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Abstract.

The objective of thiswork is to learninformationextractionrules
by applyingInductive Logic ProgrammindILP) techniqueso natu-
ral languagalata.Theapproachs ontology-basedyhich meanshat
the extraction rules concludewith specific ontology relationsthat
characterisehe meaningof sentencedn the text. An existing ILP
systemFOIL, is usedto learnattribute-\aluerelations.This enables
instanceof theserelationsto be identifiedin the text. In specific,
we explore thelinguistic preprocessingf the data,the useof back-
groundknowledgein the learningprocessandthe practicalconsid-
erationof applyingasupervisedearningapproacho ruleinduction,
i.e. in termsof the humaneffort in creatingthe dataset,andin the
inherentbiasesn theuseof smalldatasets.

1 Introduction

Automaticallyderiving asemantidnterpretatiorof freetext is achal-
lengingresearchask[11, 12] which hasanimmediateandpressing
applicationin improving accesdo the large volumesof knawledge
publishedon-line. The relevanceof ILP to extracting a machine-
processablsemanticrepresentatiofrom free text, e.g. MEDLINE
abstractq3] and databaseagueries[11], and from semi-structured
webpaged4, 7] has beendemonstratedApplications rangefrom
moreintelligentinformationretrieval, to the constructionof knowl-
edgebasesaandknawledgediscovery [3]. To thislist we addthetask
of marking-upweb documentswith groundrelationinstancegRDF
triples)thatis neededor the SemantidVebandtheintelligenttools
it promises.

This paperexploresthe problemof learninginformation extrac-
tion rulesthataccuratelyderive groundfactscharacterisinghe con-
tentof naturallanguageexts. We usethe FOIL ILP learner[13, and
thereforethe problembecomesne of constructingthe appropriate
representatiof the text, andof the backgroundknowledgethatis
available. Naturally, this mustbe doneautomatically The relations
that arelearnedare thosedefinedin a pre-&isting ontology of the
domain.Theserelationscover the fraction of the contentof the texts
thatwe areinterestedn.

Thedomainis thatof chemicalcompoundsndotherconceptse-
latedto global warming andwe areinterestedn assertiongisto the
level of, andchangesn emissionratesandconcentrationsf green-
housegasesThe ontologyprovidesthe classesandthe subclasse-
lations, and definesthe attributive relationssuchas emissionrate,
andconcentation level. The texts usedin the experimentsreported
herearetakenfrom thepopularsciencepublicationdNature andNew
Scientist
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The techniquesgresentedhereare not domaindependentHow-
ever they are dependenbn the availability of resourcesuchasan
ontology andthe capabilityto recognisenamedentities. Theremay
besomedependencenthetext genre.

Rule induction is viewed as part of a semi-automategbrocess
which necessarilyincludeshumaninvolvement.A domain expert,
and/ora knowledgeengineermay needto understandhe suggested
extractionrules.They mayalsowishto refinethesuggestedules.Al-
ternatiely, therulescanbe learnedandappliedincrementally with
the humanhaving the role of correctingthe derived facts/mark-up
onceaninitial setof rulesis learned Humaninvolvementis alsore-
quiredfor creatinga smalldatasetof ontologicallymarked-uptexts
whichis usedby theinductionalgorithm.In additionto findingtech-
niguesto representextual datasuchthatgoodrulesarelearnedwe
alsoconsidethecostsandcompleities of humaninvolvementin the
processFigurel shaws the processesf mark-up,rule learningand
informationextraction.

Inductive Logic Programmings appropriateor this learningtask
for several reasonsiLP providesa naturalrepresentationf the re-
lationsto belearned(including typerestrictions)the framework al-
lows alternatve sentenceepresentationto be explored; and back-
groundknowledgecaneasilyberepresentefill, 12]. The FOIL al-
gorithmseekdo specialiseulesandusesaninformation-gairheuris-
tic to provide a measureof the coverageof a clause.This measure
allows for noisein the data,correlateswith precisionandrecall,and
providesauniformmetricto assesalternatesentenceepresentations
andbackgroundheories.

Theglobalwarmingdomain,andontologythatwascreatedo rep-
resentit aredescribedn Section2. Section3 begins by describing
thetext representatiomputto FOIL, andconsiderghe background
theoriesmadeavailableto the learningalgorithm.The evaluationof
the ILP-basedrule learningapproachs presentedn Section4, and
this is followed by an evaluationof the sametaskwhencarriedout
by a knowledgeengineelin Section5. Relatedwork is discussedn
Section6, and,finally, we drawv someconclusions.

2 Ontology Development and Text Mark-up

Thetexts on globalwarmingwereretrieved by keyword searcHrom
Nature and New Scientistarticles. The keywords usedinclude co2,
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oxygn greenhousgas andglobal, in variouscombinationsNot all
texts areaboutglobalwarming,oneis abouttheirrigation of green-
housesvith seawater othersareaboutcoalproductionandtheuseof
methanesa fuel. An ontologywascreatedo representhis domain.

Theglobalwarmingdomainontologyis a synthesiof several ex-
isting ontologies,sincenonecould be found that coveredall of the
relevant aspectf this domain:the Ontolinguaontology of chemi-
calelementg6], the categgorisationof chemicalcompoundsoundin
EcoCyc[9], andthe proposalsof [8] distinguishingheterogeneous
and homogeneougopulations.Combiningtheseontologieswas a
purelymanualprocesavhich alsotook additionalsourcef domain
knowledgeinto accountFigure2 shavs asmallexcerptof theontol-
ogy.

The predicategepresentinghe quantitatve and qualitative rela-
tionshipsof interestare: 1) atmosphericConceridtion (aC) hold-
ing of a Gas and a real number; 2) atmosphericConcerdr
tion_Qual (aCQ holding of a Gas and one of the symbols
{high, low}; 3) changInAtmosphericConcenttion (CAC) holding
of a Gasandone of the symbols{increase, decrease,none}; 4)
changeInRateOfEmissioholding of a Gasandone of the symbols
{increase, decrease,none}; 5) causesholding of an Eventor a
PartiallyTangible and an Event and 6) stateOfMatterholding of
solid, liquid and gaseougtheseconceptsare modelledas attribute
values).

In marking-upsentencesvith thesesix relations,it wasdecided
to ignorethe temporalcontet in which the assertiorholds. Several
texts referto pasteras,e.g.the Mioceneperiod,andreportinferred
greenhouseonditionsat that time. A completedescriptionof the
contentof atext would represensuchcontectual information.How-
ever, thatis beyondthescopeof thiswork. Themark-upwe construct
is simply the centraldescription:

CcAC( Car bonDi oxi de, i ncrease) whether that be a past,
presentor hypothesisedtatementFigure 3 shavs more examples.
Suchassertionsare containedin XML termswhich are embedded
within thesentencethey describeThe XML canbeeliminatedfrom
the texts for further NLP processingpr canbe extractedwhenre-
quired.

In this manner sentencef the text setare manuallymarked-up
with ontologyterms.This mark-upis later extractedfrom the text to
form thetargetrelationswhich arerequiredduringsupervisedearn-
ing. Thesetermsalso form the setof valid statementghat can be
madeaboutthe texts during the testingprocedure Consequentlyit
is importantthatthetexts arecompletelyandcorrectlymarked-upin
orderto provide accuratenputsto learningandtesting. The effort
andexpertiserequiredin this task,andthe repeatabilityand consis-
teng of this procedureare thereforeimportantissuesMarking-up
the 30 texts (containing205 sentences862words)usedin this ex-
perimenttook approximatelyd hours,including the time for typing
in the XML annotationsaandreviewing the outcome No tools were
availableto assisthis task,beyonda standardext editor.

The global experimentof increasing atmosphericCO2 concentations by
burningfossilfuelshasneithera contol nor replicates

<target nane="cAC(Car bonDi oxi de, i ncrease)"/ >.

Soit is difficult to quantifyhowmud fastertheworld’s forestsmightbegrow-
ing underhigh CO2 conditions

<target nane="aCQ Car bonDi oxi de, hi gh)"/>.
Higherlevelsof CO2canclearly male plantsgrow better

<target nane="aCQ Car bonDi oxi de, hi gh)"/>.

Figure3. Text from Nature[5] with annotation

As atestof the consisteng of mark-up,a setof 6 randomlyse-
lectedtexts were double-markd by a secondknowledge engineer
Firstandsecondmarkersfound 46 and 54 relationsrespectrely, in
theseexts. In 44 caseshesamemark-upwasmade It wasnotedthat
therearefew instance®f co-referenceo beresohedin determining
theagumentsof attributerelations.This maybeagenerafeatureof
the popularsciencegenre.ln conclusionagreemenbetweenmark-
erswasgreatetthan90% onceerrorsanddifferencesn assumptions
of scopeareremoved.

3 InputstoLearning

Theinputto anILP algorithmconsistsof two parts:thelist of posi-
tive andnggative instancef the relationfor which rulesshouldbe
learned(the target relation), and, secondly the backgrounctheory
from which therulesshouldbe constructedTheinputto FOIL hasa
third componentthetypedefinition,which we discusshelow.

Thetamgetrelationswhich areinputto FOIL aresimply extracted
from the XML termsin the marked-uptexts. All thatis requiredin
additionis to index theserelationswith a sentencedentifier. In this
applicationof ILP, the backgroundheoryhastwo componentsone
derivedfrom the the texts andonefrom the semantic¢heory andwe
now discusgheseelementsn turn.

3.1 Sentence Representation

NLP techniquesanbe usedto enrichthe informationgivento the
machinelearningalgorithm,or to filter the input. For example,part
of speechtagsmay be includedin the sentence-wrd relation,and
may also be usedas a filtering mechanisme.g. words marked as
determinersnay be removedfrom thelearninginput.

Thefollowing techniquesnay (optionally)beemplo/edin theNL
processingtageof our system:

o Partof speech{POS)tagging:The Brill tagger[1] is used.

e Morphologicalanalysis:Wordsare stemmedy the morphologi-
calanalysef [10].

e POStagcorvergence:The Brill tagsfor eachmajor cateyory are
replacedby a singletag for eachtype (i.e. by onetagfor all six
typesof noun).

o POSfiltering: The POStagsareusedto excludecertaincateyories
of word.

e Frequeng analysis:The frequenyg of occurrenceof eachword
acrossthe text setis measuredLow frequeng word canbe fil-
tered.

e Named-EntityRecognition:The ontology conceptspor instances
of ontology concepts,found by named-entityrecognition are
addedto the sentenceepresentation.

e Contet: The immediatecontext of certainwordsis found. Cur
rently this is simply theimmediatesuccessoof wordswhich are
potentialattribute values.



ThehasWrd(Sentence-ID,POS®RD)relationrepresenttheto-
kensin a sentenceand their part of speech.The options listed
above determinevhetherthewordis stemmedandwhetherthe POS
tag is modified from the original. Namedentitiesare addedto the
sentenceby the samerelation (the specialtag ne is introduced):
hasVérd(Sentence-ID,ndamedEntity) In the domainwe are ad-
dressthenamedentity is typically anontologyclass.Context infor-
mationis representedby the relation context(Sentence-IDWbord-1,
Word-2) whereWord-2 is the context of Word-1. This extendsthe
sentenceepresentatiowith a structuralrelationbetweertokens.

3.2 Ontology Theory

Theisa(Class,Classjelationof the ontologycanbe usedasa back-
groundtheory Only a subsetof theserelationsneedbe included-
thosewhich definethe classhierarchybetweena conceptidentified
in thetargetrelationandthetypeof therelation.Fromtheset should
be possibleto learngeneralisationdnstance®f classesanalsobe
treated.

Thesecondesourcaghatcanbeusedis amappingbetweeracon-
ceptandthe form of wordsthatit may be associatedvith in a text.
For example,the conceptCarbonDioxidehastwo txtformrelations:

t xt f or mL( Car bonDi oxi de, c02).
t xt f or n2( Car bonDi oxi de, car bon, di oxi de) .

Thisis aresourcghatmaybecreatednanually or maybelearned.
In fact,we canusethe marked-updatasetto suggestorrelationshe-
tweenconceptsandword forms, but we do not explorethatin depth
here.The txtform1(Class,Wd) and txtform2(Class,\¢td,Word) re-
lations contain similar information to that usedin named-entity
recognition.Theserelationsexplicitly provide the mappinginforma-
tion to the learner while named-entityrecognitionresultsin a has-
\Word relationstatingthata conceptoccursin a specificsentence.

3.3 DataTypesand Data Set Biases

The FOIL algorithmrequiresthat the target relation and the back-
groundtheoryrelationsbe typed,andthattypesbe extensionallyde-
fined in the input file. At a minimum, the type of a relation must
includeall termsthatappeain thetuples.Wherethetypesof arela-
tion arespecifiedin the ontologywe canusethe ontologydefinition
to identify and constructFOIL types.Whenthis is not the case(as
for has\Verd), or the setof termsis too great(e.g.the integers)the
FOIL type mustcover all tuplesplus anapproximatiorof thelist of
constantshatmayoccurin thattype.

As we aredealingwith naturallanguagedatawe needto ensure
thatrulesarenot over-generalisedlueto anover-constrainedlefini-
tion of the allowableargumentsof relations.Ontheotherhand,if we
wereto useonly a singletype for all relationswhich containedall
words (which may numberseveral thousandthenthe searchspace
would be prohibitively large.

We have developedthefollowing heuristicsfor FOIL type defini-
tions.Thecasego considerarewherethe amgumentsof the ontology
relation are an (abstract)ontology class(e.g. the first agumentof
aC); numerical(e.g.the secondargumentof aC); andsymbolic(e.g.
thesecondcargumentof aCQ).

e For ontologytypes:the FOIL type includesthe namesof all on-
tology classedelow theclassdefiningthetypeof relation(e.g.all
classedelov Gasfor aC).

e For symboltypes:the FOIL typeincludesall symbolsavailable
in the symbolset(e.g.the setincrease decease nonefor cAC -
whetheror nottheseoccurin thetamgetset).

e For numericaltypes:the FOIL type shouldinclude all numbers
in tamgetrelation,plusall numbershatoccurin the sentencefor
whichtherearetargetrelations.

As notedabove, rule learningis necessarilyperformedon a rel-
atively small set of marked-up texts. A larger set would provide
morerepresentatie data,but the costin humanlabourwould be pro-
hibitive. As a consequencedhe datasetis biasedby the initial se-
lection criteria. While not all texts areaboutaboutglobal warming,
thereareclearly unrepresentately high correlationsbetweenwvords
andconceptsn thetamgetrelationsuchasincreaseandCarbonDiox-
ide. In addition,thereis a lack of examplesof the co-occurrencef
thesetermsin a sentencavhich is not describedby the targetrela-
tion. Constructingadditionalnegative targetrelationswould not ad-
dressthis problem,astheissueis the unrepresentaté natureof the
languagedatapresentedo the learner Adding a sentencevherethe
highly correlatecconcept®ccurin asensevhichis notdescribedy
the targetrelationwould help induceruleswhich betterdistinguish
positive andneggative casesThus,a setof biashas\Wrd relationsis
constructecby generatinga new sentencdD and statingthat this
sentenceontainsincreaseand CarbonDioxide Thatis, we assume
it is plausiblethat the conceptsco-occurin somesentencewithout
actuallyfinding a realexamplesentence.

FOIL hasaclosed-verld flag (- n), anddoesnotrequireexplicitly-
constructechegative examples—tvo featureswhich arevery useful
whenlearningfrom naturallanguagedatawherenegative examples
donot naturallyarise.

4 Evaluation of ILP RuleLearning

Theprocessingechniquedistedabove areevaluatedonthetestdata.
Firstthe experimentaimethodologyis stated.

4.1 Experimental Method

Thesentencen thetext-basearerandomlydividedinto trainingand
testingsetsin a 2/3 to 1/3 split. Tensuchrandomdatasetsare cre-

atedandeachexperimentis run 10 times.Eachexperimentattempts
to learnrulesfor three ontology relations:atmosphericConcerar

tion (aC), atmosphericConcerdtion Qual (aCQ and changlnAt-

mosphericConcerdtion (CAC). The averagenumberof relationsof

eachtype in the training and testing setsis given in Table 1. To

shav theextentof therelationsusedin the experiments;Table2 lists

the averagenumberof groundrelationsused— in additionto those
whichrepresenthetext (the Baseline)or cAC.

Average | Sentences| aC | aCQ | cAC
Training 137 | 8.5 75 16.0
Testing 68 | 2.5 35 7.0

Tablel. Numberof sentenceandrelations

Exp. Predicate No. | Exp. Predicate| No.
Baseline | hasVérd 288.4 | Ontology | isa 9.0
txtform txtform1/2 10.0 | Bias hasVérd 9.0
ne hasVWérd ne 93.6 | Context context 14.7

Table2. Numberof groundpredicates

The standardperformancemeasuref precision,recall and F
scorearecalculatedasfollows. Precisionis theratio of derivedrela-
tionswhich arecorrectto the total numberof derived relations.Re-
call is theratio of the numberof correctrelationsthatcanbederived



to thetotal numberof correctrelations. TheF scoreis calculatedyiv-
ing equalweightto precisionandrecall. The averageperformancen
atestfor eachmeasurés quoted As theF scoreis calculatedor each
trial in an experiment,thenaveragedjt will be usedasa summary
scorewhereappropriateThesetof correctrelationsfor any sentence
is justthosein the XML mark-up.The setof derivedrelationsis all
relationsthatcanbeinferredfrom thelearnedrules.

4.2 Results

Thefirst resultsincludethe baselingperformancef thelearner plus
theF scoreobtainedby addingeachof thefive knowledgesourceso
the learninginput individually: the text mappingpredicate hamed-
entities,the ontology relation (isa), the biasrelations,andthe con-
text assertionsHaving documentedhis information, combinations
of sourcesareexamined.

Exp. aC aCQ | cAC | Exp. aC aCQ | cAC

Baseline| 0.19 | 0.68 | 0.41 | Ontology | 0.19 | 0.63 | 0.40

txtform 0.19 | 0.62 | 0.38 | Bias 0.00 | 0.51 | 0.40

ne 0.19 | 0.57 | 0.40 | Context 0.41 | 0.59 | 0.45
Table3. Baselineresults(F score)

Table3 shavs theF scorefor aC (thenumericakelation)to below
(0.19)in all but the experimentwherecontet is added.This is due
to overspecialisatiorastherulescontainspecificnumbersHowever,
whenbiasinformationis addedherulesidentify theunit of measure,
ppmv, of thenumbemwhichis in facta qualitatve improvement.The
additionof contet informationgivesa more promisingF scorefor
aC, derivedfrom ruleswhich have a usefuldegreeof generalisation.
The secondsetof experimentsxaminecombinationof knowledge
sources.

Thefollowing combinationareexplored,all includebiasandcon-
text information:A baselineB text mapping;C named-entityD on-
tology; E text mappingand named-entityF text mappingand on-
tology; G named-entityand ontology; andfinally, H text mapping,
named-entityandontology

Exp | aC aCqQ cAC
P R F P R F P R F

A 1.00[ 059 062 | 0.62| 0.67 | 0.59 | 058 | 0.48 | 0.47
B 1.00 | 059 | 0.62 | 0.69 | 0.67 | 0.64 | 0.67 | 0.51 | 0.55
C 1.00 | 0.55| 0.57 | 0.65| 0.73 | 0.57 | 0.47 | 0.56 | 0.47
D 1.00 | 0.59 | 0.62 | 0.69 | 0.67 | 0.64 | 0.66 | 0.46 | 0.48
E 1.00 | 0.55| 057 | 094 | 0.73 | 0.76 | 0.57 | 0.45 | 0.47
F 1.00 | 0.59 | 0.62 | 0.69 | 0.67 | 0.64 | 0.62 | 0.46 | 0.47
G 1.00 | 0.59 | 0.62 | 0.73 | 0.67 | 0.66 | 0.67 | 0.42 | 0.50
H 1.00 | 059 | 0.62 | 0.89 | 0.67 | 0.68 | 0.70 | 0.45 | 0.54

Table4. Resultsof combinatiortests(Precision,RecallandF score)

Thenew baselinesystemjncludingbothbiasandcontext, enables
aCrelationsto belearned notetheincreasen F scoreof 21%over
thepreviousbestscore Thisis becaus¢heassociatioletweemum-
bersandtheir unit of measurds now representedThe context rela-
tion is usedwidely in rulesfor all targetrelations.Otherknowledge
sourcesdo not greatlyalterperformancentheaC relation.

The precisionscoresfor aCQ andcAC canbe improved by 32%
and 12% respectiely by the various combinationsof knowledge
sources.Similar improvementsin recall scoresare not achieved.
Adding a knowledge sourcedoesnot necessarilyimprove perfor
mance.Test C shawvs that adding namedentities improves recall
at the expenseof precisionandF score.However, the combination
of namedentitieswith otherinformationis beneficialassubsequent
testsshav. Thechangesn performancearenot necessarilyepeated

acrossthe relations.TestH shavs the bestcombinedperformance

acrosgherelations:precision> 0.70,F > 0.54.
Thefollowing areexamplesof theruleslearned:

B: cAC(A, ' Methane’,increase): -
hasWord( A, v, i ncrease),
txtforml(’ Methane’, E), hasWword(A F, E).

C. aCQ A, ' CarbonD oxide ,Q: -
hasWor d( A, D, ' Car bonDi oxi de’ ), haswrd(A E, O .

F: cAC(A B,increase):-
hasWord(A, v, increase),isa(B, E),
txtform2(E F, G, hasWwrd(A H G .

H: cAC(A B,increase): -
hasWor d( A, D, B), hasWord(A, v, ri se).

TheB rule saysthat Methaneincreasedf thewordi ncr ease and
thetext form of Methaneoccurin asentenceThisshavstheintended
useof thetxtformrelation.C stateghatCarbonDioxidehasconcen-
tration C' (high or low) if boththe namedentity Car bonDi oxi de
andC occurin asentenceThisshavs generalisatiomverthesymbol
set.RuleF is aninterestingover-generalisationsayingthattherein
anincreasén B if E is asuperclassf B, andE increasesH states
thatthereis anincreasan concentratiorof a namedentity B if that
entity occursin a sentencalongwith theverbri se. Thisis anex-
ampleof generalisatiomver ontologyclassesplustheidentification
of atermwith similar semantic$o the symbolincrease
Lessencouraginglyrulesoftenidentifiedwordswith no semantic
relationto the relationbeingdescribedThis is not surprisinggiven
thatthesewordsarecurrentlyonly selectecbn the basisof informa-
tion gain.Further dueto thebiasin thedata,atestfor anoccurrence
of aconceptwasoftenmissedge.g.
CAC( A, ' CarbonDi oxi de’, C): -context (A, C, at nospheric).
Thisrulefailsto testfor ary referenceo CarbonDioxidein sentence
A. It is suficiently accuratewhenappliedto both the training and
testingsetsasthey have the samebiases.

4.3 Analysis

Given the small numbersof exampleswe work with it appearsin-
likely thatgeneralisationsf thegrammaticaktructureof thetraining
sentencesould belearned The useof the bag-of-wordsrepresenta-
tion allows ascalingdown of thesizeof thetrainingdataset: Thetext
representationsmplg/ed capturgustenoughinformationfor theat-
tributerelationsto belearned.Theremaybegenre-specifi€actorsat
work aswriting for popularsciencerequiresclarity, hencecomple
relative clausesmay be lessfrequent,and, as noted, there are few
anaphoriaeferenceso themaintopicsof asentence.

To addressconcernsover the small size of the datasets,we re-
peatedhreeexperimentswvith anenlageddatasetof 371 sentences.
Therewasno consistenpatternof changen thescoresHowever, the
variancein F scoreacrosshe 10trialswasconsistentlyeducedThe
enlaged datasetimprovesthe estimateof the F scoreby reducing
the 95% confidenceantenal.

The experimentsaddressedearningattribution relations,and in
thesecaseghedirectionalityof the relationis unambiguousClearly
therearelimits to this approachlit would work in somecommon-
sens&asesto quoteafamiliarexample:Theparliamentwasbhombed
by the guerillas but not in othersMicrosoftsuesIBM. Knowledge
of the subjectand objectin the sentencewill certainlybe required
to constructthe correctrelationin the secondexample.We look to
incorporatethe structureof phrasesnto the sentenceepresentation
in futurework.



The known biasin the learningdatadid affect the ruleslearned
in thatcertainassumptionshathold of the datawereexploited.One
solutionis to manuallyreview the rulesin orderto achieve similar
performancen unseertexts. We next presensomeinitial resultson
thecompleity of manuallyauthoringandreviewing rules.

5 Evaluation of Manual Rule Authoring

Thetasksof rule authoringandrule revision weregivento a knowl-
edgeengineetto compareperformanceandgeta qualitative insight
into the compleities of thetasks.

A knowledge engineerwas provided with a listing of the texts,
with and without mark-up,the ontology was describedas was the
procedurefor rule evaluation.In the first task, the aim wasto write
rulesto generatehe givenmark-up.No computersupportwasavail-
able. The secondaskwasto refinethe rulesandfor this automated
scoringon the training setwas provided. The rule setswere saved
at eachstageof the experimentandthe timesto completethe tasks
wererecordedlIn orderto make the taskas naturalas possible,no
stemmingor otherprocessingf thetexts wasdone.

The knowledge engineerspent28 minutesreadingthe texts and
90 minuteswriting rules.TheF scoreson thetestingdatafor thefirst
taskare:aC: 0.67aCQ: 0.57cAC: 0.00.After revision the scorefor
cAC was0.60,norevisionsto therule setsfor aC oraCQweremade
sothe scoresareunchangedTherevision procesgook 45 min.

Against expectation,the majority of the effort was spenton the
initial analysisphase.This producedvery good rules. Indeed,few
changesveremadeduring revision. However, a critical changeto a
cAC improved performanceconsiderablylt wasfound particularly
difficult to cover the negative caseqsentenceor which no relation
shouldbe deducedpandto know which conceptavereof mostvalue
to cover (by their frequeng of occurrence)y inspection.Therules
werelongerthanautomaticallylearnedrules, typically containing4
conjuncts.The coverageof ontology conceptsvas greaterthanac-
tually occurredin the texts, andthereforethe rulesare morewidely
applicable.lt wasnotedthatthe taskwasa very unnaturalone,de-
spitethe intentionto reducethe programmingelement.The lack of
a contet relationwasnoted.This exerciseconfirmedthe belief that
aninitial mark-upof thetextsis necessaryandwould have beenre-
quiredhadit not alreadybeenprovided. One hour and 58 minutes
wasrequiredto constructthe first rule sets.FOIL usuallytakesless
than 10 secondgo producea rule set. Whenall knovledgesources
areavailableto FOIL therule qualityis comparableandthereforeve
concludethateditingtheautomaticallygeneratedulesis anefficient
alternatve to extensive manualanalysis.

6 Reated Work

The featuresusedfor sentenceepresentatioim ILP approacheso
informationextraction[3, 7] andtext classificatior{2, 4] have strong
similarities. Token-basedeaturedsuch as the hasword predicate
which denoteshe occurrenceof word in a web page[4] are often
usedin combinationwith structuralfeaturessuchas next_token [7]
or next_ phrase[3]. Theability to representelationsbetweertokens,
as opposedto purely propositionalfeatures,is a strong argument
in favour of the ILP approach(althoughfor text classificationthe
experimentalevidencefor a performancebenefitis not overwhelm-
ing [2]). The hasWérd andcontext relationsin the presentwork are
theanalogue®f thetoken-basedndrelationalfeaturescited.
Theinformationextractionproblemis oftenframedasidentifying
asequencef tokensthatfill aslotin atemplate For this reasorthe

inducedrules may take the featues themseles as aguments.e.qg.
the every(Featuee, Value) predicateusedin SRV [7]. ThelE problem
we addressnducesuleswhich concludewith atermsin apredefined
symbolset,theontology Symbolssuchasontologyclasseseveroc-
curin thetext, but their presencenay be indicatedby named-entity
recognitionwhenthatmoduleis applied.Attribute valuesmay cor-
respondwith tokensin the text, however. This division of hamed-
entity recognitionfrom IE is beneficialassequencédentificationis
removed from thelearningtask. Structuralrelationshipsetweerto-
kenscanbelearnedrom the sentencencodingdirectly.

7 Conclusions

For the purposeof extracting attribute relationsfrom text we have
shavn that a bag-of-words sentenceepresentationgombinedwith
a simple word context relationis adequateAttribute relationsare
commonin scientificontologiesandwe have shavn how extracting
theserelationscanexploit thetyping of theontology

Theinclusionof grammaticainformationin sentenceepresenta-
tion is typically assumedhowever, we have shawvn thatit is possible
to achiere succeswithoutit. Learningfrom smalltraining setsbe-
comespossibilityascomple structuresieednotbelearnedThisis
nottoignoretheneedor deeperanalysis\We ervisageatwo stagd E
processnvherethe grammaticainformationis acquiredon-demand,
for thosesentencewhoseinterpretatiorrequirest.
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