
A Common Process Language

Version ���

Stephen T� Polyak

Arti�cial Intelligence Applications Institute �AIAI�
Institute for Representation and Reasoning �IRR�

The University of Edinburgh
�� South Bridge� Edinburgh EH� �HN United Kingdom

Steve Polyak	ed
ac
uk
Research Paper ���

November �� ����

Contents

� Purpose �

� Introduction �
��� Basic Tokens and Syntactic Categories �
��� Lexicons �
��� Grammars �

� Core Language �
��� Commands �
��� Sort De�nitions �
��� Assignments �
��� Extensions �
��� Process �
��� Nodes and Activities �
��	 Activity
Relatable Objects and Agents � 	
��� Timepoints �
��� Sets �
��� Domain Levels �

� Core Language � Constraints �
��� Issue Constraints �
��� Node Constraints �
��� Ordering Constraints �
��� Variable Constraints ��
��� Auxiliary Constraints ��

� Example� Three Pigs Building ��

	 Extensions ��
��� Tool
Based ��
��� Rationale ��

�

� Purpose

The Common Process Framework �CPF� provides methods� tools� and representations for integ

rating AI planning technology and plan representations into organisations for the primary purpose
of synthesising and managing organisational processes� It meshes and extends past and present
University of Edinburgh planning research and infuses it with new work in ontological engineer

ing� knowledge sharing� software�requirements engineering and design rationale� One component
of the framework is the Common Process Language �CPL� which is derived from a sorted� �rst
order language� This language is used to express processes and process domain knowledge from a
constraint
based view of the world� The elements of this perspective are de�ned in the Common
Process Ontology �CPO� which underpins the terms and concepts in CPL� The language is used
by all of the CPF tools for exchanging rich process knowledge� The CPL approach allows for very
�exible constraint expressions which are de�ned via extended grammar speci�cations� This paper
presents the CPL and de�nes both its core lexicon and grammar along with default sub
language
extensions for constraint expressions�

� Introduction

The language used to describe domains and processes in CPF is CPL� It includes variables� func

tions and predicates in addition to the standard logical operators� such as negations� conjunction�
quanti�cation� etc� The language is strongly typed� where each type is a �nite sort� This paper
provides the de�nition of the CPL language using an extended Backus
Naur form �BNF��� The
following extended BNF conventions are used

� A vertical bar �j� indicates an exclusive disjunction� thus� for example� if C� and C� are two
syntactic categories �C�jC�� indicates an occurrence of either an instance of C� or C� but
not both� The absence of such a bar between two constructs indicates a concatenation�

� An asterisk ��� immediately following a construct indicates that there can be any �nite
number �including � of instances of the construct�

� A plus sign ��� superscript immediately following a construct indicates that there can be
one or more instances of the construct�

� Braces �f� and �g� are used to indicate grouping� Thus� �fC�jC�g�� indicates one or more
instances of either C� or C��

� A construct surrounded by brackets �e�g� ��C�jC���� indicates that an instance of the indic

ated construct is optional�

� Nonterminals� representing categories of CPL expressions� start with ��� and end with ����

� Where necessary� the space character is represented by ��space���

��� Basic Tokens and Syntactic Categories

CPL is built up from a set of basic tokens and certain categories of expressions� This section
presents these building blocks which will be used to de�ne complex CPL expressions� They are
listed below in the following BNF�

�uc�letter� ��� A�B�C�D�E�F�G�H�I�J�K�L�M�N�O�P�Q�R�S�T�U�V�W�X�Y�Z

�lc�letter� ��� a�b�c�d�e�f�g�h�i�j�k�l�m�n�o�p�q�r�s�t�u�v�w�x�y�z

�This BNF form is borrowed from the style used to describe the enhanced PIF language in �Foundations for

Product Realization Process Knowledge Sharing�� Knowledge Based Systems� Inc�� Final Report� U�S� Dept� of

Commerce� Contract No� ���DKNB�	�
��
�

�

�letter� ��� �uc�letter� � �lc�letter�

�digit� ��� ����	�
�����������

�integer� ��� �digit��

�float� ��� �digit����digit��

�number� ��� �����integer��������float��

�oper� ��� �������������

�punct� ��� ���������������� �!���"�#�����$���%�&�����'���(��������������space�

An expression is any string of basic tokens� We de�ne four basic categories of expression�

�b�con� ��� ��uc�letter����letter���digit��� ��������letter���digit����

�b�var� ��� (�b�con�

�b�func� ��� ��oper���lc�letter����letter���digit�������������letter���digit����

�b�pred� ��� ��lc�letter����letter���digit�������������letter���digit����

�b�sort� ��� ��lc�letter����letter���digit������������)��letter���digit����

�doc�string� ���)��letter���digit���punct��*)�**��)

�comment� ��� ����letter���digit���punct��� ��*n���*r���*r*n��

Thus� a �b
con� �i�e�� an expression derived from the nonterminal �b
con�� is a string of
alphanumeric characters� dashes� and underscores that begins with an upper case letter and in
which every dash and underscore is �anked on either side by a letter or digit� A �b
var� is the
result of pre�xing a �b
con� with a question mark� A �b
func� is just like a �b
con� except
that it must begin with either an �oper�� a �punc�� or a lower case letter and it may have a
�dot� separator as well� �Every �b
pred� is thus a �b
func�� A �doc
string� is the result of
quoting any string of tokens� double quotes and the backslash can be used as well as long as they
are preceded by a backslash� The nn and nr in the single line comment de�nition are meant to
refer to the newline and carriage return characters�

��� Lexicons

The �rst
order CPL language is given in terms of a lexicon and grammar� The lexicon provides
the basic �words� of the language� and the grammar determines how the lexical elements may be
used to build the complex� well
formed expressions of the language� A CPL lexicon� �� consists of
the following�

� The expressions �space��SORT�f�g�����not�and�or��������forall� and exists�

� A denumerable recursive set V� of �b
var�s �i�e� expressions derived from the nonterminal
�b
var� in the above BNF�� known as the variables of ��

� A recursive set C� of �b
con�s known as the constants of � which includes at least the
strings inf
� inf� �max�
max��

� A recursive set F� of �b
func�s� known as the function symbols of ��

� A recursive set P� of �b
pred�s known as the predicates of ��

� A recursive set S� of �b
sort�s known as the sorts of ��

��� Grammars

Given the CPL lexicon �� the grammar G� based on � is given in the following BNF�

�con� ��� a member of C�
�var� ��� a member of V�
�func� ��� a member of F�

�

�pred� ��� a member of P�
�sort� ��� a member of S�
�term� ��� �atomterm� j �compterm�
�atomterm� ��� �var� j �con�
�compterm� ��� �func� ��term�f��term�g��
�sentence� ��� �command� j �sortdef� j �assignment� j �atomsent� j

�boolsent� j �quantsent�
�command� ��� �fde�ne
domainjimport
domaing��pred�f��pred�g��
�sortdef� ��� SORT �sort�
 f ��con� f� �con��g�g g�

�assignment� ��� �compterm��f�con� j �doc
string� j �integer�g
�atomsent� ��� �pred� ��term�f��term�g��
�boolsent� ��� not ��sentence�� j and ��sentence� �sentence��� j

or ��sentence� �sentence��� j �� ��sentence��sentence���
�quantsent� ��� �foralljexists� f�var� j��var���g ��sentence��

� Core Language

The core Common Process Language L� based on a lexicon � is the set of all expressions that can
be derived from the nonterminal �sentence� in the grammar G�� The members of L� will also be
called the sentences of L�� Given these basic sentence types we will present the lexical elements from
S�� P�� F� under conceptual headings� Within the CPF� there are actually two separate categories
of knowledge that can be expressed using CPL� process domains or individual processes� We will
use the abbreviation CPD for Common Process Domains when we are referring to knowledge in
the former category� Some elements of CPL are only appropriate for CPD knowledge while other
parts are restricted only to individual process speci�cations� These restrictions will be pointed
out in the description below� Knowledge speci�cations expressed in CPL are physically identi�ed
as �les and thus we will use the term� �le� to refer to an entire speci�cation or set of sentences�
Throughout this paper we will provide examples of CPL sentences which will be numbered and
listed in bold text� Many of these examples are based on a simple house building domain which is
summarised in Section ��

��� Commands

All CPL commands� �command�� start with a percentage sign� These are used to tell a CPL
compiler various things about a domain or process speci�cation� Currently� the only commands
de�ned involve domain de�nition ��de�ne
domain� which can only be used in a CPD �le and
domain dependencies ��import
domain� which can be used to express either the link between an
individual process �le and its domain�s� or �when expressed in a CPD� to create a lattice of domain
dependencies�

For example� the �rst sentence below states that the content of a CPD �le can be referred to as
the �three pigs building� domain� The second sentence would be used in an individual process �le
to state that a particular process speci�cation applies to the �three pigs building� domain� The
third sentence might be used to indicate a dependency between some domain and a generic domain
which contains a set of building objects�

�de�ne�domainthree pigs building� ���

�import�domainthree pigs building� ���

�import�domaingeneral building objects� ���

�Note that the bolded fg are actually terminals in this expression� so SORT cpo�action�fA��Ag is legal� and

SORT cpo�action�A��A is illegal�

�

��� Sort De�nitions

The CPL is strongly typed� The ontology on which CPL is based� CPO �Polyak � Tate ��a��
speci�es the sorts of function and predicate parameters as well as the sort of the result in the
case of functions� A sort de�nition sentence� �sortdef�� is used to associate a �con� or a set of
�con�s with a particular �sort��

Currently� only a �possibly empty� list of named symbols or �con�s can be speci�ed although
future versions of CPL may provide syntactic sugar for expressing ranges of �con�s more suc

cinctly� For example� sentence � states that A�� A� and A� are of the sort �cpo
action� while �
illustrates a shorthand which will be supported in the future�

SORT cpo�action
fA��A��A�g ���

future� SORT cpo�action
fA��A�g ���

��� Assignments

In CPL� the way to indicate the result of evaluating a function on a domain element �or a speci�c
tuple of domain elements� is to represent it as an assignment� �assignment�� An assignment is
given by a function term with parameters� an assignment operator ���� and the value it should
be mapped to� So� for example� we may wish to state that the result of evaluating the function�
�activity�begin
timepoint�� on the domain element A� �which is of type �cpo
action�� from above�
results in the element Tp�� which is de�ned to be a �cpo
timepoint��

activity�begin�timepointA��
Tp� ���

��� Extensions

The relationship between the CPO and CPL is completely transparent� Classes in CPO corres

pond to �sort�s in CPL and the functions and relations from CPO are directly tied to �func�s
and �pred�s in CPL� In general� extensions to CPL must be mirrored by and tied to ontological
extensions to CPO� There are a couple of very important exceptions to this rule though� The �rst
exception includes those extensions which are only concerned with extended grammar speci�ca

tions� As we will see� grammar plug
ins are required to de�ne the format of various CPL constraint
expressions for a particular application of CPL� The de�nition of these extensions are examined in
Section ��

Another exception� permits simple generalisations�specialisations to be declared in a �le
�without being required to be linked to an external ontology or ontological extension�� This
can be declared using a simple �entity�isa� assertion in a �le� Syntactically this simply relates
two �doc
strings�� but it is meant to denote the implied sub
sort order relation� For example�
given a three pigs building domain� we may wish to simply add a special activity
relatable object
sort called �pigs
object
material� which will be used to de�ne three material objects which will
represent a store of straw� sticks� and bricks in the domain�

SORT pigs�object�material
fMat��Mat��Mat�g �	�

entity�isa�pigs�object�material���cpo�activity�relatable�object�� ���

object�nameMat��
�straw� ���

object�nameMat��
�sticks� ���

object�nameMat��
�bricks� ����

�

��� Process

The �rst set of CPL constructs �i�e� grouping of sorts� functions� relations� we will present are
those related to process� A process sort in CPL is identi�ed by cpo
process�

SORT cpo�process
fP�g ����

A process has a start timepoint and a �nish timepoint�

process�start�timepointP��
Tp� ����

process��nish�timepointP��
Tp� ����

A process can be associated with an activity speci�cation which de�nes its �space of behaviour��
Activity speci�cations are examined in more detail below�

process�activity�specP��
As� ����

A process may have a pattern which can be uni�ed with an abstract action pattern to form a
decompositional link� For example� the pattern speci�ed in �� uni�es with the pattern speci�ed in
�	 which means that P� is a potential expansion for Act�� A process may be speci�ed to expand
a particular action� For example� sentence �� states that P� does indeed expand Act��

process�patternP��
�purchase bricks� ����

activity�patternAct��
�purchase �material� ��	�

process�expandsP��
Act� ����

Some processes are considered to be plans which will be identi�ed by a di�erent sort� cpo
plan�
Plans carry the additional constraint of being designed for some objectives� This means that a
plan will be associated with an objective speci�cation as in sentence ��

SORT cpo�plan
fPl�g ����

plan�objective�specPl��
Os� ���

��	 Nodes and Activities

The activity speci�cation linked to a process�plan will typically have constraints which state that
certain nodes are to be included �or excluded� from a process�plan� For the most part� these nodes
will denote actions or events �which are specialisations of cpo
activity�� For example� the action
introduced in �	 might be declared with

SORT cpo�action
fAct�g ����

In addition to the pattern introduced in �	� an activity has a counterpart to the process�expands
predicate �e�g� ���� This predicate is used to simply state the expansion relationship from the other
direction

node�expansionAct��
P� ����

Activities� as with processes or plans� are bounded by two timepoints�

�

activity�begin�timepointAct��
Tp� ����

activity�end�timepointAct��
Tp� ����

In addition to nodes which represent activity� there are other nodes types which may be declared
to help provide structure to the process de�nition� The most common class of these nodes are the
start��nish and begin�end nodes� These are sometimes referred to as �dummy� nodes indicating
that they do not denote activity but rather provide structure� The following statements declare
particular structuring nodes which may be included in an activity speci�cation

SORT cpo�start
fStart�g ����

SORT cpo��nish
fFinish�g ����

SORT cpo�begin
fBeg�g ��	�

SORT cpo�end
fEnd�g ����

All of these node types may be associated with a single timepoint�

start�timepointStart��
Tp� ����

start�timepointBeg��
Tp� ���

�nish�timepointFinish��
Tp� ����

�nish�timepointEnd��
Tp� ����

The other nodes type can be extended to provide common process structuring elements such
as split�join nodes� and�or� iteration� etc�

��
 Activity�Relatable Objects and Agents

Various objects may be involved in or related to process activities� These objects might be employed
in various roles� For example� one role might be informally referred to as resource� A resource
could be thought of as some object required in order to perform an activity� The objects introduced
in 	 might be used in this role for a building activity� In general� these objects may be introduced
with

SORT cpo�activity�relatable�object
fAro�g ����

Note that object sort instances can be labelled in order to provide human
readable labels which
di�erentiate their use in the domain �see sentences �
 ���� These objects may also be produced�
modi�ed� destroyed� etc� Constraints in a process� activity speci�cation associate these objects
with activities and also indicate the role they are playing�

A special activity
relatable object is distinguished in CPL� This object represents agents who
can perform behaviour� hold purposes� and have capabilities� These objects can be associated with
the agent sort

SORT cpo�agent
fAgt�g ����

The performs relation for an agent can be expressed as a constraint which is included in an
activity speci�cation� This is discussed in the CPL constraint section� The purpose
holding re

lation on the other hand can be directly assigned between some objective and an agent� This

	

purpose
holding de�nition may be expressed as a requirement �hard constraint� or preference �soft
constraint��

agent�has�requirementAgt��Obj�� ����

agent�has�preferenceAgt��Obj�� ����

Capabilities may also be directly assigned to agents� The expression of the capabilities is
discussed in the constraints section as well�

agent�has�capabilityAgt��Cap�� ��	�

��� Timepoints

In CPL� the concept of time is approached from a timepoint
based perspective� A cpo
timepoint
is an entity that represents a speci�c� instantaneous point along a timeline which is an in�nite
sequence of timepoints�

SORT cpo�timepoint
fTp��Tp��Tp��Tp�g ����

Timepoints may be associated with processes or nodes as illustrated in� ��� ��� ��� ��� The
points may be related with ordering constraints which are discussed in Section ���� Pairs of these
timepoints delineate process and activity intervals� In �Polyak ��b� we discuss the mapping of
timepoint
based constraints into interval relationships�

�� Sets

A speci�cation is a fundamental CPL structure which is used to express process design information�
Generically speaking� the CPL de�nition of a speci�cation is simply some set of constraints� When
the set of constraints are activity constraints we� call the speci�cation a cpo
activity
speci�cation�
When the set of constraints are objective constraints� we call the speci�cation a cpo
objective

speci�cation�

SORT cpo�activity�speci�cation
fAs�g ����

SORT cpo�objective�speci�cation
fOs�g ���

The CPL core supports the most basic set operation which permits a constraint to be speci�ed
as a member of the set� For example� �� illustrates an include
node constraint being added to an
activity speci�cation and �� illustrates an objective being added to an objective speci�cation�

memberIc��As�� ����

memberObj��Os�� ����

���� Domain Levels

When CPL is being used to describe a domain �i�e� a CPD �le� it is often �good practice� to
associate a process with a particular domain level� These level considerations encourage domain
modellers to be consistent with their use of domain elements at varying degrees of generality or
speci�city �Polyak ��� Tate et al� ����

CPL permits the declaration of domain levels� along with meaningful labels to identify the role
of the level� and a numerical value for hierarchically ordering levels�

�

SORT cpo�domain�level
fD��D�g ����

domain�level�labelD��
�Model house level� ����

domain�level�labelD��
�Primitive building level� ����

domain�level�numberD��
� ����

domain�level�numberD��
� ��	�

Processes may then be related to a particular domain level�

domain�level�containsD��P�� ����

����

� Core Language � Constraints

In this section� we describe various categories of constraints which may be placed between CPO
objects� These constraint types are based on the �i�n�ova� model �Tate ��a� Tate ��� and Tate�s
plan ontology �Tate ��b�� Tate describes a constraint as �a relationship which expresses an asser

tion that can be evaluated with respect to a given plan as something that may hold and can be
elaborated in some language� �Tate ����

In order to support a range of constraints we present a �exible �plug
in� syntax method for
constraint expressions which is similar to the method described in the SPAR approach �Tate ����
We describe some default syntax speci�cations for most of the constraint types� but these may be
modi�ed for a particular use�

constraint�expressionOc��
����� ���

There is typically a need to recognise which agent added a speci�c constraint during a design
process� At a high
level� we can relate these entities using

constraint�added�byOc��
Agt� ����

As we saw in �� and ��� constraints may either be labelled as soft or hard depending on the
type of purpose held by an agent�

constraint�soft�hard�informationOc��
hard ����

For each constraint type� we will present examples along with a default grammar for expressing
the constraint information�

��� Issue Constraints

An issue is an outstanding aim� preference� task� �aw or other issue which remains to be addressed
by the process� Issues provide implied constraints on the real world behaviour speci�ed by the
process� The default expression of issue constraints will be de�ned by a verb� zero or more noun
phrases and zero� one or more quali�ers� The initial set of issues may be populated by the objectives
set for a plan� The set of issues may expand or shrink throughout the design process� CPL currently
considers the expression of objectives and issues to be de�ned in the same way�

�

SORT cpo�objective�constraint
fObjc�g ����

SORT cpo�issue�constraint
fIs�g ����

constraint�expressionObjc��
�expand Act�� ����

constraint�expressionIs��
�expand Act�� ����

The default de�nition of an issue constraint expression is

�issue�expression� ��� �rtq�sent� � �rt�sent� � �r�sent�

�rtq�sent� ��� �issue�relconst� �term�� �boolsent�

�rt�sent� ��� �issue�relconst� �term��

�r�sent� ��� �issue�relconst� �term��

�issue�relconst� ��� achieve � expand � add � resolve

��� Node Constraints

Node constraints form the backbone of a process design� They de�ne the space of behaviour upon
which other constraints seek to re�ne� The primary purpose of these constraints are to specify
which actions are to be included in a process� This constraint type is so common that CPL uses a
built
in relation as opposed to a plug
in expression type�

SORT cpo�include�constraint
fInc�g ��	�

include�nodeInc��
Act� ����

Node inclusion is complemented by its counterpart constraint of node exclusion�

SORT cpo�not�include�constraint
fInc�g ����

not�include�nodeInc��
Act� ���

Both the node inclusion and node exclusion relations have unique forms which allow them to
refer to an entire sort� This is convenient for saying things like� �no transportation action can be
included� or �include any drilling action� or even something as extreme as �do nothing��

not�include�nodeInc��
�transport�action� ����

include�nodeInc��
�manu�drilling�action� ����

not�include�nodeInc��
�cpo�action� ����

��� Ordering Constraints

Ordering constraints may be placed between timepoints in order to de�ne the process temporal
structure� The default set of ordering constraint expressions include those which state that one
timepoint is before another or that two are equal�

SORT cpo�ordering�constraint
fOc��Oc�g ����

constraint�expressionOc��
�beforeTp��Tp��� ����

constraint�expressionOc��
�equalTp��Tp��� ����

The default de�nition of an ordering expression is

�ordering�expression� ��� �before�sent� � �equal�sent�

�before�sent� ��� before	�con�
�con��

�equal�sent� ��� equal	�con�
�con��

�

��� Variable Constraints

Co
designation and non
co
designation constraints between variables relate activity relatable ob

jects in the domain and are quite common in plan and process speci�cations� These variable
constraints limit the range of values which may be assigned to particular variables in CPO ex

pressions� For example� some activity labelled �replace drill bit� may be de�ned with a pattern
�replace
drill
bit Old New�� The speci�cation of this activity may include a variable constraint
which has an expression that speci�es that the old bit cannot be the new bit�

SORT cpo�variable�constraint
fVc�g ��	�

constraint�expressionVc��
�not�equal�var�Old��New�� ����

The default de�nition of an ordering expression is

�varc�expression� ��� �equal�var�sent� � �not�equal�var�sent� �

�equal�vartype�sent� � �not�equal�vartype�sent�

�equal�var�sent� ��� equal�var	��var�
�term���doc�string���number���

�not�equal�var�sent� ��� not�equal�var	��var�
�term���doc�string���number���

�equal�vartype�sent� ��� equal�vartype	��var�
�doc�string��

�not�equal�vartype�sent� ��� not�equal�vartype	��var�
�doc�string��

Note that this grammar speci�cation is very �exible� While the �rst parameter in a variable
expression is required to be a variable� the second parameter permits several syntactic categories�
The second parameter may be a variable� as in the case described above� Other examples include
the ability to constraint a variable to be equal or not equal to a certain value �e�g� string or
number� or atomic or complex term� The vartype forms allow constraints to be placed on the
possible range of values for a variable�

��� Auxiliary Constraints

The auxiliary constraints represent a broad category of constraint types which can be used to
detail the design of processes and plans� In this section� we present the current set of core auxiliary
constraints which have been de�ned for CPL�

The �rst two types provide generic hooks for expressing conditions and e�ects which may be
associated with processes and activities� These are referred to as input and output constraints�

SORT cpo�input�constraint
fIc�g ����

SORT cpo�output�constraint
fOc�g �	�

Input and output constraints are used to connect behaviour and state� The expression of
both types of constraints is referred to as a world
state
expression� The default approach for
representing this knowledge involves stating �pattern���value� associations� For example� the
process P� described in �� may have an activity speci�cation which includes some primitive action
for buying a supply of bricks� We may wish to state that a condition on the performance of this
action is that a supply of money is available� So� we might include an input
constraint in P��s
activity speci�cation which has the following expression

constraint�expressionIc��
�unsupervised fhave moneyg
true at Tp�� �	��

The default de�nition of world
state
expressions is based on the Task Formalism �TF�
�Tate et al� ���� Note that TF allows for typing of these expressions �e�g� unsupervised� supervised�
etc��� The following grammar structures these expressions

��

�world�state�expression� ��� ��ws�type�� �lbrace� �term�� �rbrace�

�� true�false��term����

at �term�

�ws�type� ��� supervised � achieve � unsupervised �

only�use�if � only�use�for�query

�lbrace� ���

�rbrace� ��� �

While input and output constraints can be used to associate state assertions at particular points
in time there are also cases where we may wish to make some assertion apply for an entire domain
�i�e� holds for or is automatically included in any domain activity speci�cation�� This type of
constraint is referred to in CPL as an �always� constraint� as it is in TF� For example� we may
assign a wolf
proof property to bricks in the three pigs domain�

SORT cpo�always�constraint
fAc�g �	��

constraint�expressionAc��
�fproof against wolf bricksg
true� �	��

The default grammar of an always constraint expression is similar to the world
state
expression
de�ned above with the exception that no �ws
type� or fat �term�g may be used�

The resource constraints can be used to describe an activities required allocation of resource
objects� producible�consumable resource e�ects� etc� While it is possible to lump resource con

straints into the general notion of input and output constraints it is bene�cial to separate them
out as many tools are geared toward working with this knowledge �e�g� scheduling tools� etc�� For
this purpose� CPL has a de�ned resource
constraint� For example� we may wish to specify that
the conclusion of a purchase brick action entails � pounds �money� to be consumed�

SORT cpo�resource�constraint
fRc�g �	��

constraint�expressionAc��
�consumes fresource moneyg
 �� pounds� �	��

The default de�nition of a resource utilisation expression is

�resource�expression� ��� �res�type� �lbrace� resource �term�� �rbrace�

�� true�false��number�� term��

at �term�

�ws�type� ��� consumes � produces � uses

�lbrace� ���

�rbrace� ��� �

Finally� a core auxiliary constraint may be utilised for attaching annotations or documenta

tion to the process artifact� This could also be used to provide links to non
textual or external
data related to a process such as CAD and multimedia �lenames� web site addresses� or printed
policy�standards document references�

SORT cpo�annotation�constraint
fAnc�g �	��

� Example� Three Pigs Building

The examples in this paper are based on a demonstration building scenario� This building do

main is similar to the Task Formalism � pigs domain which was created for the O
Plan planner
�Currie � Tate ���� The only task in the domain is concerned with building a house for a pig� As
in the TF domain� the main building materials involve straw� sticks� and bricks which each cost
di�erent amounts of money� There are also costs for performing the activities and for other house
materials such as windows and doors�

��

Figure �� Simple CPL process example

In order to provide a detailed example of a CPL process speci�cation which utilises CPO terms
and concepts� we will restrict the content to a rather simpli�ed process� The example �Purchase
Brick Process� is part of the larger � pigs building domain and represents a particular transaction
activity whereby money is consumed to acquire some supply of brick building material� As we can
see in Figure �� it is bounded by a begin�end node pairing and contains only one action� �purchase
bricks�� Figure � provides an example CPL expression of this process�

�define�domainmy�building�

SORT cpo�action�A��

SORT cpo�activity�specification�As��

SORT cpo�begin�B��

SORT cpo�end�E��

SORT cpo�include�constraint�Ic��Ic��

SORT cpo�ordering�constraint�Or�
Or��

SORT cpo�output�constraint�Oc��

SORT cpo�process�P��

SORT cpo�resource�constraint�Rc��

SORT cpo�timepoint�Tp��TP��

label	P����Purchase Brick Process�

start�timepoint	P���Tp�

finish�timepoint	P���Tp�

pattern	P����purchase bricks��

label	B����begin�

timepoint	B���Tp�

include�node	Ic���B�

member	Ic�
As��

label	E����end�

timepoint	E���TP�

include�node	Ic���E�

member	Ic�
As��

label	A����purchase bricks�

begin�timepoint	A���Tp�

end�timepoint	A���Tp�

include�node	Ic���A�

member	Ic�
As��

expression	Or����before	Tp�
Tp���

member	Or�
As��

expression	Or����before	Tp�
Tp���

member	Or�
As��

expression	Oc����have bricks� at A��

member	Oc�
As��

expression	Rc����consumes

resource money� � �� pounds at A��

member	Rc�
As��

Figure �� CPL expression of the purchase brick process

��

	 Extensions

	�� Tool�Based

CPO provides a core set of concepts which may be extended to capture specialised process
related
knowledge� One class of extensions can be considered to be tool
speci�c� Tool
speci�c extensions
are used to express new or specialised sorts or relations which address aspects linked to a particular
tool�s ontology� Two examples are provided here for extensions related to O
Plan�s TF and the
process�domain editors in CPF�

O
Plan�s Task Formalism language �Tate et al� ��� encompasses a large set of terms and con

cepts for expressing plan�process domain knowledge� For this particular TF extension example
though� we are simply interested in providing additional support for capturing TF resource
related
information� One facet of this information is �resource units�� Resource unit statements in TF
are used to de�ne unit types for resources such as person�people� gallons� kilograms� etc� These
units have their own properties in TF �e�g� type� which could have the values� count� size� weight�
or set��

In the TF extension� we de�ne a new sort called resource unit� Two new functions are designated
for this sort to express both its label �e�g� pounds� and its type �e�g� count��

SORT tf�resource�unit
fRu�g �		�

ru�labelRu��
�pounds� �	��

ru�typeRu��
�count� �	��

The ru
label can be any �doc
string� but the ru
type expression above is syntactically con

strained to fcountjsizejweightjsetg� In addition to this� we need to add functions and a relation to
the activity
relatable object sort� In particular� we need to be able to express whether an ARO is
going to play the role of a TF resource and if so� what its TF resource type is

is�resourceAro�� ���

resource�typeAro��
�consumable strictly� ����

unitAro��Ru�� ����

The resource
type expression above is syntactically constrained to the following forms which
are de�ned in the TF manual�

fconsumable strictly j consumable producible by agent j
consumable producible outwith agent j consumable producible by and outwith agent j
reusable non sharable j reusable sharable independently j sharable synchronouslyg

Some tool
speci�c extensions are related to presentation information or internal state inform

ation �e�g� nodes selected� etc�� associated with processes� In both the Common Domain Editor
�CDE� and the Common Process Editor �CPE� in CPF� process presentation information is at

tached to various parts of the domain speci�cation� The CPF tools extension de�nes additional
support for this such as

cpf�proc�xposP��
��

cpf�proc�yposP��
��

cpf�proc�widthP��
���

cpf�proc�heightP��
���

cpf�proc�labelP��
�Purchase Brick Process�

��

cpf�node�xposAct��
��

cpf�node�yposAct��
��

cpf�node�typeAct��
�Act�

cpf�node�statusAct��
�

cpf�node�label
�purchase bricks�

cpf�ann�xposAnc��
��

cpf�ann�yposAnc��
��

cpf�proc�top�levelP��

cpf�node�selectedAct��

The cpf
node
type may be fActjEventjSpecialg which indicates its presentation style� The node
status can be used to attach an executability status to nodes� The cpf
node
status can be fg�

	�� Rationale

While the extensions discussed in the previous section were labelled tool
speci�c� we can also
have extensions which are tool
independent� or more appropriately� concept
speci�c� Concept

speci�c extensions provide terms and de�nitions which are centred around a general set of closely
associated entities and relations� One example of such an extension is the rationale extension we
have developed for CPO�

In our work with plan rationale �Polyak � Tate ��b�� we explored the epistemological nature
of this category of knowledge and described it from the perspectives of dependencies� causal re

lationships and decisions� While there has been much work done on both plan�process causality
and dependencies� there has been correspondingly less research into plan decision rationale�

We proposed a �design space analysis �DSA�� approach to plan decision rationale �Polyak ��a�
which was based on research from the design rationale �DR� �eld� If we envision the �i�n�ova�
approach� which CPO has adopted� as describing a �space of behaviour� we can also consider a
�space of decisions� which is navigated in creating this behavioural speci�cation� It is possible
then to augment a process description with the rationale that went into designing this artifact�

Both CPE and CDE support this DSA approach �i�e� provide graphical editing of a DSA� and
rely on this CPF rationale extension to de�ne the DSA terms and concepts which are expressed
in CPL� In this extension� we refer to an entity called a decision rationale which represents the
overall �decision space� for a process design� In the CPO core� an activity speci�cation groups the
constraints which form the �space of behaviour�� Analogously� a rationale speci�cation groups the
constraints which form the �space of decisions�� So� the CPF rationale extension includes

SORT dsa�decision�rationale
fDr�g ����

SORT dsa�rationale�speci�cation
fRs�g ����

dr�rationale�specDr��
Rs� ����

process�decision�rationaleP��
Dr� ����

While a plan is described in Tate�s plan ontology as �a set of constraints on the relationships
between agents� their purposes and their behaviour� a decision rationale can be viewed as �a set of
constraints on the relationships between questions �or design issues�� options �or answers to these
questions�� and evaluative criteria� The CPF rationale extension includes the sorts for questions�
options and criteria�

Questions pose key issues for structuring the space of alternatives �options�� The role of ques

tions is to de�ne local contexts in a design space which help to ensure that certain options are
compared with each other� Criteria represent the desirable properties of the process and require

ments that it must satisfy� They form the basis against which to evaluate the options� These

��

elements can be included into a rationale speci�cation and interrelated via a set of de�ned con

straints which represent relationships�

SORT dsa�question
fQ��Q�g ��	�

SORT dsa�option
fOpt��Opt�g ����

SORT dsa�criteria
fCrt�g ����

dsa�has�optionQ��Opt�� ���

dsa�has�optionQ��Opt�� ����

dsa�selectedOpt�� ����

dsa�supportsCrt��Opt�� ����

dsa�detractsCrt��Opt�� ����

dsa�sub�questionOpt��Q�� ����

����

Acknowledgements

The author is sponsored by the Air Force O!ce of Scienti�c Research� Air Force Materiel Com

mand� USAF� under grant number f������������	�
 " an AASERT award monitored by Dr�
Abe Waksman and associated with the O
Plan project f	��������������� The u�s� Government
is authorised to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation hereon� The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing o!cial policies or endorsements� either
express or implied� of darpa�afosr or the u�s� Government�

��

References

�Currie � Tate ��� K� Currie and A� Tate� O
Plan� The open planning architecture� Arti�cial
Intelligence� �����"��� �����

�Polyak � Tate ��a� S� Polyak and A� Tate� A common process ontology for process
centred organ

isations� In E�A� Edmonds� editor� Submitted to� Knowledge�Based Systems�
Elsevier Science� �����

�Polyak � Tate ��b� S� Polyak and A� Tate� Rationale in planning� Causality� dependencies� and
decisions� Knowledge Engineering Review� ��������	"���� September �����

�Polyak ��a� S� Polyak� Applying design space analysis to planning� In Proceedings of the
AIPS��� workshop on Knowledge Engineering and Acquisition for Planning�
Bridging Theory and Practice AAAI Technical Report WS�����	� Carnegie

Mellon University� June �����

�Polyak ��b� S� Polyak� Mapping timepoint
based constraints into interval relationships�
Department of Arti�cial Intelligence RP ���� University of Edinburgh� Edin

burgh� Scotland� �����

�Polyak ��� S� Polyak� A common process methodology for engineering process domains�
In D� Bustard� editor� Submitted to� Systems Modelling for Business Process
Improvement
SMBPI�� Artech House� �����

�Tate ��� A� Tate� Characterising plans as a set of constraints " the � I
N
OVA �

model " a framework for comparitive analysis� ACM Sigart Bulletin� �����
January �����

�Tate ��a� A� Tate� Representing plans as a set of constraints " the � I
N
OVA �

model� In B� Drabble� editor� Proceedings of the Third International Confer�
ence on Arti�cial Intelligence Planning Systems
AIPS����� pages ���"����
Edinburgh� Scotland� May ����� Morgan Kaufmann�

�Tate ��b� A� Tate� Towards a plan ontology� AIIA Notiziqe
Publication of the As�
sociazione Italiana per l�Intelligenza Arti�ciale�� Special Issue on Aspects of
Planning Research� �������"��� �����

�Tate ��� A� Tate� Roots of SPAR
 Shared Planning and Activity Representation� The
Knowledge Engineering Review� ���������"���� �����

�Tate et al� ��� A� Tate� B� Drabble� and J� Dalton� The Task Formalism Manual� Arti�

cial Intelligence Applications Institute AIAI
TF
Manual� University of Edin

burgh� Edinburgh� UK ftp���ftp�aiai�ed�ac�uk�pub�documents�ANY�oplan

tf
manual�ps�gz� �����

�Tate et al� ��� A� Tate� S� Polyak� and P� Jarvis� TF Method� An initial framework for mod

elling and analysing planning domains�� AIPS ��� Workshop on Knowledge
Engineering and Acquisition for Planning� Bridging Theory and Practice
AAAI Technical Report WS
��
�� Carnegie Mellon University� Pittsburgh�
Pennsylvania� �����

�	

