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Abstract
This project investigates a number of algorithms for discovering regulatory motifs in

the DNA of magnetic bacteria. The most promising of these is then implemented in

Java and evaluated using a combination of synthetic data and previously characterised

real-world data. The implemented algorithm is also used to study three previously

uncharacterised datasets; a number of new potential motifs are identified from these

datasets. Two extensions to the implemented algorithm are designed, implemented

and evaluated.
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Chapter 1

Introduction

1.1 Project Background

This research project is concerned with magnetic bacteria, members of a class of bac-

teria known as alphaproteobacteria. These bacteria are able to produce magnetic par-

ticles within their cells. The principle goal of the project is to investigate a number of

algorithms for discovering regulatory motifs in the DNA of magnetic bacteria (we are

primarily concerned with Magnetospirillum magneticum sp. strain AMB-1 bacteria).

The most promising of these algorithms will be implemented using Java; this imple-

mentation will then be used to identify the upstream DNA sequences important in the

production of magnetic particles. The implemented algorithm will also be evaluated.

This project is important for a number of reasons. Firstly, studies of regulatory se-

quences in bacteria are important in researching bacteria and the diseases caused by

them (Lan, 2008). Although the AMB-1 species is well regarded by scientists for

its lack of pathogenic activity, many similar Gram-negative bacteria are pathogenic,

meaning they can cause disease. The implemented algorithm will potentially improve

motif discovery in upstream DNA sequences; besides the AMB-1 species used in this

project, it will be possible to apply the implemented algorithm to discover other reg-

ulatory sequences. This means that the implemented algorithm will have wider uses

than simply the discovery of regulatory sequences for magnetite particle production.

In the long term, it is also possible that the studying of the regulatory sequences in

magnetic bacteria will have some commercial applications.

1
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1.2 Magnetotactic Bacteria

and M. magneticum sp. strain AMB-1

Magnetotactic bacteria are a class of bacteria which are unique in their capability to ori-

ent themselves along magnetic field lines (a process known as magnetotaxis) through

the production of bacterial magnetic particles. The first peer-reviewed article on mag-

netotactic bacteria was published in 1975 and contained this observation, which would

become one of the hallmarks of the Magnetospirillum genus. Although once consid-

ered a novelty, magnetotactic bacteria have been found to contribute to the global iron

cycle by acquiring iron and converting it into particles of magnetite (an iron oxide,

Fe3O4) or greigite (an iron sulphide, Fe3S4), which accumulate in intracellular struc-

tures known as magnetosomes (Matsunaga, et al., 2005). Magnetotaxis is thought to

occur because the magnetosome structures align themselves in chains within the bac-

terium; these chains act as a form of biological compass needle (Arakaki, et al., 2008).

Magnetosomes are enveloped in an organic lipid membrane; this allows them to be dis-

persed easily and evenly in aqueous solutions in comparison to artificial magnetites,

making them ideal materials for biotechnological applications. A number of poten-

tial applications for magnetosomes have been suggested, including the discovery of

proteins, genetic material and other biomolecules in the field of drug discovery and

biomedicine (Saiyed, et al., 2003; Lan, 2008). It has also been proposed that magneto-

tactic bacteria could be used as micro-energy sources in nanotechnology applications

(Leahy, 2006). One of the major problems in using magnetosomes commercially is

the difficulty and cost of cultivating magnetic bacteria. By identifying the key genome

sequences which control the production of magnetosomes, this genetic information

could be introduced into bacteria which could be cultivated much more cheaply (e.g.

Escherichia coli); this would make the use of magnetosomes more commercially vi-

able.

Magnetospirillum magneticum sp. strain AMB-1 is a Gram-negative alphaproteobac-

terium which was first isolated in Tokyo, Japan. AMB-1 has been the subject of a large

number of studies and is one of the better understood magnetotactic bacteria. Genome

sequencing of AMB-1 was completed in 2005 by the Tokyo University of Agriculture

and Technology, Japan (Matsunaga, et al., 2005).
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1.3 Gene Regulation Basics

In order to explain what is meant by a motif (or ‘regulatory sequence’), we must con-

sider the genome as a whole. The genome of an organism can be regarded as a col-

lection of genes which together specify everything about that particular species. The

total number of genes varies widely between species; the AMB-1 genome has 4,559

genes, while the human genome has around 20,000. We can consider the set of genes

within a genome to be similar to a set of beads on a string. This is shown in Figure

1.1. (In practice, this is not quite the case and genes may sometimes overlap within the

genome; however, our simple example is sufficient for now.)

Figure 1.1: Genes within a genome

Consider now a single gene from within the genome. The function of most genes is

to create a protein for some defined purpose. This is performed in two steps, tran-

scription and translation. In the transcription step, the genetic code contained in the

gene is transcribed into messenger RNA (mRNA). This mRNA is then translated to

produce a protein, which provides a specific metabolic function. Figure 1.2 shows the

transcription and translation process. Not every gene is transcribed (or switched on)

at the same time; in order to activate a transcription, a regulation protein binds in the

upstream region of the gene. By switching particular genes on and off, an organism

can respond to different stresses or environments. Figure 1.3 illustrates a regulation

protein binding upstream of a gene.

Figure 1.2: The transcription and translation process



Chapter 1. Introduction 4

Figure 1.3: A regulation protein binding upstream of a gene, activating the transcrip-

tion process

The upstream region is the non-coding DNA sequence directly preceding the start of

the gene (in our analogy, this is the string just before the bead). In this research project,

we regard the upstream region as being 200bp long. That is, for each gene, we consider

the upstream region for that gene to be the 200 base pairs before the start codon of the

gene. There is no rule defining the length of the upstream region; however, we expect

that regulatory proteins usually bind between around 10 and 40 base pairs before the

start codon of the gene (there are a number of exceptions to this ‘rule of thumb’).

Defining the upstream region to be the 200 base pairs before the start codon therefore

ensures that we have the best chance of finding the regulation protein binding site.

If we have a number of genes which have a similar product, we expect that the up-

stream regulation protein binding sites for these genes should be reasonably similar

(although likely subject to a small number of natural mutations) in terms of both pat-

tern and length; we call this conserved binding site a ‘motif’. It is these motifs which

motivate much of the rest of the work in this research project. If we know the motif

which activates the production of magnetosome particles, we can ‘switch on’ these

genes whenever we like – the task in this project therefore is to discover these mo-

tifs. The prediction of regulatory motifs is an important task in the larger challenge of

understanding the mechanisms that control the expression of genes. However, com-

putational methods have offered some hope in this area and computational biologists

have invested considerable effort in this area (Tompa, et al., 2005).

Although the explanation of the regulation process given above seems relatively straight-

forward, in practice, there are a number of complications which make understanding

of the regulation mechanism a considerable problem:

• Sometimes, more than one protein is required to activate the transcription for a

single gene (see Figure 1.4), or the presence of another protein elsewhere up-
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stream will block the transcription for a gene even if the regulation protein is in

place.

• Sometimes the transcription of a gene may be controlled by a chain of genes, the

first of which is required to activate in order for the protein regulating another

gene to be produced (see Figure 1.5).

• The length of non-coding DNA sequences between genes can vary widely, be-

tween hundreds of bases and in some cases less than 10. This means that by

considering the upstream sequence to be the preceding 200 bases, it is quite pos-

sible that we will ‘back into’ the previous gene and pick up motivic sequences

from within that gene.

• This leads to the fourth problem, which is where a number of genes that are very

close to one another (sometimes only a few bases apart) are activated by one

binding site; when a protein binds to the binding site (known as an operon), all

of the genes transcribe simultaneously (see Figure 1.6). The problem created

here is that without an in-depth knowledge of the layout of the genome, it is hard

to tell if a gene belongs to a group controlled by an operon. The 200bp upstream

region for that gene will also tell us nothing about how that gene is regulated.

From all of this it is clear that the regulatory mechanism can be extremely complex.

Figure 1.4: Multiple regulation proteins may be require to activate transcription
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Figure 1.5: Transcription may depend on other genes producing proteins

Figure 1.6: A gene controlled by an operon may be activated by a protein binding

much further back in the genome

1.4 Sequence Logos

Sequence logos are graphical representations of nucleic acid sequences that will be

used to illustrate concepts and results in this project. Each position in the sequence

is represented by a stack of symbols (A, C, G or T) where each symbol represents a

different nucleic acid (Adenine, Cytosine, Guanine or Thymine). The height of each

symbol in a stack represents the probability of that symbol being in that position in the

sequence; it follows that each stack sums to 1. Figure 1.7 shows a typical sequence

logo as used in this project.
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Figure 1.7: An example of a sequence logo

The sequence logos used in this project were created using the online enoLOGOS tool1

(Workman, et al., 2005).

1.5 Thesis Overview

The rest of this thesis is structured as follows. Chapter 2 presents a review of previ-

ous work carried out in this field, including related MSc projects. Chapter 3 presents

a description of the theoretical and practical work carried out in this project, includ-

ing the tests carried out using the implemented application. The results of these tests

and a critical analysis of the results are presented in Chapter 4. Chapter 5 presents

conclusions and indications of paths for further research.

1http://www.benoslab.pitt.edu/cgi-bin/enologos/enologos.cgi



Chapter 2

Literature Review

Since the first motif sequences were found in DNA in the early 1970s there have been

many studies in this area, reflecting the amount of interest in finding similar ‘motif’

subsequences within DNA sequences (Pevzner and Sze, 2000). A number of these

studies are reviewed here. Previous work on magnetic bacteria in particular will also

be useful references for this study; we are interested in Magnetospirillum magneticum

sp. strain AMB-1 in this study, however, this work could also be extended to the

genomes of other magnetic bacteria.

2.1 Motif Discovery

Das and Dai (2007) survey a number of motif-finding algorithms, comparing approaches

and evaluating results. Motif-finding algorithms are split into two distinct types (Das

and Dai, 2007): firstly, algorithms which detect possible motifs by searching for statis-

tically overrepresented patterns in a set of genes (i.e. patterns which occur more often

than would be expected to occur by chance alone) and secondly, more complex al-

gorithms which take advantage of comparing genomes from different similar species,

also known as phylogenetic footprinting or comparative sequence analysis.

2.1.1 Probabilistic Algorithms – EM methods

Das and Dai note that the majority of probabilistic motif discovery algorithms use

statistical techniques such as the Expectation Maximization (EM) algorithm and Gibbs

8
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sampling as well as extensions of these techniques. The EM algorithm was first used

by Lawrence and Reilly (1990) to search for discovering protein motifs; however, EM

can also be applied to motif discovery in DNA sequences. Lawrence and Reilly claim

that one advantage of using EM is that “the proposed EM algorithm has the ability to

examine motifs [...] which may be nonadjacent in sequence”; that is, the discovered

motif need not appear in exactly the same place in each of the sequences in the input

dataset. The use of the EM algorithm for motif discovery was extended by Bailey

and Elkan (1994a,b) into the MEME algorithm, which incorporates a number of novel

features which improve the original.

Bailey and Elkan (1994a) describe a finite mixture model which can be used to rep-

resent the input data. The EM algorithm is used to discover the unknown parameters

defining the model; given a certain motif width and a number of input sequences, the

EM algorithm first estimates (the E step) the start location of the most significant mo-

tif within the sequence and then maximises (the M step) the expected likelihood of

the data given the current estimates of the parameters. These two steps are repeated

until either convergence is reached or a user-defined iteration limit is reached. There

are a number of advantages in using this algorithm; one novel feature of the MEME

algorithm is its ability to probabilistically ‘erase’ discovered motifs from the dataset –

this allows the most statistically significant motif to be found, then ‘erased’, then the

EM algorithm is run again to find the second most statistically significant motif, until

a user-defined number of motifs have been found. If we believe that multiple motifs

could be factors in transcription regulation, this is a good reason to choose the MEME

algorithm. It is also claimed that the MEME algorithm has the ability to cope with

local minima within the search space of alternative models (through multiple runs to

find the maximum converged log likelihood), so theoretically we should obtain good

results through the use of the MEME algorithm. There is, however, some requirement

in that the width of the motif must be supplied by the user; there is at present no way

to know the exact length of a motif before running the analysis. One way around this

problem would be to set up a script or build a loop into the implemented algorithm,

looping through a number of different motif widths. Some additional analysis would

then need to be performed to evaluate the most likely motifs, based on some prior ex-

pectations regarding the motif widths, for instance, we would not expect the motif to

be of width 2, or of width 200. Comparing the log likelihood between two models

using different widths would not be a good measure of the ‘correctness’ of a motif
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as the log likelihood of the model is bound to increase as the motif width increases.

Another possible disadvantage proposed by Bailey and Elkan is that it is not possible

to estimate the number of different motifs in a given dataset.

Bailey and Elkan (1995a,b) have also described several extensions to the MEME algo-

rithm which increase its ability to find motifs in an unsupervised fashion by exploiting

prior beliefs or background knowledge regarding the input data. These extensions in-

clude detection of palindromic regulatory sequences and a heuristic ‘rule of thumb’ for

automatically determining motif widths. This heuristic allows the MEME algorithm to

automatically discover a number of motifs of different widths within a dataset. These

extensions are shown to give good results and have been the basis for the MEME al-

gorithm since; this shows the benefit of using prior knowledge when using the MEME

algorithm.

2.1.2 Probabilistic Algorithms – Gibbs sampling methods

The class of probabilistic algorithms also includes algorithms such as MotifSampler

(Thijs, et al., 2001), and AlignACE (Roth, et al., 1998 and Hughes, et al., 2000),

which are based on the Gibbs sampling method; methods such as these have also been

used extensively for motif discovery. The most basic Gibbs sampler method as de-

veloped by Lawrence et al. (1993) takes a Markov Chain Monte Carlo approach and

assumes that there is at least one instance of a motif pattern in every input sequence;

although Lawrence et al. describe a method for motif discovery in protein sequences,

the method could be equally applied to DNA sequences. The Gibbs sampling method

is built on the same statistical framework as the MEME algorithm; like the MEME

algorithm, an iterative sampling method is used, indeed, Lawrence et al. note that the

Gibbs sampling method can be viewed as a stochastic version of the EM algorithm

used in MEME. As in the MEME algorithm, two data structures are maintained and

evolved by the steps in the algorithm; these data structures hold probabilistic models

of the residue (background) frequencies of the input sequence and the alignment (or

motif) sequence, which is the most common pattern within the input sequence. In the

‘update’ step, one of the input sequences z is chosen at random; an alignment sequence

and residue frequencies are then calculated from all the current positions in the remain-

ing input sequences. In the ‘sampling’ step, every possible motif within z is considered

as a possible motif; the probabilities of generating each possible motif within z are then
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calculated and a weight assigned to each possible motif. Once each possible motif is

weighted, one is chosen at random to be the new position used in the ‘update’ step.

The central idea of the Gibbs sampling method is that the more accurate the alignment

sequence calculated in the ‘update’ step, the more accurate the determination of its

location within the input sequences in the ‘sampling’ step. Given random positions

in the ‘sampling’ step, the alignment sequence will not favour any potential motif in

particular; however once some correct position has been chosen by chance, the algo-

rithm tends to favour further correct positions (Lawrence, et al., 1993). The objective

is to identify the “best” (most probable) alignment sequence by maximising the ratio

of the corresponding alignment sequence probability to background probability (Liu,

J.S., et al., 1995; Werhli and Husmeier, 2007). The Gibbs sampling method described

by Lawrence, et al. (1993) allows multiple motif sequences to be searched for simulta-

neously rather than sequentially. This has the advantage that information gained about

one motif can be used to aid discovery of the others; this differs from the MEME al-

gorithm which effectively ‘erases’ previously discovered motifs from the dataset and

therefore must be sequential. This also has the advantage that any ‘incorrect’ motifs

do not have a negative effect on other motifs, whereas any motif discovered by MEME

will be probabilistically erased before continuing to search for other motifs, regard-

less of whether the discovered motif is ‘correct’ or not. The disadvantage discussed

above of having to repeat the procedure for each possible motif width is found again

in this method; Lawrence, et al. note that like the MEME algorithm it is not possible

to directly compare models over a range of different plausible widths.

The AlignACE algorithm (Hughes, et al., 2000) extends the basic Gibbs sampling

method in a number of ways. A maximum a priori log likelihood score is used to

judge alignments that are sampled during the run of the algorithm; this is used to gain

a feeling of how overrepresented the alignment is within the test dataset. The algorithm

also provides a measure which takes into account the sequence of the whole genome;

obviously any alignments returned should be overrepresented within the test dataset

and relatively much less common in the genes which make up the rest of the genome

(Tompa, et al., 2005). One interesting extension implemented by Hughes, et al. is the

consideration of both strands of the input DNA sequence at each sampling step of the

algorithm; that is, not only the single DNA strand given as an input to the algorithm,

but also the complementary DNA strand.

Although algorithms based on discovering statistically overrepresented motifs such as
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MEME and AlignACE are relatively simple, they have been shown to give good re-

sults. It is perhaps an indication of the success of the MEME algorithm that work is

still being carried out on this algorithm 15 years after it was first proposed; current

work is mainly based on the online MEME server, allowing users to upload sequences

and have the results emailed to them. Proposed future directions include adding algo-

rithms which remove sequences of low complexity and integrating online MEME with

other algorithms to improve results (Bailey, et al., 2006)

2.1.3 Other machine learning approaches

Besides these probabilistic models, there are a number of other machine learning ap-

proaches to the motif discovery problem. Genetic algorithms (Liu, F.F.M., et al., 2004)

and neural networks (Liu, D., et al., 2006) have both been used for DNA motif discov-

ery with some success. Combinatorial and graphical approaches have been used to try

and simplify the problem of mutations between sequences; the iterative WINNOWER

and SP-STAR algorithms proposed by Pevzner and Sze (2000) (also Liang, 2003) try

to avoid local optima within the search space and converge to a global optimum; al-

though these algorithms require further development they seem to give good results.

Approaches based on aligning a number of potentially related sequences have also

been used with some success; it is these approaches (usually some form of aligning

algorithm such as Smith-Waterman or Needleman-Wunsch) which form the basis of

bioinformatics tools such as BLAST. One relatively recent approach which seems to

improve the results of motif discovery is the “ensemble approach” (Hu, et al., 2005).

This approach combines the predictions made by multiple runs of a number of differ-

ent motif-discovery algorithms, clustering them and choosing the most likely results.

In tests, the ensemble approach was shown to produce results at least as good as the

individual component algorithms, even for longer sequences in higher order species.

The advantages of an ensemble approach are clear; this approach could take advantage

of good predictions given by the component algorithms and by checking them against

others, deliver results with a high level of certainty.



Chapter 2. Literature Review 13

2.1.4 Algorithms based on phylogenetic footprinting

There are also motif discovery methods which do not use any form of machine learn-

ing. Algorithms such as CONREAL (Berezikov, et al., 2004) and PHYLONET (Wang

and Stormo, 2005) take advantage of cross-species genome comparison; generally, po-

tential motif sites which are well conserved over a number of orthologous promoter

regions are good candidates for discovering regulatory motifs. Although these algo-

rithms often produce good results, they have the disadvantage that they are generally

much more complex in their implementation and usually require expert information re-

garding the degree of similarity between the species used. For example, if the species

are too similar, the motif returned is obvious and uninformative; if the species are too

distinct, the comparison fails as it is too difficult to find enough similarities to compare

the genes.

2.1.5 Comparison of algorithms

A comparison of the available machine learning methods for motif discovery was car-

ried out (Tompa, et al., 2005) with the two main objectives of providing a benchmark

of data sets for assessing different methods and in the process providing some assess-

ment of the relative accuracy of the available methods. Methods that use external

data such as phylogenetic footprinting were not included in the assessment; although

these methods were considered to be important and effective for motif discovery, it

was not deemed fair to include them in the comparison as the additional biological

data required for these methods may not be available for the specific organism stud-

ied. A number of tools, including MEME, AlignACE and MotifSampler were tested

using the TRANSFAC dataset (a commonly used database of known real transcrip-

tion factors and their binding sites; Wingender, et al., 1996) and the results presented

and discussed. The results presented indicate that overall, the absolute correctness of

the majority of the algorithms was very low, for example, it is claimed that the aver-

age correlation coefficient (a measure of how well the resultant motifs coincide with

the known motifs in the dataset; Tompa, et al., 2005) is 0.2, where a coefficient of 1

represents a perfect correlation between the result and the expected result and a coeffi-

cient of 0 indicates no correlation. However, there are a great number of reasons why

the results appear to be poor, the most important being that the current knowledge of

biological regulatory mechanisms is far from complete. This means that there is no
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absolute standard against which to measure the accuracy of the methods (a point also

noted by Das and Dai, 2007); for this reason, it is perhaps the case that the benchmark

data sets used are a poor approximation of true biological data. In addition, many of

the transcription binding sites in the TRANSFAC dataset are unusually long, up to

71bp in length; it is possible that the increase in length has a detrimental effect on the

results returned and the way they are scored. Tompa et al. (2005) note that this fact

may indicate a lack of precision in the experimental method used. It is also noted that

although the algorithms were applied by experts, the amount of time invested by the

experiment participants varied widely and so the results could perhaps be improved

given more time to experiment with the data. These reasons and others mean that the

relatively poor results should not be interpreted as meaning that the methods them-

selves are poor. Despite the results, some interesting observations on the results were

made. Two versions of the MEME algorithm were run independently and the results

were remarkably consistent. Of all the tools tested, the Weeder algorithm (Pavesi, et

al., 2004) gave significantly better results than the other algorithms; this is thought to

be through the cautious use of the algorithm, only returning the strongest results and

therefore not decreasing the accuracy score of the algorithm by returning results which

may possibly be wrong. A summary of the discussed algorithms is presented in Table

2.1.

The conclusions made by Das and Dai (2007) in their survey are broadly the same as

that by Tompa, et al. (2005). Again, it is noted that the incomplete understanding

of the underlying biological mechanisms means that it is difficult to provide a good

evaluation of various motif discovery methods. The main recommendation is that bi-

ologists should use a combination of complementary methods rather than relying on a

single one, which should increase the success rate for motif discovery; this ensemble

approach should also increase the certainty for the returned motifs. This reflects the

success of the ensemble algorithm as discussed above.
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Table 2.1: A summary of motif discovery algorithms

2.2 Previous Applications of Motif Discovery Algorithms

Besides the comparison carried out by Tompa, et al. (2005), the motif discovery al-

gorithms discussed above have also been used in a large number of real-world studies.

Baker, et al. (1999) used MEME to discover motifs from an input dataset of around 200

divergent hydrogenases; the matrix representations of the discovered motifs used were

subsequently used as an input to the MAST and Meta-MEME tools, which were used

to score each motif and create a hidden Markov model of all the motifs respectively.

In this study, MEME identified six motifs that were regarded as being functionally im-

portant to the studied proteins. Heikkinen, et al. (2008) also used MEME alongside

Weeder and MotifSampler to identify transcriptional regulatory sites in the upstream

regions of MicroRNA sequences extracted from the genomes of Caenorhabditis ele-

gans and Caenorhabditis briggsae. A previously unknown motif was discovered and

evaluation suggested that it may be involved in miRNA sequence regulation.

As noted earlier, the AlignACE algorithm was used by Hughes, et al. (2000) to study
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groups of genes in the Saccharomyces cerevisiae genome. AlignACE returned a very

large number of potential motifs. Further comparison and clustering of the potential

motifs narrowed the results and many previously identified cis-regulatory elements

were found. In addition, motifs which were previously unidentified were also de-

scribed, one of which was verified by laboratory experiments. Grainger, et al. (2007)

used AlignACE to search for sequence motifs present in a number of Escherichia coli

DNA sequences. Previous analysis had identified 43 potential FNR (a global transcrip-

tion regulator protein) binding site targets, 33 of which were identified and confirmed

using AlignACE.

Although, as previously noted, phylogenetic footprinting methods require expert knowl-

edge regarding the similarity between compared species, a number of studies have used

phylogenetic footprinting algorithms such as CONREAL and PHYLONET. It is evi-

dent that frequently the algorithm is run by groups already possessing a large amount

of knowledge about the studied organism. Liu, J., et al. (2008), having previously

selected a number of similar Shewanella genomes for comparative analysis and deter-

mined a number of orthologous genes, used phylogenetic footprinting to identify all

possible conserved palindromic motifs in each set of orthologous promoter regions.

PHYLONET was then used to identify motifs that were common to multiple sets of

orthologous promoter regions. In total, 209 unique DNA motifs were obtained, just

over a third of which had some additional supporting evidence besides conservation in

other genomes (e.g. matching to known transcription factor binding motifs).

2.3 Previous Work on M. magneticum sp. strain AMB-1

2.3.1 Genetic Analysis of AMB-1

The first comprehensive genetic analysis of AMB-1 was completed in 2005. Mat-

sunaga et al. (2005) describe the genome of AMB-1, attempt to identify the specific

genes required for magnetosome production and describe some of the potential ap-

plications of magnetosomes. Four major stages are hypothesized for the process of

magnetosome production. It appears that the most important is a strictly controlled

iron oxidation-reduction stage (see also Matsunaga and Okamura, 2003); the amb3335

gene (BAE52139.1: predicted ferric reductase) is singled out as being important in

this process. In addition, the number of proteins expressed in the lipid membrane of
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the magnetosome particles prompted an analysis of the genes encoding ferredoxin and

cytochromes; these genes are thought to be involved in iron reduction.

2.3.2 Investigating Regulatory Networks in Alphaproteobacteria

An investigation into the regulation networks of a number of different alphaproteobac-

teria was carried out by Rodionov, et al. (2006). A genome comparison was performed

and used to investigate the distribution of DNA motifs in the upstream regions of genes

involved in iron and manganese homeostasis; the results of this were combined with

a number of computational approaches in order to reconstruct metal regulatory net-

works in a large number of alphaproteobacteria with fully sequenced genomes. In the

process, a list of 17 genes thought to be important in iron co-regulation in the AMB-1

genome are listed (Table S61); these are used as an input to the motif discovery pro-

gram SignalX (part of GenomeExplorer), which uses the Smith-Waterman algorithm

to perform nucleotide sequence alignment2 in a similar way to BLAST. A possible mo-

tif is presented using the results of SignalX. It is noted that despite the key role of iron

processes in alphaproteobacteria (in general, not just in the Magnetospirillum genus),

very few studies have been concerned with iron regulation in these bacteria. This is

clearly one area which requires further study.

2.3.3 Identifying Regulatory Sequences in Magnetic Bacteria

Similar to the current project, the study by Zhou (2008) aimed to evaluate the current

methods for discovery of regulatory motifs, develop an implementation of the most

promising and then use this implementation to explore potential DNA motifs used in

regulation of magnetosome production. Three methods of motif discovery were iden-

tified; firstly, a naïve method such as that suggested by Gelfand, et al. (1999), which

attempts a statistically global alignment of a number of related genes and searches

for an l-mer with the largest accumulative weight value. This is similar to the align-

ment algorithms discussed above; the naïve method suggested is not always applica-

ble, however, since the location of the motif need not be the same for each gene (as
1http://www.ploscompbiol.org/article/fetchSingleRepresentation.action?uri=info:doi/

10.1371/journal.pcbi.0020163.st006 (Accessed 17th July 2009)
2http://bioinform.genetika.ru/projects/reconstruction/Similarity%20Search.htm

(Accessed 24th July 2009)
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discussed above). A second method, known as “palindrome search” is also identified;

this method is based on the idea that most prokaryotes have biologically palindromic or

quasi-palindromic regulatory sequences (i.e. the reverse complement of the sequences

is the same as the original sequence). The final method is the MEME algorithm as

described above.

The naïve method described by Gelfand et al. (1999) was chosen for implementa-

tion, although there does not seem to be a clear reason why this method was chosen

over the others. The implementation was then modified to overcome the problem of

motif location as described above; a palindrome heuristic was also incorporated into

the algorithm. The implementation was then tested and evaluated; it was discovered

that although there are no bugs in the coded implementation, the system has a num-

ber of flaws when searching for candidate regulatory motifs. Perhaps most important

amongst these flaws is the fact that it is not guaranteed that all motifs are palindromic

or even quasi-palindromic; it appears this heuristic has been deduced from a number of

experimentally confirmed motifs and is certainly not a rule to which all regulatory mo-

tifs must adhere. This means that the implemented algorithm may not find all potential

motifs in an input sequence. In addition, the user has a large number of parameters

to input for while searching, most notably the l-mer parameter which determines the

length of the motif. There is at present no way to know the length of a motif in advance,

so the user must repeat the search for each different motif length.

Zhou’s implementation and preprocessed data are no longer available, meaning that it

is not possible to carry out a comparison between the implementation created in the

current project and the implementation created by Zhou. This also means that the data

preprocessing will have to be carried out anew; however, a detailed description of the

required steps is included in Zhou’s report.

While the study by Lan (2008) had roughly the same aims as that by Zhou (2008), a

more bioinformatical approach was taken, using comparative genomics to investigate

and predict regulatory motifs rather than a probabilistic model. An orthology analy-

sis was used to identify potential regulatory sequences in AMB-1 by examining other

well-understood alpha-proteobacteria, concentrating on the CtrA (cell transcriptional

regulator) and Fur (ferric uptake regulator) metabolisms. Orthologs, or orthologous

genes, are genes in different species that are similar to one another because both species

evolved from a single common ancestor; these genes generally have a similar function

and structure. As a result of these properties, orthology analysis can be used to discover
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the function of unknown genes in one species from well-understood genes in another

related species. Once the potential regulatory sequences were discovered, the possi-

ble motifs were predicted using motif discovery programs (mainly GenomeExplorer).

Using these methods, two possible CtrA motifs were found which were similar to the

CtrA motifs in Caulobacter crescentus (the ‘related’ species used). The study of the

Fur-regulated metabolism was mainly to confirm the work carried out by Rodionov,

et al. (2006) and the motif discovered was very similar to the motif published in that

study.

2.4 Discussion

One conclusion that can be drawn from the algorithm surveys of Tompa et al. (2005)

is that all the tested machine learning algorithms (with the exception of Weeder, see

above) give similar performance levels overall, while on specific datasets, some algo-

rithms may give better results than others. However, without testing each algorithm

separately and some knowledge about the motifs to be discovered in that particular

dataset, it is hard to predict which algorithm which will give the best performance;

additionally, we would not normally be carrying out motif discovery if we knew the

motifs in the dataset!

There are advantages and drawbacks for almost all of the algorithms discussed above,

however, we can use some criteria to narrow down our choice. Perhaps most important

in this project is the time constraint, it therefore makes sense to implement one of the

probabilistic algorithms rather than one of the more complex phylogenetic footprinting

algorithms. Probabilistic algorithms have the advantage that they are relatively simple

and well understood; this would perhaps allow for more time experimenting with al-

gorithm extensions following the implementation of the chosen basic algorithm. The

time constraint also rules out the ensemble technique as developed by Hu, et al. (2005)

as this would involve the implementation of more than one good algorithm, which is

unlikely to be feasible given the allotted time to complete this project.

The Gibbs sampling method used in algorithms such as AlignACE has the advantage

that it deals easily with multiple motifs in a single run. This not only allows the al-

gorithm to take advantage of the alignment of one motif and apply that information to

gain knowledge about other motifs, but it is also claimed that this increases the speed of
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the algorithm. One large problem faced by any algorithm in solving this kind of prob-

lem is the large dimensionality of the search space and the subsequent tendency for the

algorithm to converge to a local rather than a global optimum; clearly we would like

the algorithm to converge to the global optimum value. In the Gibbs sampling method,

each dimension of the search space is explored one dimension at a time (Lawrence,

et al., 1993); the addition of stochastic sampling means the Gibbs sampling method

is reasonably robust in dealing with multiple local optima in a single run. In contrast,

the MEME algorithm must be run a number of times with different starting parameters

in order to choose the best result, which may still not be guaranteed to be a global

optimum solution. There are, however, a number of heuristic rules which can be used

to ensure as much as possible that the solution returned is the optimum one.

Bailey and Elkan (1994b) claim that MEME has a number of advantages compared

to the Gibbs sampling method. Firstly, MEME does not require input sequences to

be classified in advance by a biologist as definitely containing a motif; the capability

of MEME to deal with noise is quite robust. Secondly and perhaps more importantly,

MEME searches the space of possible starting points for gradient descent optimization

systematically, meaning that the algorithm always converges in a predictable way, usu-

ally requiring only a relatively small number of iterations. In contrast, algorithms em-

ploying the Gibbs sampling method intersperse the gradient search steps with stochas-

tic jumps within the search space; this means that it is possible that these algorithms

can spend an unpredictable number of iterations jumping around the search space, ef-

fectively leaving the algorithm on a plateau before converging, increasing the running

time of the algorithm dramatically. This can be seen by considering the mechanism

of the Gibbs sampling algorithm described above. The algorithm will only start to

converge after some correct position has been chosen; however, the positions are cho-

sen randomly and so it may take relatively few iterations to chance upon some correct

motif, conversely, it may take a huge number of iterations.

One limitation of both MEME and Gibbs sampling algorithms is the constraint that

all motifs searched for must have the same width; it is likely that this limitation is not

consistent with the real world data on which any algorithm will be used. In addition,

it is very difficult to compare results from searches with two different widths as the

likelihood values returned by the algorithm are not comparable for runs with different

widths. Another limitation affecting both types of algorithm is the phenomenon of
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‘shifting’3, where the algorithm iterates to a solution which is a shifted version of the

optimal pattern (this is illustrated in Figure 2.1). Lawrence, et al. (1993) suggest

that this could be improved by inserting a comparison step after every n iterations,

comparing the likelihood of the current pattern with shifted versions of that pattern

and switching to one of the shifted versions if it has a higher likelihood.

Figure 2.1: The effects of shifting. The motif to be discovered is CTAAATGC, as

shown in a), however, the motif returned by the algorithm is TAAATGCx as in b),

perhaps due to peculiarities of the background data. It appears as if the actual motif

has been shifted one place to the left. It is expected that by shifting the motif discovered

in b) one place to the right, we can increase the log likelihood of the result; solving

this problem is likely to improve the success of an algorithm

Considering all the algorithms surveyed, it makes sense to implement and extend the

MEME algorithm because of the advantages as described above. While there are some

limitations it is has been proved that MEME produces good results and there is a rela-

tively large amount of literature concerning the basic MEME algorithm and its exten-

sions. A ‘second choice’ of algorithm would perhaps be the AlignACE algorithm due

to its relative simplicity and similarity in structure to the MEME algorithm. There is

the possibility of adding some extensions to the MEME algorithm implemented in this

project; these could include an extension allowing for gaps in the motif (it appears that

(quasi)-palindromic motifs especially may have small gaps in the motif), for example.

The question of why a new implementation of MEME is required when the online

MEME server is available could be asked, however, the source code for the current

MEME algorithm is written in C and includes extensions added piece by piece over

the past 15 years. By creating a new Java based implementation of MEME, it is hoped

to test the intended hypothesis as easily as possible; it is also hoped that the resultant

code will be extensible, allowing for additions as required.
3Lawrence, et al. (1993) use the term ’phase shifting’; following Bailey and Elkan (1994b), the term

’shifting’, which does not carry any notion of periodicity, is used here.
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The hypothesis that this project intends to test is that extensions to the implementation

of the MEME algorithm will improve its performance for discovering regulatory se-

quence motifs in bacteria with respect to the original MEME algorithm. It is assumed

that the basic MEME algorithm is capable of discovering DNA sequence motifs in

general; this is believed to be the case because the MEME algorithm has been proved

to work in the past and has achieved good results on bacteria of other species which

has been confirmed experimentally.



Chapter 3

Regulatory Motif Discovery

This chapter presents a description of the theoretical and practical work carried out in

this project. An explanation of the data preprocessing procedure is provided, followed

by a theoretical explanation of the MEME algorithm and how it is implemented in

this project. The implemented application, known as JMeme, is then tested in order to

identify the characteristics in dealing with data, before being applied to new unknown

data. Two extensions to JMeme are also described and implemented as JMemePlus.

3.1 Data Preprocessing

3.1.1 Introduction

Before any motif discovery can be performed, some preprocessing must be applied

to the available raw data in order to extract the relevant data in a usable format. The

following sections outline the genome data used, the tasks which must be carried out

in order to create a dataset and how these tasks were completed.

Background to the Genome Sequence

As noted in Section 1.2, the first comprehensive analysis of the AMB-1 genome was

completed by Matsunaga, et al. in 2005, at Tokyo University of Agriculture and Tech-

nology, Japan. The results of this study, along with other efforts, have been combined

by the National Center for Biotechnology Information (NCBI) into an annotated file

23
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containing the full nucleotide sequence and details about the structure, function and

location of each gene within the genome. The full nucleotide sequence for the AMB-1

genome consists of 4,967,148 base pairs. Of this, 88% is coding DNA, containing in-

structions for producing proteins. The AMB-1 genome contains 4,611 genes, of which

4,559 are protein coding genes; it is these genes in which we are interested in this

study. The genome can be freely downloaded from the NCBI website1; the down-

loaded sequence data file will be further discussed in Section 3.1.2.

Computing Tasks

Three main computing tasks have been identified as being necessary in order to create

a usable dataset. Firstly, details of all the genes must be extracted from the downloaded

data file. A subset of the data must then be created based on some user query. The data

matching the user query must then be returned, preferably in the FASTA format as this

is a widely-used text-based format for the representation of nucleotide sequences2. The

computing tasks and their implementation will be further discussed in Section 3.1.3.

3.1.2 Data

The complete genome data for AMB-1 is contained within a GenBank database file

(known as a .gbk file). GenBank is an annotated collection of all publicly available

nucleotide sequences and their protein translations. Although it was not strictly nec-

essary, the AMB-1 .gbk file was downloaded from the NCBI database; the large size

of the file (around 10MB) meant that performing operations on the remote file would

increase the program running time. By having the .gbk file available locally, the pre-

processing step can be carried out more quickly. All .gbk files have the same defined

syntax, which lends them to being read automatically by computer program; the file

provides a number of useful tags, which can be used to extract the relevant information.

The AMB-1 .gbk file contains the following information (see also Figure 3.1):

• The ‘gene’ tag indicates the start of information about a new gene. This is fol-

lowed by two numbers, the first of which represents the start point of the gene
1http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&

Cmd=ShowDetailView&TermToSearch=19021 (Accessed 17th July 2009)
2http://www.ncbi.nlm.nih.gov/blast/fasta.shtml (Accessed 17th July 2009)
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within the genome and the second represents the end point of the gene. In Fig-

ure 3.1, the first gene starts at base 239 and ends at base 1336; the last gene

in the genome is shown to start at base 4,966,807 and end at base 4,967,148.

The ‘gene’ tag may also indicate that a gene is said to be complementary using

the ‘complementary’ tag (see Figure 3.2); the meaning of this will be discussed

shortly.

• The ‘/locus_tag’ tag indicates the number of the gene within the genome. In the

AMB-1 genome, genes run from amb0001 to amb4559.

• The ‘/product’ tag indicates the product, or predicted product, (usually as a pro-

tein name) of the gene. In the case of amb0001, the product is ‘Predicted GT-

Pase’. Similarly for amb4559, the product is ‘Ferredoxin’.

• The ‘/protein_id’ tag indicates the ID of the protein produced by the gene.

• After all the genes have been listed, the full genome sequence is provided, indi-

cated by an ‘ORIGIN’ tag.

As noted above, some of the coding genes are said to be complementary. The .gbk

file contains only one strand of the DNA double helix structure; when a gene is said

to be complementary (as in Figure 3.2), this means that the coding gene is not in the

strand given in the .gbk file (5’-3’), but the other (complementary) strand. However,

the structure of DNA means that given one strand, we can easily find the other; this

is a consequence of the way nucleotide bases link together (e.g. adenine always links

to thymine and cytosine always links to guanine). If a gene in the .gbk file is com-

plementary, this means that rather than coding from the 5’ end to the 3’ end of the

genome as given in the .gbk file, the gene codes from the 3’ end to the 5’ end. It may

help to consider a gene as reading from left to right (5’-3’) within the genome (Figure

3.3). We would consider the ‘upstream’ sequence for this gene to be the 200bp before

the start codon of the gene. For complementary genes, the gene codes in the opposite

direction (3’-5’), therefore the ‘upstream’ sequence is the 200bp after the end point

given in the .gbk file. This sequence therefore has to be complemented (as it is in the

complementary strand) and reversed, to be consistent with the first case above.
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LOCUS AP007255 4967148 bp DNA circular BCT 26-JUN-2008
DEFINITION Magnetospirillum magneticum AMB-1 DNA, complete genome.

[information omitted]

gene 239..1336
/locus_tag="amb0001"

CDS 239..1336
/locus_tag="amb0001"
/codon_start=1
/transl_table=11
/product="Predicted GTPase"
/protein_id="BAE48805.1"
/db_xref="GI:82943941"
/translation="MAELHLHGGRAVAAALTARLGELGLRPAEPGEFSRRAFLNGKLD
LTRAEAIADLVDAETAAQRRQALRQLDGGLAGLVEGWRSALVRAMAHLEAVIDFADED
IPDTLLEQSVGEVRSLRREMEVHLDERRNGERLRDGIHITILGAPNAGKSSLLNRLAG
REAAIVSAQAGTTRDVIEVHLDLGGWPVIVADTAGLRDSACEIESEGVRRAADRAAKA
DLRLCVFDGTLYPNLDAATLEMIDDATLVVLNKRDLMTGETPASINGRPVLTLSAKAG
EGVDDLVAELARVVESRFAMGSAPVLTRERHRVAVAEAVAALSRFDPGLGIEMAAEDL
RLAARSLGRITGRVDVEEILDVIFHEFCIGK"

[information omitted]

gene 4966807..4967148
/locus_tag="amb4559"

CDS 4966807..4967148
/locus_tag="amb4559"
/codon_start=1
/transl_table=11
/product="Ferredoxin"
/protein_id="BAE53363.1"
/db_xref="GI:82948499"
/translation="MSRLPGDPPDYFRVHVFICTNRRPDDNKRGSCAGRGSEALREHM
KDAQKKLGLKDVRINSAGCLDRCGKGPVMVIYPEGIWYSFNSVADLDEILETHIVGGG
RVERLMLAPNS"

ORIGIN
1 tcttcctccc atgtccgaga ccatctatgc ccttgccagt gccgccggaa gggccggaat

61 cgccgtctgg cggctgtcgg gcgagggcag tgggacagcg ctgtccgccc tgaccggcaa
121 gcccctgccc gagccgcgcc gggcccggcg ggtccgtttg cgcgacgggg cgggggaggt
181 gctggacgac gggctggtcc tgtggttccc cgcaccccat tcctttaccg gcgaggatgt

[information omitted]

4966921 gcgctgcgcg aacacatgaa ggacgcccag aagaagctcg gcctcaagga tgtacggatc
4966981 aactccgccg gctgcctcga ccgctgcggc aaggggccgg tgatggtgat ctatcccgag
4967041 ggcatctggt acagcttcaa tagcgtggcc gacctggatg aaattctcga gacgcatatc
4967101 gtcgggggcg gccgggtcga gcgtctgatg ctcgcgccca attcctga
//

Figure 3.1: Some of the information contained in a .gbk file
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gene complement(9900..11123)
/locus_tag="amb0012"

CDS complement(9900..11123)
/locus_tag="amb0012"
/note="related FAD-dependent oxidoreductase"
/codon_start=1
/transl_table=11
/product="2-polyprenyl-6-methoxyphenol hydroxylase"
/protein_id="BAE48816.1"
/db_xref="GI:82943952"
/translation="MSTSSLLRVDVLINGGGPVGALLAAVLGRAGIRVAVVEAAPPEI
LGRPGSDARAIAIAYTARKVIAASGAWEGMKDEAGEILEIRVTDGGSPLFLHYDHQDI
GDDPLGWIVPNPAIRRELLAALTRSPNVSLLAPARLGRLERTPHRVEAELEDGRVIHA
ALAVAADGRGSALRQQAGIKVTRRDYHESGIVCIMAHEKPHHGIAHERFLPAGPFAIL
PLAGNRSGIVWTESNGVAAAICAQDDEAFRAELAAKVGGFLGEIQVEGARFHHPLTLQ
FAEAMIDHRLALIGDAAHGMHPIAGQGMNMGIRDVAALAEVIADALRLGLDPGGPDVL
ERYQRWRRFDTMLMLGLTDGLDRLFSNDVELLKHVRRLGLAGVHQLGHTKRFFMRHAM
GLVGDLPRLMQGKTL"

Figure 3.2: A complementary gene in the .gbk file

Non-complementary case: The blue sequence is the upstream sequence we are inter-

ested in (i.e. the 200bp before the start codon (green) of the gene).

Complementary case: The blue sequence is the upstream sequence we are interested in

(i.e. the 200bp before the start codon (green) of the gene). However, the gene is in the

complementary strand and reversed in comparison to the non complementary gene in

the .gbk strand - we find the upstream sequence, then take the reverse and complement

to make it consistent with the non-complementary cases.

Figure 3.3: Non-complementary and complementary genes
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3.1.3 Processing

In order to create an input dataset comprised of a number of candidate upstream se-

quences, the required upstream sequences must be extracted from the genome. As the

genome is made up of almost 5 million base pairs, it would be an incredibly time-

consuming process to read through the genome and extract the required sequences

manually. In addition to this, manually reading through the genome introduces the

high possibility of human error. Clearly it is many times quicker and more accurate

for the genome to be read by a computer program, which can automatically extract the

required data.

The GBKReader class contains a number of methods that are used to automatically

read the .gbk file and extract the data relevant to a query given by the user. There are

three main steps in the process; firstly, the details for all genes are extracted from the

.gbk file and stored in memory. After this has been completed, the details are searched

according to the given query and a set of genes constructed. The final step in the

process is to read the .gbk file once more, extract the required nucleotide sequences

and write them in the FASTA format to a specified output file (Figure 3.4).

Figure 3.4: Process diagram of the GBKReader class

Data Extraction

The getDetails() method in the GBKReader class is used to extract the basic gene

information from the .gbk file; this method uses the Scanner class, provided in the
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java.util package (Barnes & Kolling, 2006: 465), to scan through the file. The Scanner

object can read input files either word by word or line by line; it is the former mode

which is used in the getDetails() method. To extract the gene details, we read through

the .gbk file until we reach a ‘CDS’ token – this marks the start of a protein coding

gene. We know that the next “word” represents the start and end points of the gene;

we can make this assumption because .gbk files follow a standard format. The word

representing the start and end points is split into two integers. Similarly, we read on

for the locus, product, protein ID and complementary flag (a Boolean value denoting

whether a gene is complementary or not). Whether a gene is complementary or not

is stored in another ArrayList, named isComp. isComp takes on a Boolean value for

each gene, ‘true’ if a gene is complementary and ‘false’ otherwise. Once we have all

the details for the gene, a number of ArrayList objects are updated with the details and

we move on to the next gene in the .gbk file (again, the ArrayList class is provided in

the java.util package).

There are a number of reasons why it makes sense to store the details in ArrayList

objects. By storing all the gene details in ArrayList objects in an ordered way, it is

simple to return the information for a given gene i by calling the get() method on the

ArrayList object. For example, the start point of a gene i can be obtained using the

following code:

int startpoint = start.get(i);

In addition, the ArrayList class stores objects in the order in which they were added

by definition (ibid.: 465), so assuming the data is added to the ArrayList objects in an

ordered fashion, we do not need to worry about data for different genes being mixed

up - calling get(j) on each ArrayList object will always return the details for gene j. We

continue extracting information until we reach the ‘ORIGIN’ tag; this tag indicates the

start of the nucleotide sequence so we have extracted all the gene information required

and therefore do not need to read any further at this stage. The number of genes

extracted from the .gbk file can be accessed using the size() method in a similar way;

the size of each ArrayList should be the same.

Querying

Now that the basic information for each gene has been stored, we can search over this

information to find the genes we are interested in. The getQueryIndices() method in
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the GBKReader class builds a set of indices containing the index for each gene that

matches the given query. If a gene matches the query, the index for that gene is stored

in a TreeSet object. After we have searched through all the genes, we have a complete

set of gene indices which allows us to retrieve the nucleotide sequences for the genes

we are interested in.

The GBKReader class allows the data to be searched in two different ways. If we know

the genes we are interested in and have the identifiers (the locus tags) for these genes,

we may use these identifiers as input for the search. For example, if we interested in

genes amb3037 and amb4088, we can perform a search with query string “amb3037

amb4088”; this will create a set containing the ArrayList indices for the amb3037 and

amb4088 genes. If we do not know the genes we are interested in, GBKReader allows

a keyword search to be performed, checking query keywords against the product value

for each gene. For example, a search with query “iron” will create a set containing the

ArrayList indices for all genes that contain the word “iron” in their product description.

Multiple keywords can be searched for in a similar fashion; a search for “iron ferrous”

creates a set of indices for all genes that contain either “iron” or “ferrous” in their

product description.

While it is possible to use another ArrayList object to store the indices, the properties

of the TreeSet object (provided in the java.util package) allow more complex searches

to be carried out. As noted above, ArrayList stores objects in the order in which they

were added. This behaviour is fine for single query searches but for more complex

searches, where we run through the stored details a number of times, ArrayList does

not allow for ordering the genes in ascending order, leading to messy search results.

In contrast, TreeSet stores objects in a specific order, in this case in ascending locus

order. Another disadvantage ArrayList has is its allowance of duplicate values; again,

for one search this may not be a problem but for more complex searches, such as the

“iron ferrous” search above, it is possible that different searches return the same gene

(i.e. one or more genes contain both keywords in their product description), leading

to duplication in the search results and inevitably to confusion. TreeSet, based on the

mathematical concept of a set, does not allow for duplicates and is therefore more

suited to our needs.
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Sequence Extraction

All that remains to be done is to extract the nucleotide sequences for the genes that we

are interested in from the full genome sequence and output these sequences to a file.

This is done by reading through the set of genes constructed in step 2; for each gene in

the set, the start and end points are found and the relevant sequence (either the coding

sequence or the 200bp upstream sequence) is output to a file.

The main task in this step is extracting the correct sequence from the full genome

given in the .gbk file. As shown above, the .gbk file gives the full genome sequences

as rows of 60bp. In theory, there should be no limit to the size of a String object in

Java so it may be possible to read the entire nucleotide sequence into memory and

easily extract the sequence required; in practice, however, this is not feasible due to

memory considerations and the length of time it would take to construct such a string.

Therefore, we must read through the nucleotide sequence (using the Scanner object

in ‘line by line’ mode) so we can extract from the correct place, reading the correct

number of rows.

As shown above, the rows are numbered according to the first base in each row (i.e.

1, 61, 121, 181 etc.). To find the line we should start from, we take the start point of

the required sequence and divide by 60, rounding down to the nearest integer (floor

function). We then multiply by 60 and add 1 to find the line at which we should begin

extraction (Example 3.1).

Example 3.1
We want to extract the sequence starting at base 170.

floor(170
60 ) = 2

2 × 60 = 120

120 + 1 = 121

we therefore begin our extraction at the line beginning with base 121.

One exception to this is when the start point for the sequence begins at a number

which is exactly divisible by 60. In this case, after rounding down, we should subtract

a further 1 from the number before multiplying by 60 and adding 1 (Example 3.2). It

appears that the sequence extraction process used by Zhou (2008) did not account for

this exception.
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Example 3.2
We want to extract the sequence starting at base 3120.

floor(3120
60 ) = 52

52 × 60 = 3120

3120 + 1 = 3121

We see that following the same operations as last time will not extract the first base in

the sequence that we want. By subtracting an additional 1 after we have divided by

60 and rounded down, we will start extracting with the line beginning with base 3061,

correctly including the first base:

floor(3120
60 ) = 52

(52 - 1) × 60 = 3060

3060 + 1 = 3061

To find the number of lines to extract, we take the length of the required sequence,

divide by 60, again round down to the nearest integer and add 2, to make sure that any

overflow is covered (Example 3.3).

Example 3.3
We want to extract a 200bp sequence.

floor(200
60 ) = 3

3 + 2 = 5

we therefore need to extract 5 lines.

Now that we have a sequence of extracted lines, we just have to find out where in

this sequence our required sequence starts. This can be found by subtracting the line

number of the first extracted line from the start point of our required sequence and

extracting the (end – start) bases from that point. We can now combine and apply

all the above rules; Example 3.4 shows how we can apply these rules to extract an

upstream sequence from the full genome contained in the .gbk file.
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Example 3.4
We want to extract the sequence from base 1152 to base 1351 (i.e. the 200bp upstream

sequence for the amb0002 gene).

Find the line (L) to start from:

floor(1152
60 ) = 19

(19 × 60) + 1 = 1141

therefore L is the line beginning with base 1141.

Find the number of lines to extract:

floor(1152−1141
60 ) + 2 = 5

therefore we need to extract 5 lines.

Find the base in L at which our required sequence starts:

1152 – 1141 = 11

therefore our sequence starts at base 11 in line L

The getQuerySequences() method in the GBKReader class implements the above rules

and searches through the full genome sequence and returns either the upstream or

coding sequence for each gene in the query set. This is then output to a user-specified

text file in the FASTA format (as detailed above). If the coding sequence is to be

returned, each returned sequence is checked to make sure that the codon for that gene

begins with ‘ATG’, ‘GTG’ or ‘TTG’; if the coding sequence returned does not begin

with one of these common codon sequences, the user is alerted so the sequences may

be checked manually.

3.1.4 Using the GBKReader application

The GBKReader application may be run from the command line, using text files as

both input and output. The application takes five arguments:

• input - a .gbk file containing the genome you wish to extract genes from.

• sequence flag - denotes whether the coding [-c] or 200bp upstream [-u] sequence

for each gene should be returned.

• search flag - whether the query string is for a keyword search [-k] or locus search

[-l].

• query string - a string containing the term to be searched for.
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• output - a file to write the output to (typically a .txt file).

The following examples illustrate how the GBKReader application can be used.

Example 3.5
To extract the coding sequence for gene amb0001 from file AP007255.gbk and write

it to out.txt:

java GBKReader AP007255.gbk -c -l “amb0001” out.txt

Example 3.6
To extract the 200bp upstream sequences for genes amb0001 and amb4559 from file

AP007255.gbk and write them to out.txt:

java GBKReader AP007255.gbk -u -l “amb0001 amb4559” out.txt

Example 3.7
To extract the coding sequence for every gene containing the word “iron” in its ‘prod-

uct’ tag, from file AP007255.gbk and write it to out.txt:

java GBKReader AP007255.gbk -c -k “iron” out.txt

Example 3.8
To extract the 200bp upstream sequence for every gene containing the words “iron” or

“ferredoxin” in its ‘product’ tag, from file AP007255.gbk and write it to out.txt

java GBKReader AP007255.gbk -u -k “iron ferredoxin” out.txt

3.2 The Finite Mixture Model

Having extracted from the full genome a number of upstream sequences which we

believe to contain at least one regulatory motif, we now face the problem of applying

a method which will seek out any motifs present in the dataset. As noted in Section

2.1.1, Bailey and Elkan (1994a,b) propose the use of a mixture model to probabilisti-

cally model the dataset. The proposed model consists of two generative components;

one component (the “motif” model) describes a set of similar subsequences of fixed

width, while the other (the “background” model) describes every other position in the
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sequences. It is assumed that each position in the input dataset has been sampled from

either the motif model or the background model. The parameters of each model are

initially unknown: to fit the model to the data, the Expectation Maximization (EM)

technique is used to find the maximum likelihood estimates for the unknown parame-

ters from some initial estimates. After the EM technique has been applied to the mix-

ture model, we have maximum likelihood estimates for the parameters of both models;

that for the motif model is the most statistically significant motif in the dataset. The

finite mixture model we will use to represent the dataset requires three inputs. Firstly,

a dataset (referred to as Y) of a number (N) of DNA sequences, through which we will

search for possible motifs; secondly, a set motif width (referred to as W) to search with

and finally, a fixed ‘alphabet’ A = {a1,a2,. . . ,aL} (in our case A = {A, C, G, T}) from

which each character in the dataset is drawn. The mixture model does not model each

sequence in Y directly; instead, the dataset is conceptually split into all possible (n)

overlapping subsequences of width W – we will use this dataset (referred to as X) as

input to the model (Example 3.9 shows how an input dataset may be split into n over-

lapping W-width subsequences). Although this means that the model does not strictly

model the original dataset, it greatly simplifies much of the later calculation and is a

reasonable approximation in practice.
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Example 3.9:
We have a dataset Y of N = 4 input sequences:

Y1 = {C, G, T, T, G, C, G, G, C, G, T, G}

Y2 = {C, T, G, G, G, C, C, G, C, C, T, G}

Y3 = {C, C, C, C, G, G, C, A, G, C, G, C}

Y4 = {C, G, T, C, A, A, C, C, C, C, A, T}

Taking our example motif width W = 5, we can divide Y into a list (X) of every possible

overlapping width-5 sequence:

X1 = {C, G, T, T, G}

X2 = {G, T, T, G, C}

X3 = {T, T, G, C, G}

. . .

X32 = {C, C, C, A, T}

As previously explained, the mixture model consists of a motif and a background com-

ponent. The motif component specifies that each position in a subsequence which is

part of a motif is generated by an independent random variable describing a multino-

mial trial with parameter f i = (f i1,. . . , f iL). That is, the probability of a certain letter a j

appearing in position i in the motif is fi j (Bailey and Elkan, 1994b). The background

component specifies that each position in a subsequence which is not part of a motif is

generated independently, again by a multinomial random variable with parameter f0 =

(f 01,. . . ,f 0L). This means that a chosen X sequence which is not a motif is a sequence

of W independently generated samples from the single multinomial distribution f0 .

The parameters fi j for i = 0,. . . ,W and j = 1,. . . ,L must be estimated from the data.

For reasons which will become clear shortly, we shall refer to the motif model as θ1 =

(f1,f2,. . . , fW ) and the background model as θ2 = f0. To model the input data, we assume

that nature chooses either the motif model θ1 (with probability λ1), or the background

model θ2 (with probability λ2 = 1 – λ1) and then a sequence of length W is generated

according to the distribution governing the chosen model; it is assumed that every X

value arises from one of the models, of which we know the distributional form but not

the parameters.
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3.3 Using Expectation Maximization

3.3.1 The General EM Algorithm

Now that we have some initial estimates for the parameters of the model, we can

apply the Expectation Maximization (EM) algorithm in order to find the values of

the parameters which maximise the likelihood of the data. The iterative procedure of

the EM algorithm finds values for λ = (λ1,λ2) and θ = (θ1,θ2) which locally maximise

the likelihood of the data, given the finite mixture model described above.

The general EM algorithm is described by Bishop (2006: 440-1):

Given a joint distribution p(X,Z|θ), over observed variables X and latent variables Z,

governed by parameters θ, the goal is to maximise the likelihood function p(X|θ) with

respect to θ.
1. Choose an initial setting for the parameters θold .
2. E-step Evaluate p(Z|X,θold).
3. M-step Evaluate θnew given by:

θnew = argmax
θ

Q(θ,θold),

where

Q(θ,θold) = ∑
Z

p(Z|X ,θold) log p(X ,Z|θ).

4. Check for either convergence of either the log likelihood or the param-
eter values. If the convergence criterion is not satisfied, then let:

θold ← θnew

and return to step 2.

Figure 3.5: The general EM algorithm

We can apply this same method to the current problem. The general EM algorithm

makes use of the concept of hidden data (or ‘latent variables’). It is clear that in this

case, the hidden data (Z) that we must learn is the knowledge of which model (θ1 or θ2)

each Xi value has arisen from. The EM algorithm iteratively maximises the expected

log likelihood by repeatedly applying the E-step (in which we find the expected value

of the log likelihood of the model) and the M-step (in which we maximise the param-
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eters given the current log likelihood) of the algorithm. We continue iterating until we

are sure that some convergence has been reached (or a set number of iterations have

been carried out).

Bailey and Elkan (1994b) use the following notation to represent the hidden data Z:

Z = (Z1, Z2,..., Zn), where n is the number of samples (i.e. the number of
samples in X)

Zi = (Zi1, Zi2), where 1 and 2 represent the motif and background models
respectively

Zi j = 1, if Xi is from group j; 0, otherwise.

Behind this flurry of notation lies the idea that if Zi j = 1, then Xi has the distribution

p(Xi|θ j). At the start, the values of Z are unknown and are treated by EM as missing

data, along with the parameters λ and θ of the mixture model.

3.3.2 Finding some intial estimations of the model parameters

As explained above, the EM algorithm must be started with some initial estimation of

the model parameters θ. Although theoretically these can be anything (within reason),

due to the high dimensionality of the search space, we would like the estimation to

be as good as possible to avoid getting ‘stuck’ in a local maximum that is far from the

‘real’ solution. In order to get as good an estimation as possible, the intial estimate of θ
must be made from the input data. Example 3.10 shows how θ may easily be estimated

from the X dataset.
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Example 3.10:
Given the dataset X = {X1,. . . ,X32} from Example 3.9, we wish to estimate fi j for i =

0,. . . ,W and j = 1,. . . ,L.

Estimating f0 requires only a simple calculation of the frequencies of each letter in the

Y dataset; for each letter we therefore count the occurrences of that letter and normalise

using the total of all the letters. We end up with:

f0 = ( 4
48 , 21

48 , 16
48 , 7

48)

Estimating fi is done in a similar fashion for each position using the X dataset. There-

fore to calculate f 1A, we count the number of times ‘A’ occurs in position 1 in the X

dataset, we then normalise by dividing by n (the number of sequences in the X dataset

- in our running example this is n = 32); our estimate for f 1A is therefore 3
32 . This is

done similarly for each position and letter. Our estimation of fi follows (each column

represents a position, each row a letter):

fi =





3/32 3/32 3/32 4/32 4/32

14/32 13/32 15/32 14/32 13/32

11/32 12/32 11/32 11/32 12/32

4/32 4/32 3/32 3/32 3/32





NB: It should be noted that the results for f0 and fi are skewed due to the small nature

of the example dataset. Using a larger real-world dataset smoothes the estimates so

they are all roughly the same (this depends on the proportion of each letter within the

DNA sequences – we assume this is roughly even for each letter). Strictly, we should

estimate f0 from dataset X; however this smoothing means that we can carry out the

initial estimation much faster from Y with roughly the same results.

3.3.3 Finding the log likelihood of the model

What we are interested in is maximising the log likelihood of the data, given the model.

To do this we must first calculate the log likelihood of the data given the parameters,

following Bailey and Elkan (1994b):
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It should be clear from the definition of Z that the prior probability that a particular Zi j

= 1 is simply λ j:

p(Zi j = 1|θ,λ) = λ j, 1 ≤ i ≤n.

It is also clear that for any given i, all Zi j are 0 except for one, since a sample can

only belong to one group. It follows that the conditional densities of a single Xi can be

written (Bailey and Elkan, 1994b):

p(Xi|Zi,θ,λ) =
2

∏
j=1

p(Xi|θ j)Zi j

and similarly for its missing data Zi:

p(Zi|θ,λ) =
2

∏
j=1

λZi j
j .

By these two definitions and the definition of conditional probability, the joint density

of a sample and its missing data can be written as:

p(Xi,Zi|θ,λ) = p(Xi|Zi,θ,λ)p(Zi j|θ,λ)

=
2

∏
j=1

[p(Xi|θ j)λ j]Zi j .

If we assume that each Xi is independent, we can write the joint density of the data and

all the missing information as:

p(X ,Z|θ,λ) =
n

∏
i=1

p(Xi,Zi|θ,λ)

=
n

∏
i=1

2

∏
j=1

[p(Xi|θ j)λ j]Zi j .

While our assumption of independence between each Xi makes the mathematics con-

siderably simpler, it is incorrect; as we have seen, the samples in X are overlapping

subsequences of width W taken from Y. We will therefore have to make sure that we

take this independence assumption into account; how this is done in practice is ex-

plained shortly.
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The likelihood of our unknown parameters θ and λ given the joint distribution of our

input data X and the missing data Z is defined as:

L(θ,λ|X ,Z) = p(X ,Z|θ,λ). (3.1)

The log likelihood is therefore:

logL(θ,λ|X ,Z) =
n

∑
i=1

2

∑
j=1

Zi j log(p(Xi|θ j)λ j). (3.2)

The EM algorithm iteratively maximises the expected log likelihood over the condi-

tional distribution of the missing data Z given the (observed) input data X and the cur-

rent estimates of parameters θ and λ. This is done by repeatedly applying the E-step

and then the M-step as detailed below, until some convergence condition is met.

3.3.4 E-step

The E-step of the EM algorithm finds the expected value of the log likelihood (3.2)

over the values of the missing data Z and the current values of the parameters θ = θ(0)

and λ = λ(0). Following Bailey and Elkan (1994b), we can use the fact that the expected

value of a sum of random variables is equal to the sum of their individual expectations

to simplify the calculation. This gives:

E
(Z|X ,θ(0),λ(0))

[logL(θ,λ|X ,Z)] = E
(Z|X ,θ(0),λ(0))

[
n

∑
i=1

2

∑
j=1

Zi j log(p(Xi|θ j)λ j)]

=
n

∑
i=1

2

∑
j=1

E
(Z|X ,θ(0),λ(0))

[Zi j log(p(Xi|θ j)λ j)]

=
n

∑
i=1

2

∑
j=1

E[Zi j|X ,θ(0),λ(0)]log(p(Xi|θ j)λ j). (3.3)

Now we are only required to calculate the expected value of Zi j. This can be found

using the definition of expectation, Bayes’ rule and our previous definitions for Z.

Defining Z(0)
i j = E[Zi j |X,θ(0),λ(0)], we have3:

3This definition is equivalent to the two-component mixture (TCM) model described by Bailey and
Elkan (1994a, 1995a)
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Z(0)
i j = E[Zi j|X ,θ(0),λ(0)]

= 1 · p(Zi j = 1|Xi,θ(0),λ(0))+0 · p(Zi j = 0|Xi,θ(0),λ(0))

=
p(Xi|Zi j = 1,θ(0),λ(0)) · p(Zi j = 1|θ,λ(0))

p(Xi|θ(0),λ(0))

=
p(Xi|θ(0)

j )λ(0)
j

2
∑

k=1
p(Xi|θ(0)

k )λ(0)
k

, i = 1, ...,n, j = 1,2. (3.4)

Substituting (3.4) into equation (3.3) and rearranging gives:

E[logL(θ,λ|X ,Z)] =
n

∑
i=1

2

∑
j=1

Z(0)
i j log(p(Xi|θ j)λ j)

=
n

∑
i=1

2

∑
j=1

Z(0)
i j log p(Xi|θ j)+

n

∑
i=1

2

∑
j=1

Z(0)
i j logλ j (3.5)

Now we only need the values for p(Xi|θ) to calculate the expected log likelihood. Bai-

ley and Elkan (1994a) state that MEME assumes the distributions for model 1 (motif)

and 2 (background) are:

p(Xi|θ1) =
W

∏
j=1

L

∏
k=1

f I(k,Xi j)
jk

and

p(Xi|θ2) =
W

∏
j=1

L

∏
k=1

f I(k,Xi j)
0k .

where Xi j is the letter in the jth position of sample Xi and I(k,a) is an indicator func-

tion which is 1 if and only if a = ak. Although this notation looks complex, we can

intuitively think of this as multiplying only the probabilities required by the sample Xi

as the rest are omitted from the calculation due to the indicator function.

One additional calculation is performed after the values for Z have been calculated; the

zi j values for each sequence are normalised (or ‘smoothed’) to sum to at most 1 over

any window of size W. This is done following Bailey and Elkan (1994a, 1995c):
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k+W−1

∑
j=k

zi j ≤ 1,

for i = 1,...,N and k = 1,...,li - W (where li is the length of sequence i). This ‘smoothing’

is done because otherwise there is a tendency for the algorithm to converge to motif

models that have long repeated sequences such as “AAAAAA” or “ATATAT” because

the overlapping samples in X are not independent; the smoothing counters the faulty

assumption we made that each X sequence is independent.4

3.3.5 M-step

The M-step of the EM algorithm maximises (3.5) over θ and λ in order to find the

next estimates for them. It is clear from (3.5) that maximising over λ involves only the

second term:

λ(1)
j = argmax

λ

n

∑
i=1

2

∑
j=1

Z(0)
i j logλ j

which has the solution

λ(1)
j =

n

∑
i=1

Z(0)
i j

n
, j = 1,2.

Maximising over θ is slightly more complex. We must solve

θ(1)
j = argmax

θ

n

∑
i=1

Z(0)
i j p(Xi|θ j)

for j = 1,2. Bailey and Elkan define:

c0k =
n

∑
i=1

2

∑
j=1

Z(0)
i2 I(k,Xi j)

and
4Bailey and Elkan (1995c) also include an extra ‘squashing’ algorithm, to be applied before the

smoothing algorithm, which normalises z so that any zi j is not greater than 1. It is, however, unclear
why this is included as each zi j value should be less than 1 by definition (3.4).
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c jk =
n

∑
i=1

Z(0)
i1 I(k,Xi j),

for k = A, C, G, T, and j = 1,...,W. Again, the indicator function is used as a mathemati-

cal convenience; the variables we are not interested in are omitted from the calculation.

c0k represents the expected number of times letter ak appears in positions generated by

the background model and c jk for j = 1,...,W is the expected number of times letter ak

appears at position j in occurrences of the motif. θ is reestimated using these count

variables:

θ(1)
j = ( f̂0, f̂1, ..., f̂W )

∴
f̂ jk =

c jk
L
∑

k=1
c jk

for j = 0,...,W and k = A, C, G, T. In practice, we must add a small ‘pseudocount’ to

our estimation as maximum likelihood estimation of a multinomial random variable is

subject to problems if any letter frequency becomes zero. We therefore use:

f̂ jk =
c jk +β

L
∑

k=1
(c jk +β)

.

β is known as a Laplace estimator and is equivalent to using a prior Dirichlet distri-

bution. The value of β must be chosen carefully: if it is too large, the effect of β will

become much larger than that of the counts c, this leads to a decrease in the ‘crispness’

of found motifs. If β is very small, the algorithm is likely to make more definite de-

cisions regarding which letter appears in which position; this may seem like a desired

effect, however it is possible that the more definite decision taken is wrong! Bailey and

Elkan (1994a) state that β should in some way represent the proportion of the dataset

made up of each character. We assume that each character appears roughly equally

throughout the dataset; for convenience, β has therefore been initially chosen to be

0.25 in this study.

Now that we have new estimates for θ and λ, we can use these as inputs to the E-

step and continue the process until some convergence criteria has been met. After the
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model has converged, the value of θ is our estimation for both the background and

motif models; it is assumed that the converged motif model represents a motif in the

input dataset.

3.4 From EM to MEME

As mentioned in Section 2.1.1, the MEME algorithm contains a number of novel fea-

tures which extend and improve the basic EM algorithm for motif discovery. Al-

though there has been much work on various heuristics to improve motif discovery

since MEME was first described, in this study we are interested only in the features

whch distinguish the basic MEME algorithm from the EM algorithm. These are an

ability to discover multiple motifs due to an ‘erasing’ prior distribution and an ability

to cope with local minima in the search space.

3.4.1 The ‘Erasing’ Prior Distribution

As we have already seen, the modelled dataset X contains one entry for each possible

motif in the input dataset Y. In order for the MEME algorithm to find more than one

‘most significant’ motif, we must find a method which can remove previously discov-

ered motifs from the dataset. The solution to this problem proposed by Bailey and

Elkan (1995a,b) is to associate an ‘erasing’ prior distribution factor Vi with each Xi

value. Each Vi value is initially set to 1, indicating that no ‘erasing’ has occurred. Af-

ter a run of EM has converged to give us our first (most statistically significant) motif

the Vi values are decreased according to the probability that Xi is part of the first mo-

tif. It is clear that the previously found motifs are effectively ‘erased’ from the dataset

by the multiplicative effect of the prior distribution; this allows us to reestimate θ and

rerun the EM algorithm to find the next most statistically significant motif.

To find multiple, different non-overlapping motifs in the input dataset, MEME uses a

greedy search, incorporating information about previously discovered motifs into the

model to avoid rediscovering the same motif. After the model has converged, the Zi1

variables represent the probability that Xi is an instance of the discovered motif. In-

tuitively, we would like to decrease the prior distribution according to this probability,

so that a sample Xi which has a high probability of being an occurrence of a motif is
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effectively cancelled out by the prior distribution V. In order to calculate the values

of the prior distribution V, Bailey and Elkan (1995b) define another set of variables

U which encode the positions in the input dataset that are not part of previously dis-

covered motifs. Similarly to the calculation of Zi j, we compute and store the expected

values of Ui j; before we run the EM algorithm for the first time, each Ui j = 1. These

values are updated according to the formula:

U (p)
i, j = U (p−1)

i, j (1− max
k= j−W+1,..., j

Z(c)
i,k ),

where Z(c)
i,k is the converged estimate of the missing information. It is clear from the

formula that we change the estimate of Xi j not being part of the discovered motif

by multiplying it by the probability of it not being contained in an occurrence of the

previously discovered motif; we estimate this using the most probable motif of width

W that would overlap it. The maximum Zi j is used because occurrences of the motif

cannot overlap themselves; it is in this way that we account for our assumption of

independence discussed earlier. We calculate V using the following formula:

p(Vi, j = 1) = min
k= j,..., j+W−1

p(Ui,k = 1),

that is, we estimate the probability of a motif occurrence not overlapping an occurrence

of any previously discovered motif as the minimum of the probability of each position

within the new motif occurrence not being part of an occurrence of a previously dis-

covered motif (Bailey and Elkan, 1995b). The minimum is used here as, again, the

probability of adjacent Xi samples not being contained in previously discovered occur-

rences is clearly not independent.

Now that we have calculated our prior distribution V, we simply slot this in when we

reestimate Z in the E-step of the EM algorithm. We calculate Z as before and then

multiply by our prior distribution to get:

Ẑi j = Vi j ·Zi j

and use Ẑi j instead of Zi j in the M-step of the EM algorithm as described above. At this

point it should be made clear that no actual erasing of the dataset (X or Y) is performed;

the dataset always remains constant throughout. It is the effect of the ‘erasing’ prior
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distribution which cancels out previously discovered motifs (Bailey and Elkan, 1994b;

1995a,b).

3.4.2 Coping with Local Minima

One of the previously mentioned problems facing any motif discovery algorithm is the

large dimensionality of the search space (see Section 2.4) and therefore the high possi-

bility of the algorithm converging to a local rather than a global optimum; clearly, we

would prefer to converge to a global optimum in order to get the most likely solution.

Bailey and Elkan (1994a,b) describe one method for increasing the chance of gaining

a globally optimal solution. The EM algorithm is sensitive to its initial parameters,

therefore by running EM a number of times and choosing the parameters which con-

verge to the model with the highest log likelihood, we can guarantee as far as possible

that we will reach a globally optimal solution. It is claimed (Bailey and Elkan, 1994b)

that starting the EM algorithm with an intial estimation for λ1 that is within a factor of

2 of the correct value is usually sufficient to converge to an optimal solution (however,

it should be noted that the results supporting this claim are not shown). A lower limit

for the initial value of λ1 is given as
√

N
n (recall that N is the number of sequences in

the input dataset), the upper limit is given as 1
2W ; therefore, we run the EM algorithm

a number of times, starting with λ1 =
√

N
n , letting the algorithm converge and noting

the log likelihood of the solution. λ1 is then doubled and the procedure carried out

again, repeating while λ1 is less than 1
2W . After every run of the algorithm has been

completed, the algorithm is run one final time with the initial parameters that give the

solution with the highest log likelihood; the solution for this run is then reported as the

solution most likely to be the global optimum.

3.4.3 The Complete MEME Algorithm

Now that we have discussed the characteristic features of the MEME algorithm, the

complete algorithm can be presented (Figure 3.6).
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procedure MEME (
Y //dataset of sequences
W //motif width
NPASSES) //number of distinct motifs to search for
Estimate initial θ from Y
for i = 1 to NPASSES do

for λ(0) =
√

N
n to 1

2W by × 2 do
Run EM to convergence using current parameters
Calculate log likelihood of converged model

end
Run EM to convergence using best parameters found above
Print the converged motif
‘Erase’ that motif from the dataset by updating U, V

end
end

Figure 3.6: The complete MEME algorithm

3.5 Implementation of MEME

The JMeme application implemented in this work contains a number of methods that

are used to implement the MEME algorithm as described above. There are two main

processes handled by the JMeme application: setting up the data structures and carry-

ing out the EM calculations. These processes and the methods used to perform them

are described below.

3.5.1 Setup

The setup() method in the JMeme class calls a number of methods in order to success-

fully set up the data structures required for the EM algorithm. The first method to be

called, addSequences(), imports a number of sequences in FASTA format (see Section

3.1.1) from a text file; these are placed in a temporary store. The next method, ini-

tialiseY(), creates a new integer array and adds the sequences from the temporary store

to the array. Although the sequences could be stored as strings, it makes sense to store

the sequences as integer arrays as this simplifies a great deal of the array manipulation

required later by the EM algorithm. Now that we know how many sequences there are

and how many possible motifs each contains, we create and initialise two arrays for U

and V using the initialiseUandV() method; these are created now as they will not have

to be reset throughout the running of the program, unlike the array used to store the Z
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values. The final setup method, updateF(), creates an array (z) to store the values of

Zi1 and performs the estimation of θ from the data as described in Example 3.10.

It should perhaps be noted at this point that it is unclear if the algorithm described

by Bailey and Elkan (1994a,b) can be used with input sequences of different length.

Setting up the program would be considerably easier if it is assumed that each input

sequence is of different length; however, this assumption has not been made in the

programming of JMeme to allow more flexibility in creating input datasets.

3.5.2 Carrying out EM

Each pass of the MEME algorithm is carried out by the pass() method; from here other

methods are repeatedly called in order to use the EM algorithm. The pass() method

firstly calculates the limits of λ1 as described earlier. The run() method is then called

with the current value of λ1 as an argument. After the run() method finishes, the log

likelihood of the model is calculated and stored along with the λ1 value used. λ1 is

then doubled and the process repeated. After run() has finished for the final time,

the λ1 parameter is set to the value that converged to the model with the highest log

likelihood and the run() method called once more to return the optimal solution. Once

the optimal solution has been printed, the arrays U and V are updated to reflect the

newly discovered motif.

The run() method does a large amount of the work in the JMeme application. Firstly,

updateF() is called once more so that we are sure we are starting from the same settings

for each run of the EM algorithm. Then, while the algorithm has not converged, the

eStep() and mStep() methods are called repeatedly to carry out the EM calculations.

Following Bailey and Elkan (1994a), the algorithm is said to have converged when

the change in θ (calculated using the Euclidean distance) falls below a threshold of

10−6 or 4000 iterations have been carried out. (Although Bailey and Elkan (1994a)

use a default of 1000 iterations, this has been raised to give the algorithm the best

possible chance of converging without reaching the maximum number of iterations; it

was deemed that the possible slight increase in processing time was not problematic.)

The eStep() method finds the expected value of the log likelihood over the conditional

distribution of the missing data as described above. The array z is then updated using

the current probability values for each possible motif and then smoothed, as described
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above (see Section 3.3.4); once the z array has been smoothed, the ‘erasing’ prior

distribution V is applied as described above (see Section 3.4.1).

The mStep() method maximises the expected value of the log likelihood over the con-

ditional distribution of the missing data by separately maximising λ and θ as described

above. The calculateLambda1() method carries out the update of λ1; this is a simple

summation of all the values in z, before dividing by the total number of possible motifs

n. The two methods calculateC0() and calculateC1() are used to calculate the c values

described above; the reestimateF() method then uses the updated c values to reestimate

θ.

3.5.3 Using the JMeme application

The JMeme application may be run from the command line, using standard FASTA

formatted text files as an input. The application takes three arguments:

• width - the width of motifs to search for; this should be at least 6.

• input - a FASTA formatted .txt file containing a number of nucleotide sequences

to be searched for motifs

• passes - the number of passes to be made by JMeme; typically this is 1, but this

can be increased to search for multiple motifs

The following examples illustrate how the JMeme application may be used.

Example 3.10
Running JMeme from the command line to search for one motif of width 8 in the file

ctaaatgc10-2.txt:

java JMeme 8 ctaaatgc10-2.txt 1
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Example 3.11
Sample output from the application after the above command has been entered:

JMeme
A.M.Kilpatrick 2009

Adding input sequences...
Finished adding sequences.

============
MEME Pass 1.
============

Maximum converged LL is: -21369.945968216583.
Initial lambda for that run was 0.0016.
Optimal solution found.

Optimal Solution: Pass 1
lambda1:
0.010074436192016997
Log likelihood: -21369.945968216583

f0:
A 0.2544
C 0.2477
G 0.2444
T 0.2535
f1:
A 0.0729 0.0201 0.7451 0.9204 0.9061 0.0733 0.0690 0.1932
C 0.8445 0.1055 0.2131 0.0171 0.0579 0.1209 0.0135 0.6642
G 0.0209 0.0163 0.0267 0.0351 0.0196 0.0152 0.9020 0.0417
T 0.0617 0.8581 0.0151 0.0274 0.0164 0.7906 0.0155 0.1009

End of solution.

================

3.6 Characterisation of JMeme

In order to identify the characteristics of the JMeme application, a number of tests were

set up, using both synthetic and known real-world data. Using synthetic data (that is,

where one or more known motifs were inserted into otherwise random ‘background’

data) allows the performance of the application to be measured while altering a single

specific variable. Using real-world datasets where motifs have been previously pro-

posed also allows some measure of the performance of the application against existing

motif discovery methods. These tests are important, as knowledge gained from both

the synthetic and real-world characterised tests allows a strategy for dealing with new

uncharacterised data to be incorporated.
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3.6.1 Synthetic Data

Dataset Creation

A small application to create synthetic data, CreateTestData was written in Java. This

application can be used to automatically create FASTA formatted datasets, containing a

user-defined number of nucleotide sequences, a number of which (again, user-defined)

contain a motif chosen by the user. Like other FASTA formatted files, these datasets

can be used as input to the JMeme application. There are two main steps in the creation

process; firstly, given a sequence length (s) and a motif (of length m) to be inserted,

a random nucleotide sequence of length s - m is created using the Random class, pro-

vided in the java.util package (Barnes and Kolling, 2006: 465). The second step is

then to insert the motif at a random point in the newly created sequence and write the

sequence in the FASTA format to a specified output file.

Using the CreateTestData application

The CreateTestData application may be run from the command line, using a text file

for the output. The application takes five arguments:

• number of sequences - the total number of sequences to be created.

• number of motif sequences - the number of sequences to create that contain the

motif.

• sequence length - the length of the sequences to be created.

• motif string - the motif to be included in the sequences

• output - a file to write the output to (typically a .txt file)

The following example illustrates how the CreateTestData application can be used.

Example 3.12
To create a dataset containing 20 sequences of length 200bp, of which 8 contain the

motif GAGTTCAACTC and write it to the file out.txt:

java CreateTestData 20 8 200 gagttcaactc out.txt
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Tests

Tests were set up using synthetic datasets in order to answer six important questions

regarding the performance of JMeme; this allows some information to be gained on

the basic characteristics of the JMeme application. As mentioned above, the use of

synthetic data allows measurements to be taken, varying one aspect of the input data

while keeping the rest as constant as possible. Using synthetic data also means that the

motif to be searched for in the data is already known; this allows some scoring criterion

to be used so that numeric comparisons can be made between two different runs of the

application in various tests. The questions and the formulated tests performed are

described below; the results of the tests, the scoring criteria and an analysis of the

results will be presented in Chapter 4.

Does the number of input sequences have an effect on performance? A test was

carried out to discover the effect of the number of sequences in the input dataset on the

performance of JMeme. The test was carried out for five different motif widths, using

five different motifs for each different motif width. For each motif, five datasets were

constructed, containing 10, 20, 30, 40 and 50 sequences. Each test sequence was 200bp

long; this length was chosen so that the results of the test would reasonably represent

the results that could be expected when using new unknown data (it was decided in

advance that the new unknown sequences would be 200bp long - see Section 1.3).

The test datasets were constructed by using the CreateTestData application to create

a dataset consisting of 50 sequences, each containing a specific motif; this would be

our 50 sequence dataset. 10 sequences were then deleted from the file, which was then

saved again as the 40 sequence dataset. This process was repeated until all the required

datasets had been constructed. This may seem like a strange method for constructing

the required datasets, however, using this process allows the datasets to be as constant

as possible while changing the number of sequences; it would have been possible to

simply run CreateTestData five times to create different sized datasets, but by using

the chosen method we keep the random ‘background’ data literally the same, rather

than simply regenerating from the same distribution. For each tested motif width, the

performance of the application was recorded for each motif; these results were then

averaged to give a single value for each motif width and dataset size.
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Does the random ‘background data’ have an effect on performance? The effect

of regenerating the background data was explored in the second test; this test aimed

to answer the question of how the performance of JMeme was affected by variation

in the randomly generated background data. Again, datasets containing 10, 20, 30, 40

and 50 sequences were constructed; this time, the CreateTestData application was used

to regenerate the random background while keeping the chosen motif the same each

time. The tests were carried out using 20 datasets for each number of sequences with

a single width 8 motif; while it could not be assumed that this single test would be

representative of all possible motifs for all possible widths, the results would provide

a useful guideline which could then be used to judge the results of other tests. For

each size of dataset, the performance of the application was recorded and the mean

and variance in the results calculated. This test provides some idea of how sensitive

the application is to background data; results which showed very little variation in

the performance of the application while using different background sequences would

indicate that the application worked well to discover motifs without relying on random

quirks of the generated background data.

Does the proportion of input sequences containing the motif have an effect on

performance? Both the above tests have assumed that any motif in the input dataset

will be present in every sequence in that dataset. This is clearly unlikely to be the

case given the current understanding of the exact role of each gene and the complex

mechanism by which magnetosome particles are produced. It would therefore be wise

to carry out a test in which the proportion of input sequences containing a motif was

varied, in order to discover how this variation would affect the performance of the

application. Once again, datasets containing 10, 20, 30, 40 and 50 sequences were

constructed using the CreateTestData application; the application was used to insert

motifs into varying proportions of the dataset. For each dataset size and proportion,

20 datasets were created. Again, this test was only carried out with a single width

8 motif, the same comments made above apply to this test also. For each size of

dataset, the performance of the application was recorded for a number of different

dataset proportions, from 100% (i.e. all sequences contain the motif) to 0% (i.e. all

sequences are random). The results of the 0% tests would give some idea of how many

correct motif positions could be predicted by chance; clearly, any test result which is

about the same as could be predicted by chance alone is not significant.
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Does performance decrease when searching for multiple motifs? The tests de-

scribed above have explored the characteristics of JMeme for a single motif, however,

as noted previously, one of the main features of the MEME algorithm is its ability to

deal with multiple motifs through probabilistic erasing. We should therefore explore

how JMeme deals with multiple motifs. For five different motif widths, datasets were

created containing 3, 4 and 5 different, non-overlapping motifs. In order to ensure that

each motif was non-overlapping, the datasets were created containing only one motif

using CreateTestData and then other motifs added manually. Each dataset contained 20

input sequences, each of which contained each motif. The number of input sequences

was chosen to be close to likely dataset sizes that would be used with the real-world

data. Again, we cannot assume that the real-world input sequences all contain every

motif and further, it is unlikely that, in datasets containing multiple motifs, each motif

is the same width. However, the results gained from this test will be useful in helping

to build a strategy for dealing with new unknown data which may contain multiple mo-

tifs. For each number of motifs contained in the dataset, the performance of JMeme in

discovering all contained motifs was recorded and then averaged in order to gain some

idea of any performance differences between finding the most statistically significant

motif and other less significant motifs.

How does JMeme handle gapped motifs? As mentioned in Section 2.4, previous

research has shown that regulatory motifs may not simply consist of a single unbroken

sequence, but two sequences separated by a small gap (this appears to be the cases

especially for (quasi)-palindromic motifs). If we consider the upstream sequence as

a 3-dimensional structure, it is somewhat easier to see how this can be the case. It is

possible that the upstream sequence we are interested in loops around before carrying

on; in this case the regulating protein binds to either side of the loop but not to the

loop itself, causing a gap in the motif. In order to test how any extensions to JMeme

improve its ability to discover gapped motifs, we must first explore its current ability

to deal with gapped motifs. A number of datasets were built, some containing 10 input

sequences, the others containing 20. These datasets were constructed by running the

CreateTestData application a number of times keeping both sides of the gapped motif

the same each time, but the ‘gap’ section different (see Example 3.13); the results were

combined by copying each of the created files into another ‘master’ file. Again, the

performance of JMeme in discovering the motif and the gap was recorded for each

dataset.
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Example 3.13
Creating a dataset with the gapped motif TATAC - - - - GTATA. Note that the start and
end sequences remain the same, while the ’gap’ sequence changes between each run.

java CreateTestData 5 5 200 tatacacgtgtata 1.txt
java CreateTestData 5 5 200 tataccgtagtata 2.txt
java CreateTestData 5 5 200 tatacgtacgtata 3.txt
java CreateTestData 5 5 200 tatactacggtata 4.txt
copy 1.txt + 2.txt + 3.txt + 4.txt tatac----gtata.txt

Do we need to know the ‘correct’ motif width? One of the most important factors

in working with unknown data is that the width of any motifs contained in the data is

also unknown. We should therefore carry out some tests to see the effect of running

JMeme with the ‘wrong’ motif width, for example, given a dataset containing a width-8

motif, we should explore the effects of using JMeme to search for a motif of different

width, perhaps 10 or 11. This will give some indication of the effects we are likely

to see when it comes to analysing real-world unknown data and will help to build a

strategy for working with this kind of data. In order to explore the effects, a dataset

containing a width-8 motif was created and a number of tests carried out in JMeme

using different values for the motif width parameter. Unlike the majority of the other

tests, this was not a test that could be measured numerically, however, the discovered

effects were noted as it is likely that they will play a part in our strategy for working

with unknown data.

Discussion

Although the tests on synthetic data described above are not exhaustive, they should

give some idea of the characterisation of the basic JMeme application. The main factor

in performing the above tests is the large combination of parameters which grows with

each test; it would be good to perform each test several times, varying each and every

possible parameter, however, this is simply not possible given the time constraints of

the project. In most cases, the tests were carried out with data which was deemed to be

representative of data to be used in real-world tests. Clearly, tests with more extreme

data to explore the limitations of the JMeme application would be desirable given more

time, however it was decided to spend more time working with known real-world data

and devising a strategy for working with uncharacterised real-world data. The tests
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carried out with previously characterised real-world data are described below.

3.6.2 Real-world Characterised Data: CtrA Metabolism

As mentioned in Section 2.3.3, the study by Lan (2008) concentrated on the cell tran-

scriptional regulator (CtrA) metabolism of Magnetospirillum magneticum and identi-

fied two new potential motifs by carrying out an orthology analysis between M. mag-

neticum and Caulobacter crescentus (a closely related alphaproteobacteria): a width-6

ungapped motif and a longer width-15 gapped motif were identified. The same data

was used in this study in order to further test the JMeme application. The aim of

this test was not only to confirm that JMeme was working as expected but to validate

the potential motif sequences identified by Lan (2008); the results of the tests and an

analysis of the results will be presented in Section 4.1.2.

Dataset Creation

Two real-world datasets (referred to as BLAST and LAN) were created in order to

further test the implemented JMeme application using the CtrA metabolism. This is

one area which has been studied previously, therefore results gained here should be

confirmed by existing knowledge.

BLAST In order to discover the genes involved in CtrA metabolism in AMB-1, a

list of genes known to be involved in CtrA metabolism in a closely related species of

alphaproteobacteria (Caulobacter crescentus) was used (Laub, et al., 2002). A BLAST

search was carried out for each gene in the list; this returned a number of similar genes

in the AMB-1 species. Although some genes returned a large number of matches,

only the best results were kept. A similarity score of 1E-8 was used as a threshold;

genes that scored less than this (i.e. that were better matches) were kept and the rest

discarded. After this process was carried out for each gene in the C. crescentus list,

119 genes deemed to be involved in CtrA metabolism in AMB-1 were remaining; these

genes were extracted from the AMB-1 .gbk file using the GBKReader application (see

Section 3.1.4). Lists of the genes included in all of the real-world datasets used are

presented in Appendix A.
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LAN As a confirmation of the above method, the genes from the BLAST dataset were

compared to the list of genes built using comparative genomics by Lan (2008). Almost

all of the genes in that dataset had been found by the BLAST search above; of these,

20 were used by Lan (2008) to explore the CtrA metabolism. The dataset of 20 genes

used by Lan (2008) was reconstructed using the GBKReader application so it could be

used as an input to JMeme.

Tests

The JMeme application was run with the LAN dataset over a range of different possible

motif widths. It was decided not to use the BLAST dataset because of the large number

of sequences in the dataset. Although it is possible that the sequences in the BLAST

dataset that are additional to those in the LAN dataset may support any motifs found

in the LAN dataset, there are the disadvantages of a much longer required computation

time and a high number of potential ‘noise’ sequences; therefore, only the LAN dataset

was used in order to get the best results. It was expected that runs with shorter widths

would discover the ungapped motif, with additional runs over similar widths validating

the result. Runs over a range of longer widths were performed in order to discover the

longer gapped motif. Additional runs over similar widths were performed in order to

validate the result; this would be important as Lan (2008) notes that the signal for the

longer gapped motif is weaker than that for the ungapped motif and it therefore will

likely be harder to find.

3.6.3 Real-world Characterised Data: Iron Metabolism

The study by Lan (2008) also aimed to confirm the work carried out by Rodionov, et

al. (2006) on the iron regulation metabolism in M. magneticum (see Section 2.3.3).

Lan (2008) obtained a width-21 motif which was very similar to the width-19 motif

proposed by Rodionov, et al. (2006). Again, the aim of this test was to validate this

result and further test the JMeme application to make sure it was working as expected;

the results, analysis and a potential new motif will be presented in Section 4.1.3.
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Dataset Creation and Tests

As noted in Section 2.3.2, Rodionov, et al. (2006) provide a list of 17 genes thought to

be important in regulation of iron production; the upstream regions of these 17 genes

were used for the study by Lan (2008). The same genes were extracted from the AMB-

1 .gbk file using the GBKReader application; these form the ROD dataset. This dataset

has been analysed previously and one possible motif discovered; it therefore provides

a starting point for motif discovery. It is possible that different motifs or even no motifs

may be found with the JMeme application as the previously discovered possible motif

was found using the GenomeExplorer application.

Again, the JMeme application was run over a range of different possible motif widths

in order to discover the proposed motif; it was hoped that additional runs would again

validate the result as it is likely that the signal for the motif is quite weak.

3.7 A Strategy For Analysing Real-world

Uncharacterised Data

Knowledge gained from the tests described above was used to devise a strategy for

working with real-world unknown data. This is important because it is this type of

data that we are most interested in; in order to gain meaningful results and use the

available time most efficiently, a structured way of working with this data is required.

One important piece of information which is unknown in this situation is the motif

width. Conducting tests with synthetic data in which the correct width of the motif

(the ‘target’ width) is different to the width parameter given to JMeme (the ‘tested’

width) indicated that, in general, motifs which had strong results when the tested width

was correct remained strong when the tested width was incorrect. When the value of

the tested width used was smaller than the target width, it was found that a number of

positions in the target motif were cut off from the result motif; when the tested width is

increased to a value larger than the target width, the result motif generally contains the

target motif and a number of weaker ‘noisy’ positions (see also Section 4.1.1). From

these results, it is clear that, in order to find the ‘correct’ motif width, a range of widths

must be tested; sequences which appear strong over a number of different widths are

more likely to be significant.
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When the tested motif width is significantly smaller than the target, it was found that

multiple passes of JMeme tended to find different fragments of the target motif on

each pass. Assuming each fragment is more significant than the background data this

result should not be surprising; as one fragment is probabilistically erased, subsequent

passes of JMeme should find the remaining fragments of the target motif. It should

therefore be noted that the returned motifs may not themselves be motifs, but smaller

fragments of a longer motif. It follows from this that the effect of shifting (explained

in Section 2.4) plays a very important part in motif discovery when more than one

pass of JMeme is used. For example, consider a target motif of width 12, of which,

perhaps due to some quirk in the background data, only the first 8 positions were

picked up correctly by the first pass. Before the second pass, these positions will be

probabilistically erased, leaving the last 4 positions, which may be picked up by the

second pass of JMeme. Clearly, the effect of this hazard could be reduced by reducing

the effect of shifting on the first pass, however, it must be kept in mind when working

with unknown data as obviously we do not have any prior information about the length

of any motifs contained within the dataset. Testing multiple passes of JMeme appeared

to show that the results of initial passes were more significant (the results of this test are

presented in Section 4.1.1); while this does not mean that results gained on subsequent

passes are insignificant, it may indicate that disputes between results gained on two

different passes may be resolved by choosing the more significant earlier pass.

Exploration into the effect of the motif length on the performance of JMeme showed

that a width of around 6bp is a lower limit when discovering motifs; motifs shorter

than this tended to get lost in the background data and the number of correct positions

drops to a level around that which could be expected by chance alone (the results of

this test are presented in Section 4.1.1). From these results, it makes sense to set a

motif width of 6bp as the lower limit for testing different motif widths.

The described strategies can be summarised:

• Test a range of motif widths, with a width of 6bp as the lower limit. Any motifs

which are strongly conserved over a range of different motif widths are likely to

be more significant.

• Be aware that longer motifs can be returned as a number of shorter motifs, either

as initial passes over different tested motif widths or subsequent passes over the

same tested motif width.
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• It may be possible to join a number of shorter motifs together depending on the

strength of the results; bearing in mind that motifs may be (quasi-)palindromic

may help.

• In general, earlier passes of JMeme tend to be more significant, however, further

passes may help to confirm results.

3.8 Motif Discovery in Uncharacterised Data

3.8.1 Dataset Creation

Three datasets were constructed to be used for the discovery of motifs important in

magnetosome regulation.

RAST The RAST (Rapid Annotation using Subsystem Technology) online tool5 (Aziz,

et al., 2008) can be used to automatically annotate and classify genes within an up-

loaded genome. This procedure was carried out with the AMB-1 genome. Genes

contributing to the *Fe_stress subsystem were regarded as being possibly important

in magnetosome production; these genes would be a possible dataset. It was discov-

ered that the RAST annotation is performed automatically by machine and therefore

does not use the same locus tags as found in the GenBank file; the *Fe_stress genes

were manually mapped from the RAST analysis to the GenBank file in order to find

the corresponding locus tag for each gene. Having mapped a list of locus tags, the

GBKReader application was used to create a dataset of the 23 genes returned by RAST.

From an initial scan of the gene products, it appears that the genes selected by RAST

may be regulator genes, that is, genes whose product is a regulation protein for genes

which produce magnetosomes (see Figure 1.5)

IRON, FD Two additional datasets were constructed using the GBKReader, perform-

ing a naive search for genes with either ‘iron’, ‘ferric’, ‘ferrous’ or ‘Fe2+’ as part of

its product (IRON), or with ‘ferredoxin’ (iron-sulphur proteins involved in transferring

electrons in a number of metabolic functions) as part of its product (FD). The IRON

dataset contains the 25 genes found, while the FD dataset contains 34 genes.
5http://rast.nmpdr.org/ (Accessed 21st July 2009)
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Datasets were constructed as described in Section 3.1.4). Constructing the RAST

dataset consisted of identifying genes contributing to the *Fe_stress subsystem in M.

magneticum using the RAST online genome annotation tool and creating a dataset of

those genes using the GBKReader application. The IRON and FD datasets were con-

structed using a naïve keyword search in the GBKReader application.

3.8.2 Tests

For each of the three datasets, the JMeme application was run over a range of possible

different motif widths following the strategy for dealing with uncharacterised data as

described in Section 3.7; different numbers of passes were also tested for each dataset.

The results for each dataset were noted and well-conserved sequences recorded as

being possible motifs. The results and an analysis will be presented in Section 4.1.4.

3.9 Implemented Extensions: JMemePlus

Two extensions to JMeme were designed and implemented to test whether exten-

sions to the JMeme algorithm improved the performance for discovering regulatory

sequences in real-world data. The extensions implemented were a different method

for choosing the optimal run of the EM algorithm and a method to incorporate prior

beliefs when searching for regulatory sequences. These additions were added to create

a new application, referred to as JMemePlus. A brief analysis of the extensions will be

presented in Chapter 4.

3.9.1 Choosing Optimal EM Models

Following Bailey and Elkan (1994a,b; 1995a,b,c), the original JMeme algorithm ran

through a number of different values for λ1, choosing the converged motif as the model

with the highest converged log likelihood. During the tests on synthetic data, it was

noted that on second and subsequent passes of JMeme, motifs were returned where

every letter for every position had a value of 0.25, that is, no letter was more likely

than any other for any position within the converged motif. Three possible reasons

for this outcome were proposed. Firstly, it may be the case that too few iterations
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were being performed in the EM algorithm part of the application and therefore the

algorithm did not have a chance to make the motif converge to a true value. Secondly,

it could also be the case that the effect of the erasing prior distribution effectively

cancels out everything and makes this ‘0.25 motif’ more likely than anything else.

Finally, it could be the case that the β parameter requires adjustment (recall that too

high a value for β would cancel out any trends in the data). Additional tests were

carried out to try and explain this problem. The first situation can easily be tested by

forcing JMeme to perform additional iterations, rather than stopping after θ appears

to have converged (it could be the case that θ was converging exceptionally slowly).

The JMeme application was altered to force 100,000 iterations of the data, however,

this was found to have no effect on the converged motif; in addition, this substantially

increased the computation time. This result should perhaps not be surprising as one

advantage of the MEME algorithm proposed by Bailey and Elkan (see Section 2.4) is

that the algorithm converges in a known and predictable way, therefore a large forced

increase in the number of iterations is not likely to make much of a difference to the

final result. Nevertheless, it was still deemed to be important to rule this possibility

out. Given that the number of iterations was not too low, it seems more likely that

the erasing prior distribution or the β parameter is a factor in this problem. However,

it was noted that ‘0.25 motifs’ were more likely to be returned on the second and

subsequent passes of JMeme, indicating that it is more likely to be a side-effect of the

erasing prior distribution. Forcing JMeme to return suboptimal solutions showed that

on these subsequent passes, motifs were occasionally being found, but with a lower

log likelihood; in order to continue with the test, these suboptimal solutions were used

in motif discovery. It is, however, desirable for the application to automatically return

these solutions, even when the solution has a lower log likelihood. One solution to this

problem would be to calculate the information content of the converged motif model

and use that as a score to choose between the different runs; after the runs of EM were

complete, the information content would be calculated and the motif model with the

highest information content returned. This seems a reasonable solution, as we would

expect ‘0.25 motifs’ to have a much lower information content than the other ‘more

interesting’ motifs.
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Calculating the Information Content of a Motif Model

Given an array of probabilities of each letter for the background model and each po-

sition in the motif model, we can calculate the information for each letter for each

column. Firstly, the information for each column i is calculated6:

ICi = ∑
j={A,C,G,T}

fi j log2

(
fi j

f0 j

)
, (3.6)

for i = 1,...,W. We calculate the information for each letter i in column j by multiplying:

In fi j = fi j× ICi.

The total information content for a motif model ICtotal can be calculated simply by

summing the information over every letter and column:

ICtotal = ∑
i, j

In fi j.

The inclusion of the background model f 0 in (3.6) allows us to gain some idea of how

‘surprised’ we should be to see a letter in a certain position, for instance, if the letter

G is particularly prevalent in the background model, we should be less surprised to

see the letter G in the motif; it follows that we gain more information the greater the

difference between the motif and the background model.

Implementation

The implementation of the extension described above is fairly straightforward. A

method, getIC(), was written to return the information content ICtotal of the current

motif model. This may be called at any point in the program, however, it is most use-

ful to us once we have run the EM algorithm to convergence. Changing JMeme to

choose the model with the highest information content rather than the highest log like-

lihood is mainly swapping the calculateLL() method, which returns the log likelihood,
6Information can either be calculated using log2, giving an answer in bits, or ln, which gives an

answer in ‘nats’ (Bishop, 2006: 50). The only difference is a factor of ln(2). To compare with the
information scores of MEME online, we use the former calculation here.
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with the getIC() method; apart from these changes, the mechanism for choosing the

model remains the same.

3.9.2 Incorporating Prior Beliefs

The MEME algorithm as described by Bailey and Elkan (1994b, 1995b) contains no

way of using prior information to help guide the algorithm to a result. Although basic

knowledge about motifs can help (for instance, it might be known that some motifs are

shorter than others) guide interpretations of the results, there is no method by which

one could use prior information of the kind “First two positions are AT, next three po-

sitions are unknown, next position is C, next four positions are unknown, last position

is T”. The concept of the ‘energy’ of a model given a prior belief has been used in

work carried out by Werhli and Husmeier (2007); although it is used in that study to

reconstruct regulatory networks with Bayesian networks, it seems reasonable that the

same concept could be applied in this study, using the energy of a motif as a score on

which to base further iterations of EM.

Using the Energy of a Motif

Given a belief B similar to the example above, which we believe to be similar to the

motif we are searching for, we create an array of 4 × W elements. In this array, a

value of 1 in a column represents the letter we believe to be in that position, all other

elements are 0. For instance, a belief of (A,C,G,G,T) is represented:




1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 0 1





and a belief of (A,A,unknown, unknown,T) may be represented:




1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




.

We also have a motif X, which we wish to calculate the energy of, similarly represented

as a 0/1 array.
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We define the energy of motif X, E(X)7, as:

E(X) = ∑
i, j

∣∣Bi j−Xi j
∣∣ .

We define γ as a measure of how confident we are in this belief (a value between 0 for

no confidence and 1 for complete confidence).

We define a normalising constant C(γ) as:

C(γ) = 4(W−1)(3e−2γ +1).

Using these definitions, we can define the probability of a motif X, given a belief B,

p(X|B), as:

p(X |B) =
e−γE(X)

C(γ)
.

We now have a value that we can calculate for each Xi sample, which we intuitively

think of as getting larger the closer Xi is to our belief B. Since the EM algorithm is

based on increasing the log likelihood, it would make sense to introduce γ (that is, the

parameter for our confidence in the belief B) into the equation for marginal likelihood

(3.1) to give:

L(θ,λ,γ|X ,Z) = p(X ,Z|θ,λ,γ).

However, decomposing the right hand side as before proves problematic as we have

to define p(X,Z|θ,γ), which is not trivial. Due to the problems with this method, an

alternative way of incorporating our belief was designed, keeping our equation for

marginal likelihood the same but modifying the way that the count variables c are

calculated when we reestimate θ1. This is intuitively similar, in that we are modifying

the model by incorporating our beliefs, but we avoid complicated decompositions of

the type seen above. Recall that we originally calculated c jk using only Z values:

c jk =
n

∑
i=1

Z(0)
i1 I(k,Xi j) k = {A,C,G,T}, j = 1, ...,W.

7Not to be confused with the expectation of X
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This calculation is modified to incorporate our belief B:

c jk =
n

∑
i=1

Z(0)
i1 p(Xi|B)I(k,Xi j) k = {A,C,G,T}, j = 1, ...,W,

and we continue the EM process as before.

Implementation

Again, the implementation of this extension is fairly straightforward. The p(Xi|B) val-

ues for each Xi are calculated in the setup procedure; our belief about the nature of the

motif does not change and similarly the Xi samples do not change, therefore we can as-

sume that these probabilities are constant throughout one pass of the application. Once

these have been calculated, it is a reasonably simple task to slot these probabilities in

the recalculation of c jk.

3.9.3 Using JMemePlus

The JMemePlus application may be run from the command line, using standard FASTA

formatted text files as an input. The application takes five arguments:

• width - the width of motifs to search for; this should be at least 6.

• input - a FASTA formatted .txt file containing a number of nucleotide sequences

to be searched for motifs

• passes - the number of passes to be made by JMeme; typically this is 1, but this

can be increased to search for multiple motifs

• beta - the value of the β parameter; typically, a value of 0.25 can be used, how-

ever, when using beliefs this must be decreased (see Section 4.2.2)

• belief - a string representing some prior belief about the motif, or an empty

string.

The following examples illustrate how the JMemePlus application may be used.
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Example 3.14
Running JMemePlus from the command line to search for one motif of width 8 in the

file test.txt, with a β value of 0.25 and no prior belief:

java JMemePlus 8 test.txt 1 0.25 “”

Example 3.15
Running JMemePlus from the command line to search for one motif of width 8 in the

file test.txt, with a β value of 3.8E-6 and a prior belief of ‘xTAAATGC’:

java JMemePlus 8 test.txt 1 3.8E-6 “xTAAATGC”



Chapter 4

Results and Evaluation

This chapter presents the results of the tests described in Chapter 3. The results are

also critically evaluated and compared to other related work. An evaluation of the

extensions implemented in JMemePlus is also presented.

4.1 Test Results and Evaluation

4.1.1 Synthetic Data

As mentioned in Section 3.6, the tests using synthetic data aimed to answer a number

of questions regarding the basic performance characteristics of the JMeme application.

The results of these tests are presented here. The advantage of using synthetic data

for testing is that we know in advance the motif that should ideally be returned and

therefore can apply some scoring rules in order to make some numeric comparisons

between runs of the JMeme application. In general, the rules for scoring returned

motifs are as follows:

• The position matrix representing the returned motif is studied; for each position

in the returned motif, the letter with the highest proportion is regarded as being

the letter for that position.

• Each correct position receives a score of 1 (a position where the returned motif

matches the target motif is regarded as being a correct position). There is an

exception to this rule when two letters are equally likely (as often occurs in the

69
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test for multiple motifs); in this case, the position receives a score of 0.25. A

score of 0.25 rather than 0.5 was chosen as it was thought a large number of

50/50 cases could sum to give a misleadingly high score; using 0.25 gives some

credit for narrowing the choice to two letters but still penalises the inability to

make a decision either way.

• Following Bailey and Elkan (1994b), returned motifs are shifted in order to align

as best as possible with the target motif. For example, given the target mo-

tif CTAAATGC and the returned motif TAAATGCC (as shown in Figure 2.1),

without shifting, only three positions are correct. When the returned motif is

shifted one position to the right, seven positions are correct.

• After shifting, the number of correct positions is recorded and divided by the

motif width in order to give a percentage figure of correct positions. It is this

figure that will mainly be used to judge the quality of the returned motif.

Does the number of input sequences have an effect on performance?

This test was carried out as described in Section 3.6.1; the results of this test are shown

in Figure 4.1. It can be seen that in general there is an upward trend, showing that

increasing the number of input sequences also increases the average percentage of cor-

rect positions in the returned motif. However, there are two tested motif widths which

appear to be exceptions to this trend. The first exception is a tested motif width of

4bp; in this test, the number of correct positions stayed around 30% and never reached

higher than 40%. In contrast, for other tested motif widths, the average percentage of

positions is almost always over 60%. This result seems to imply that shorter motifs are

harder to find within the background noise. Indeed, it seems that the results of the test

with motif width 4 are only as good as could be achieved through guesswork alone. It

is interesting to note that the online MEME server had similar problems with finding

the correct motif; this seems to confirm the belief that motifs shorter than around 6bp

are very difficult to find because of their short length. While the results of the test with

motif width 6 are much better in general than those with motif width 4, it is also a

noticeable exception to the general trend. Although the average percentage of correct

positions jumps to over 90% with 30 input sequences, adding more input sequences

reduces the percentage of correct positions to around 80% with 50 input sequences.

There does not seem to be an obvious explanation to this exception, although it is pos-
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sible that after the test with 30 input sequences, input sequences were added which

contained noisy versions of the target motif by chance. This would explain the falling

performance rate for this tested motif width while in general, increasing the number

of input sequences increases the average percentage of correct positions. Generalising

from the data, we might expect that increasing the number of input sequences would

not increase the performance of JMeme forever; we would expect there to be a point

where adding extra input sequences makes no difference to the performance. An upper

limit of 50 sequences was chosen as in practice the number of input sequences would

not normally exceed this figure.
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Figure 4.1: Testing the effect of increasing the number of input sequences

Does the ‘random background’ data have an effect on performance?

This test was carried out as described in Section 3.61; the mean results of this test are

shown in Figure 4.2, the variance results shown in Figure 4.3. The mean results of

this test seem to show that in general there is a slight trend to increase the percentage

of correct positions as the size of the input dataset increases; this would be expected

given the results of the previous experiment. Again, simply increasing the number

of sequences would not be expected to increase the performance of JMeme forever;

increases in the number of input sequences also increases the amount of computation

time taken by JMeme. Studying the variation graph, it can be seen that, in general,
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the variance decreases as the number of input sequences increases. Taken together, the

mean and variance graphs suggest that by increasing the number of input sequences,

a higher average percentage of correct positions can be achieved and that this average

is more consistent over a number of different datasets (i.e. there is a lower variance).

This result should be expected, as it seems reasonable that (in the case of synthetic

data, at least) increasing the number of input sequences also increases the number of

occurrences of the motif within the dataset.

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60

Av
er

ag
e 

%
 o

f c
or

re
ct

 p
os

itio
ns

Number of Input Sequences

Variation in random background (mean)

Legend
 mean

Figure 4.2: Testing the mean number of correct positions while changing the back-

ground data
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ing the background data
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Does the proportion of input sequences containing the motif have an effect on

performance?

Again, this test was carried out as described in Section 3.6.1; the results of this test

are shown in Figure 4.4. It can be seen from Figure 4.4 that there is a clear trend

of decreasing percentage correct positions when the proportion of input sequences

containing the motif is also decreased. Again, this result is as expected as it seems

reasonable that the JMeme application will not be able to discover a motif if there

are no motifs and similarly, increasing the proportion of input sequences containing

the motif makes it more likely that a motif will be discovered, until eventually all the

input sequences contain the motif and we get similar results to those gained in the

first test above. Once again, there are a number of outlying points, notably for the

dataset containing 10 sequences. It could be that there is not enough data to base any

predictions on; it could also be due to quirks in the dataset, although this is unlikely

given the number of tests performed. As may be expected, the figures for the dataset

containing 50 sequences are generally the best and as the total number of sequences in

the data decreases, performance decreases slightly regardless of the proportion of input

sequences containing the motif. One point of note is the values for datasets where 0%

of the sequences contain the motif; the JMeme application was run and the results

aligned to give the best score. These results show that the random background gives

a result which can be aligned to give on average just over 30% correct positions, even

though there are no motifs present in the dataset. From this result, we can state that

test results which only give 30% correct positions are not significant as this baseline

value can be achieved even when no motifs are present in the dataset. Bailey and Elkan

(1994b) claim that, using MEME, “experiments show that even when only 20% of the

sequences in a dataset contain a motif, the motif can often still be characterised well”.

It is, however, unclear what is meant by “characterised well”. From the results shown

in Figure 4.4, with input datasets where 20% of the sequences contain the motif, on

average, JMeme finds at least 50% of the motif positions correctly, a figure which rises

to around 62% when 50 input data sequences are used. When less than 20% of the

input sequences contain the motif, the performance of JMeme tails off to around 30%.

Although it is clear that there is something significant happening once 20% of the input

sequences contain a motif, without a clear description of what Bailey and Elkan mean

by “characterised well”, it is hard to compare JMeme to the algorithm described by

Bailey and Elkan (1994b). At present it appears that JMeme is reasonably sensitive
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to ‘noise’ sequences; clearly, there is a decrease in performance when more noise

sequences are added. This therefore means that we would get better results if we knew

that the input sequences definitely contained a motif, however, this is one piece of

information which is not likely to be available before motif discovery is carried out.
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Figure 4.4: Testing the effect of changing the proportion of input sequences containing

the motif

Does performance decrease when searching for multiple motifs?

This test was carried out as described in Section 3.6.1; the overall results are shown

in Figure 4.5. It can be seen that in general as the number of motifs in the dataset in-

creases, the average percentage of correct positions decreases. One notable exception

to this trend is the width-8 dataset, where the percentage of correct positions increases

slightly with increasing numbers of motifs. Given the trends for other tested motif

widths, this is likely to be an anomaly in the data; perhaps more testing would clar-

ify this trend. As noted above, a slight exception was made to the scoring procedure

in this test; positions which were equally split between two letters were awarded a

score of 0.25 if one of the letters was the correct one for that position. As well as the

general trend for average scores to decrease with increasing numbers of motifs con-

tained within the dataset, another trend appeared to emerge during this test. Until now,

JMeme has run the EM algorithm using a number of different settings for the λ pa-
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rameter, returning the converged motif with the highest log likelihood score (following

Bailey and Elkan, 1994b). However, in this test it was discovered that JMeme was re-

turning motifs where every letter for every position had a value of 0.25, that is, no letter

was more likely than any other for any position within the converged motif. Forcing

JMeme to return suboptimal solutions showed that on these subsequent passes, motifs

were occasionally being found, but with a lower log likelihood; in order to continue

with the test, these suboptimal solutions were used in motif discovery. One proposed

solution to this problem is to judge the different runs of JMeme using the information

content of the motif rather than the log likelihood. While this may provide different

solutions where the originally returned solutions were optimal, it would very likely

solve the problem of returning ‘0.25 motifs’ as we would expect these motifs to have

a much lower information content than the suboptimal motifs used in this test. This

solution was implemented as an extension to the JMeme application (see Section 3.9).

As explained in Section 3.7, it can be seen that shifting on the first pass of JMeme has

a large influence on the subsequent passes; it would therefore be helpful to reduce as

much as possible the effect of shifting in order for subsequent passes to converge to

the best results.
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Figure 4.5: Exploring performance changes for different numbers of motifs
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How does JMeme handle gapped motifs?

This test was carried out as described in Section 3.6.1. Motifs were not scored in

this test; the purpose was simply to explore how JMeme handles gaps within motifs.

In general, it was found that JMeme handles gapped motifs reasonably well: Figure

4.6 shows two examples of gapped motifs found with JMeme. It can be seen that in

general JMeme gives strong results for the side sequences while the gap sequence is

much less strong. This result should be expected as it seems reasonable that, given an

ability to discover the strong side sequences, the gap should be much weaker, if not

simply a ‘noise’ signal. Again, the effect of shifting can be seen in some of the results;

all of the motifs tested here were symmetrical in structure (although not necessarily

palindromic) in order to explore the effect of shifting as far as possible. It must be

noted, however, that real-world gapped motifs need not be symmetrical (nor, for that

matter, palindromic) so we cannot use a stronger signal at one side of a gap to infer that

any shifting has occurred on the other side. Bailey and Elkan do not make a distinction

between gapped and ungapped motifs in their evaluation of the MEME algorithm; we

therefore cannot compare the results returned by JMeme.

Figure 4.6: Exploring how JMeme handles gapped motifs. The first logo shows a

strong signal of 5 positions at each side a ‘gap’ of 4 positions in the middle where no

letter has a clear majority. The second logo illustrates shifting in gapped motifs.

Do we need to know the correct motif width?

This final test was carried out as described in Section 3.6.1; the effects noted are de-

scribed in Section 3.7, but repeated briefly here. It was found that, in general, motifs

which were strongly characterised when the correct test width was used remained so
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when the incorrect width was used. When the tested width was smaller than the tar-

get motif, it was found that some positions in the target motif were cut off from the

result motif; when the tested width was longer than the target motif, the result motif

generally contains the target motif and a number of weaker noisy positions. These are

illustrated in Figure 4.7. It therefore makes sense to test a number of similar motif

widths when dealing with unknown data; positions which are well conserved over a

number of different widths are more likely to be significant.

Figure 4.7: a) The full target width-8 motif; b) Using a shorter test width tends to cut

positions off and we find only a section of the full motif; c) Using a longer test width

finds the full target motif and also a number of ‘noise’ positions

4.1.2 Real-world Characterised Data: CtrA Metabolism

Tests were carried out to identify and validate the potential CtrA motifs proposed by

Lan (2008) as described in Section 3.6.2. Lan (2008) proposes two CtrA motifs, one

of which is consistent with the confirmed CtrA motif in Caulobacter crescentus (5’-

TTAA-N7-TTAA-3’) and one further motif which appeared to have a strong signal

(5’-GGAATT-3’).

Results gained in the tests carried out appear to confirm the presence of the gapped

motif (TTAA-N7-TTAA); Figure 4.8 shows the logo representing the width-15 test on

the LAN dataset. Several other larger widths were also tested in order to confirm this

result and the majority of the tests pointed towards this sequence being a reasonably

strong motif. Looking again at Figure 4.8, it can be seen that following the first TTAA
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sequence, there is a further TTT fragment which seems to be just as strong as the

first TTAA sequence. Following this fragment, there are four positions which can

be classed as ‘noise’ (the probability for each letter is reasonably similar), before the

second TTAA sequence. This seems to imply that the TTT fragment is also significant

in the motif. We can therefore state that it appears that 5’-TTAATTT-N4-TTAA-3’ is

a potential CtrA motif in Magnetospirillum magneticum. This is still consistent with

the motif discovered by Lan (2008) and the previously confirmed CtrA motif in C.

crescentus.

Figure 4.8: Result of the width-15 test on the LAN dataset

The test results for the shorter ungapped motif were similar to those proposed by Lan

(2008); Figure 4.9 shows the logo representing the width-6 test on the LAN dataset.

This result can be interpreted as a shifted version of the proposed motif, however,

additional tests on several larger widths also failed to find the exact motif proposed by

Lan. As a comparative test, the same dataset was used as an input to the online MEME

suite. The online MEME tool found the motif as proposed by Lan (2008), therefore

we can be reasonably sure that this is indeed the correct motif and that for some reason

JMeme is unable to find this particular motif. In an attempt to find this particular motif

with JMeme, an additional dataset, LAN7, was created, containing the 7 genes shown

to contain the motif by the online MEME tool. The result of the width-6 test on the

LAN7 dataset is shown in Figure 4.10. It can be seen that 5 out of the 6 positions

match the proposed motif; again, however, additional tests with larger widths failed to

find the first position.

Figure 4.9: Result of the width-6 test on the LAN dataset



Chapter 4. Results and Evaluation 79

Figure 4.10: Result of the width-6 test on the LAN7 dataset

No CtrA motifs have previously been confirmed in M. magneticum experimentally,

however, we can conclude from the above tests that the longer gapped motif proposed

by Lan (2008) appears to be confirmed by JMeme. JMeme seems to show that there

is an additional motif fragment which may be significant, however, even this fragment

conforms to the motif proposed by Lan (2008) and is very similar to the confirmed

CtrA motif in C. crescentus. Although Lan (2008) states that the signal for the shorter

ungapped motif is stronger, JMeme fails to find the exact proposed motif, even when

the dataset is known to contain the motif in 100% of the input sequences. One possible

explanation for this is simply that the motif is too short and that this makes it harder

for JMeme to find amongst the background sequences; in contrast, it may be the case

that the online MEME tool contains extra heuristics for dealing with relatively short

motifs (recall that development of this tool has been ongoing for around 15 years). As

we have seen previously (see Figure 4.1), the average percentage of correct positions

for width-6 motifs with 20 input sequences is slightly over 60%, as performance tails

off noticably for shorter motifs. This figure also assumes that every sequence in the

input dataset contains an occurrence of the motif, which is not the case here; as noted

above, only 7 sequences (35%) contain the motif and again we have seen previously

that we can expect around 65% correct positions when this is the case with 20 input

sequences (see Figure 4.4). Given these results using synthetic data, the accuracy of

JMeme in this test is as good (66% correct positions in the test on the LAN dataset) or

better than could be expected (83% correct positions in the test on the LAN7 dataset).

4.1.3 Real-world Characterised Data: Iron Metabolism

Tests were carried out to identify and confirm the work carried out by Rodionov, et

al. (2006) on the iron regulation metabolism in Magnetospirillum magneticum as de-

scribed in Section 3.6.3. As mentioned above, Rodionov, et al. (2006) published a
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width-19 regulatory motif (Supplementary Figure 11) (5’-AATGCGAGTCA_TCGCATT-

3’). The study by Lan (2008) aimed to confirm this result and identified a width-21

motif (5’-AATTGCGAGTAACTCGCAATA-3’) which was very similar to the previ-

ously published motif (although not identical, as stated by Lan).

The results gained for widths 21, 22 and 23 are presented in Figure 4.11. It can be seen

that, like the longer CtrA motif, the overall signal is not particularly strong, however

the fact that small fragments within the motif are conserved over a number of different

tested widths can lead us to conclude that these sections are significant, even if we are

not sure of some of the other positions. Figure 4.12 shows how the results of Rodionov,

et al. (2006), Lan (2008) and the three motif results from Figure 4.11 can be aligned.

Figure 4.11: Result of the width-21, -22 and -23 tests on the ROD dataset

(1) A A T G C G A G T C A _ T C G C A T T
(2) A A T T G C G A G T A A C T C G C A A T A
(3) G A G T T G C G A G T C A T T C G C A A T
(4) G C G A A T G A G A G T C A T T C G C A T
(5) T G C G A G T G A T T C G C A A T G C A T T
===
pos 1 3 5 7 9 11 13 15 17 19 21 23 25 27

Figure 4.12: The iron regulatory motifs identified by Rodionov, et al. (2006) (1), Lan

(2008) (2) and Figure 4.11 (3, 4, 5) are aligned.

1http://www.ploscompbiol.org/article/fetchSingleRepresentation.action?uri=info:doi/
10.1371/journal.pcbi.0020163.sg001 (Accessed 10th August 2009)
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On examining Figure 4.12, it can be seen that the result for the width-21 run of JMeme

closely resembles the previously proposed motifs (the width-21 result returned by

JMeme matched 83% of the positions proposed by Lan (2008) and 79% of the po-

sitions proposed by Rodionov, et al. (2006)) and that there is a 17bp motif section

(positions 6 to 22 above) that is very well conserved over all of the proposed motifs.

This suggests that we can be reasonably certain about the strength of this part of the

motif, although it is possible that there are extra positions on either side. It can be

seen that using only the results from this study, position 6 is uncertain (A or likely C);

however, when these results are combined with previously identified potential motifs,

it is very likely that this position is C. Similarly, decisions can be made about other

positions by taking the letter most likely at each position (given each result is equally

possible).

It is therefore concluded that 5’-TGCGAGTCATTCGCAAT-3’ is a potential iron reg-

ulatory motif in M. magneticum, taking all the results above into account.

It is easily conceivable that there are a number of different ways in which this re-

sult may be interpreted. The original Rodionov, et al. (2006) proposed motif is

almost exactly palindromic about position 13 in Figure 4.12: 5’-AATGCGAGT-C-

A_TCGCATT-3’. Lan (2008) notes that the motif proposed in that study is also al-

most palindromic; this should not be all that surprising, given its similarity to the

previously proposed motif. The motif proposed in this study, above, is also quasi-

palindromic around the same position: 5’-TGCGAGT-C-ATTCGCAAT-3’. The se-

quences TGCGA and TCGCA in particular are perhaps noteworthy. However, it has

been proposed that iron regulatory motifs in Escherichia coli can be interpreted in a

number of different ways (Escolar, et al., 1999), so it is quite possible that some other

structural pattern can be discerned from the proposed motif. Again, it must be stressed

that the above proposed motif is just that and as such may not be completely accurate.

4.1.4 Real-world Uncharacterised Data

Tests were carried out on the three datasets of uncharacterised real-world data, as de-

scribed in Section 3.8, with the aim of finding other well-conserved sequences which

may be significant in the iron regulation mechanism. The results for each dataset and

proposed potential sequences are presented here.
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RAST

The results of the first passes for width-9, -10 and -11 are shown in Figure 4.13; Figure

4.14 shows how these results can be aligned.

Figure 4.13: The results for the first pass for a) width-9, b) width-10 and c) width-11

(1) A A A T T C A T C
(2) A A A T T C A T C G
(3) A A A T T C A T C G C
===
pos 1 3 5 7 9 11

Figure 4.14: The results for width-9, -10 and -11 tests are aligned.

On examining Figure 4.14, it can be seen that there is a highly conserved 9bp section

(positions 1 to 9 above), which seems to suggest that this section is significant in some

way. It is also possible that this section extends to the right if we consider positions

10 and 11; tests were conducted increasing the width further still but the results gained

showed no consensus with the sequences above so we cannot be as sure about these

positions.

The results of the second passes for widths between 6 and 10bp are shown in Figure

4.15; Figure 4.16 shows how these results can be aligned.
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Figure 4.15: The results of the second pass for a) width-6, b) width-7, c) width-8, d)

width-9 and e) width-10

(1) G G C C G C
(2) G G C C G C C
(3) C G G C C G C C
(4) C G G C C G C C G
(5) C G G C C G C C G G
===
pos 1 3 5 7 9

Figure 4.16: The results for width-6, -7, -8, -9 and -10 tests are aligned.

On examining Figure 4.16, it is clear that again there is a highly conserved section

of minimum 8bp (positions 1 to 8 above), which seems to suggest that this section

may be significant. The above sequences were not optimal in log likelihood, but were

discovered by JMemePlus as being optimal in information content. Again, further tests

were conducted, increasing the tested width, but after width-10 the consensus with the

above sequences decreased.

From the RAST dataset, we can conclude that the sequences 5’-AAATTCATC-3’ and

5’-CGGCCGCC-3’ are potential motif sequences. As noted earlier, an initial scan of



Chapter 4. Results and Evaluation 84

the genes contained in the dataset seemed to indicate that any motifs found would

be motif sequences for regulator genes. A preliminary study of the sequence 5’-

AAATTCATC-3’ with RegulonDB2 found it to be included in the Fur regulator of

Escherichia coli so this sequence may provide a promising area for future research.

IRON

The results of the first pass on the IRON dataset for width-10, -11, -12 and -13 are

shown in Figure 4.17; Figure 4.18 shows how these results can be aligned.

Figure 4.17: The results of the first pass for a) width-10, b) width-11, c) width-12 and

d) width-13

(1) A T G G C C A T G A
(2) C C G C C A T G A G C
(3) T C G C C A T G A C G G
(4) T C G C C A T G A C G G C
===
pos 1 3 5 7 9 11 13

Figure 4.18: The results for width-10, -11, -12 and -13 tests are aligned.

On examining Figure 4.18, it can be seen that there is a conserved section of 9bp
2http://regulondb.cs.purdue.edu/ (Accessed 19th August 2009)
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(positions 2 to 10 above), which seems to suggest that this sequence is significant in

some way. Again, it is possible that this sequence could be extended as the two further

positions to the right could be predicted to be ‘either C or G’; future tests may reach a

stronger consensus on these positions. Second passes over the IRON dataset were not

clear enough to reach a conclusion about any further conserved motif sequences.

From the IRON dataset we can conclude that the sequence 5’-TCGCCATGA-3’ is

a potential motif sequence; it is possible that further positions could be added after

further research.

FD

The results of the first pass on the FD dataset for width-10, -11 and -12 are shown in

Figure 4.19; Figure 4.20 shows how these results can be aligned.

Figure 4.19: The results of the first pass for a) width-10, b) width-11 and c) width-12

(1) T C G T C G T C G A
(2) G T C G T C G T C G A
(3) C G T C G T C G T C G A
===
pos 1 3 5 7 9 11

Figure 4.20: The results for width-10, -11 and -12 tests are aligned.

On examining Figure 4.20, it is clear that there is a conserved sequence of 10bp from

positions 3 to 12. However, looking at Figure 4.19 seems to suggest that there is a

repeating pattern of CGT and that the most significant positions are the C positions
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(1, 4, 7 and 10 above); indeed, this is confirmed by further tests with longer widths.

This seems to suggest that the sequence discovered is not a motif in the same sense

as those discovered previously and may be a feature of genes connected in some way

with ferredoxin; this is perhaps a question for biologists. Once again, the results of

further passes over the FD dataset were not deemed to be significant.

From the FD dataset, we can conclude that 5’-TCGTCGTCGA-3’ is a possible motif

sequence, with the note of caution above.

4.2 Evaluation of Extensions

The JMemePlus application implements two extensions designed to improve the per-

formance of JMeme, as described in Section 3.9. The effects of these extensions in the

JMeme application are presented here.

4.2.1 Choosing Optimal EM Models

As explained in Section 3.9.1, altering the choice of model to be based on informa-

tion content rather than log likelihood was designed in order to avoid situations where

potentially more interesting models were passed over and motifs where every proba-

bility is 0.25 returned. The method of calculating the information content, taking into

account the background data, is a good choice for deciding between several different

motif models, as we expect that ‘0.25 motifs’ will have very little information due

to their similarity to the background data. It follows that models where more defi-

nite decisions regarding the letter at each position are taken will have a much higher

information content.

As a test of the effectiveness of the implemented extension, a typical multiple motif

run from the previously carried out test was chosen and retested with JMemePlus. The

dataset for width-8 with 3 motifs was chosen as in the initial test, forcing JMeme to

print the result from every run (rather than simply every pass) showed that potential

motif models were being passed over for models that were less interesting, but with

a higher log likelihood. The same test was run in JMeme to confirm the previous

result; a percentage accuracy of 58.3% was calculated, as before. In addition, the

information content per column was calculated, averaging over every column in the
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three runs; this figure was calculated to be 0.8911bits/col. The test was then repeated

using JMemePlus; this time, a percentage accuracy of 75.0% was calculated, due to

the motif model for the third run changing from a ‘0.25 motif’ to a more interesting

motif. The results of the first two passes of JMemePlus remained the same as those for

JMeme. It must be noted that the percentage accuracy for this motif alone was only

50%; that is, however, an improvement from 0%. The information content per column

was again calculated, increasing to 1.0997bits/col.

It is clear that this extension allows JMemePlus to return information-optimal motifs

where the log likelihood of these motifs is not optimal. Crucially, in tests, choosing

motif models using the information content appears not to affect results which were op-

timal in both information content and log likelihood. From this, we can conclude that

this extension makes a small but significant difference to the implemented algorithm,

especially when multiple motifs are being searched for.

4.2.2 Incorporating Prior Beliefs

As explained in Section 3.9.2, the MEME algorithm as described by Bailey and Elkan

(1994b, 1995b) contains no way of utilising prior knowledge that we may have about

a motif. The concept of the energy of a motif (based on work by Werhli and Husmeier,

2007) is introduced and implemented as part of JMemePlus. It is easy to see how this

can be used if we consider the synthetic data tests evaluated above. For many of the

tests, the main factor in decreasing the score is the effect of shifting; for instance, if we

know we are searching for a width-8 motif and JMeme only returns the last 6 positions

(as the first 6 positions of the returned motif, followed by 2 noise positions). Using this

belief as an input to JMemePlus allows us to give more weighting to motifs with these

6 positions as the last 6 positions, declaring the first two as ‘unknown’; this should

increase the chance that we should discover the whole motif with JMemePlus. The

same method can be applied to real-world data, although we are unlikely to have as

strong a signal or prior knowledge of the exact length of the motif.

As a test of the effectiveness of the implemented extension, a dataset containing the

width-8 motif ‘CTAAATGC’ is used as an input to JMeme. The result produced is

shown in Figure 4.21a); it is clear that we have a shifted version of the motif we

are looking for. We can use the result we have as an input to JMemePlus: we input

the ‘belief’ parameter as “xTAAATGC” (recall x represents an unknown letter). The
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output of JMemePlus is shown in Figure 4.21b); we have found the first letter by

incorporating our belief.

Figure 4.21: We can incorporate prior beliefs to improve the accuracy of the algorithm

In practice, things are not quite so simple and involve a slight amount of adjustment to

the JMemePlus parameters. The initial output from JMemePlus is a ‘0.25 motif’; if we

consider how our beliefs are incorporated, it is easy to see why. We are incorporating

our beliefs by altering the count variables c jk, which are then used to reestimate θ. This

reestimation procedure requires our pseudocount parameter β. When we incorporate

our beliefs, c jk is multiplied by the probability p(X|B), which reduces it greatly; this in

turn makes β much larger than the count variables. By lowering β, the count variables

are not dwarfed by β and we receive the motif we are looking for. We can find out by

how much we should lower β by considering the normalising constant C(γ), which is by

far the largest factor in calculating p(X|B). C(γ) can be calculated to be approximately

4W , therefore we should also reduce β by this amount. In this case, W = 8, therefore

our value for β should be 0.25 × 1
48 = 3.81E-6. Running JMemePlus with this value

for β does indeed produce the motif we are looking for as above.

In conclusion, we can say that, although some additional tweaking of the parameters

is required, using the energy of a motif to incorporate prior beliefs can improve on

the results of the JMeme algorithm. Ideally, we would like to make the incorporation

of prior beliefs as simple as possible; some thoughts on how this could be done are

presented in Chapter 5.
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4.3 Discussion

The results presented in this section have shown the JMeme and JMemePlus appli-

cations in action. The results for the tests carried out with synthetic data indicate

that JMeme performs reasonably well compared to the MEME algorithm described by

Bailey and Elkan (1994b, 1995b). Although there does not seem to be any hard data

presented, results of tests performed in this study seem to confirm that the basic MEME

algorithm is reasonably robust to noise sequences, although obviously the fewer noise

sequences in the dataset, the better the performance of JMeme will be. JMeme has also

been shown to handle gapped motifs reasonably well, an important factor for searching

for regulatory sequences, which can often contain gap positions.

In general, tests with data for the CtrA metabolism seem to confirm the results gained

by Lan (2008). A gapped motif which is a variation on the gapped motif proposed by

Lan (2008) has been proposed. The shorter ungapped motif proposed by Lan (2008)

was not completely confirmed; however, 5 out of the 6 positions proposed were con-

firmed. Tests with the online MEME suite confirm the result proposed by Lan (2008)

so it is perhaps strange that JMeme could not completely confirm this result. One po-

tential stumbling point appears to be the length of the motif; synthetic data tests show

that width-6 motifs are at the bottom limit of what can be discovered by JMeme and

the result gained in the LAN test is actually better than could be expected.

Tests with previously characterised data for the iron metabolism confirmed the results

proposed by Lan (2008) and Rodionov, et al. (2006). A 17bp motif sequence was

proposed, with slight differences from the two previously proposed motif sequences;

these differences are backed up by conserved sequences over a number of runs with

different motif widths.

Three uncharacterised datasets were tested, with the aim of discovering potential reg-

ulatory sequences. A number of highly conserved sequences were found, which indi-

cates that they may be significant. However, the only way to confirm which, if any,

of these sequences are involved in regulatory mechanisms is to conduct wet-laboratory

tests on the bacteria. Although wet-lab tests are extremely labour-intensive and despite

a growing number of researchers using computational methods for motif discovery,

they remain the best way to confirm a particular sequence and the majority of con-

firmed regulatory sequences have been found using these methods. Briefly, wet-lab

tests involve creating conditions where a regulator is predicted to be active and then
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‘knocking out’ this regulator to see if any changes take place. If, for example, the

appropriate gene switches off, we know that we have found the correct regulator.

We have seen that extensions to the basic MEME algorithm can improve the results that

are returned; there are, however, a number of issues with these extensions, particularly

with incorporating prior beliefs. At present it is not possible to incorporate a number of

different prior beliefs, so use of JMemePlus is limited to one pass of the dataset. One

way around this problem is to run JMemePlus for a number of passes with no prior

belief and then run JMemePlus for one pass multiple times, changing the prior belief

each time. We have also seen that introducing prior beliefs requires extra parameters

to be modified, which is not ideal; with further research it may be possible to solve this

problem, however.

One major question which appears to remain unresolved is the lack of any promoter

sequences in the results returned by JMeme. We would expect to find a number of

these as promoter sequences facilitate the transcription of a gene and are generally

found between 10 and 35 bases upstream of the start codon of the gene. However, no

promoter sequences were uncovered during the conducted tests. There are a number

of possible reasons for this; perhaps most likely is that the promoter sequences are too

short and not well enough conserved in the upstream sequences to appear as results

from JMeme. Generally, promoter sequences consist of two parts, each 6 bases long,

with a large gap between them. As we have seen previously, this length lies at the lower

limit of what can be discovered using JMeme so even with complete conservation these

sequences may be harder to find. In addition, it appears that these promoter sequences

are not necessarily well-conserved, which may hinder their discovery further. Another

reason why they may remain undiscovered is the large gap between the two sequences;

it may be that this gap is too large for JMeme to make sense of. The tests conducted

with synthetic gapped sequences kept the gap fairly short so further testing of gapped

motifs with JMeme may confirm if this is the reason why it is so hard to find these

promoter sequences. One final possibility is that there are simply too many of these

sequences and different assumptions in our model are required in order to find these

sequences.
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Conclusion

This chapter presents a number of conclusions and observations drawn from the re-

search project. A number of unsolved problems and suggestions for further work are

also presented.

5.1 Project Summary

This project set out to investigate a number of different algorithms, implementing the

most promising in Java. This was carried out, resulting in the JMeme application.

While this implementation does not yet perform quite to the standards of the most cur-

rent version of MEME, this version is designed to be more easily extensible. Using the

created implementation, a number of previously proposed regulatory sequences were

confirmed and potentially improved. A number of new potential regulatory sequences

were also proposed through analysis of three new datasets.

The project also set out to test the hypothesis that extensions to the implemented mo-

tif discovery algorithm could improve motif discovery. Two extensions to the basic

MEME algorithm were designed and implemented as JMemePlus. Evaluation of these

extensions shows that the tested hypothesis is correct; that is, extensions to the basic

MEME algorithm have been shown to improve its performance in discovering regula-

tory sequences in bacteria with respect to the basic MEME algorithm.

91
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5.2 Suggestions for Further Work

There are clearly many avenues still to be explored in this area. A number of these

possibilities are described here, although many more possibilities remain.

5.2.1 Other Approaches to Dataset Construction

There are other possible approaches to dataset construction which might provide in-

teresting results. One possibility is using the Gene Ontology (GO; a bioinformatics

initiative to unify the representation of gene and gene products across all species) to

search for genes in the AMB-1 genome which are thought to be linked in some way

to magnetosome production. One drawback is that currently the GO does not contain

AMB-1 annotations, so a search must be performed for a specific term (e.g. ‘iron ion

binding’1), then using the results of that search to search through a separate annotated

AMB-1 genome2 to find potential genes. It is also possible that there may be very spe-

cific subterms of searched terms indicating magnetosome production; without some

knowledge of the structure of the GO, it is not easy to uncover these terms. It is clear

that the GO has some potential for the creation of test datasets, however, due to the

time constraints of the current study, this avenue could not be explored

5.2.2 Further Investigation of the Regulatory Network

It is clear from even the basic description of regulatory networks provided in Section

1.3 that the true mechanism of gene regulation in Magnetospirillum magneticum is

much more complicated than we have assumed. Most important amongst the features

described is the problem of operons, where a number of genes may be co-regulated

by a single regulatory sequence (see Figure 1.6). If the genes we have used in this

study are controlled by operons, it is clear that we may not have extracted the gene

sequences that contain regulatory sequences and instead, introduced noise sequences

into our dataset. Operon prediction is a very difficult task but could be carried out
1http://amigo.geneontology.org/cgi-bin/amigo/term-assoc.cgi?term=GO:0005506

(Accessed 21st July 2009)
2ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes/22510.M_magneticum.goa

(Accessed 21st July 2009)
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crudely based on the distances between genes3; this could be carried out to check if

any of the genes we are interested in are controlled in this way.

5.2.3 Further Investigation of Genes

As we have seen, at least one potential sequence has been proposed as being important

in iron regulation in M. magneticum (Rodionov, et al., 2006). This sequence and per-

haps the sequences in this project (and variations of these sequences) could be used to

search the AMB-1 genome for other genes which are important in iron regulation. This

could be performed relatively easily using the online BLAST suite. Similarly, there are

another four strains of magnetotactic bacteria (Magnetococcus MC-1, Magnetospiril-

lum gryphiswaldense MSR-1, Magnetospirillum magnetotacticum MS-1 and Marine

vibrio MV-1) which could be studied as there is likely to be a high degree of similarity

between these strains and AMB-1. The genomes of these species have been fully se-

quenced; study of these species would likely take less time now that an application for

doing so has been implemented.

While we have been concerned with genes important in iron regulation, further studies

could be carried out investigating regulatory sequences directly important in produc-

tion of magnetosome particles. A list of these genes is currently under construction4

and may provide some interesting results when analysed in a similar fashion to the

datasets examined in this study.

5.2.4 Improvements to the JMemePlus Application

While we have implemented two extensions to the basic JMeme algorithm imple-

mented in this study, there are a number of possible improvements which could be

made. A number are outlined here, although there are many more possibilities.

One improvement which would make the application more useful from a biological

perspective would be to implement some way of aligning the result motif with the

input sequences. This would allow a researcher to easily see where in the input dataset

the motif (or variations of the motif) can be found. This feature could perhaps be
3Coulson, A., in correspondence (2009)
4Ward, B., in conversation (2009)
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implemented using the BLAST API. Similarly, a BLAST search could be performed

to search for homologous genes given a result motif.

We have seen that using a combination of the basic MEME algorithm and our method

for incorporating prior beliefs that we can minimise the effects of shifting for single

motifs. However, as noted previously, the shifting phenomenon becomes very im-

portant when multiple passes of MEME are carried out, as we could end up erasing

shifted versions of motifs, which complicates second and subsequent passes of MEME.

Clearly, we would like some way of minimising shifting automatically. Lawrence, et

al. (1993) propose a method by which shifted versions of the current motif model

are tested every n iterations, with the motif model being changed if the likelihood of

a shifted version is higher than that of the current motif model. It is possible that a

similar procedure could be incorporated into the JMeme application fairly easily.

As noted, there are a number of improvements which could be made when using prior

beliefs. At present, there is no simple way to use multiple prior beliefs with JMeme-

Plus. In theory, however, it should be possible to state a set of multiple prior beliefs and

use all of these over a single pass of MEME, choosing the motif/belief which match

with the highest information, before probabilistically erasing that motif and removing

the appropriate belief from the belief set. The other present issue with using beliefs

is manually having to choose a value for β; as we have seen this must be altered de-

pending on the width parameter. Future versions could incorporate a heuristic where a

value for β is chosen depending on the value of the width parameter; again, this could

be acheived fairly easily. Future versions of the application could also incorporate a

different heuristic for calculating our degree of confidence in our belief (the γ param-

eter). At present, this is estimated by maximum likelihood from the dataset but there

may be better ways of calculating this value. As we have seen, we do not use our belief

directly in calculating the log likelihood of a particular motif model due to difficulties

decomposing the equation for log likelihood. In future studies, it may be possible to

include our belief as a parameter to the model; this would have the advantage that the

β parameter could remain relatively constant as we are not altering our count variables.

In retrospect, it may seem strange that we use the EM algorithm to iteratively maximise

the log likelihood of the motif model, yet get the best results when we disregard the

log likelihood measure when choosing the best starting parameters (recall these are

chosen using the information content in JMemePlus). Perhaps one area to explore

would be a reformulation of the EM algorithm, maximising the current information
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content, rather than the current expected log likelihood; the form this reformulation

would take is currently unknown.

5.3 Concluding Remarks

This project has successfully completed all of the aims that we set out to achieve and

has confirmed the tested hypothesis. Although the scope of this project has been lim-

ited by the time constraints, it is hoped that a useful contribution to the area has been

made.
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Dataset Contents

BLAST

amb0024 TPR repeat protein
amb0070 Predicted Fe-S oxidoreductase
amb0077 Nucleoside-diphosphate-sugar epimerase
amb0080 Sialic acid synthase
amb0092 Sialic acid synthase
amb0099 Predicted nucleoside-diphosphate sugar epimerase
amb0153 Molybdenum cofactor biosynthesis enzyme
amb0189 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb0220 Methyl-accepting chemotaxis protein
amb0263 Methyl-accepting chemotaxis protein
amb0274 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb0283 Membrane protein related to metalloendopeptidase
amb0304 Membrane-bound metallopeptidase
amb0324 CheY-like receiver
amb0441 Signal transduction histidine kinase
amb0549 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb0554 Methyl-accepting chemotaxis protein
amb0586 Sensory rhodopsin II transducer
amb0614 Flagellar basal body protein
amb0629 Response regulator
amb0650 Predicted periplasmic ligand-binding sensor domain
amb0684 Flagellin and related hook-associated protein
amb0688 TPR repeat
amb0708 Predicted O-linked N-acetylglucosamine transferase
amb0713 Sialic acid synthase
amb0716 Predicted nucleoside-diphosphate sugar epimerase
amb0759 GGDEF domain
amb0848 Response regulator
amb0854 Methyl-accepting chemotaxis protein
amb0902 Membrane protein
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amb0994 Methyl-accepting chemotaxis protein
amb0998 Uncharacterized low-complexity protein
amb1015 Cell division GTPase
amb1110 Signal transduction histidine kinase
amb1259 Cytochrome C2
amb1305 ATPase involved in chromosome partitioning
amb1335 Response regulator
amb1345 Response regulator
amb1370 Response regulator
amb1432 Signal transduction histidine kinase
amb1868 Methyl-accepting chemotaxis protein
amb1913 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb1956 Signal transduction histidine kinase
amb1959 Methyl-accepting chemotaxis protein
amb1984 Methyl-accepting chemotaxis protein
amb2067 SOS-response transcriptional repressors
amb2104 Methyl-accepting chemotaxis protein
amb2136 TPR repeat
amb2156 hypothetical protein
amb2196 Methyl-accepting chemotaxis protein
amb2293 Signal transduction histidine kinase
amb2357 SPY protein
amb2498 Ribosomal protein S2
amb2517 Methyl-accepting chemotaxis protein
amb2518 Membrane protein related to metalloendopeptidase
amb2564 Uncharacterized low-complexity protein
amb2639 Signal transduction histidine kinase
amb2660 Methyl-accepting chemotaxis protein
amb2788 Methyl-accepting chemotaxis protein
amb2792 Protease subunit of ATP-dependent Clp protease
amb2795 Methyl-accepting chemotaxis protein
amb2826 Methyl-accepting chemotaxis protein
amb2841 Predicted O-linked N-acetylglucosamine transferase
amb2866 LexA repressor
amb2895 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb2930 Sensor protein barA
amb3005 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb3006 Response regulator containing a CheY-like receiver domain and a

GGDEF domain
amb3041 Uncharacterized protein conserved in bacteria
amb3054 Methyl-accepting chemotaxis protein
amb3060 FOG: TPR repeat
amb3102 Methyl-accepting chemotaxis protein
amb3135 Ribosomal protein S12
amb3195 Signal transduction histidine kinase
amb3243 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb3261 FOG: GGDEF domain
amb3267 Methyl-accepting chemotaxis protein
amb3314 Methyl-accepting chemotaxis protein
amb3344 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb3384 hypothetical protein
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amb3401 Response regulator consisting of a CheY-like receiver domain and a
winged-helix DNA-binding domain

amb3426 Cytochrome C2, iso-2
amb3438 Sensor protein gacS
amb3451 Response regulator containing a CheY-like receiver domain and a

GGDEF domain
amb3467 Methyl-accepting chemotaxis protein
amb3474 Methyl-accepting chemotaxis protein
amb3495 Flagellar basal body rod protein
amb3496 Flagellar basal body rod protein
amb3517 Bacterial cell division membrane protein
amb3539 Methyl-accepting chemotaxis protein
amb3570 FOG: CheY-like receiver
amb3602 FOG: GGDEF domain
amb3690 Methyl-accepting chemotaxis protein
amb3697 FOG: CheY-like receiver
amb3699 FOG: GGDEF domain
amb3735 Signal transduction histidine kinase
amb3793 Methyl-accepting chemotaxis protein
amb3804 Methyl-accepting chemotaxis protein
amb3819 ATPase involved in chromosome partitioning
amb3829 FlbT protein
amb3847 Bacterial cell division membrane protein
amb3854 Cell division GTPase
amb3867 Membrane protein related to metalloendopeptidase
amb3871 FOG: TPR repeat
amb3878 Sensor protein gacS
amb3897 Methyl-accepting chemotaxis protein
amb3923 Phosphate starvation-inducible protein PhoH, predicted ATPase
amb3937 DNA-directed RNA polymerase specialized sigma subunit
amb3981 Chromosome segregation ATPase
amb3988 Modification methylase CcrmI
amb4000 Response regulator containing a CheY-like receiver domain and a

GGDEF domain
amb4015 Signal transduction histidine kinase
amb4344 Response regulator containing a CheY-like receiver domain and a

GGDEF domain
amb4347 Peptidyl-tRNA hydrolase
amb4371 Panthothenate synthetase
amb4415 FOG: GGDEF domain
amb4454 L-lactate dehydrogenase and related alpha-hydroxy acid dehydrogenase
amb4464 Phosphate starvation-inducible protein PhoH, predicted ATPase
amb4469 S-adenosylmethionine synthetase

LAN

amb0153 Molybdenum cofactor biosynthesis enzyme
amb0614 Flagellar basal body protein
amb0629 Response regulator
amb0684 Flagellin and related hook-associated protein
amb0759 GGDEF domain
amb1015 Cell division GTPase
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amb1956 Signal transduction histidine kinase
amb2564 Uncharacterized low-complexity protein
amb3005 Response regulator consisting of a CheY-like receiver domain and a

winged-helix DNA-binding domain
amb3041 Uncharacterized protein conserved in bacteria
amb3060 FOG: TPR repeat
amb3467 Methyl-accepting chemotaxis protein
amb3496 Flagellar basal body rod protein
amb3738 Flp pilus assembly protein, pilin Flp
amb3829 FlbT protein
amb3854 Cell division GTPase
amb3867 Membrane protein related to metalloendopeptidase
amb3923 Phosphate starvation-inducible protein PhoH, predicted ATPase
amb4161 MoxR-like ATPase
amb4454 L-lactate dehydrogenase and related alpha-hydroxy acid dehydrogenase

LAN7

amb0614 Flagellar basal body protein
amb0629 Response regulator
amb0759 GGDEF domain
amb1956 Signal transduction histidine kinase
amb3854 Cell division GTPase
amb3923 Phosphate starvation-inducible protein PhoH, predicted ATPase
amb4454 L-lactate dehydrogenase and related alpha-hydroxy acid dehydrogenase

ROD

amb0918 CheY-like receiver
amb0936 hypothetical protein
amb0940 Uncharacterized protein
amb0954 bacterial magnetic particle specificiron-binding protein
amb0955 hypothetical protein
amb1008 hypothetical protein
amb1022 hypothetical protein
amb1424 hypothetical protein
amb1662 Fe2+/Zn2+ uptake regulation protein
amb1681 High-affinity Fe2+/Pb2+ permease
amb1811 hypothetical protein
amb2732 Ferrous iron transport protein A
amb2978 Cu/Zn superoxide dismutase
amb3013 hypothetical protein
amb3546 hypothetical protein
amb3711 hypothetical protein
amb4411 Uncharacterized protein probably involved in high-affinity Fe2+

transport
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RAST

amb0707 Signal transduction histidine kinase
amb0823 Signal transduction histidine kinase
amb1109 Sensor protein fixL
amb1252 Signal transduction histidine kinase
amb1264 Signal transduction histidine kinase
amb1336 Signal transduction histidine kinase
amb1411 Probable sensor kinase silS
amb1662 Fe2+/Zn2+ uptake regulation protein
amb2005 Signal transduction histidine kinase
amb2213 Signal transduction histidine kinase
amb2291 Signal transduction histidine kinase
amb2736 Signal transduction histidine kinase
amb2801 Signal transduction histidine kinase
amb2876 Signal transduction histidine kinase
amb3423 Signal transduction histidine kinase involved in nitrogen

fixation and metabolism regulation
amb3469 Signal transduction histidine kinase regulating C4-dicarboxylate

transport system
amb3564 Signal transduction histidine kinase
amb3626 Sensor protein fixL
amb3689 Signal transduction histidine kinase
amb3881 Signal transduction histidine kinase
amb4013 Signal transduction histidine kinase
amb4306 Fe2+/Zn2+ uptake regulation protein
amb4439 Signal transduction histidine kinase

IRON

amb0705 Predicted iron-dependent peroxidase
amb0783 Putative heme iron utilization protein
amb0889 Uncharacterized iron-regulated protein
amb0937 High-affinity Fe2+/Pb2+ permease
amb0954 bacterial magnetic particle specificiron-binding protein
amb0956 bacterial magnetic particle specific iron-binding protein
amb1009 Fe2+/Zn2+ uptake regulation protein
amb1023 Fe2+ transport system protein A
amb1024 Fe2+ transport system protein B
amb1568 Nitrogenase iron-molybdenum cofactor biosynthesis protein nifN
amb1569 Nitrogenase molybdenum-iron protein alpha and beta chains
amb1572 Nitrogenase molybdenum-iron protein alpha and beta chains
amb1573 Nitrogenase molybdenum-iron protein alpha chain
amb1662 Fe2+/Zn2+ uptake regulation protein
amb1681 High-affinity Fe2+/Pb2+ permease
amb2309 Fe2+/Zn2+ uptake regulation protein
amb2731 Fe2+ transport system protein B
amb2732 Ferrous iron transport protein A
amb3037 Protein implicated in iron transport
amb3335 Predicted ferric reductase
amb3990 ferrous transporter
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amb4088 Ubiquinol-cytochrome C reductase iron-sulfur subunit
amb4306 Fe2+/Zn2+ uptake regulation protein
amb4411 Uncharacterized protein probably involved in high-affinity Fe2+

transport
amb4460 Fe2+/Zn2+ uptake regulation protein

FD

amb0176 Ferredoxin-NADP reductase
amb0179 Indolepyruvate ferredoxin oxidoreductase
amb0180 ferredoxin oxidoreductase and related 2-oxoacid ferredoxin

oxidoreductase
amb0532 Ferredoxin subunits of nitrite reductase and ring-hydroxylating

dioxygenase
amb0938 Polyferredoxin
amb1057 Ferredoxin
amb1059 Polyferredoxin
amb1060 Ferredoxin
amb1488 Tungsten-containing aldehyde ferredoxin oxidoreductase
amb1565 Ferredoxin
amb1579 Ferredoxin V
amb1677 Pyruvate with ferredoxin oxidoreductase and related 2-oxoacid with

ferredoxin oxidoreductase
amb2137 Ferredoxin
amb2145 627aa long 2-oxoacid-ferredoxin oxidoreductasealpha subunit
amb2146 Pyruvate:ferredoxin oxidoreductase and related 2-oxoacid:ferredoxin

oxidoreductase, beta subunit
amb2157 Indolepyruvate ferredoxin oxidoreductase with alpha and beta subunits
amb2479 Ferredoxin, 2Fe-2S (AaFd4)
amb2665 Ferredoxin
amb2688 Polyferredoxin
amb2689 Ferredoxin
amb2692 Ferredoxin
amb2922 Tungsten-containing aldehyde ferredoxin oxidoreductase
amb2982 Ferredoxin
amb3023 Ferredoxin
amb3040 Ferredoxin
amb3079 Polyferredoxin
amb3080 Ferredoxin
amb3234 Pyruvate:ferredoxin oxidoreductase and related 2-oxoacid:ferredoxin

oxidoreductase, gamma subunit
amb4130 Uncharacterized conserved protein containing a ferredoxin-like domain
amb4176 Ferredoxin subunits of nitrite reductase and ring-hydroxylating

dioxygenase
amb4319 Ferredoxin II
amb4366 Polyferredoxin
amb4413 Polyferredoxin
amb4559 Ferredoxin
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