
Technical Paper

Conversion of SIPE� Domain Descriptions to
O�Plan� TF

Brian Drabble

Approved for public release� distribution is unlimited

Arti�cial Intelligence Applications Institute
University of Edinburgh
�� South Bridge
Edinburgh EH� �HN
United Kingdom

January �� �		


ARPA�RL�O�Plan�TR�� Version �



Conversion of SIPE� Domain Descriptions to O�Plan� TF �

Contents

� Introduction �

� Review of the Major Structures in SIPE�� DDL �

�� Representation of Predicates � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Object Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Operator Schemas � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


���� Schema Names � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

��� Variable Declarations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Schema Trigger Conditions � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Schema Decomposition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Domain Rules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Type and Object Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Task and Problem Descriptions � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Simple Conversion ��

��� Description of the Block Stacking Example � � � � � � � � � � � � � � � � � � � � � �


�� Review of the Example Conversion � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� Discussion �� Conditional Iterations ��

� Discussion �� Use of the Object Hierarchy within Schemas ��

	 Appendices ��

��� Appendix �� Support Materials � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Appendix � Future Requirements for SOCAP � � � � � � � � � � � � � � � � � � � �



Conversion of SIPE� Domain Descriptions to O�Plan� TF 

Abstract

The aim of this document is to describe the steps required to convert a domain description
speci�ed in the SIPE� Domain Description Language �ddl� to the Task Formalism language
�tf� used in O�Plan� The document will outline the di�erences in syntax for common items
such as expansions� conditions� e�ects etc� and where possible the required substitutions will be
described� Di�erences in semantics and methods of search control however� cannot be handled
by simple substitutions and as such guidelines will be provided as to possible reformulations
of speci�ed items� At present the descriptions will be limited to the SIPE� for Crisis Action
Planning �socap� domain� However� it is hoped in later versions of the document to cover
the complete range of SIPE� ddl constructs� The papers concludes with a simple example of
the conversion of a SIPE� operator schema to its equivalent in tf and a series of discussion
points raised during the study� The discussion points describe the two major di�erences or gaps
between SIPE� ddl and tf and suggest possible ways in which a mapping could be made from
one to the other�



�

� Introduction

The aim of this document is to describe the steps required to convert a domain description
speci�ed in the SIPE� Domain Description Language �ddl� to the Task Formalism Language
�tf� used in O�Plan� These two languages carry out the same function but have very di�erent
syntax and underlying philosophies� The languages allow the user to represent a number of
di�erent aspects of a chosen application domain� These are as follows�

�� Domain Objects

These describes the di�erent objects in the domain� their attributes and the classes to
which they belong� For example� a block may have attributes mass� colour� position� etc
and may belong to the class objects� sub�class movable objects�

� Tasks
These describe the particular tasks which can be performed in the given domain� This
may or may not include the description of the initial state of the world prior to the start
of the task�

�� Operators
These describe the actions and operator schemas which can be used by the planning
system in the generation of a plan for a speci�ed task�

�� Domain Rules

These speci�es the �rules� which can be used to deduce additional statements about
the domain� For example� ��if no block is on top of block� then block� is

clear���

Each of these di�erent aspects is dealt with in the following sections� The report concludes
with�

�� an example of the conversion of a SIPE� ddl speci�ed operator to tf� It shows that
such a conversion is possible to mechanise but the resulting tf is far from satisfactory�

� two discussion examples where the di�erences between the SIPE� ddl and tf are such
that further thought is required� The aim of these examples is to start such as discussion�

A list of support materials which were used during the preparation of this report is described
in Appendix ��



�

� Review of the Major Structures in SIPE�� DDL

The aim of this section is to describe the major structural components of the SIPE� ddl�
Where direct equivalents with current tf structures are available they will be shown along side
the SIPE� instructions� Major di�erences between SIPE� ddl will be described in Sections
� and � together with a discussion concerning the possible ways in which these gaps may be
bridged�

��� Representation of Predicates

One of the major di�erences between the two languages is the representation of patterns�
SIPE� uses a scheme in which the pattern is delimited by brackets of the form ��� The value
that pattern is assigned is assumed to be true as in predicate logic� For example� �distance
POPE�AFB�AFB FT�BRAG �������� �located �	rd
SFB FT�BRAGG
LAND��

In O�Plan all patterns are delimited by brackets of the form fg� The value of the pattern
is expressed functionally and may not just be a truth value� For example fcolour ballg �

green� fon a bg � true� etc� When converting from SIPE� ddl to O�Plan tf it is very
important that as many of these functional relationships can be identi�ed and used� By using
such functional relationships is it possible to signi�cantly reduce the size of search spaces and in
doing so make planning tractable� For example suppose� we have a switch with two positions on
and off and two operators turn
on and turn
off� By modelling this as a set of truth values
the operator turn
on would need to assert the e�ects� fswitch� ong � true and fswitch�
offg � false� The operator turn
off would need to assert the opposite values� However� by
modelling this as a functional relation between the switch and its position it can be modelled
in a single statement as follows� fstatus switch�g � on and there is no need to keep track of
any con�icting states�

��� Object Hierarchy

The object hierarchy within SIPE� is de�ned by means of classes and subclasses� These classes
de�ne particular instances which de�ne objects which belong to the named class� For example�

CLASS� territory

SUBCLASSES� landseaairspacelocation�

INSTANCES� ntunisia
tstunisia
ttunisiaspainsicilyitalyfrancenalgeria�

END CLASS

CLASS� land

PARENT
CLASS� territory

SUBCLASSES� regionroute�

INSTANCES� ntunisia
lstunisia
lnalgeriasalgeria�

END CLASS



Review of the Major Structures in SIPE�� DDL �

CLASS� sea

PARENT
CLASS� territory

SUBCLASSES� sea
sectorsea
loc�

INSTANCES� medseaatlantic�

END CLASS

CLASS� region

PARENT
CLASS� land

INSTANCES� nwtunisian
borderntunisian
borderstunisian
border

swtunisian
borderwtunisian
border

ntunisian
coastalnwtunisian
coastalnetunisian
coastal�

END CLASS

Each of the given instances is later de�ned by an object which de�nes the particular properties
of the instance� For example� the forces available in a given domain could be described as
follows�

Forces

�

��������������������������������������������

� � � �

cargo
by
air air navy army

�

������������������������������������������

� � � � �

tattack sattack sairlift tairlift t
fighter

�

�������������

� �

Mig�	
sq Mig��
sq

The de�nition of the class Mig�	
sq �squadrons of Mig� jets� and particular instances of these
squadrons i�e� alg
�stmig�	 alg
�ndmig�	 would be as follows�

CLASS� MIG�	
sq

PARENT
CLASS� tfighter

INSTANCES� alg
�stmig�	alg
�ndmig�	�

END CLASS

The properties of these squadrons would are associated with and object as follows�

OBJECT� alg
�stmig�	

PARENT
CLASS� MIG�	
sq

PROPERTIES�



Review of the Major Structures in SIPE�� DDL �

F
RATIO � ��

AIRCRAFT � ��

AIR
FIREPOWER � ���

AIR
MOBILITY � 	

SORTIES � ��

A
RANGE � ����

END OBJECT

These properties are static facts about this particular object and cannot be changed during
the course of the plan� Properties can also be de�ned for whole classes of objects which all of
their instances will inherit�

The current socap domain has been broken down into a set of �les as follows�

� socap�classes
sipe� de�nes the classes of objects to be found in most military planning
domains

� socap�oprsonly
sipe� contains the operators avialable in the current domain

� socap�preds
sipe� de�nes the initial dynamic information of the domain

� socap�probs
sipe� de�nes the di�erent problem formulations for the domain

These �les are su�cient to run the particular problems de�ned for the domain� However� three
extra �les have been provided which provide information speci�c to this particular domain i�e�
�the Tunisian Scenario��

� socap�newpreds
sipe� problem speci�c predicates

� socap�newclasses
sipe� problem speci�c classes

� apportion
lisp� problem speci�c instances and objects of the class de�ned in the socap�
newclasses�sipe

The information provided in these �les contains details of speci�c units and their requirements
e�g� number of personal� tonnage of support materials� status� etc� The following example
shows how the information in the �les is integrated�

�� The �le socap
classes�sipe de�nes the structure that an armoured division is a subclass
of army which in turn is a subclass of forces�

� This structure is then augmented by the entries in socap
newclasses�sipe by the fact
that an armoured division may itself be subclassi�ed into an armoured cavalry regiment
�acr�

�� The particular instances of an acr which are available in the domain are stored in the �le
apportion�lisp i�e� the 	rd
ACR� the ���th
ACR� the ���th
ACR and the ���th
ACR�



Review of the Major Structures in SIPE�� DDL 


However� the problem is complicated by the fact that the information held in the �les
socap
newclasses�sipe and apportion�lisp is not stored in the same format as that in
the four �base� �les� Instead a series of SIPE� speci�c input�reformatting routines are used
to convert the information into a form which SIPE� can handle� These three �les are the
ones which will need to be converted when we consider a new problem domain such as �the Sri
Lankan Scenario�� A description of the proposed system of class representation to be used in
the O�Plan systems in described in Section ����

��� Operator Schemas

The operator schemas in the two di�erent languages need to represent the same basic set of
concepts and ideas� The SIPE� ddl classi�es four di�erent types of operator�

�� operator
The de�nition of an action which can change the state of the world�

� causal rule
A rule which can be used to infer new statements about the state of the world at a
point in the plan� For example� ��if no block is on top of block� then block�

is clear���

�� state rule
A rule which can be used to infer the state of a given object at a point in the
plan� For example� if object� is on support� and support� is in room� then

object� is also in room�

�� init
operator
A rule which can be used to infer new statements about the world �i�e� like a causal rule�
but the rule is only applied to the initial state speci�cation�

The idea behind dividing the rules into two sets is that rules about causal events should be
matched before constraints about the domain� In all domains implemented in SIPE� state rules
never have a precondition �in O�Plan this is an only use if condition� only a condition �in O�
Plan this is an achieve condition� while causal rules always have a precondition and perhaps
a condition� Thus the causal rules are reacting to changes between states� while deductive rules
are enforcing the constraints within a state� Causal rules are always applied before the state
rules� �NB there is no di�erence between causal rules and deductive rules other than their
order of applicability � they have identical expressive powers� Both types of rule may have both
conditions and preconditions �or neither���

In the case of the trigger and conditions they are always matched in the current world
state while preconditions are matched in the previous world state� All deductions that can
be made are performed when a new node is inserted into the plan� IN SIPE� the deduced
e�ects are recorded as if they were brought in as a direct result of the node� Deductions are
not attempted at other points in the planning process�



Review of the Major Structures in SIPE�� DDL �

Initially all causal rules whose trigger matches a node speci�ed e�ect are applied� thereby
producing an initial set of deduced e�ects for that node� After all such rules have been applied�
the planner determines which newly deduced e�ects were not already true in the given situation
and permits the causal rules to trigger on them recursively� This process continues until no
e�ects are deduced that were not already true� thus computing the deductive closure of the
causal rules� This process is then repeated for the state rules�

The trigger pattern itself can be present in both the effects �eld and the goal �eld of a
schema� From the description provided in the SIPE� ddl manual the rules are only applied
to the e�ects �eld and hence the goal �elds do not cause a deductive process to begin�

In the given socap domain there only two domain rules which de�ne the state of a given force

and as follows�

STATE
RULE� arrived�

ARGUMENTS� force�territory�territory��

TRIGGER� �ground
moved force� territory� territory���

EFFECTS� �located force� territory���

END STATE
RULE

STATE
RULE� arrived�

ARGUMENTS� force�territory�territory��

TRIGGER� �moved force� territory� territory���

EFFECTS� �located force� territory���

END STATE
RULE

The trigger �elds of these rules can be set by a large number of plan schemas� The following
table describes those schemas which assert the trigger pattern and the particular �eld of the
schema in which the pattern can be found� As described earlier the trigger pattern of the rule
may be part of a schema goal �eld or its effect �eld� In the case of goal �eld the assertion
of the pattern as a goal will not cause the rule to trigger� The goal pattern is used to match
against the purpose �eld of a schema designed to achieve the speci�ed goal�



Review of the Major Structures in SIPE�� DDL 	

Rule Schema Name Trigger Type

arrived� Deter�border�incursion�by�ground�patrol effect

Deter�border�incursion�by�key�terrain effects

Provide�defence�by�key�terrain effects

Provide�defence�by�protect�loc effects

Deploy�sof goal

Deploy�army goal

Deploy�airforce goal

Deploy�navy� goal

Deploy�navy goal

move�ground� effects

arrived� Deter�border�incursion�by�admin�landing effects

Deter�border�incursion�by�amphib�landing effects

Deter�naval�zone�incursion�by�naval�patrol effects

Provide�defense�by�naval�patrol effects

Deploy�sof goal

Deploy�army goal

Deploy�airforce goal

Deploy�navy� goal

Deploy�navy goal

move�by�sairlift� effects

move�by�airlift�sealift effects

move�by�tairlift� effects

move�by�sealift� effects

move�by�sealift effects

move�by�sealift� effects

move�by�sealift� effects

move�submarine� effects

move�submarine effects

locate�tairlift effects

locate�sairlift effects

locate�ssealift effects

In the currently implemented tf however� there is only a single operator type and at present
no way of using state or causal rules� The next section of this report will only consider the
conversion of plan operator descriptions and does not consider causal rules� state rules or
init�operators� The following section will describe in outline the common areas between the
SIPE� ddl and tf by showing equivalent statements in each language�

�
�
� Schema Names

SIPE� OPERATOR �name�

O�Plan schema �name��



Review of the Major Structures in SIPE�� DDL ��

This declares the name of the particular operator and must be a unique identi�er�

SIPE
�� OPERATOR� puton

O
Plan�� schema puton�

�
�
� Variable Declarations

SIPE� ARGUMENTS� �argument list�

O�Plan vars �vars list��

This declares the variables which are used local to the schema�

NB the problems which seem to arise here are with the binding of variables in par�

ticular when� and how�� and the passing of variables into a schema
 Specication

of Actors in particular instantiate need to be examined�

O�Plan�

The �vars list� of O�Plan contains the variables being declared and their type de�nitions
which allow the planner to associate the variable speci�ed to a given class of objects and to give
any restrictions on its value� Further information concerning the relationship between variables
is declared in a separate vars relations �eld�

SIPE��

The �argument list� of SIPE� contains the variables being declared� a set of restrictions on
the values which the variables can take and some information concerning their types�

For a full description of object types and the de�nition of the classes refer to Section ��� In the
following example the same set of variable declarations and their restrictions are given using
the two di�erent languages�

SIPE
�� ARGUMENTS� block� object� is not block�

O
Plan�� vars �block� � ��type objects�

�object� � ��type objects��

vars�relations �block� �� �object��

�
�
� Schema Trigger Conditions

SIPE� PURPOSE� �action or goal pattern�

O�Plan only use for effects �pattern� � �value� ��� �

expands �action pattern��

This describes the reasons under which the operator may be used� In the case of SIPE� there
can only be a single PURPOSE and the pattern PURPOSE serves as a trigger for action expansion as



Review of the Major Structures in SIPE�� DDL ��

well as for condition satisfaction� In the case of O�Plan a distinction is made between the use of
a schema for expansion expansion and its use for condition satisfaction only use for e�ects�
An example of its use is as follows�

SIPE
�� PURPOSE� �border
incursion
deterred coa��

O
Plan�� only�use�for�effects �border
incursion
deterred �coa�� � true�

�
�
� Schema Decomposition

SIPE PLOT� �expansion�

O�Plan nodes �expansion item��
orderings �orderings��
conditions �conditions��
resources �resource usage statements��
time windows �time window specifications��

This declares the items which make up the expansion of an operator� These items include
the actions of the expansion� the conditions which must be satis�ed for the actions to be
executed� ordering information between actions� resource usage�speci�cation information and
time windows during which speci�ed actions must be executed�

Again the information speci�ed within these �elds di�ers signi�cantly between the two lan�
guages�

O�Plan�

O�Plan assumes actions can occur in parallel unless instructed di�erently by the schema writer�
Separate �elds are used to describe the major components of the decomposition�

�� nodes �eld speci�es the decomposition of the schema in terms of its actions and any
dummy nodes for convenience�

� ordering �eld speci�es the explicit ordering information known by the user between the
actions of the decomposition�

�� conditions �eld speci�es the conditions which need to satis�ed at points in the operator
decomposition and their type� The type allows the planner to identify the tactics open to
it when trying to satisfy the condition� A full list of condition types in given in Section
���� of the Implementation Manual�

�� resources �eld speci�es the resource speci�cation and usage which takes place at points
within the decomposition

�� time windows �eld speci�es the time windows during which certain actions of the de�
composition must be executed�



Review of the Major Structures in SIPE�� DDL �

SIPE��

Unlike O�Plan which uses six separate slots to specify a schemas decomposition� SIPE� uses a
single PLOT �eld which breaks down into a series of sub�elds which specify the action decomposi�
tion� the goals which need to be achieved� the ordering information between actions� resource us�
age and time window information� SIPE� requires the schema writer to explicitly declare which
parts of the schema can be executed in parallel and which must be executed in sequence� The
syntax does not allow any arbitrary ordering to be represented� However� any SIPE� ordering
can be represented in O�Plan� In the following example� two actions deter
border
incursion
and provide
territorial
defence are declared as separate branches of a parallel decompo�
sition�

PLOT�

PARALLEL

BRANCH ��

PROCESS

ACTION� deter
border
incursion�

ARGUMENTS� coa��

EFFECTS� �border
incursion
deterred coa���

BRANCH ��

PROCESS

ACTION� provide
territorial
defence�

ARGUMENTS� coa��

EFFECTS� �territory
defence
provided coa���

END PARALLEL

END PLOT

The SIPE� schemas also introduce GOALS into the network which act as place holders for fu�
ture work� The semantics of a goal are that a condition needs to be established and it is then
protected from the point at which it is established to the start of the �rst action of the decom�
position� In the example below the condition �deployed army� urban� end time�� needs to
be asserted by some previous action and must hold true until the start of traverse
terrain�

In the following example the same information is declared using the two di�erent languages�

SIPE
�� PLOT�

GOAL� �deployed army� urban� end�time��

PROCESS�

ACTION� traverse
terrain�

ARGUMENTS� army� urban� urban��

EFFECTS� �ground
moved army� urban� urban��

PROCESS�

ACTION� occupy
key
terrain�

ARGUMENTS� army� coa� urban��

EFFECTS� �key
terrain
occupied army� urban� coa���

END
PLOT



Review of the Major Structures in SIPE�� DDL ��

O
Plan�� nodes � action �traverse
terrain �army� �urban� �urban��

� action �occupy
key
terrain �army� �urban� �coa���

orderings � 

� ��

effects �ground
moved �army� �urban� �urban�� � true at �

�key
terrain
occupied �army� �urban� �coa�� � true at ��

conditions achieve �deployed �army� �urban� �end�time�� at begin�of ��

time and resource statements can also be given in O
Plan�

��� Domain Rules

Domain rules allow a planning system to identify new contextual information about a domain
which is usually impossible to represent within single schemas� For example� in a block stacking
domain� the operator move can only assert a block is clear after it has been executed i� a block
can support � at most one other block� If the blocks are of di�ering sizes then asserting the block
is clear after the move is incorrect� This could be achieved by having several di�erent schemas
which are tailored to speci�c situations� For example� move � leaving�� move � leaving	� etc
but that would be highly ine�cient�

An alternative way of dealing with contextual e�ects is to have rules which infer possible e�ects
of actions� From the example above� if there are no patterns of the form fon �x bg �where �x
is a free variable� then the planner can assert fclear bg This is achieved in SIPE� by means
of a state rule as follows�

STATE
RULE� dclear

ARGUMENTS� object� object� object	 CLASS EXISTENTIAL

TRIGGER� ��on object� object��

CONDITION� ��on object	 object��

EFFECTS� �clear object��

END STATE
RULE

An alternative type of domain rule is a CAUSAL
RULE which allows the planner to deduce causal
e�ects� For example� if a block is moved then it is no longer where is was��� This can be achieved
in SIPE� by means of a causal rule as follows�

CAUSAL
RULE� noton

ARGUMENTS� object� object� object	

TRIGGER� �on object� object��

�Support in the sense its top surface area is equal to one block� This still allows towers of blocks to be built���



Review of the Major Structures in SIPE�� DDL ��

PRECONDITION� �on object� object	�

EFFECTS� ��object� object	�

END CAUSAL
RULE

In the current O�Plan tf language there is no implemented mechanism to represent either
STATE
RULES or CAUSAL
RULES� although the domain rules tf statement has been de�ned to
allow the exploration of such issues within the O�Plan framework� The main problem which
will have to be considered when creating such a mechanism for O�Plan is that the trigger
conditions might need to be integrated from possibly disparate parts of the plan state� SIPE�
considers only a single trigger condition on each rule and as such does not run up against this
integration problem� A simple example of where more than one trigger may be required is
as follows� Consider a door with two locks both of which must be turned together for it to
open� By turning one lock and then the other the door will not open� SIPE� would �nd this
impossible to model�

��� Type and Object Hierarchy

The type and object hierarchy allows objects within the target domain to be declared together
with their attributes and requirements� To describe the di�erent mechanisms employed in the
SIPE� ddl and tf a speci�c example will be used� Suppose the target domain includes a set
of di�erent vegetables� artichokes� corn� sprouts and mushrooms�

SIPE��

The vegetables would be described as follows�

CLASS� vegetables

PARENT
CLASS� FOOD

SUBCLASSES� artichokes corn sprouts mushroom

END CLASS

CLASS� artichokes

PARENT
CLASS� vegetables

PROPERTIES�

STEAM
TIME� ���

INSTANCES� artichoke� artichoke�

END CLASS

OBJECT� artichoke�

PARENT
CLASS� artichokes

PROPERTIES�

COLOUR� green

SIZE� �

END OBJECT



Review of the Major Structures in SIPE�� DDL ��

O�Plan�

At present the tf language does not support such a hierarchy but instead relies in a ��at
grouping� of objects� a series of always statements� and a set of matching functions referred
to as Actors� The vegetables could be described as follows�

types vegetables � �artichokes corn sprouts mushroom�

artichokes � �artichoke� artichoke���

always �steam�time artichokes� � ��

�colour artichoke�� � green

�size artichoke�� � ��

The association of artichoke� to artichokes and artichokes to vegetables is made at the
schema level by means of a type actor� For example� a schema could describe a variable as
being green and of type artichoke as follows�

vars �vegetable � ��and ��type artichokes�

��hassupitem � �colour ��� green���

It is therefore possible to build a hierarchy of types as in SIPE� from existing actor functions�
However� its can get extremely convoluted and as such may only be useful in simple examples�
The socap domain could be coded in this way but the e�ciency of such a representation will
need to be investigated� This may result in a requirement for a proper hierarchical object
structured store with full inheritance and this should be investigated as an alternative to the
use of the scheme outlined above�

The socap domain does not include any resource reasoning although several resource state�
ments are present but have been commented out� They appear to be �xed unit resources� i�e�
they are used within a certain action and then returned to a central �pool�� All of the named
resources were either armies� navies or airforces� The aim of declaring such resources usages
was to stop the resources being allocated to other actions during the time period of allocated
action�

To show the possible advantages of O�Plan over SIPE� in the area of resource reasoning we
would need to have a problem which contained realistic resource usage�

��� Task and Problem Descriptions

The function of the task description is to introduce the task or goals which the planner is
required to solve� The conversion is relatively easy to automate and involves combining the
two SIPE� ddl entries PREDICATES� and PROBLEM into the single task schema structure as
used in tf� However� this scheme does not di�erentiate between always facts which can never
be refuted by plan actions �referred to in tf as always statements� and the rest of the domain

�An always statement is one which cannot be refuted by the e�ects of any actions within the domain�



Review of the Major Structures in SIPE�� DDL ��

facts� For example� in a block stacking domain the table is always assumed to be clear and is
thus always available as the destination of a move action�

The following example shows the conversion of a simple block stacking task description from
SIPE� ddl to tf�

PREDICATES

�on c a� �on a table� �on b table� �clear b� �clear c� �clear table�

END PREDICATES

PROBLEM� prob�

PARALLEL�

BRANCH� �

GOAL� �on a b�

BRANCH� �

GOAL� �on b c�

END PARALLEL END PROBLEM

This should be translated to�

always �clear table��

schema task�stack�ABC�

nodes � start

� finish�

orderings � 


� ��

conditions achieve �on a b� � true at �

achieve �on b c� � true at ��

effects �on c a� at �

�on a table� � true at �

�on b table� � true at �

�cleartop c� � true at �

�cleartop b� � true at ��

end�schema�



�


� Simple Conversion

The aim of this section is to describe the conversion of a plan operator schema written in the
SIPE� ddl to the O�Plan tf language� Two examples are given and these are as follows�

�� Example Description

A simple cleartop operator taken from a block stacking domain� This operator clears
the top of block �x by moving the object �y to a new place �z� The preconditions required
are that both �y and �z are clear� i�e� they have no other block on top of them before
the move is executed�

��� Description of the Block Stacking Example

The aim of this section is to present a simple example of the conversion of the cleartop operator
from the SIPE� ddl to O�Plan tf� The schema to be converted in shown in Figure ��

OPERATOR� cleartop

ARGUMENTS� object� object� IS NOT object� block�

PURPOSE� �clear object��

PRECONDITIONS� �on block� object��

PLOT�

PROCESS

ACTION� puton

ARGUMENTS� block� object�

EFFECTS� �on block� object��

PROTECT
UNTIL� �clear object��

GOAL� �clear object��

END PLOT

END OPERATOR

Figure �� SIPE� cleartop operator



Simple Conversion ��

The description of the conversion will now be described in a series of steps�

�� Operator name

The name of the operator can be simply copied across into the �name field�� of the
schema and a corresponding end schema added to de�ne its end�

schema cleartop�

end�schema�

� Variable Declarations
The three variables introduced in the schema namely object�� block� and object� need
to be declared together with their type� A type is only strictly needed by O�Plan if
the variable will not always be bound after schema selection� As a result it is always
better to provide a value for its type� The assumption in this example is that all blocks
are members of the class objects� A constraint is posted in the declaration statement
that two of the objects must be di�erent� This is dealt with means of a vars relations

statement�

types objects � �a b c table��

schema cleartop�

vars �block� � ��type objects�

�object� � ��type objects�

�object� � ��type objects��

vars�relations �object� �� �object��

end�schema�

�� Reasoning for using the schema

The reason for using this schema is PURPOSE� clear object� and this can be mapped
directly to an only use for effects statement in the new schema�

types objects � �a b c table��

schema cleartop�

vars �block� � ��type objects�

�object� � ��type objects�

�object� � ��type objects��

vars�relations �object� �� �object��

only�use�for�effects �cleartop �object��

end�schema�

�� Action Decomposition

The plot structure introduces the decomposition of the operator and is equivalent the
the nodes structure in tf�



Simple Conversion �	

types objects � �a b c table��

schema cleartop�

vars �block� � ��type objects�

�object� � ��type objects�

�object� � ��type objects��

vars�relations �object� �� �object��

only�use�for�effects �cleartop �object���

nodes � action �puton �block� �object���

end�schema�

�� Conditions
The conditions are the statements which need to be satis�ed for the actions to be executed�
In the SIPE� schema conditions are introduced in two di�erent ways� through the GOALS�
and PRECONDITIONS� statements�

�a� The PRECONDITIONS� statement describes conditions which need to be true before
the action can be considered� They �lter choices of schema at selection time� These
map directly to the only use if statement in tf�

�b� The GOALS� statement describes conditions which need to be satis�ed before the
action can execute� The type of this condition may vary from application to applica�
tion� In this example the type chosen is achieve which allows the greatest �exibility
in satisfying the condition� The node number is used in the condition instruction to
specify the point at which the condition is required�

types objects � �a b c table��

schema cleartop�

vars �block� � ��type objects�

�object� � ��type objects�

�object� � ��type objects��

vars�relations �object� �� �object��

only�use�for�effects �cleartop �object���

nodes � action �puton �block� �object���

conditions only�use�if �on �block� �object�� at �

achieve �cleartop �block�� at ��

end�schema�

��� Review of the Example Conversion

The conversion is quite easily achieved by a simple line by line substitution form SIPE� ddl
to tf� However� this does not result in e�cient tf and in many cases the resulting tf is poorly
written� In this example� a better schema would be as in Figure �

In this schema only two variables are introduced �x and �y denoting the block and the one it
supports respectively� Their type is further restricted to be of movable objects which stops the



Simple Conversion �

schema makeclear�

vars �x � ��type movable�objects�

�y � ��type movable�objects��

vars�relations �x �� �y�

only�use�for�effects �cleartop �x� � true�

nodes � action �puton �y table��

conditions only�use�if �on �y �x� at �

achieve �cleartop �y� at ��

end�schema�

Figure � Improved tf schema for cleartop

schema being used to clear the table� By ensuring that a block which is moved is always placed
on the table rather than another block a �free� space can always be found at no cost in terms
of planning� Of course� there could be other considerations of having side e�ects of achieving
other required goals at the same time�



�

� Discussion �� Conditional Iterations

This example is taken from the SIPE� for Crisis Action Planning �socap� demonstration and
shows an operator which was designed to deter incursions across a national border by hostile
land� sea or air units� It includes a parallel loop construct which has no direct correspondence
in O�Plan tf� The schema is described in Figure ��

OPERATOR� deter
border
incursion

ARGUMENTS� coa�

end
time�army�route�

end
time�navy�sea
loc�

end
time	air�air
loc��

PRECONDITION� �immed
threat
enemy army� route� coa� end
time��

�immed
threat
enemy navy� sea
loc� coa� end
time��

�immed
threat
enemy air� air
loc� coa� end
time	��

PURPOSE� �border
incursion
deterred coa���

PLOT�

PARALLEL

BRANCH ��

PROCESS

ACTION� PARALLEL
LOOP�

GOALS� �deter
threat army� coa� end
time���

PATTERN� �immed
threat
enemy army� route� coa� end
time���

BRANCH ��

PROCESS

ACTION� PARALLEL
LOOP�

GOALS� �deter
threat navy� coa� end
time���

PATTERN� �immed
threat
enemy navy� sea
loc� coa� end
time���

BRANCH 	�

PROCESS

ACTION� PARALLEL
LOOP�

GOALS� �deter
threat air� coa� end
time	��

PATTERN� �immed
threat
enemy air� air
loc� coa� end
time	��

END PARALLEL

END PLOT END OPERATOR

Figure �� An example socap schema

The steps of the conversion are similar to those given in Example � and thus only the salient
points will be given�

�� Assuming we have constructed a schema to the following point and are considering the
conversion of the PROCESS statements�



Discussion �� Conditional Iterations 

schema deter
border
incursion�

vars �coa� � ��type course�of�action�

�army� � ��type army�

�navy� � ��type navy�

�air� � ��type airforce�

�route� � ��type route�

�sea
loc� � ��type sea
locations�

�air
loc� � ��type air
locations��

nodes�

conditions only�use�if �immed
threat
enemy �army� �route� �coa� �end
time��

only�use�if �immed
threat
enemy �navy� �sea
loc� �coa� �end
time��

only�use�if �immed
threat
enemy �air� �air
loc� �coa� �end
time	��

end�schema�

Each of the PROCESS statements can be executed in parallel and the PARALLEL
LOOP construct
allows the schema to retrieve from the current plan state all items which match PATTERN

and to assert them as GOALS to be achieved� In this case to make sure any hostile air� sea or
land units are deterred�

Review of Discussion �

At this point do we need a new tf construct to handle the PARALLEL�LOOP construct or
should we have a schema which deals with a single aggressor and then posts its self back�

Option �� New Loop Construct
The loop construct would require the planner to iterate a number of times across a set de�ned
by the tf writer� The set would be built up from a set of system de�ned set manipulator func�
tions and the basic set would be as follows� add� remove� union intersection� is member of�
An example use of such a construct would be as follows�

iterate refuel over f�intersection farmoured
divisiong farmoured
cavalrygg�

The advantage of this option would be that it would provide a more �exible representation
schema and secondly the need for set manipulation functions has already been identi�ed as a
long term goal within the development of the tf language� The disadvantage is that further
discussions will be required to identify the exact syntax and semantics of such as construct
which will then need integrating into the parser table of the tf compiler as well as new code
being written to handle it within the planner itself�

Option �� Single Schema Re�posting
This could be dealt with by using a schema with an only use if to identify the aggressors�
When all patterns have been dealt with the schema will no longer be applicable and will thus
terminate� The advantage of this scheme is that no new tf will need to be de�ned and a
similar approach has been used before on a Naval Replenishment at Sea problem to identify
the number of ships requiring refueling and reprovisioning�

The problem with either of these schemes would be that trying to automate the conversion



Discussion �� Conditional Iterations �

would be a nightmare and as such the best solution may be to leave the PARALLEL
LOOP� in
place and convert it by hand with one of the above methods�



�

� Discussion �� Use of the Object Hierarchy within Schemas

This operator is again taken from the socap data and shows the use of lookup information
from the object hierarchy and its use in restricting the instantiation of variables� The schema
which describes the steps to deter an incursion by means of a ground patrol is described in
Figure ��



Discussion �� Use of the Object Hierarchy within Schemas �

OPERATOR� Deter
border
incursion
by
ground
patrol

ARGUMENTS� army�coa�end
time�

urban�urban� is not urban�region�region�route�end
time	

numerical� is �thirdsize
firepower army��

numerical� is �mobility army��

numerical	 is �size route��

numerical� is �terrain route��

army� with firepower greater than numerical�

army� with mobility greater than numerical�

army� with type
size less than numerical	

army� with terrain
type greater than numerical��

INSTANTIATE� army�urban��

PURPOSE� �deter
threat army� coa� end
time���

PRECONDITION�

�d
day end
time	�

�immed
threat
enemy army� route� coa� end
time��

�apportioned
forces army��

�base
approval urban� coa��

�near
territory urban� route��

�located
within urban� region��

�located army� region� coa��

�adjacent
territory region� region���

PLOT�

GOAL� �deployed army� urban� end
time���

PROCESS

ACTION� traverse
terrain�

ARGUMENTS� army�urban�urban��

EFFECTS� �ground
moved army� urban� urban���

PROCESS

ACTION� ground
patrol�

ARGUMENTS� army�region�coa�end
time��

EFFECTS� �ground
patrols army� region� coa���

END PLOT END OPERATOR

Figure �� SIPE� Schema for Deterring Border Incursion



Discussion �� Use of the Object Hierarchy within Schemas �

Review of the Discussion �

In this schema extensive use of the object hierarchy is made to help restrict variable bindings
and to provide domain facts to aid in search control� Some of the facts are static in the sense
that they cannot be changed over the course of the plan and others are dynamic� A conversion
mapping could be made to the tf statements compute� only use if and only use for query

statements but there is very little opportunity for this to be carried out automatically�

The main di�erences which can be picked out are those between facts asserted
as� ��variable name� is �value�� and those asserted as ��variable name� with

�attribute value��� For example�

�� numerical� is thirdsize
firepower army�

states that for the object bound to the variable army�� search for its attribute
�thirdsize
firepower army�� and assign it to numerical��

� army� with firepower greater than numerical�

states that the object bound to the variable army� must have firepower greater than

numerical��

This schema makes the problem slightly easier than would be in the general case by forcing
the schema to instantiate the value of army�� However� this will not always be the case and
as such the dependencies which may build up on object selection could prove to be extremely
complicated� For example� in the case where army� is not bound then the planner would have
to set up dependencies between all possible values given it could be either of armya� armyb� etc�

The instantiate slot of the schema allows the variable�s� speci�ed to be instantiated immedi�
ately after the operator is applied� The instantiation is carried out after the PRECONDITIONS�
are matched and after the PLOT� has been inserted� but before any deductions are made� This
would NOTmap directly to the actor bound match speci�cation in the current tf actor library
�see below��

Using current ideas� the following schema might be applicable�

always �size route�A� � �

�terrain route�A� � ��

type region � �region�a region�b�

urban � �region�a�urban�� region�a�urban�� region�b�urban���

army � �army�north army�south army�east army�west�

route � �route�A route�B route�C��

The following information could be asserted as part of the initial

facts of the task schema�



Discussion �� Use of the Object Hierarchy within Schemas 


���

effects �firepower army�north� � �

�mobility army�north� � 	

The vars and vars relations �elds of the schema together within the actions of the schema
expansion could be de�ned as follows�

schema deter�border�incursion�by�ground�patrol�

vars �army� � ��bound�

�army� � ��type army�

�coa� � ��type course�of�action�

�urban� � ��bound�

�urban� � ��type�

�region� � ��type region�

�region� � ��type region�

�route� � ��type route�

�end�time�

�end�time	�

vars�relations �urban� �� �urban��

nodes action � �traverse�terrain �army� �urban� �urban��

action � �ground�patrol �army� �region� �coa���

orderings � 

� ��

conditions �

effects �ground�moved �army� �urban� �urban�� at �

�ground�patrols �army� �region� �coa�� at ��

end�schema�

The conditions which need to be satis�ed together with the variable restrictions could then be
de�ned as follows�

conditions compute multiple�answer numerical� � �thirdsize
firepower �army��

multiple�answer numerical� � �mobility �army��

multiple�answer numerical	 � �size �route��

multiple�answer numerical� � �terrain �route���

only�use�if �d
day �end
time	�

only�use�if �immed
threat
enemy �army� �route� �coa� �end
time��

only�use�if �apportioned
forces �army��



Discussion �� Use of the Object Hierarchy within Schemas �

only�use�if �base
approval �urban� �coa��

only�use�if �near
territory �urban� �route��

only�use�if �located
within �urban� �region��

only�use�if �located army� �region� �coa��

only�use�if �adjacent
territory �region� �region��

The compute function returns the value of the given pattern in the database� In each of the
examples above there is a single value for each pattern at a speci�ed point in the plan� The
function thirdsize
firepower is de�ned in the socap domain as follows�

�defun thirdsize
firepower �x� �� ��			 �car �get�attr x �firepower����

�defun halfsize
air
firepower �x� �� ��� �car �get�attr x �air
firepower����

This is rather scru�y but �it gets the job done�� tf does allow external functions to be de�ned
and executed and this could be used for such procedures�

Within the arguments� �eld of the schema are a set of comparisons between the threatening
force army� and the threatened force army�� These could be mapped to a set of actor restrictions
on the variable �army� as follows�

vars �army� � ��and �� � ��property �fire
power �army��� �numerical��

�� � ��property �mobility �army��� �numerical��

�� � ��property �type
size �army��� �numerical	�

�� � ��property �terrain
type �army��� �numerical��

�

A problem which could arise is that of the order of processing within schema selection� i�e� are
the values of the variables in the compute function i�e� numerical�� numerical� etc assigned
before the check is made against the vars restrictions� The INSTANTIATE� merely checks that
the variables have a value on the exit of the schema and not on entry to the schema�

The PRECONDITIONS� slot can usually be mapped directly to an equivalent only use if �eld
of tf� The problem is however� that this may be too strong in terms of the tactics allowed to
re�achieve a failed precondition� At present if a only use if is broken then the plan state is
poisoned and new plan states searched� In many cases it would be more desirable to use an
only use for query which would allow the condition to be resatis�ed should it become broken�

Some of the facts which are used in the PRECONDITIONS� �eld are used to �nd a binding and
some are used as true schema �lters� For example� the conditions �d
day end time	� and
adjacent territory region� region� are used to �nd bindings for the variables end time	

region� and region� respectively� However� during the course of plan generation and�or
execution it would be possible to change the time of d
day but unless someone was extremely
careless with a nuclear device it would seem highly unlikely that region� would ever stop being
adjacent to region��� It may be possible to de�ne the always and initial e�ects of task schema
�rst and then try to ascertain which condition type is required by matching against these sets



Discussion �� Use of the Object Hierarchy within Schemas 	

of facts� However� which ever way we decide to tackle this problem it will not be an easy one
to deal with automatically�

The condition types supervised and unsupervised can only be inserted by manual inspection
of the condition type and at present I see know way of automating this process�

The PLOT� information contains two actions traverse
terrain and ground
patrol and each
of these has an asserted e�ect� If we chose to make both of the actions primitive �in a tf sense�
then it will mean moving both the actions and their e�ects out of the schema� This might prove
a little di�cult to achieve automatically in all cases�

The complete schema conversion is described in the following Figure ��



Discussion �� Use of the Object Hierarchy within Schemas ��

schema deter�border�incursion�by�ground�patrol�

vars �army� � ��and �� � ��property �fire
power �army��� �numerical��

�� � ��property �mobility �army��� �numerical��

�� � ��property �type
size �army��� �numerical	�

�� � ��property �terrain
type �army��� �numerical��

�

�army� � ��type army�

�coa� � ��type course�of�action�

�urban� � ��bound�

�urban� � ��type�

�region� � ��type region�

�region� � ��type region�

�route� � ��type route�

�end�time�

�end�time	�

vars�relations �urban� �� �urban��

nodes action � �traverse�terrain �army� �urban� �urban��

action � �ground�patrol �army� �region� �coa���

orderings � 

� ��

conditions compute multiple�answer numerical� � �thirdsize
firepower �army��

multiple�answer numerical� � �mobility �army��

multiple�answer numerical	 � �size �route��

multiple�answer numerical� � �terrain �route���

only�use�if �d
day �end
time	�

only�use�if �immed
threat
enemy �army� �route� �coa� �end
time��

only�use�if �apportioned
forces �army��

only�use�if �base
approval �urban� �coa��

only�use�if �near
territory �urban� �route��

only�use�if �located
within �urban� �region��

only�use�if �located army� �region� �coa��

only�use�if �adjacent
territory �region� �region���

effects �ground�moved �army� �urban� �urban�� at �

�ground�patrols �army� �region� �coa�� at ��

end�schema�

Figure �� Completed Schema Conversion for Deterring Border Incursion



��

	 Appendices

The following appendices contain information concerning�

� Appendix ��
provides a list of materials used in the preparation of this report

� Appendix ��
provides a list of points raised during the conversion of SIPE� ddl to tf which require
further consideration

��� Appendix �� Support Materials

This appendix provides a list of materials used in the preparation of this report together with
extra material which has been obtained from the darpa�Rome Laboratory Knowledge�based
Planning and Scheduling Initiative�

�� Using the SIPE�� Planning System� Version �� �th June �		

� SIPE�� Language Reference Manual� �	th March �		

�� On�line socap domain description� Imported �	th February �		� all �les dated ��st
August �		

� README�index of �les available in the on�line copy

� classes� socap classes of objects

� newclasses� extra socap classes and objects

� oprs� socap operators

� preds� socap predicates� includes the capabilities of forces and force descriptions

� newpreds� extra socap predicates

�� Hardcopy socap domain description� Received �th August �		� This material covers
two main areas�

� socap diagrams for the ifd�	 run through

� Sample screen images for the ifd�	 run through



Appendices �

��� Appendix �� Future Requirements for SOCAP

This appendix provides a listing of the major di�erences between SIPE� ddl and tf� A more
detailed description of the di�erences and a discussion as to how these gaps may be bridged is
given in Sections � and ��

The main di�erences can be categorised as follows�

�� Conditional Iteration
SIPE� ddl has a PARALLEL
LOOP construct which allows the schema writer to iterate
around a loop where the number of iterations is controlled by the presence of a pattern in
the plan state� For example� in deterring a border incursion the planner should dispatch
a number of units equal to the number of aggressor units� At present there is no support
in O�Plan for this type of construct�

� Object Hierarchy and Schema
SIPE� ddl makes extensive use of its class and instance hierarchy to provide information
for schema variable matching and schema �ltering� A class and instance hierarchy could
be constructed using the current tf supported by O�Plan and by using the currently
de�ned condition types supported by O�Plan� These could be used only as a stop gap

measure until a full clos type module has been de�ned and implemented for O�Plan�
At present there is no support in O�Plan for a clos type data structure�

�� Domain Rules
At present there is no support within the current O�Plan system for the types of domain
rule which can be supported by the SIPE� ddl� The socap domain contains only two
rule of the type causal which have only one trigger pattern�

�� Compute Conditions and Actor Support
The compute condition statement and the actor property will be required to implement
part of the schema variable matching capability which is available in the SIPE� ddl� As
present there is no support in O�Plan for either of the items�

�� OR Condition Placed on Operator Preconditions
At present SIPE� allows an OR condition to be placed on two or more preconditions of
a operator schema� For example�

�or �unit
deters
immed
threat army� army��

�apportioned
forces army���

If either of the above conditions are satis�ed then the schema can be used� At present tf
does not allow for such a construct but the same functionality can be achieved by having
two separate schemas which are identical except that one contains the �rst precondition
and the second contains the other precondition� The drawback to this approach is that
the number of schemas becomes excessive and di�cult to maintain consistency accross
what are essentially the same schema�


