Q62318 Q923Z1
P97766 Q62318
Q8CC31 P97766
P70658 Q8CC31
Q8BTM5 P70658
Q9QXX0 Q8BTM5
Q8R381 Q9QXX0
Q99KA8 Q8R381
Q91VZ3∗ Q99KA8
O55127 Q91VZ3∗

Q9CXC9 O55127
Q3UND5 Q9CXC9
Q80UL7 Q3UND5
O55233 O55233
Q9JJL1 Q9JJL1
Q9EQM2 Q9EQM2
Q6PFZ9 Q6PFZ9
Q544L3 Q544L3
Q8R5G0 Q8R5G0
Q6PGA9 Q6PGA9
Q9Z0E2 Q9Z0E2
Q9R1X4 Q9R1X4
Q3UGA1 Q80UL5
Q61271 Q61271
Q9WVC6 Q9WVC6
Q8K0H5 Q8K0H5
Q60688 Q60688
Q61583 Q61583
Q9QXP9 Q9QXP9
Q3V1F2 Q3V1F2
Q9WUI0 Q9WUI0
Q9QXN0 Q9QXN0
Q9Z0Z7 Q9Z0Z7
Q8R357 Q8R357
Q9JI57 Q9JI57
Q9JHX2 Q8R4A3
Q8R044∗ Q9JHX2
Q80U19 Q8R044∗

Q9ESD2 Q80U19
Q8QZV2 Q91XQ5
Q6P071 Q9ESD2
Q8QZY0 Q8QZV2
Q91YX2 Q61639
Q8BS64 P09631
Q5U3K8 P09633
Q64280 Q545I7
Q8C5P2 Q5EEX1
Q61080 Q9QUM0
Q9ES03 Q6LEB3
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Table B.5: Genes that turn off during the processes (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

P57785 Q8CCN5
Q921T1 Q8BLF7
Q9D2A8 P14246
Q9JKQ8 Q9CRR7∗

Q60636 Q9QXT5
Q7TMX8 Q544Z2
P17439 Q3ULW0
Q9R1L3 Q920W1
Q9CZK5 Q9D8L6
Q9R2A1 Q6P071
Q9QUM0 Q8QZY0
Q5SQP3 Q91YX2
Q925F5∗ Q5U3K8
Q8VIL9∗ Q64280
Q9JK33 Q8C5P2
Q543R9 Q61080
MGI:106910∗ P57785
Q9CRR7∗ Q9D2A8
Q9D5V4 Q3U223
Q91X98 Q9JKQ8
Q3KP84 Q60636
Q61639 Q7TMX8
P09631 P17439
P09633 Q9R1L3
Q545I7 Q9CZK5
Q5EEX1 Q9R2A1
Q6LEB3 Q5SQP3
Q8CCN5 Q925F5∗

Q8BLF7 Q8VIL9∗

P14246 Q9JK33
Q3ULW0 Q543R9
Q920W1 MGI:106910∗

Q9D8L6 Q9D5V4
Q91X98
Q9Z1Z8

137 139 36 54 3 0

Table B.6: The table lists all the intersections of three or more of the gene lists in Tbl. B.5 that were not
empty. The only gene which was tagged ’unknown’ by Fatigo+ (Q9CRR7∗) has been marked with an
asterisk.

A∩C∩N A∩C∩Nd A∩C∩S
Q9R1A2 P97766 Q5SDA2
P23359 Q99KA8
Q6P071 P70658
Q9CRR7∗ Q3UMZ6
P09633 Q6PFZ9
5 1 5

Table B.7: The table lists the UniProt ID’s (or the MGI Accession Key, if there is no UniProt ID available)
of all genes that were not expressed in the Before structures, but have turned on in the After structures
(i.e. are expressed in the After tissues). Furthermore, genes which have been tagged as ’unknown’ by
Fatigo+ have been marked with an asterisk.

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q60753 Q9QVP4 P18111 P09631 Q8BNI8 P18111
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Table B.7: Genes that turn on during the process (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q61614 Q9R074 Q5BJ23 P09023 Q3ZAX9∗

Q8C2P1 Q9CWL2 Q9Z1Z8 P10628 Q8VHP0
Q61824 Q8CJ69 Q9CT20 Q3UMQ3 Q8C8Q7
Q8C6E4 Q3UNK5 Q9CU96 Q8R1P3 Q3UTY8
Q3UQJ4 Q8BLK4 Q3UTY8 Q3V0Z9 Q9QWR9
Q71V84 Q61272 Q544Z2 Q923S6 Q9DCI0
Q9CRD0 Q9CXK3 Q8R381 Q8K428 Q80TF3
Q9WV08 P19123 Q9WV08 Q6PCM9
Q8BM75 Q6ZWX2 Q9QXN0 Q99L24
Q0PHV7∗ Q8VHX6 P47806 Q7TQI8
Q9EPN2 Q99MV5 Q3UJB6 Q08EF2
Q6GUA3 Q99K17 Q923F4 Q9QXX0
Q8BHZ7 Q3UE22 Q8K4Q2 Q9WV93

MGI:1344335∗ Q9CZK7 Q9DBX7
Q9D2T3 Q921T1 Q9D1D6
Q99KE3 Q80TC1 Q61045
Q921D9 Q61115 Q9D586

Q9D2N4 Q99MU3
Q7TNN4 Q9QZM3
Q3UZ96 Q920W1
Q3UY25 Q62433
Q3V1F2 O35437
Q80UW0
Q9JI57
Q8BTF1
Q8BM75
Q8BYL5
P02831
Q9CXK3
Q8CCE0
Q9ESV5∗

P12979
Q5BLJ8
Q8CFN5∗

Q78DU3
O35392
MGI:2443183
Q496Q8∗

Q8C2P1
Q3ULW0
Q61477
Q9JII6
Q8CD62
Q8CF69
Q61685
Q6TDG5∗

Q80ZL6
Q9QXA3
Q9JLL0
Q8BHZ7
Q91XQ5
Q5SYC7
Q0PHV7∗

Q61272
Q60636
Q9D748
Q3URE6
Q3UBP0
Q8BSI9
P39061
Q99LW4
Q3USF7
Q542N0
Q8C399
P10284
P09024
Q8BQ25
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Table B.7: Genes that turn on during the process (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q6Q533
Q8VHZ2
Q7TPG3
Q9Z2D6
Q62219
P52955
Q5SSV4
Q60753
Q99KF3
O35085
Q3TV22
Q9D8U0
Q545G3
Q3U8E7
Q9WTS6
Q9CS91
Q3UMW5
Q4VBC9
Q9R0R4
Q9WUZ7
Q9CS81
Q9D1D6
Q7TQ32
Q7TT16
Q9EPK5
Q8BGT1
Q9D8G2
Q8R3I6
Q9ESD2
Q6AZB0
Q8CCN5
Q6T264
Q8R0M1
Q8QZV2
Q68BG2
MGI:2183691∗

P10628
P09632
Q8BQA3
Q9CUQ8
Q3TYD9
Q80YP5
Q8CC06
Q545G1
Q8C6B1
Q61045
Q640N1
O08665
Q9JHE6
Q6NZL8
Q8BIA3
Q66PY1
P28481
Q99M23
Q8BG74
Q9ERH7
Q3U223
Q9Z0F1
P31311
P51655
Q8QZY9
Q9WVF2
Q811E4
Q8JZL1
Q3TZM2
Q9ERF6
Q8BYL6
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Table B.7: Genes that turn on during the process (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q8BQ62
Q9JJY2
Q6DI71∗

Q543H4
P09633
Q3UMQ3
Q05DD2∗

Q3UVH8
Q6P6L3
P54823
Q61809
Q8C2A8
Q9EQW7
Q80VZ1
Q3UZB9
Q9JLL4∗

O88876
Q62433
Q9Z1S5
MGI:1861674∗

Q9QZ26
Q99N11
Q9JM62
Q8CFG0
Q8K1S7
Q99N43
Q8K350
Q8C4C4
Q9DBJ9
Q3TZE7
P82976
Q8C9K1
Q9JL91
Q99LS8
Q9D6N4
P26687
Q9D080
Q8R228
Q8K3G6
Q76LY2
Q8VHX6
Q3ZAZ1
Q61824
Q6NXW7
Q99LQ5
Q9Z139
Q9R0G8
Q9JLI1
Q9JJZ5
Q9ERP3
Q99PV5
Q571J2
Q6P5N9
Q61080
Q8CJ69
Q8BYQ8
Q8BMD9
Q8BLU0
Q3UYE4
Q9JI91
Q99N13
Q78TF3
Q60932
Q9Z0Z7
Q9CZP5
Q8K2P6
Q61321
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Table B.7: Genes that turn on during the process (cont.)

Angiogenesis Cardiac Endo-
thelium

Somites Nephrons Nephric Duct Mesonephric
Tubules

Q9QX23
Q9DC41
Q8VHX3∗

Q0VEJ7
Q9CZ19
Q6PCW9∗

Q05DE6∗

Q8BRJ5
Q8C6B5
Q62232
Q8C766
Q9Z2G6
Q8VHZ3
Q8CFR7
Q9D677
Q8BZ84
Q9EPR5
Q9JKB3
Q8R419
Q8CJG1
Q8R3Q7
Q8CJF9
MGI:2676881∗

Q3KP84
Q8R145
Q9CUZ5
Q9D030
Q80W09
Q80UF6
Q9WUU4
Q9JKV7
Q8CGN4∗

P23813
P70217
P70323
Q810F8
Q8BSF9
Q921F1
P97938
Q8C7A7
P09631
Q3TX21
O70373∗

Q9D9B2
O55127
Q9JJ37

14 18 248 23 8 1
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