
O�Plan

Architecture Guide

Arti�cial Intelligence Applications Institute
University of Edinburgh
�� South Bridge
Edinburgh EH� �HN
United Kingdom

July ��� ���	

Version �
�

Acknowledgements

The O�Plan project began in ����� Since that time the following people have participated� Colin Bell	 Ken
Currie	 Je
 Dalton	 Roberto Desimone	 Brian Drabble	 Mark Drummond	 Anja Haman	 Ken Johnson	 Richard
Kirby	 Glen Reece	 Arthur Seaton	 Judith Secker	 Austin Tate and Richard Tobin�

Prior to ����	 work on Interplan ����
��� and Nonlin �������� was funded by the uk Science and Engineering
Research Council and provided technical input to the design of O�Plan�

From ���� to ����	 the O�Plan project was funded by the uk Science and Engineering Research Council on grant
numbers gr�c������ and gr�d������ �uk Alvey Programme project number ikbs������ The work was also
supported by a fellowship from sd�Scicon for Austin Tate from ���� to �����

From ���� to ���
	 the O�Plan project was supported by the us Air Force Rome Laboratory through the Air
Force O�ce of Scienti�c Research �afosr� and their European O�ce of Aerospace Research and Development
by contract number F���
�����C����� �eoard��������� monitored by Northrup Fowler iii at the usaf Rome
Laboratory�

From ���
 to ����	 the O�Plan project was supported by the arpa�Rome Laboratory Knowledge Based Planning
and Scheduling Initiative through the us Air Force Rome Laboratory through the Air Force O�ce of Scienti�c
Research �afosr� and their European O�ce of Aerospace Research and Development by contract number F���
��
�
�C����
 �eoard��
������ monitored by Northrup Fowler iii at the usaf Rome Laboratory�

Additional resources for the O�Plan and O�Plan projects have been provided by the Arti�cial Intelligence Ap�
plications Institute through the europa �Edinburgh University Research on Planning Architectures� institute
development project�

From ���� to ����	 research on scheduling applications of the O�Plan architecture was funded by Hitachi Eu�
rope Ltd� From ���� to ���
	 the uk Science and Engineering Research Council �grant number gr�f����� �
uk Information Engineering Directorate project number ied ������
�� funded a collaborative project with icl	
Imperial College and other partners in which the O�Plan architecture was used to guide the design and devel�
opment of a planner with a �exible temporal logic representation of the plan state� A number of other research
and development contracts placed with aiai have led to research progress on the O�Plan prototype�

O�Plan is a valuable asset of the Arti�cial Intelligence Applications Institute and must not be used without the
prior permission of a rights holder� Please contact aiai for more information�

Contact Information

The O�Plan project team can be contacted as follows�

O�Plan Team
Arti�cial Intelligence Applications Institute
The University of Edinburgh
��	 South Bridge
Edinburgh EH� �HN
United Kingdom

Tel� ����� ��� ���
��

Fax� ����� ��� ��� ����
Email� oplan�ed�ac�uk

Created� December
�	 ���� by Austin Tate and Brian Drabble
Last Modi�ed� July �
	 ���� �����
� by Brian Drabble
Printed� August ��	 ����

c�����	 The University of Edinburgh

This material may be reproduced by or for the U�S� Government pursuant to the copyright license under the

clause at DFARS
�
�

�����
 �June ����� � Rights in Technical Data and Computer Software �Foreign��

Architecture Guide �

Contents

� History and Technical In�uences �

�
� Early O�Plan �

�
� O�Plan �

�
� Characterisation of O�Plan �

�
� Structure of the Architecture Guide �

� Communication in Command� Planning and Control ��

�
� Motivation of the O�Plan Architecture ��

�
� The Scenario ��

�
� Use of Dependencies ��

�
� A Common Representation for Communication between Agents � � � � � � � � � � ��

� Representing and Communicating Plans ��

�
� Plan States ��

�
�
� Task Formalism �tf� ��

�
�
� Plan Flaws �	

�
� Plan Patches �	

�
� Plan Patch Attachment Points �

�
� Incremental Plan States �

�
	 Plan Transactions ��

� Managing Concurrent Computations ��

�
� Choice Ordering Mechanisms in the Earliest Version of O�Plan � � � � � � � � � � ��

�
�
� Building up Information in an Agenda Record � � � � � � � � � � � � � � � ��

�
�
� Granularity of Knowledge Sources ��

�
�
� Priority of Processing Agenda Entries ��

�
� Choice Ordering Mechanisms now in O�Plan ��

�
�
� Knowledge Source Stages ��

�
�
� Knowledge Source Triggers ��

�
�
� Compound Agenda Entries ��

�
�
� Controller Priorities ��

Architecture Guide �

	 O
Plan Architecture ��

	
� Domain Information ��

	
� Plan State ��

	
� Knowledge Sources �	

	
� Support Modules �	

	
	 Controller �

	

 Discussion �

	

� Knowledge Sources �

	

� Controller Strategies ��

� O
Plan Planner ��

� Plan State ��

�
� Plan Network � ads and tpn ��

�
� tome and gost ��

�
� Plan State Variables ��

�
� Resource Utilisation Table ��

�
	 Agenda ��

� Planning Knowledge Sources ��

� Use of Constraint Managers to Maintain Plan Information � � � � � � � � � � � � � ��

�
� Time Point Network Manager �tpnm� ��

�
� tome�gost Manager �tgm� �	

�
� Resource Utilisation Management �rum� �	

�
� Plan State Variables Manager �psvm� �	

� Support Mechanisms in O�Plan �

	 Alternatives Handler ��

 Implementation as Separate Processes ��

� O
Plan Task Assigner ��

� O
Plan Execution System �

� O
Plan User Interface ��

�
� Planner User Interface ��

Architecture Guide �

�
� System Developer Interface ��

�
� O�Plan User Roles �	

�
� Domain Expert Role �	

�
	 Domain Specialist Role �	

�

 Task Assignment User Role �	

�
� Planner User Role �	

�
� Execution System Watch�Modify Role �

�
� World Operative �

�
�� World Interventionist �

�
�� User Support to Controller Role �

�
�� User Support to Alternatives Handler �

�
�� System Developer Role �

�
�� System Builder �

�
 Performance Issues ��

��
� Architecture Performance ��

��
� Constraint Manager and Support Routine Performance � � � � � � � � � � � � � � � ��

�� Modularity� Interfaces and Protocols 	

��
� Components � 	�

��
� Support Modules � 	�

��
� Protocols � 	�

��
� Internal Support Facilities � 	�

��
�
� Knowledge Source Framework �ksf� 	�

��
�
� Agenda Trigger Language � 	�

��
�
� Controller Priority Language � 	�

��
	 External Interfaces � 	�

�� Related Projects 		

�� Future Plans for O
Plan 	�

�� Bibliography 	�

Architecture Guide 	

�	 Abbreviations �

� History and Technical In�uences

O�Plan was initially conceived as a project to provide an environment for speci�cation� gener�
ation� interaction with� and execution of activity plans
 O�Plan is intended to be a domain�
independent general planning and control framework with the ability to embed detailed knowl�
edge of the domain

O�Plan grew out of the experiences of other research into ai planning� particularly with Nonlin
��	� and �blackboard� systems ��	�
 The Readings in Planning volume ��� includes a taxonomy
of earlier planning systems which places O�Plan in relation to the in�uences on its design
 It is
assumed that the reader is familiar with these works as the bibliography does not cover all of
them
 The same volume ��� includes an introduction to the literature of ai planning

The main ai planning techniques which have been used or extended in O�Plan are�

� A hierarchical planning system which can produce plans as partial orders on actions �as
suggested by Sacerdoti in the noah planner ������ though O�Plan is �exible concerning
the order in which parts of the plan at di�erent levels are expanded

� An agenda�based control architecture in which each control cycle can post processing
requirements during plan generation
 These processing requirements are then picked up
from the agenda and processed by appropriate handlers �hearsay�ii ���� and opm ����
uses the term Knowledge Source for these handlers�

� The notion of a �plan state� which is the data structure containing the emerging plan�
the ��aws� remaining in it� and the information used in building the plan
 This is similar
to the work of McDermott ����

� Constraint posting and least commitment on object variables as seen in molgen ����

� Temporal and resource constraint handling� shown to be valuable in realistic domains by
Deviser ����� has been extended to provide a powerful search space pruning method
 The
algorithms for this are incremental versions of Operational Research methods
 O�Plan
has integrated ideas from or and ai in a coherent and constructive manner

� Goal Structure� Question Answering �qa� and typed preconditions
 O�Plan is derived
from the earlier Nonlin planner ��	� from which the project has taken and extended these
ideas

� Domain and Task description language �Task Formalism or tf�
 The project has main�
tained Nonlin�s style of and extended it for O�Plan

��� Early O�Plan

The main e�ort on the �rst O�Plan project was concentrated in the area of plan generation

This early work is documented in a paper in the Arti�cial Intelligence Journal ����
 One theme
of the early O�Plan research was search space control in an ai planner
 The outputs of that

History and Technical In�uences �

work gave a better understanding of the requirements of planning methods� improved heuristics
and techniques for search space control� and a demonstration system embodying the results in
an appropriate framework and representational scheme

O�Plan began with the objective of building an open architecture for an ai planning project
with the objective of incrementally developing a system resilient to change
 It was our aim
at the start of the project to build a system in which it was possible to experiment with and
integrate developing ideas
 Further� the system was to be able to be tailored to suit particular
applications

��� O�Plan

The O�Plan project began in ���� and had the following new objectives�

� to consider a simple �three agent� view of the environment to clarify thinking on the roles
of the user�s�� architecture and system
 The three agents are the task assignment agent�
the planning agent and the execution agent

� to explore the thesis that communication of capabilities and information between the
three agents could be in the form of plan patches which in their turn are in the same form
as the domain information descriptions� the task description and the plan representation
used within the planner and the other two agents

� to investigate a single architecture that could support all three agent types and which
could support di�erent plan representations and agent capability descriptions to allow for
work in task planning or resource scheduling

� to clarify the functions of the components of a planning and control architecture

� to draw on the early O�Plan experience and to improve on it especially with respect to
�ow of control ����

� to provide an improved version of the O�Plan system suitable for use outside of Edinburgh
within Common Lisp� X�Windows and unix

� to provide a design suited to use on parallel processing systems in future

The �rst O�Plan project at Edinburgh� ���������� focussed on the techniques and technologies
necessary to support the informed search processes needed to generate predictive plans for
subsequent execution by some agent
 The O�Plan project continues the emphasis placed on the
design of a planning and control architecture� identifying the modular functionality� the roles
of these modules� and their software interfaces
 O�Plan has resulted in a demonstrator� capable
of acting as a foundation for further development� in addition to descriptions of the underlying
sub�systems and modules which we feel are important to support a practical planner

O�Plan is incorporated within a blackboard�like framework� for e�ciency reasons we have chosen
an agenda�driven architecture
 Items on the agenda represent outstanding tasks to be performed
during the planning process� and they relate directly to the set of �aws identi�ed as existing

History and Technical In�uences �

within the emerging plan
 A simple example of a �aw is that of a condition awaiting satisfaction�
or an action requiring re�nement to a lower level
 A controller chooses on each processing cycle
which �aw to operate on next

The nature of these �aw types has been in�uenced by experience from the �rst O�Plan work�
but the main development focus is the handling and processing of the �aws
 The �knowledge
sources� employed in later versions of O�Plan have cleaner triggering mechanisms and have
been given a variable level of granularity� enabling processing to be suspended if needed �we
refer to this as knowledge source staging� while further �aw information is gathered
 This is
particularly useful for a planning system which attempts to be opportunistic and to operate
on a least commitment basis� while retaining completeness of search �where possible�
 It will
also simplify the task of maintaining and reasoning with partially bound variables in the plan�
which proved to be di�cult and limiting in the earlier O�Plan work

Research in O�Plan has been concentrating on the problems associated with�

� Temporal constraints and reasoning
 The underlying data structures have been com�
pletely re�designed and reworked from the work on the �rst version of O�Plan to allow
further development of the temporal search based pruning algorithms� and to support the
enhanced condition achievement procedure

� Resource utilisation management
 Resources provide the most obvious link to scheduling�
where successes in resource utilisation management have been more pronounced� though
still limited

� Plan control
 O�Plan is intended to communicate plans to an execution agent who can
communicate progress back
 Control strategies are therefore required to enable plans to
be repaired in the case of simple failure or to begin replanning if required
 Earlier work
employing qualitative process ���� theory could be used to assist with repair strategies in
future

The end goal is to be able to demonstrate a domain independent AI Planner capable of accepting
descriptions of planning domains and generating realistic plans for subsequent execution

��� Characterisation of O�Plan

The O�Plan approach to command� planning� scheduling and control can be characterised as
follows�

� successive re�nement�repair of a complete but �awed plan or schedule

� least commitment approach

� using opportunistic selection of the focus of attention on each problem solving cycle

� building information incrementally in �constraint managers�� e
g
�

� object�variable manager

History and Technical In�uences �

� time point network manager

� e�ect�condition manager

� resource utilisation manager

� using localised search to explore alternatives where advisable

� with global alternative re�orientation where necessary

O�Plan is aimed to be relevant to the following types of problems�

� project management for product introduction� systems engineering� construction� process
�ow for assembly� integration and veri�cation� etc

� planning and control of supply and distribution logistics

� mission sequencing and control of space probes such as voyager� ers��� etc

These applications �t midway between the large scale manufacturing scheduling problems found
in some industries �where there are often few inter�operation constraints� and the complex
puzzles dealt with by very �exible logic based tools
 However� the problems of this type represent
an important class of industrial relevance

��� Structure of the Architecture Guide

Having described the background to the O�Plan system� the Architecture Guide will now de�
scribe the O�Plan architecture by introducing the 	 major components in the architecture�
Knowledge Sources and their computational Platforms� Domain Information� the Plan State�
the Controller� and the Constraint Managers and Support Routines
 These will be referred to
throughout the Architecture Guide and greater detail of the various components are the subject
of later sections

The current O�Plan project has concentrated on the provision of a planning agent within the
O�Plan architecture
 A section of this guide shows the ways in which the 	 components of
the architecture referred to above are developed to enable the system to perform as a planner

There are brief sections to describe the simple task assignment �command� and execution system
agents which form a part of the current O�Plan prototype

The User Interface to the O�Plan system has been designed in such a way that it will allow
integration with a number of other sophisticated user tools
 A section of the Architecture Guide
therefore highlights the issues of user roles with respect to a command� planning and control
system and explains the way in which O�Plan characterises user interactions
 The section also
describes the interfaces built for the current O�Plan planner

The main theme of the O�Plan research has been the identi�cation of separable support modules�
internal and external interface speci�cations� and protocols governing processing behaviours
which are relevant to an ai planning system
 These various contributions having been intro�
duced in earlier sections of the Architecture Guide are drawn together in a separate section

History and Technical In�uences ��

This Architecture Guide describes an idealised conceptual overview of the O�Plan design
 The
current O�Plan Implementation goes some way towards achieving our aims
 A separate Imple�
mentation Guide is available which describes the current state of the prototype

The Architecture Guide contains the following sections�

� Section � describes our philosophy for communication between agents in a simple com�
mand� planning and control environment�

� Section � describes the representation of a plan within O�Plan�

� Section � explains the mechanisms used in O�Plan for managing concurrent computations
and deciding on the order of processing�

� Section 	 describes the major components of the O�Plan architecture�

� Section
 goes into greater detail on how the planning agent has been provided in the
O�Plan architecture�

� Sections � and � outline the task assignment and execution systems in O�Plan�

� Section � describes the user interface which has been designed for O�Plan�

� Section �� looks at performance issues in the O�Plan prototype�

� Section �� summarises the various aspects that relate to the modularity� interfaces and
internal protocols within O�Plan � an important aspect of the design�

� Related projects and our plans for the future

��

� Communication in Command� Planning and Control

The aim of this section is to describe in broad terms the motivation and reasoning behind the
design of the O�Plan architecture
 Edinburgh research on planning and control architectures
is aimed at building a practical prototype system which can generate plans and can reliably
execute the plans in the face of simple plan failures

��� Motivation of the O�Plan Architecture

We are using our experiences in the application of ai planning techniques to practical projects
to develop a planning system that closes the loop between planning and executing
 There have
been some successes with previous attempts at closing the loop �������������������� but often
the plans generated were rather limited and not very �exible
 In general� the complexities of
the individual tasks of plan representation� generation� execution monitoring and repair has
led to research into each of these issues separately
 In particular� there is now a mismatch
between the scale and capabilities of plan representations proposed for real�time execution
systems ����� ��
������� and those that can be generated by today�s ai planners
 However� in
most realistic domains the demand is for a system that can take a command request� generate a
plan� execute it and react to simple failures of that plan� either by repairing it or by re�planning

Explicit knowledge about the structure of the plan� the contribution of the actions involved
and the reasons for performing plan modi�cations at various stages of the plan construction
process� provides us with much of the information required for dealing with plan failures
 Such
knowledge is also essential for further planning and re�planning by identifying generalisations
or contingencies that can be introduced into the plan in order to avoid similar failures

One of the largest simpli�cations most planners to date have made is to assume plans are
constructed with full knowledge of the capabilities of the devices under their control
 Thus�
executing such plans involves the direct application of the activities within the plan by an
execution agent which has no planning capability
 Unfortunately� unforeseen events will occur
causing failure of the current plan and a request for repair of the plan or re�planning directed
at the planning system
 Building into the execution agent some ability to repair plans and to
perform re�planning would improve the problem solving performance of the execution agent�
especially when it is remote from the central planning system

��� The Scenario

The scenario we are investigating is as follows�

� A user speci�es a task that is to be performed through some suitable interface
 We call
this process task assignment

� A planner plans and �if requested� arranges to execute the plan to perform the task
speci�ed
 The planner has knowledge of the general capabilities of a semi�autonomous
execution system but does not need to know about the actual activities that execute the
actions required to carry out the desired task

Communication in Command� Planning and Control ��

� The execution system seeks to carry out the detailed tasks speci�ed by the planner while
working with a more detailed model of the execution environment than is available to the
task assigner and to the planner

We have deliberately simpli�ed our consideration to three agents with these di�erent roles� and
with possible di�erences of requirements for user availability� processing capacity and real�time
reaction� to clarify the research objectives in our work

The execution agent executes the plan by choosing the appropriate activities to achieve the
various sub�tasks within the plan� using its knowledge about the particular resources under its
control
 Thus� the central planner communicates a general plan to achieve a particular task�
and responds to failures fed back from the execution agent which are in the form of �aws in the
plan
 The execution agent communicates with the real world by executing the activities within
the plan and responding to failures fed back from the real world
 Such failures may be due to
the inappropriateness of a particular activity� or because the desired e�ect of an activity was
not achieved due to an unforeseen event
 The reason for the failure dictates whether the same
activity should be re�applied� replaced with other activities or whether re�planning should take
place

��� Use of Dependencies

The use of dependencies within planning promises great bene�ts for the overall performance of
a planning system particularly for plan representation� generation� execution and repair

The notion of the teleology of a plan� which we call the Goal Structure ��	�� refers to the
dependencies between the preconditions and postconditions of activities involved in the plan

Although� such dependencies have been shown to be useful for describing the internal struc�
ture of the plan and for monitoring its execution ����� ��
�� there has been no comprehensive
discussion of their use in all aspects of plan generation� execution monitoring and plan repair

Knowledge�rich plan representations of this type were used as the basis for the design of an
Interactive Planning Assistant ��� ��
� for the UK Alvey planit Club
 This allowed for brows�
ing� explaining and monitoring of plans represented in a more useful form than that provided
in conventional computer based planning support tools
 More recently� O�Plan style plan rep�
resentations were used within the optimum�aiv system ��� for spacecraft assembly� integration
and veri�cation at the European Space Agency in work conducted by a consortium of which
aiai was a part

Early work on Decision Graphs ���� at Edinburgh has shown how the explicit recording of the
decisions involved in the planning process could be used for suggesting where and how much
re�planning should take place when unforeseen situations make the current plan fail
 Some
work to link these ideas with Nonlin was undertaken during the mid �����s ����

��� A Common Representation for Communication between Agents

We are exploring a common representation for the input�output requirements and capabilities
of a planner and execution agent
 This supports the representation of the communication

Communication in Command� Planning and Control ��

between a user� requesting the plan� and the real world� in which the plan is being executed

Such communication may take place either directly through a planner or indirectly via a central
planner and a dumb or semi�autonomous execution agent
 In the latter case� the communication
between the central planner and the execution agent becomes an interesting research issue

Task Assign
Capability

Domain
Model

Planner
Capability

Domain
Model

Exec System
Capability

Domain
Model

Plan State Plan State Plan State

� � �
� � �

�
� �R

�
� �R

�
� �R

�
���

�
���

�
����

�
�
�

�
�

�
�

�
�

�
�Task Assign Planner Exec System�

�
�

�
�

�
�

�
User

Requirements

Reporting

Requirements

Reporting

Output

Input

Real
World

Figure �� Communication between Task Assignment� Planning and Execution Agents

The common representation includes knowledge about the capabilities of the planner and exe�
cution agent� the requirements of the plan and the plan itself either with or without �aws �see
Figure ��
 Thus� a planner will respond to the requirements of a user
 Based on the knowledge
of its own capabilities and that of the execution environment� it will generate a plan
 This plan
may then be executed directly in the real world� or� indirectly via an execution agent
 The
execution agent executes this plan in the real world and monitors the execution� responding
to failures in one of two ways
 If it does not have knowledge of its own capabilities� it simply
returns knowledge of the failure to the central planner and awaits a revised plan to be sent

In this case� the execution agent is dumb
 If it does have knowledge of its own capabilities�
it may attempt to repair the plan and then continue with execution
 On the other hand� if
a repair is beyond the capabilities of the execution agent� then this knowledge is fed back to
the central planner and again a revised plan is expected
 In this case� the execution agent is
semi�autonomous
 When failures during the application of the plan are fed back to the planner�
these may be acted upon by it and a repair of the plan made or total re�planning instigated

This may� in turn� involve the user in reformulating the task requirement
 A revised or new
plan is then executed
 Finally� success of the execution or partial execution of the plan is fed
back to the user

Other issues relating to the choice of the common representation and communication protocols
include�

� when to repair the plan or when to seek re�planning�

� continuing execution of parts of a plan� not a�ected by the failure�

� continuing to maintain a safe execution state even while awaiting initial commands or the
correction of faults in earlier plans�

� maintaining integrity and synchronisation of communicated plans and �aws

��

� Representing and Communicating Plans

��� Plan States

One of the most important problems which needs to be addressed in any planning system is
that of plan representation
 An O�Plan agent�s plan state holds a complete description of a
plan at some level of abstraction
 The plan state also contains a list of the current �aws in the
plan
 Such �aws could relate to abstract actions that still must be expanded before the plan
is considered valid for passing on for execution� unsatis�ed conditions� unresolved interactions�
overcommitments of resource� time constraint faults� etc
 The Plan State can thus stand alone
from the control structure of the ai planner in that it can be saved and restored� passed to
another agent� etc

At any stage� a plan state represents an abstract view of a set of actual plans that could
be generated within the constraints it contains
 Alternative lower level actions� alternative
action orderings and object selections� and so on are aggregated within a high level Plan State
description

����� Task Formalism �tf�

Task Formalism �tf� �as used in Nonlin and the �rst version of O�Plan� is a declarative language
for expressing action schemata� for describing task requests and for representing the �nal plan

It allows time and resource constraints in the domain to be modelled
 The planner can take a
plan state as a requirement �created by a tf Compiler from the user provided task speci�cation
in tf� and can use a library of action schemata or generic plan state fragments �themselves
created by the tf Compiler from a domain description provided by the user� to transform the
initial plan state into one considered suitable for termination
 This �nal plan state could itself
be decompiled back into a tf description if required

Our design intention for O�Plan is that any plan state �not just the initial task� can be created
from a tf description and vice versa
 This was not fully achieved in the �rst O�Plan prototype
����� but this remains our goal

The O�Plan design allows for di�erent plan state representations in the di�erent agents
 Task
Formalism is particularly suited to the representation of a plan state within the planner agent
and� hence� to act as a basis for communication to the planner�s superior �task assignment�
and subordinate �execution system� agents
 The actual plan state inside the task assignment
and execution system agents is likely to di�er from that within the planner
 For example� the
execution system may be based on more procedural representations as are found in languages
like prs �the Procedural Reasoning System ����� and may allow iteration� conditionals� etc

Representing and Communicating Plans �	

����� Plan Flaws

The plan state cannot contain arbitrary data elements
 The ai planner is made up of code
that can interpret the plan state data structure and interpret the lists of �aws in such a way
that it can select from amongst its computational capabilities and its library of domain speci�c
information to seek to transform the current Plan State it is given into something that is desired
by the overall architecture
 This is de�ned as the reduction of the list of �aws known to the
planner
 The O�Plan architecture associates a Knowledge Source with each �aw type that can
be processed ���
 An agenda of outstanding �aws is maintained in a Plan State and appropriate
Knowledge Sources are scheduled on the basis of this

The O�Plan architecture is designed for operation in an environment where the ultimate aim
of termination will not be achieved
 There will be new command requests arriving and earlier
ones being modi�ed� parts of plans will be under execution as other parts are being elaborated�
execution faults are being handled� etc

We believe that the basic notions described above can serve us well as a basis for an attack on the
problem of coordinated command� planning and execution in continuously operating domains

There must be a means to communicate plan related information incrementally between the
agents involved with commanding� planning and executing plans
 Each of these agents will have
their own level of model of the current command environment� plan and execution environment

We will explore the properties that we must seek from our basic notions in the following sections

��� Plan Patches

The requirement for asynchronously operating planners and execution agents �and indeed users
and the real world� means that it is not appropriate to consider that a plan requirement is set�
passed on for elaboration to the planner and then communicated to a waiting execution agent
which will seek to perform the actions involved
 Instead� all components must be considered
to be operating independently and maintaining themselves in some stable mode where they are
responsive to requests for action from the other components
 For example� the execution agent
may have quite elaborate local mechanisms and instructions to enable it to maintain a device
�say a spacecraft or a manufacturing cell� in a safe� healthy� responsive state
 The task then is
to communicate some change that is requested from one component to another and to insert
an appropriate alteration in the receiver such that the tasks required are carried out

We de�ne a Plan Patch as a modi�ed version of the type of Plan State used in the �rst version
of O�Plan
 It has some similarity to an operator or action expansion schema given to an ai

planning system in that it is an abstracted or high level representation of a part of the task
that is required of the receiver using terminology relevant to the receiver�s capabilities
 This
provides a simpli�ed or black�box view of possibly quite detailed instructions needed to actually
perform the action �possibly involving iterators and conditionals� etc�
 Complex execution agent
representational and programming languages can be handled by using this abstracted view �e
g
�
����� ��
��
 For example� reliable task achieving behaviours which included contingencies and safe
state paths to deal with unforeseen events could be hidden from the planner by communication
in terms of a simpli�ed and more robust model of the execution operations ����

Representing and Communicating Plans �

Outstanding �aws in the Plan Patch are communicated along with the patch itself
 However�
these �aws must be those that can be handled by the receiver

It can be seen that the arrangement above �mostly assumed to refer to the communication be�
tween a planner and execution agent� also re�ects the communication that takes place between
a task assigner and the planner in an O�Plan type ai planner
 Requiring rather more e�ort is
the investigation of suitable Plan Patch constructs to allow execution errors to be passed back
to the planner or information to be passed back to the task assigner� but we believe that this
is a realistic objective

��� Plan Patch Attachment Points

There is a need to communicate the points at which the Plan Patch should be attached into
the full Plan State in the receiver
 The sender and receiver will be operating asynchronously
and one side must not make unreasonable assumptions about the internal state of the other

We endow all the agents with a real�time clock that can be assumed to be fully synchronised

We also make simplifying assumptions about delays in communication to keep to the immediate
problem we are seeking to tackle �while fully believing that extension to environments where
communication delay is involved will be possible�
 Therefore� metric time is the �back�stop� as
a means of attaching a Plan Patch into the internal Plan State of the receiver
 Metric time is
also important to start things o� and to ensure a common reference point when necessary �e
g
�
in cases of loss of control�

However� the use of metric time as an attachment point lacks �exibility
 It gives the receiver
little information about the real intentions behind the orderings placed on the components of
the Plan Patch
 It will� in some cases� be better to communicate in a relative or quali�ed way
to give the receiver more �exibility
 Suitable forms of �exible Plan Patch Attachment Point
description will be investigated in future �such as descriptions relative to the expected Goal
Structure ��	� of the receiver�

��� Incremental Plan States

Our approach is to combine the ideas above to de�ne an Incremental Plan State with three
components�

� a plan patch�

� plan patch �aws as an agenda of processing requirements�

� plan patch attachment points

Such Incremental Plan States are used for two way communication between the task assigner and
the planner and between the planner and the execution agent
 The O�Plan Plan State structures
and �aw repertoire has been extended to cope� initially� with a dumb execution agent that can
simply dispatch actions to be carried out and receive fault reports against a nominated set of

Representing and Communicating Plans ��

conditions to be explicitly monitored �as described in ��
��
 In future research� the Plan State
data structures and �aw repertoire will be extended again to cope with a semi�autonomous
execution agent with some capability to further elaborate the Incremental Plan States and to
deal locally with re�planning requirements ����

A means to compile an Incremental Plan State from a modi�ed type of Task Formalism �tf�
declarative description �and vice versa� will be required

��� Plan Transactions

The overall architecture must ensure that an Incremental Plan State can be understood by the
receiver and is accepted by it for processing
 This means that all the following are understood
by the receiver�

� plan patch description is clear�

� plan patch �aws can be handled by the receiver�s Knowledge Sources�

� plan patch attachment points are understood

It is important that the sender and receiver �whether they are the task assigner and the ai
planner� the planner and the execution agent� or one of the reverse paths� can coordinate to
send and accept a proposed Incremental Plan State which the receiver must assimilate into
its own Plan State
 We propose to use transaction processing methods to ensure that such
coordination is achieved

Speci�c �aw types and Knowledge Sources have been created in the various agents �task assign�
ment� ai planner� and execution agent� to handle the extraction and dispatch �as an Incremental
Plan State� of a part of an internal Plan State in one component� and the editing of such an
Incremental Plan State into the internal Plan State of the receiver
 The �extraction� Knowl�
edge Sources must be supplied with information on the Plan Patch description� �aw types and
attachment points that the receiver will accept
 This constitutes the primary source of informa�
tion about the capabilities of the receiver that the sender has available and its representation
will be an important part of the research

Communication �guards� ensure that the a priori criteria for acceptance of an Incremental
Plan State for processing by the receiver�s Knowledge Sources are checked as part of the Plan
Transaction
 It may also be the case that initial information about urgency will be able to be
deduced from this acceptance check to prioritise the ordering of the new �aws with respect to
the existing entries on the agenda in the receiver

��

� Managing Concurrent Computations

The O�Plan architecture has been designed to allow for concurrent processing where possible

The systems implementation itself is composed of a number of parts representing the major
components of the architecture
 In theory these can be run as separate processes if desired
 In
addition� the basic �ow of processing performed by the architecture allows for a wavefront of
concurrent threads of computation to be maintained and decisions can be taken about where to
deploy any computational e�ort available �whether this is actually implemented with parallel
processors or not�

The �rst O�Plan project made a start on mechanisms for the implementation of an e�cient
planning system able to take an opportunistic approach to selecting where computational e�ort
should be concentrated during planning
 However� some limitations were observered and taken
into account during the subsequent design of O�Plan
 The new O�Plan mechanisms are listed
in the following sections

��� Choice Ordering Mechanisms in the Earliest Version of O�Plan

����� Building up Information in an Agenda Record

The �rst version of O�Plan included the ability to allow a knowledge source to examine a possible
decision point �represented by the agenda entry it is asked to process� and to add information
relating to the choice to the �elds of the agenda record
 If the choice did not become suitably
tightly restricted as a result of the addition of this information� it was possible to put the agenda
entry back onto the outstanding �aws list with improved information for deciding on the time
to reselect it for processing
 The ability to build up information around an agenda entry in
an incremental way prior to a �nal knowledge source activation is an important feature that
ensures that work done in accessing data bases and checking conditions can be saved as far as
possible when processing is halted
 There are some similarities to mechanisms within real�time
responsive architectures such as rt�� ����

����� Granularity of Knowledge Sources

Each knowledge source within the O�Plan architecture encodes a piece of planning knowledge

For example� how to expand an action� bind a variable� check a resource� etc
 From a modularity
viewpoint� there is some advantage in having a very �ne grain of knowledge source to implement
planning knowledge
 However� this can lead to tens of agenda entries and knowledge source
activations with the overheads associated with such activations for even the simplest types
of action expansion
 In simpler planners� such as Nonlin� an expansion is e�ciently handled
as an atomic operation
 There is a con�icting desire to have e�cient large grain knowledge
sources implementing planning knowledge and very �ne grain knowledge sources detailing each
individual step of some higher level plan modi�cation operator

in the �rst version of O�Plan� which had �ner grain of knowledge sources� it was also found
that ordering relationships between agenda entries left in the agenda list had to be stated to

Managing Concurrent Computations ��

ensure e�cient processing
 The controller was then required to unravel the web of activation
orderings that resulted
 A special form of agenda entry called a sequence was implemented in
the �rst version of O�Plan to assist the controller in this task� it would only consider the head
of the sequence for activation at any time� subsequently releasing the following agenda items
clustered in the sequence in the order indicated
 This process is similar to the control blocks
used in the Tecknowledge s�� system ����

����� Priority of Processing Agenda Entries

The �rst version of O�Plan assigned priorities to every �aw as it was placed on the agendas

The priorities were calculated from the �aw type� the degree of determinacy of the �aw and
information built up in the Agenda Record as described earlier
 These provide measures of
choice within the �aw
 Two heuristic measures were maintained in each agenda entry
 One
called Branch�� indicated the immediate branching ratio for the choice point
 An upper bound
on this can be maintained quite straightforwardly
 The second measure was called Branch�n
and gave a heuristic estimate of the number of distinct alternatives that could be generated by
a naive and unconstrained generation of all the choices represented by the choice point

In the �rst version of O�Plan� three agendas were maintained to e�ciently select between agenda
entries which were ready for knowledge source activation and ones awaiting further information
to bind open variables in the agenda information
 This is described in ���
 Eventually though�
the ready to run agenda entries are simply rated according to a numerical priority maintained
for each agenda entry on the basis of �aw type and estimators which said how many choices
there could be down a particular search branch �the Branch�� and Branch�n estimators�
 This
forms too simplistic a measure for allowing the controller to decide between waiting agenda
entries
 Consideration was given to a rule based controller with knowledge of other measures
of opportunism but no implementation of this was done within the original O�Plan system

��� Choice Ordering Mechanisms now in O�Plan

O�Plan now seeks to provide a more coherent set of mechanisms to enable the planning and
control system builder to select suitable implementation methods for describing choices� post�
ing constraints which will restrict choice� postponing choice making decisions until the most
opportune time to make them� and triggering choices that are ready to be acted upon
 These
mechanisms are�

� the use of stages in knowledge sources to allow for a linear thread of computation to be
de�ned which can be assumed to run through to completion� but provides a means for
interruption at de�ned staging points

� the de�nition of triggers on knowledge sources and knowledge source stages to provide
a clear means to delegate a higher level of knowledge source activation checks to the
controller

� the use of compound agenda entries to put direct dependencies of some tasks on others that
must complete earlier
 This allows complex computational dependencies and strategies

Managing Concurrent Computations ��

to be created

� the use of agenda manager priorities to allow the controller to select appropriate ready�
to�run agenda entries and match these to waiting knowledge source platforms

The following sections explain each of these mechanisms in more detail

����� Knowledge Source Stages

The mechanism in the �rst version of O�Plan for building up information in an agenda entry
prior to making some selection between alternatives was a very useful feature but proved di�cult
to use in practice
 A knowledge source had to be activated to initiate processing which might
simply add a little information to the agenda entries and then suspend to allow the controller
to decide whether to progress
 This is very ine�cient

In O�Plan� knowledge sources are de�ned in a series of stages
 There can be one or more stages�
only latter stages may make alterations to the plan state �thus locking out other knowledge
source �nal stages which can write to the same portion of the plan state�
 Any earlier stages
may build up information useful to later stages
 At the end of any stage� the knowledge source
must be prepared to halt processing if asked to by the controller
 If it is asked to halt at a stage
boundary� the knowledge source may summarise the results of its computation in a �eld of the
agenda record provided for this purpose
 A controller directed support routine is called by the
knowledge source at the end of each stage to identify whether it must halt or may continue
 This
allows the controller to dynamically re�direct computation as it considers all the information
available to it� while providing a simple and e�cient way for the knowledge source to continue
computation without intermediate state saving while it continues to receive a go�ahead from
the end of stage continuation authorisation routine

A Knowledge Source Formalism for O�Plan is being designed to allow for stage de�nition and
to assist with declaring the restrictions on the plan state portions a�ected by the �nal plan
state modifying stage of the knowledge source � to assist in lock management in parallel imple�
mentations

����� Knowledge Source Triggers

In O�Plan� a mechanism of setting triggers on agenda entries for activating knowledge sources
�and an individual stage of a knowledge source if desired� is provided
 The triggers may use
various �items� of data available within the plan state and other global information available
to the planner
 These may include things such as the availability of a speci�c binding for a
plan variable� the satisfaction of a condition at a speci�c action node in the plan network� the
use of a speci�c resource� the occurrence of an external event� information from the �clock�
within the planner� etc
 The Knowledge Source Formalism referred to earlier will also be used
to de�ne triggers on knowledge source stages
 The triggering constructs in the language are
initially quite restrictive to ensure that e�cient agenda entry triggering mechanisms can be
implemented
 However� as we gain experience� we expect the triggering language to be quite

Managing Concurrent Computations ��

comprehensive
 A knowledge source may also dynamically create a trigger on a continuation
agenda entry when halting processing at a stage boundary

Only agenda entries which are currently triggered will be available to the controller for decisions
on which entries to activate through to a knowledge source running on a knowledge source
platform

����� Compound Agenda Entries

Individual simple agenda entries can be grouped together into compound agenda entries
 Only
the head entries in the compound agenda entry are considered at any time by the controller
�and possibly by the triggering mechanism considered above�� thus cutting down on the amount
of processing required by the controller to select the next agenda entry to execute when such
pre�de�ned orderings can be speci�ed
 Compound agenda entries can be made by knowledge
sources to act as a meta�processing level to implement some de�nite planning strategy or to
implement planning algorithms with �ner grain knowledge sources to provide modularity and
real time response improvement

����� Controller Priorities

The controller is given the task of deciding which of the current set of triggered agenda entries
should be run on an available knowledge source platform
 It does this by considering the prior�
ity and measures of opportunism of the agenda entry
 Four priority levels are available within
O�Plan � Low� Medium� High and Emergency
 The Emergency priority level is only available
to handle incoming external events
 The rt�� system has similar priority based processing
arrangements ����
 In certain cases� an O�Plan implementation will possess knowledge source
platforms dedicated to processing speci�c real�time responsive events appearing as agenda en�
tries � thus allowing for reliable real�time response to events categorised as Emergency priority

A waiting knowledge source platform will be able to run one� several� or all knowledge sources

Any restriction on a speci�c platform will be known to the controller
 Only triggered agenda
entries at the highest priority level which can be processed on a waiting knowledge source are
considered by the controller on each cycle
 Where there is still choice� a range of measures
of opportunism and priority are employed to make a selection
 The underlying principle is to
make a selection according to a strategy given to the controller
 The strategy will use user
selected preferences or by default will seek to reduce search to the extent it can judge this
�re�ecting the opportunistic generative planning nature of O�Plan�
 Measures such as Branch�
� �the immediate branching ratio for the choice point� and Branch�n �a heuristic estimate of the
number of distinct alternatives that could be generated by a naive and unconstrained generation
of all the choices represented by the choice point� are relevant to this
 However� the use of a
utility function guided by task speci�ers given to the controller will be explored for O�Plan
when it is used in continuous command and control applications

��

� O	Plan Architecture

This section describes the O�Plan architecture in detail and describes the major modules which
make up the system
 An agenda based architecture forms the central feature of the system
and the design approach
 Within this framework� however� the emphasis on and development
of search strategies has been concentrated into crisper notions of choice enumeration� choice
ordering� choice making and choice processing
 This is important as it allows us to begin to
justi�ably isolate functionality which can be described in terms of�

� triggering mechanisms � i�e� what causes the mechanism to be activated�

� decision making roles � precisely what type of decision can be made

� implications for search � has the search space been pruned� restricted or further con�
strained as far as possible

� decision ordering � in what order should we choose between the alternative decisions
possible

� choice ordering � for a decision to be made� which of the open choices should we adopt

The O�Plan approach to command� planning� scheduling and control can be characterised as
follows�

� successive re�nement�repair of a complete plan or schedule which contains an agenda of
outstanding issues

� least commitment approach

� using opportunistic selection of the focus of attention on each problem solving cycle

� building plan information incrementally in �constraint managers�� e
g
�

� time point network manager

� object�variable manager

� e�ect�condition manager

� resource utilisation manager

� using localised search to explore alternatives where advisable

� with global alternative re�orientation where necessary

The O�Plan project has sought to identify modular components within an ai command� planning
and control system and to provide clearly de�ned interfaces to these components and modules

The various components plug into �sockets� within the architectural framework
 The sockets
are specialised to ease the integration of particular types of component
 See Figure �

The various components of the agent architecture are�

O�Plan Architecture ��

PlanWorld

Viewers

Constraint Managers
Plan Entities

Constraints

AgendaPlan State

Associator

Constraint

Interface

Manager

KS

Platform(s)
Controller

Knowledge Sources

Domain LibraryData Base Manager

Requirements

ReportsReports

Requirements

Figure �� O�Plan Agent Architecture

PlanWorld Viewers � User interface� visualisation and presentation viewers for the plan �
usually di�erentiated into technical plan views �charts� structure diagrams� etc
� and
world views �simulations� animations� etc
�

Knowledge Sources � Functional components which can analyse� synthesise or modify plans

Domain Library � A description of the domain including a library of possible actions

Constraint Managers � Components which manage detailed constraints within a plan and
seek to maintain as accurate a picture as possible of the feasibility of the current plan
state with respect to the domain model

These plug�in components are orchestrated by an O�Plan agent kernel which carries out the
tasks assigned to it via appropriate use of the Knowledge Sources and manages options being
maintained within the agent�s Plan State
 The central control �ow is as follows�

Interface Manager � Handles external events �requirements or reports� and� if they can be
processed by the agent� posts them on the agent Agenda

Controller � Chooses Agenda entries for processing by suitable Knowledge Sources

Knowledge Source Platform�s� � Chosen Knowledge Sources are run on an available and
suitable Knowledge Source Platform

Data Base Manager � Maintains the Plan State and provides services to the Interface Man�
ager� Controller and Knowledge Sources

Constraint Associator Acts as a mediator between changes to the Plan State made by the
data base manager and the activities of the various Constraint Managers that are installed
in the agent
 It eases the management of interrelationships between the main plan entities
and detailed constraints

O�Plan Architecture ��

��� Domain Information

Domain descriptions are supplied to O�Plan in a structured language� which is compiled into
the internal data structures to be used during planning
 The description includes details of�

�
 activities which can be performed in the domain

�
 information about the environment and the objects in it

�
 task descriptions to describe the planning requirements

The structured language �we call it Task Formalism or tf� is the means through which a
domain writer or domain expert can supply the domain speci�c information to the O�Plan
system� which itself is a domain independent planner
 O�Plan embodies many search space
pruning mechanisms using this domain information �strong methods� and will fall back on
other weak �search� methods� if these fail
 The Task Formalism is the mechanism that enables
the user of the system to supply domain dependent knowledge to assist the system in its search

��� Plan State

In contrast to the infrequently changing domain information outlined above� the plan state
�on the left of Figure ��� is the dynamic data structure used during planning and houses the
emerging plan
 There are many components to this structure� the principal ones being�

� the plan network itself
 O�Plan has retained a partially ordered network of activities
as the basis of its plan representation� as originally suggested in the noah planner
 In
O�Plan the plan information is concentrated in the �Associated Data Structure� �ads�

The ads is a list of node and link structures noting temporal and resource information�
plan information and a plan history

� the plan causal structure �sometimes called the teleology of the plan�
 Borrowing from
Nonlin and earlier work on O�Plan� the system keeps explicit information to �explain�
why the plan is built the way it is
 This rationale is called the Goal Structure �gost�
and� along with the Table of Multiple E�ects �tome�� provides e�cient support to the
condition achievement support module �Question Answerer or qa� used in O�Plan �c�f�
Chapman�s Modal Truth Criteria ����

� the agenda list�s�
 O�Plan starts with a complete plan� but one which is ��awed�� hence
preventing the plan from being capable of execution
 The nature of the �aws present
will be varied� from actions which are at a higher level than that which the agent can
operate� to notes of linkages necessary in the plan to resolve con�ict
 �Flaws� may also
represent potentially bene�cial� but as yet unprocessed� information
 The agenda lists
are the repository for this information which must be processed in order to attain an
executable plan
 The original O�Plan system used � agenda lists
 In later versions of
O�Plan� e�ort has been made to improve the structure of agenda information and the
triggering mechanisms
 Only one main agenda is kept in a plan state although alternative
plan states still require a separate agenda as in the �rst version of O�Plan

O�Plan Architecture �	

The plan state is a self�contained snapshot of the state of the planning system at a particular
point in time in the plan generation process
 It contains all the state of the system hence the
generation process can be suspended and this single structure rolled back at a later point in
time to allow resumption of the search�

��� Knowledge Sources

These are the processing units associated with the processing of the �aws contained in the plan
and they embody the planning knowledge of the system
 There are as many knowledge sources
�kss� as there are �aw types� including the interface to the user wishing to exert an in�uence
on the plan generation process
 The kss draw on information from the static data �e�g� the use
of an action schema for purposes of expansion� to process a single �aw� and in turn they can
add structure to any part of the plan state �e�g� adding structure to the plan� inserting new
e�ects or further populating the agenda�s� with �aws�

��� Support Modules

In order to e�ciently support the main planning functionality and provide constraint manage�
ment in O�Plan there are a number of support modules separated out from the core of the
planner
 These modules have carefully designed functional interfaces in order that we can both
build the planner in a piecewise fashion� and in particular that we can experiment with and
easily integrate new implementations of the modules
 The modularity is possible only through
the experience gained in earlier planning projects where support function requirements were
carefully separated out from the general problem solving and decision making demands of the
system

Support modules are intended to provide e�cient support to a higher level where decisions are
taken
 They should not take any decision themselves
 They are intended to provide complete
information about the constraints they are managing or to respond to questions being asked of
them by the decision making level itself

The support modules include the following�

� Time Point Network �tpn� Manager to manage metric and relative time constraints in a
plan

� Question�Answering �qa�
 Akin to Chapman�s Modal Truth Criteria ���� this is the process
at the heart of O�Plan�s condition achievement procedure
 It answers the basic question
of whether a proposition is true or not at a particular point in the plan
 The answer
it returns may be �i� a categorical �yes�� �ii� a categorical �no�� or �iii� a �maybe�� in
which case qa will supply an alternative set �structured as a tree� of strategies which a
knowledge source can choose from in order to ensure the truth of the proposition

�Assuming that the Task Formalism and the knowledge sources used on re�start are the same �static� infor�
mation used previously�

O�Plan Architecture �

� tome and gost Manager �tgm� to manage the causal structure �conditions and e�ects
which satisfy them� in a plan

� Plan State Variables Manager to manage partially bound objects in the plan

� Resource Utilisation Manager to monitor and manage the use of resources in a plan

� Instrumentation and Diagnostic routines
 O�Plan has a set of routines which allow the
developer to set and alter levels of diagnostic reporting within the system
 These can
range from full trace information to fatal errors only
 The instrumentation routines allow
performance characteristics to be gathered while the system is running
 Information such
as how often a routine is accessed� time taken to process an agenda entry� etc� can be
gathered

��� Controller

Holding the loosely coupled O�Plan framework together is the Controller acting on the agenda

Items on the agendas �the �aws� will have a context dependent priority which the controller
can re�compute� and which allows for the opportunism required to drive plan generation
 The
agenda mechanism and manager have been simpli�ed from the early O�Plan work in that
two of the three agendas have been collapsed into a single structure
 Entries on this single
structure employ a triggering mechanism for activating the knowledge sources via the use of
plan state or other data
 Triggering on speci�c occurrences� such as the binding of a variable�
the satisfaction of a condition� the occurrence of an external event� etc
� allow an e�ciency
to be built into O�Plan that was missing in the earlier version� which used a priority scheme
whereby agenda entries were prioritised at time of entry
 This enhanced scheme does have an
impact on the extra complexity of knowledge source required� forcing rules to be set regarding
the writing of knowledge sources
 In return however� this has given us knowledge sources with
much greater capability than previously achieved
 For example a knowledge source may be able
to dynamically create a trigger for the continuation of another agenda entry on suspension of
the current entry�s processing

An agenda of alternative plan states is also held by the Controller for search purposes as was
the case in the �rst version of O�Plan

��� Discussion

Having reviewed the main components in the O�Plan architecture� we wish to make some
observations on a number of issues

	���� Knowledge Sources

The �rst O�Plan planning prototype allowed knowledge sources to perform operations at a rela�
tively low level
 This proved unsuitable for some planning activities� such as that of expanding
an action� or satisfying a condition� where there is generally a large amount of work involved

O�Plan Architecture ��

This includes the introduction of structure to the plan and the posting of e�ects and conditions

All these entities are related and the �rst version of O�Plan had di�culty treating these sub�
operations as separate schedulable agenda entries with suitable priorities
 In the later stages of
that research we introduced the notion of a sequence to re�establish the relationships between
the various entries� with partial success
 A cleaner mechanism� which we refer to as compound
agenda entries� is being explored for later versions of O�Plan to allow for knowledge of complex
sequencing of planning decisions to be provided to the planner by the knowledge source writer
����

In addition� O�Plan employs a knowledge source staging scheme where the knowledge sources
allow for work to be deliberately staged ����
 At each stage the information within the agenda
entry is progressively built up for use in later stages
 Only the later stages are given permission
to alter the �nal destination of this information� i
e
 the plan state
 At the end of each
stage the knowledge source needs to satisfy staging conditions in order to continue processing
to subsequent stages� thus the controller has the ability to halt processing and suspend the
knowledge source
 The agenda record itself carries all the �state� of the processing� so can
safely be returned to the agenda for later resumption� the knowledge sources themselves are
stateless

The advantages of this scheme are many� �rstly there is no longer the yes�no situation of
whether an agenda entry can be processed as the information can be built up in stages
 This in
turn o�ers the controller greater �exibility in its task of dynamically computing priorities for
agenda records awaiting processing
 This much enhances the ability to exploit parallelism and
opportunism in the system

Knowledge sources run on Knowledge Source Platforms� which are basically processing engines
for the knowledge source code
 It is hoped that the eventual O�Plan will exploit multiprocessor
architectures� where possible� so the current system has a clean separation of its knowledge
source platforms from the other system modules� and locking mechanisms need to be put in
place to ensure that data in the system is up to date and consistent
 Only the �nal stages of a
knowledge source can change any of the plan state� earlier stages merely build up information
locally
 It is intended to investigate a language for describing Knowledge Sources �Knowledge
Source Framework�
 Amongst other things this may allow for information concerning the
selective locking of parts of the database to be gathered

	���� Controller Strategies

The Controller plays a major role in the operation of the planner� and is largely responsible for
achieving the degree of opportunism sought in an agent
 Its main role is to choose a candidate
from amongst the set of currently triggered agenda entries to be loaded onto an appropriate and
available knowledge source platform
 For this reason the Controller is also known as the Agenda
Manager
 In order to do this work e�ectively and �exibly the controller must consider priorities
�attached to or computed� for each of the triggered agenda entries
 Priorities can be relatively
complex and based around the type of the agenda entry and its measure of determinism
 The
�rst version of O�Plan used heuristic measures detailing the amount of choice contained in an
entry both at the �top� �i
e
 the measure of choice seen immediately� and at the �bottom�

O�Plan Architecture ��

�i
e
 a measure� or estimate� of the eventual choice encountered if the entry is chosen�
 In
the �rst version of O�Plan these were referred to as the Branch�� estimator and the Branch�n
estimator �a heuristic estimate of the number of distinct alternatives that could be generated
by a naive and unconstrained generation of all the choices represented by the choice point�

These measures have proved useful in distinguishing between choice items and they ensure that
opportunism is exploited where possible

The controller is designed in such a way that it can operate with di�erent pre�loaded strategies
and utility functions
 At present the system operates with a simple default strategy �knowledge
source priorities �xed by the developer� but as the representational range of the Task Formalism
increases it can facilitate the loading of domain�speci�c and specialised strategies and utility
functions
 The controller will be the subject of further research as we wish to develop more
powerful strategies� including�

� Qualitative Modelling
 As O�Plan develops for use in continuous command and control
applications the need to predict and recover from situations becomes much more demand�
ing
 An important role for the controller then is to behave in a much more pro�active
manner� exploiting as much knowledge of the system as possible
 The earlier work of
Drabble ���� provides a good starting position for how this will be achieved

� Ordering Mechanisms
 Temporal Coherence �tc� ���� showed that algorithms must be
developed to address the many variants of ordering problems �tc addressed the problem
of condition pre�ordering�
 E�ective controller operation requires recognition of triggering
mechanisms for appropriate ordering�related algorithms

��

 O	Plan Planner

��� Plan State

The planning agent plan state holds information about decisions taken during planning and
information about decisions which are still to be made �in the form of an agenda�

����� Plan Network
 ads and tpn

The Associated Data Structure �ads� provides the contextual information used to attach mean�
ing to the contents of the Time Point Network �tpn�� and the data de�ning the emerging plan

The main elements of the plan are activity� dummy and event nodes with ordering information
in the form of links as necessary to de�ne the partial order relationships between these elements

The separation of the ads level from the time points associated with the plan entities is a design
feature of the current O�Plan system and di�ers from our previous approach in Nonlin and the
�rst O�Plan prototype
 It is motivated by our approach to time point constraint management
��� which reasons about both ends of plan entities �such as nodes and links� and which can be
more e�ciently implemented where there is uniformity of representation

Time windows play an important part in O�Plan in two ways� �rstly as a means of recording
time limits on the start and �nish of an action and on its duration and delays between actions�
and secondly during the planning phase itself as a means of pruning the potential search space
if temporal validity is threatened
 Time windows in O�Plan are maintained asmin�max pairs�
specifying the upper and lower bounds known at the time
 Such bounds may be symbolically
de�ned� but O�Plan maintains a numerical pair of bounds for all such numerical values
 In fact�
a third entry is associated with such numerical bounds
 This third entry is a projected value
�which could be a simple number or a more complex function� data structure� etc
� used by the
planner for heuristic estimation� search control and other purposes�

Higher level support modules �such as qa� the tome and gost Manager� etc
� rely on the
detail held in the ads and on the functionality provided by the tpn
 The ads is maintained
by a set of routines which we refer to as the Network Manager

����� tome and gost

The Table of Multiple E�ects �tome� holds statements of form�

�fn arg� arg� ���� � value at time�point

The Goal Structure Table �gost� holds statements of form�

�All numerical constraint values in O�Plan are held as such triples�

O�Plan Planner ��

condition�type �fn arg� arg� ���� � value at time�point

from contributor�list

where contributor�list is a set of pairs of format�

�time�point � method�of�satisfaction�of�condition�

E�ects and conditions are kept in a simple pattern directed lookup table as in Nonlin ��	�
 It
is intended that the Clouds mechanism ����� which was used in the �rst version of O�Plan for
e�ciently manipulating large numbers of e�ects and their relationship to supporting conditions�
will be used in the later versions of O�Plan in due course

����� Plan State Variables

O�Plan can keep restrictions on plan state variables without necessarily insisting that a de�nite
binding is chosen as soon as the variable is introduced to the Plan State

����� Resource Utilisation Table

The Resource Utilisation Table holds statements of form�

set	
	� �resource �resource�name
 �qualifier
 ���� � �value

at �time�point

The statement declares that the particular resource is set to a speci�c value or changed by
being incremented or decremented by the given value at the indicated time point
 There can be
uncertainty in one or both of the value and the time point which are held as min�max pairs �

However� this is a simpli�cation in that a time point is a more complex structure that contains
min and max values

Task Formalism resource usage speci�cations on actions are used to ensure that resource usage
in a plan stays within the bounds indicated
 There are two types of resource usage statements
in tf
 One gives a speci�cation of the overall limitation on resource usage for an activity �over
the total time that the activity and any expansion of it can span�
 The other type describes
actual resource utilisation at points in the expansion of a action
 It must be possible �within
the min�max �exibility in the actual resource usage statements� for a point in the range of the
sum of the resource usage statements to be within the overall speci�cation given
 The Resource
Utilisation Table manages the actual resource utilisation at points in the plan

����	 Agenda

The agenda for the current plan state gives details of processing which remains to be done in
order that this plan state can be considered to have achieved its task
 This de�nes the pending

�O�Plan numerical values are held as a triple with a numerical minimum	 maximum and a projected value�

O�Plan Planner ��

decisions which remain
 The agenda entries each refer to �aws in the plan state which require
further processing
 Each �aw corresponds on a one�to�one basis to a knowledge source name
which can process the relevant agenda entry

An alternatives agenda of plan states other than the current one� which can be considered if
this plan state is unsuitable to achieve the task� is kept by the Controller via the Alternatives
Handler Support Module
 Formally� all possible Plan States known to the Alternatives Handler�
including the current plan state� should be considered as the �state� of the agent

��� Planning Knowledge Sources

The O�Plan architecture is specialised into a planning agent by including a number of knowl�
edge sources which can alter the Plan State in various ways
 The planning knowledge sources
provide a collection of plan modi�cation operators which de�ne the functionality of the planning
agent beyond its default O�Plan architecture properties �essentially limited to communication
capabilities by default�

The planning knowledge sources in the current version of the O�Plan planner are�

� KS SET TASK a knowledge source to set up an initial plan state corresponding to the
task request from the task assignment agent

� KS EXPAND a knowledge source to expand a high level activity to lower levels of detail

� KS CONDITION a knowledge source to ensure that certain types of condition are satis�
�ed
 This is normally posted by a higher level KS EXPAND

� KS ACHIEVE a knowledge source posted by KS EXPAND for achieve conditions

� KS OR a knowledge source to select one of a set of possible alternative linkings and plan
state variable bindings
 The set of alternative linkings and bindings will have been created
by other knowledge sources such as KS CONDITION earlier

� KS BIND a knowledge source used to select a binding for a plan state variable in circum�
stances where alternative possible bindings remain possible

� KS POISON STATE a knowledge source used to deal with a statement by another knowl�
edge source that the plan state is inconsistent in some way or cannot lead to a valid plan
�as far as that knowledge source is aware�

� KS USER a knowledge source activated at the request of the user acting in the role of
supporting the planning process �Planner User Role�
 This is used at present to provide
a menu to browse on the plan state and potentially to alter the priority of some choices

In addition� the default knowledge sources available in any O�Plan agent are present and are
as follows�

� KS INIT Initialise the agent

O�Plan Planner ��

� KS DOMAIN Call the Domain Information �normally tf� compiler to alter the Domain
Information available to the agent

� KS EXTRACT RIGHT Extract a plan patch for passing to the subordinate agent to the
�right� of this agent � i
e the execution agent

� KS EXTRACT LEFT Extract a plan patch for passing to the superior agent to the �left�
of this agent � i
e the task assignment agent

� KS PLANNER FINISHED is used to inform the task assignment process that the planner
has completed its task

� KS PATCH Merges a plan patch on an input event channel into the current plan state

In fact� in the current implementation� there is no use made of KS PATCH

It is intended that communication between the three agents in the O�Plan system �task as�
signer� planner and execution system� will respect the philosophy of communication via plan
patches and that the KS EXTRACT LEFT� KS EXTRACT RIGHT and KS PATCH knowl�
edge sources will be the only ones which will make use of the event channels directly

��� Use of Constraint Managers to Maintain Plan Information

O�Plan uses a number of constraint managers to maintain information about a plan while it
is being generated
 The information can then be used to prune the search �where plans are
found to be invalid as a result of propagating the constraints managed by these managers� or
to order search alternatives according to some heuristic priority
 These managers are provided
as a collection of support modules which can be called by knowledge sources to maintain plan
information

����� Time Point Network Manager �tpnm�

O�Plan uses a point based temporal representation with range constraints between time points
and with the possibility of specifying range constraints relative to a �xed time point �time zero�

This provides the capability of specifying relative and metric time constraints on time points

The functional interface to the Time Point Network �tpn�� as seen by the Associated Data
Structure �ads� has no dependence on a particular representation of the plan
 For example�
rather than the simple �before� relationship used in the O�Plan planner�s plan state representa�
tion� a parallel project exploring temporal logics� reasoning mechanisms and representations for
planning is investigating alternative higher level Associated Data Structure time relationships

The Time Point Network is the lowest level of temporal data structure and consists of a set of
points �and associated time constraints� each of which has an upper and lower bound on its
temporal distance from�

�
 other points in the network

O�Plan Planner ��

�
 a �user de�ned absolute� start time reference point

The points held in the tpn may be indirectly associated with actions� links and events� with the
association being made at the Associated Data Structure level
 This structure allows points
to be retrieved and compared through a suitable module interface and with a minimum of
overhead
 The interface is important and re�ects the functionality required of the tpn� and
hides the detail
 This ensures that we have no absolute reliance on points as a necessary
underlying representation
 As well as its use in the O�Plan activity orientated planner� the
current tpnm has also been applied to large resource allocation scheduling problems in the
tosca scheduler �
� where the number of time points was in excess of 	��� and the number of
temporal constraints exceeded ����

O�Plan Planner ��

Figure � and Figure � show the use of the tpn for applications involving task planning and
resource allocation

Action � Action �

u u u u u� � � �

�

�

� �

Delay T�

Between T� �� T�At T�

T� �� T�

t� t� t� t� t�

T� �� T�T� �� T�

��	�

TPN

ADS

Figure �� Example of activity planner at ads using tpn

u u u u u� � � �

� �

�

TPN

ADS

Resource �

Resource �

Resource �
Delay T�

At T�

At � Between T� �� T�

T� �� T�

t� t� t� t� t�

T� �� T�T� �� T�

��	�

Figure �� Example of resource allocation at ads using tpn

O�Plan Planner �	

����� tome�gost Manager �tgm�

The con�ict�free addition of e�ects and conditions into the plan is achieved through the tgm�
which relies in turn on support from the qa support module to suggest resolutions for potential
con�icts

����� Resource Utilisation Management �rum�

O�Plan uses a Resource Utilisation Manager to monitor resource levels and utilisation
 Re�
sources are divided into di�erent types such as�

�
 Consumable� these are resources which are �consumed� by actions within the plan
 For
example� bricks� petrol� money� etc

�
 Re�usable� these are resources which are used and then returned to a common �pool�

For example� robots� workmen� lorries� etc

Consumable resources can be subcategorised as strictly consumed or may be producible in some
way
 Substitutability of resources one for the other is also possible
 Some may have a single
way mapping such as money for petrol and some can be two way mappings such as money for
travellers� cheques
 Producible and substitutable resources are di�cult to deal with because
they increase the amount of choice available within a plan and thus open up the search space

The current O�Plan Resource Utilisation Manager uses the same scheme for strictly consumable
resources as in the original O�Plan
 However� a new scheme based on the maintenance of
optimistic and pessimistic resource pro�les with resource usage events and activities tied to
changes in the pro�les is now under study

����� Plan State Variables Manager �psvm�

The Plan State Variable Manager is responsible for maintaining the consistency of restrictions
on plan objects during plan generation
 O�Plan adopts a least commitment approach to object
handling in that variables are only bound as and when necessary
 For example� in a block
stacking problem� moving block A to block B means that it is necessary to consider the object
which A was previously on top of and from which it was moved
 This object is introduced as
a plan state variable whose value will be bound as and when necessary
 The �rst version of
O�Plan used a separate agenda to hold variable binding agenda entries
 This scheme proved to
be di�cult to use due to the number of constraints which were built up between agenda entries
and within agenda entries
 The constraints were speci�ed as�

� Sames� This speci�es that this plan state variable should be the same as another plan
state variable

� Not
Sames� This speci�es that this plan state variable should not be the same as another
plan state variable

O�Plan Planner �

� Constraint
list� This speci�es a list of attributes which the value to which the plan
state variable is bound must have
 For example� it must be green� hairy and over 	ft tall

The Plan State Variables Manager within the Database Manager �dm� maintains an explicit
�model� of the current set of plan state variables �psv�

When a Plan State variable �psv� is created by the planner the Plan State Variables Manager
creates a plan state variable name �psvn�� plan state variable body �psvb� and a set list from
which a value must be found
 For example� the variable could be the colour of a spacecraft�s
camera �lter which could be taken from the set �red green blue yellow opaque�
 A plan
state variable must have an enumerable type and thus cannot be� for example� a real number

The psvb holds the not
sames and constraint
lists and is pointed to by one or more psvns

This allows easier updating as new constraints are added and psvbs are made the same �are
collapsed to a single psvb�
 Two or more psvbs can be collapsed into a single psvb if all of
the constraints are compatible
 e�g
 the not
sames and constraints
list
 A psvn pointing
to a collapsed psvb is then redirected to point at the remaining psvb
 This scheme is a lot
more �exible than the previous �sames� scheme as it allows triggers to be placed on the binding
of psv�s �e
g
 do not bind until the choice set is less than �� and allows variables which are
creating bottlenecks to be identi�ed and if necessary restricted or bound

��� Support Mechanisms in O�Plan

As well as the managers referred to above� a number of other support routines are available
for call by the Knowledge Sources of O�Plan
 The main such support mechanisms which have
been built into the current O�Plan Planner include�

� Question Answerer �qa�
The Question�Answering module is the core of the planner and must be both e�cient
and able to account for temporal constraints
 qa supports the planner in satisfying
and maintaining conditions in the plan in a con�ict�free fashion� suggesting remedies
where possible for any interactions detected
 qa as implemented in O�Plan is an e�cient
procedural interpretation of Chapman�s Modal Truth Criteria ���� which was distilled from
qa in Nonlin ��	�
 qa provides support for the tgm in the system� and is supported in
turn by another low level module� the Graph Operations �gop�

� Graph Operations Processor �gop�
The gop is a software implementation of a graph processor� providing e�cient answers
to ordering related questions within the main plan �represented by a graph�
 The gop
works within temporally ordered� as well as partially ordered� activities in the graph

� Contexts

All data within the O�Plan plan state can be �context layered� to provide support for
alternatives management and context�based reasoning
 The support module provides an
e�cient way of context layer any data structures accessor and updator function in Lisp

This is particularly useful for the underlying content addressable database in the system�
O�Base

O�Plan Planner ��

� O
Base

This database support module supports storage and retrieval of entity�relationship data
with value in context
 This model allows for retrieval of partially speci�ed items in the
database

In addition� there are support modules providing support for the User Interface� Diagnostics�
Instrumentation� etc
� and there are others which still need further development �e
g
� variable
transaction management�

��� Alternatives Handler

There is an additional support module capability in O�Plan which is used by the Controller

This provides support for handling alternative plan states within an O�Plan agent

If any stage of a knowledge source �nds that it has alternative ways to achieve its task� and it
�nds that it cannot represent all those alternatives in some way within a single plan state� then
the controller provides support to allow the alternatives that are generated to be managed
 This
is done by the knowledge source telling the controller about all alternatives but one favoured
one and asking for permission to continue to process this �by the equivalent of a stage check�

This re�ects the O�Plan search strategy of local best� then global best
 A support routine is
provided by the controller to allow a knowledge source writer to inform the controller of all
alternatives but the selected one

A knowledge source which cannot achieve its task or which decides that the current plan state
is illegal and cannot be used to generate a valid plan may terminate and tell the controller
to poison the plan state
 O�Plan will normally initiate consideration of alternative plan states
by an exchange between the controller and the alternatives handler
 A new current plan state
will be selected and the planning process will be allowed to continue
 Concurrently running
knowledge sources working on the old �poisoned� plan state will be terminated as soon as
possible �at the next stage boundary� as their e�orts will be wasted

As well as having the existing system�s option to explore alternative plan states� future versions
of O�Plan will consider ways to unpoison a plan state by running a nominated poison handler
associated with the knowledge source that poisoned the plan state or with the reason for the
plan state poison

��� Implementation as Separate Processes

In the unix and Common Lisp based implementation of O�Plan the main managers and knowl�
edge platforms are implemented as separate pseudo�processes running in a round�robin manner

One advantage of this approach is that knowledge sources can be run in pseudo�parallel with
one another� and that external events can be processed by the Interface Manager �the manager
in charge of all interaction� event handling� diagnostic handling and instrumentation� as they
occur
 The implementation could be moved to a true multi�processors system which would take
into account the multi�tasking aspects very easily
 It would then be possible to measure the
reaction time performance of the system
 This is measured by the time taken to post an agenda

O�Plan Planner ��

entry by the Event Handler and it being picked up by the agenda manager once triggered
 The
cycle time performance of the system is measured by the reaction time plus the time to assign
the agenda entry to a knowledge source and have it run to completion

��

� O	Plan Task Assigner

In the current implementation of O�Plan� task assignment is a simple process with a menu
of options available to the user
 Communication between the task assignment agent and the
planning agent of O�Plan does not currently re�ect our intentions of communication via plan
patches

A menu of choices is provided�

� Initialise Planner

� Input TF �via pop�up menu of TF �les available�

� Set Task �via pop�up menu of tasks available in current TF �le�

� Add to Task �via a pop�up menu and input of the selected action from those available in
the current TF�

� Plan View

� World View �at nominated node�

� Replan

� Execute Plan

� Quit

The task assignment process maintains the set of open command choices depending on the
current status of the planning agent �whether it has been given domain information� set a
speci�c task or is currently planning or has already generated a complete plan�

O�Plan will eventually support clear authority models which will allow a task assigner to au�
thorise planning �on parts of a plan� to a given level or the execution of �parts of� a chosen
plan
 At the moment the authorities are driven from the menu of choices provided only

The planner views the task assignment process as if it was a full O�Plan agent and takes
requirements and commands in the form of events from the task assigner
 The planner also
packages its responses to the task assigner in the form of simpli�ed events

��

� O	Plan Execution System

One of the aims of the O�Plan project is to investigate the issues involved in linking an intelligent
planner with a remote execution agent
 In order to investigate these issues a version of the O�
Plan architecture has been con�gured to act as an execution agent
 To con�gure O�Plan as an
execution agent required a new set of knowledge sources to be de�ned which allowed the system
to follow a plan rather then generate one

The O�Plan execution agent accepts a �plan fragment� from the planner �this is created through
the use of a knowledge source KS EXECUTE in the planner� together with a set of monitoring
instructions specifying how the actions of the plan should be monitored
 The plan fragment
consists of�

�
 the plan speci�ed as a partially�order network of activities

�
 the tome� gost and temporal information built up during plan generation

�
 the attachment point to be used by the execution monitor

The message is received by the left input guard of the execution agent�s Event Handler and
converted to an agenda entry
 When the agenda entry is processed it causes the knowledge
source KS BREAKUP to be run in the execution agent
 KS BREAKUP posts the appropriate
entries to the Diary Manager of the execution agent
 The Diary Manager is set up to initiate
triggers at the appropriate time
 When triggered� the agenda entry is added to the triggered
agenda list to await the availability of a knowledge source platform on which to run
 In order
to simulate the execution of the plan a World Process has been provided which allows the user
a limited amount of interaction with the plan as it is being executed
 For example� removing
events such as the start of an action� delaying the completion of an action beyond its proposed
start or end time

The work to date on the execution agent within the O�Plan architecture is only at a very
simple level and has mostly been concerned with ensuring that the communication capabilities
are present to address issues of inter�agent plan fragment passing
 Further work to characterise
the requirements for and capabilities of a reactive execution agent have been undertaken ����
and an associated research project is now underway to explore how the O�Plan architecture can
support these requirements

��

 O	Plan User Interface

	�� Planner User Interface

ai planning systems are now being used in realistic applications by users who need to have
a high level of graphical support to the planning operations being considered
 In the past�
our ai planners have provided custom built graphical interfaces embedded in the specialist
programming environments in which the planners have been implemented
 It is now important
to provide interfaces to AI planners that are more easily used and understood by a broader
range of users
 We have characterised the user interface to O�Plan as being based on two views
supported for the user
 The �rst is a Plan View which is used for interaction with a user in
planning entity terms �such as the use of pert�charts� Gantt charts� resource pro�les� etc�
 The
second is the World View which presents a domain�orientated view or simulation of what could
happen or is happening in terms of world state

Figure 	� Example Output of the AutoCAD�based User Interface

O�Plan User Interface ��

Computer Aided Design �cad� packages available on a wide range of microcomputers and
engineering workstations are in widespread use and will probably be known to potential planning
system users already or will be in use somewhere in their organisations
 There could be bene�ts
to providing an interface to an ai planner through widely available CAD packages so that the
time to learn an interface is reduced and a range of additional facilities can be provided without
additional e�ort by the implementors of ai planners

Some CAD packages provide facilities to enable tailored interfaces to be created to other pack�
ages
 One such package is AutoCAD ���� ���� � though it is by no means unique in providing
this facility
 AutoCAD provides AutoLISP� a variant of the Lisp language� in which customised
facilities may be provided �	�� ����
 This is convenient for work in interfacing to ai systems as
workers in the ai �eld are familiar with the Lisp language
 However� the techniques employed
would apply whatever the customisation language was

We have built an interface to the Edinburgh ai planning systems which is based on AutoCAD

A complete example of the interface has been built for two di�erent domains�

� Space Platform Building
O�Plan Task Formalism has been written to allow the generation of plans to build various
types of space platform with connectivity constraints on the modules and components

� Non�combatant Evacuation Operation �neos�
O�Plan Task Formalism has been written to model the evacuation of nationals from the
mythical island of Paci�ca in which unrest has broken out

A domain context display facility has been provided for both applications through the use
of AutoLISP
 This allows the state of the world following the execution of any action to be
visualised through AutoCAD
 Means to record and replay visual simulation sequences for plan
execution are provided

A sample screen image is included in Figure 	
 There are three main windows
 The planner is
accessible through the Task Assignment window to the top left hand corner which is showing
the main user menu
 The planner is being used on a Paci�ca neo task and has just been used
to get a resulting plan network
 In the Plan View supported by O�Plan� this has been displayed
using the Load Plan menu item in the large AutoCAD window along the bottom of the screen

Via interaction with the menu in the AutoCAD window� the planner has been informed that
the user is interested in the context at a particular point in the plan � the selected node is
highlighted in the main plan display
 In the World View supported by O�Plan� the planner has
then provided output which can be visualised by a suitable domain speci�c interpreter
 This is
shown in the window to the top right hand corner of the screen where a map of the topology
of the island� information on it�s capital Delta and its �position� relative to other countries are
simultaneously displayed

The O�Plan Plan View and World View support mechanisms are designed to retain indepen�
dence of the actual implementations for the viewers themselves
 This allows widely available
tools like AutoCAD to be employed where appropriate� but also allows text based or domain
speci�c viewers to be interfaced without change to O�Plan itself
 The speci�c viewers to be

O�Plan User Interface ��

used for a domain and the level of interface they can support for O�Plan use is described to
O�Plan via the domain Task Formalism �tf�
 A small number of viewer characteristics can be
stated
 These are supported by O�Plan and a communications language is provided such that
plan and world viewers can input to O�Plan and take output from it

Sophisticated Plan and World Viewers could be used in future with O�Plan
 We believe that
time�phased tactical mapping displays of the type used in military logistics can be used as a
World Viewer
 We have also considered interfaces to a Virtual Reality environment we term
PlanWorld�VR

O�Plan User Interface ��

	�� System Developer Interface

When O�Plan is being used by a developer� it is usual to have a number of windows active
to show the processing going on in the major components of the planner
 There is a small
window acting as the task assignment agent with its main O�Plan menu
 There is then separate
window for the Interface Manager �im�� through which the user can communicate with other
processes and through which diagnostic and instrumentation levels can be changed
 The Agenda
Manager�Controller �am�� the Database Manager �dm� and the Knowledge Source Platform�s�
�kp� then have their own windows
 Further pop�up windows are provided when viewing the
plan state graphically or when getting detail of parts of the plan� etc

A sample developer screen image is shown in �gure

Figure
� Example Developer Interface for the O�Plan Planning Agent

O�Plan User Interface �	

	�� O�Plan User Roles

User interaction with O�Plan can occur for a variety of purposes
 Various roles of an user
interacting with O�Plan are de�ned and are supported in di�erent ways within the system
 We
consider the identi�cation of the di�erent roles to be an useful aid to guide future user interface
support development

	�� Domain Expert Role

A single user responsible for de�ning the bounds on the application area for which the system
will act
 The domain expert user may directly or indirectly specify O�Plan Task Formalism to
de�ne the domain information which the planner will use

	�� Domain Specialist Role

One or more domain specialists may de�ne information at a more detailed level within the
framework established by the domain expert
 Once again� the domain specialist may directly
or indirectly specify O�Plan Task Formalism to provide the detailed domain information which
the planner will use

	�� Task Assignment User Role

The command user interacts only with the Task Assignment Agent to provide user requirements
or commands
 This user is responsible for the selection of the task which the system will try to
carry out
 The current system provides a menu which allows for a domain to be selected and for
a choice to be made from the task schemas within the Task Formalism for that domain
 Future
management of alternative plan options� plan analysis support and the provision of authority
to plan or execute the plan are to be supported at this level

	�
 Planner User Role

The planner user is the user responsible for ensuring that a suitable plan is generated to carry
out the given task
 This may involve the selection of alternatives� the restriction of options
open to the planner and browsing on the emerging and �nal plan to ensure it meets the task
requirements set by the task assignment user
 Since the planner user can perform decision
making in the planner agent� the planner user is supported by a knowledge source called KS�
USER
 This knowledge source can be added to the agenda for the current plan state on demand
�via an user request�
 Since the KS�USER knowledge source normally has high priority� it will
normally be called as soon as possible
 The KS�USER knowledge source activation has access
to the current plan state to allow for decisions on user intervention to depend on the contents
of the current plan state

O�Plan User Interface �

	�� Execution System Watch�Modify Role

The user may interact with the execution system to watch the state of execution of the plan
and perhaps even to modify the behaviour of the execution system

	�	 World Operative

Any users who are required to carry out activities in the world �acting as an e�ector� or who
report aspects of the environment �acting as a sensor�

	��
 World Interventionist

If a world simulation is being used to demonstrate the O�Plan execution system� an user may
be given facilities to intervene in the world simulation to cause events to happen and problems
to occur such that execution of plans in uncertain situations can be tested

	��� User Support to Controller Role

The user may assist an O�Plan agent�s controller to decide which knowledge source to dispatch
to a waiting knowledge source platform or to decide on when to direct a running knowledge
source to stop at a stage boundary

	��� User Support to Alternatives Handler

The user may assist an O�Plan agent�s Alternatives Handler to decide which alternative to
select when one is needed or to suggest an alternative is tried rather than continuing with the
current plan state

	��� System Developer Role

The system developer has access to the diagnostic interface of the system running within each
agent
 This is supported by the Developer Diagnostic Interface of each O�Plan agent
 The
behaviour of this interface can be set and modi�ed via a Control Panel which allows for the
setting of levels of diagnostics using buttons� etc

	��� System Builder

The O�Plan Agent Architecture is intended to be su�ciently �exible to allow a system builder
to create a system with de�ned behaviour
 To this end� it is possible to have radically di�erent
plan state data structures� knowledge sources� domain information and controller strategies
 For
example� the O�Plan Architecture already has been used to provide a Manufacturing Scheduling
System which uses a resource orientated representation for the plan state rather than the action

O�Plan User Interface ��

orientated plan representation in the O�Plan Planner
 This scheduler� called tosca �The Open
SCheduling Architecture�� also has di�erent knowledge sources than those used in the O�Plan
Planner

��

�� Performance Issues

O�Plan has been designed in such a way that components can be improved within the speci�
�cations adopted
 Performance issues have been considered in establishing the interfaces and
protocols used
 The current prototype includes only very simple implementations of some of
the components

�
�� Architecture Performance

An early consideration for the O�Plan project was to ensure that the agent orientated design
would not introduce overheads of computation which would be unacceptable
 A number of
designs for the multi�process structure required to support O�Plan were discussed
 These in�
cluded shared memory processes and processes which used a server for access to the shared data
elements
 At the time that these discussions were taking place there was little uniformity of
handling concurrent processes in Common Lisp systems
 Tests were conducted with complete
O�Plan systems which had only a trivial knowledge source included
 These were implemented
in versions of Common Lisp and the C language

Two measures were tested�

Agent Latency This measure shows the minimum time for an event at the agent boundary to
be noted by the Event Handler� communicated to the Agenda Manager�Controller� trig�
gered �where the trigger is null�� communicated to a Knowledge Source Platform �which
is waiting and idle� and an appropriate Knowledge Source activated on the platform to
process the agenda entry corresponding to the event

Agent Cycle Time This measure shows the minimum time for a Knowledge Source to post an
agenda entry back to the Agenda Manager�Controller and terminate its processing� for the
agenda entry to be triggered �where the trigger is null�� communicated to a Knowledge
Source Platform �which is waiting and idle� and an appropriate Knowledge Source is
activated on the platform to process the agenda entry
 This corresponds to a single cycle
of the agent internally when only one Knowledge Source Platform is available

Our main performance goal at the outset of the O�Plan research was to allow the generation
of a plan with a few hundred nodes� which we judge would require 	������� agenda cycles� in
about � minutes
 Subjectively� we judged that � minutes was an acceptable period for a user
to sit awaiting a result in our demonstrations
 Recent versions of O�Plan are exceeding this
performance goal

�
�� Constraint Manager and Support Routine Performance

Our experience with earlier ai planners such as Nonlin and the �rst version of O�Plan was
that a large proportion of the time of a planner could be spent in performing basic tasks
on the plan network �such as deciding which nodes are ordered with respect to others� and in

Performance Issues ��

reasoning about how to satisfy or preserve conditions within the plan
 Such functions have been
modularised and provided as Constraint Managers �Graph Operations Processor� Time Point
Network Manager� tome�gostManager� etc� and Support Routines �Question Answering� etc�
in O�Plan to allow for future improvements and replacement by more e�cient versions

	�

�� Modularity� Interfaces and Protocols

This section provides a summary of contribution of the O�Plan project towards the identi�ca�
tion of separable support modules� internal and external interface speci�cations and protocols
governing processing behaviours which are relevant to an ai planning system

���� Components

The O�Plan project has sought to identify modular components within an AI command� plan�
ning and control system and to provide clearly de�ned interfaces to these components and
modules

The main components are�

�
 Domain Information � the information which describes an application domain and tasks
in that domain to the planner

�
 Plan State � the emerging plan to carry out identi�ed tasks

�
 Knowledge Sources � the processing capabilities of the planner �plan modi�cation opera�

tors�

�
 Support Modules � functions and constraint managers which support the processing ca�
pabilities of the planner and its components

	
 Controller � the decision maker on the order in which processing is done

���� Support Modules

Support Modules may either be Constraint Managers or other types of modules intended to
provide e�cient support to a higher level where decisions are taken
 They should not take any
decision themselves
 They are intended to provide complete information about the constraints
they are managing or to respond to questions being asked of them by he decision making level

The support modules normally act to manage information and constraints in the plan state

Examples of Support Modules in O�Plan include�

� E�ect�Condition �tome�gost� Manager including Question Answering �qa�

� Resource Utilisation Manager

� Time Point Network Manager

� Object Instantiation �Plan State Variables� Manager

� Alternatives Handler

� Instrumentation

Modularity� Interfaces and Protocols 	�

� Monitors for output messages� etc

A guideline for the provision of a good support module in O�Plan is the ability to specify the
calling requirements for the module in a precise way �i
e
 the sensitivity rules under which the
support module should be called by a knowledge source or from a component of the architec�
ture�

���� Protocols

In addition� a number of external interface speci�cations and protocols for inter�module use have
been established
 Only �rst versions of these interfaces have been established at present� but
we believe that further development and enhancement of the planner can take place through
concentrating e�ort on the speci�cation of these interfaces
 This should greatly assist the
process of integrating new work into the planning framework

The protocols for regulating the processing conducted by components of O�Plan are�

�
 Knowledge Source Protocol
for the ways in which a Knowledge Source is called by the Controller� can run and can
return its results to the Controller and for the ways in which a Knowledge Source can
access the current plan state via the Database Manager

�
 KS USER Protocol
for the ways in which the user �in the role of Planner User� can assist the planning system
via a specially provided knowledge source

�
 Inter�agent Communications Protocol
controls the way in which the KS EXTRACT LEFT� KS EXTRACT RIGHT and
KS PATCH Knowledge Sources operate and may use the Interface Manager�s support
routines which control the agent�s input and output event channels �LEFTIN� LEFT�
OUT� RIGHTIN and RIGHTOUT�

���� Internal Support Facilities

The internal support provided within the planner to assist a Knowledge Source writer includes�

�
 Knowledge Source Framework �ksf�
is a concept for the means by which information about a Knowledge Source can be pro�
vided to an agent
 This will ensure that a suitable Knowledge Source Platform is chosen
when a Knowledge Source is run inside an agent
 It will also allow a model of the capa�
bilities of other agents to be maintained
 The ksf will also allow for triggers to be set up
for releasing the Knowledge Source for �further� processing
 It will allow a description of
the parts of a plan state which can be read or altered by each stage within the knowledge
source �to allow for e�ective planning of concurrent computation and data base locking
in future�

Modularity� Interfaces and Protocols 	�

�
 Agenda Trigger Language

gives a Knowledge Source writer the means by which a computation can be suspended
and made to await some condition
 The conditions could relate to information within
the plan� for external events or for internally triggered Diary events
 O�Plan provides a
limited number of triggers of this kind� but we anticipate this being expanded signi�cantly
in future

�
 Controller Priority Language

allows the input of guidance rules for the ordering decisions taken by the O�Plan Controller
on which triggered agenda entries to process next
 Currently� only simple numerical
priorities are used to guide the controller

The following sections give further details of these facilities

������ Knowledge Source Framework �ksf�

The ksf allows information about a knowledge source to be provided to the O�Plan architecture

A ksf description of a knowledge source is the mechanism by which a new capability is declared
to an O�Plan agent

The ksf gives the following details�

� the name of the knowledge source
 This is used by other knowledge sources to indicate
that they want to call this capability by posting suitable agenda entries as they run
 It
is also used for nominating a knowledge source to deal with an event

� parameters match description
 This is used to restrict the legal parameters that may be
passed to the knowledge source

� agenda posting�information �eld match description
 This is used to restrict the legal
entries for the posting�information �eld accepted back by a knowledge source �used for
information temporarily kept between stages of a suspended knowledge source�
 It can
also be used to ensure that any modi�cation of this posting information �eld not done by
the knowledge source itself is veri�ed as being acceptable to the knowledge source itself

� stages information in the form

� �stage number� �trigger� �� �ks stage function� �locking information�

� the stage number need only be given if there is more than one stage

� The �trigger� description can be composed from the O�Plan Trigger Language �
which itself will evolve over time

� the �ks stage function� is the actual procedure that will be called to implement the
current knowledge source stage

� �locking information� is provided to de�ne whether this stage needs the plan state
in READ mode or WRITE mode
 If not provided� the default assumption is that

Modularity� Interfaces and Protocols 	�

the stage is a READ mode stage and that all e�ects of the stage are created by com�
munication with the controller �normally also saving information in the information
�eld of the agenda record when the knowledge source terminates if asked to do so at
the stage end�
 It is also possible to give information about the speci�c parts of the
plan state that can be READ by or WRITTEN to by this stage to allow for selective
locking strategies to be explored in future versions of O�Plan

� controller priority function
 To provide heuristic guidance to the controller based upon
the overall information in the agenda record nominating this knowledge source
 This
will only be applied to triggered agenda entries
 It may use Branch � and Branch N
information ���� in an agenda entry to provide heuristic guidance to the controller

� plan state poison handler
 The function to be called whenever this knowledge source
terminates with a request to poison the plan state �i
e
 when this knowledge source
thinks that the plan state is inconsistent and that it cannot recover from the problem
itself�

The ksf is used to build a capability library for the agent and to de�ne the event information
that may be passed by the guards on the external event channels of the agent
 Extensions to
the ksf will be needed as further re�nement of the agent properties of an O�Plan system are
de�ned

������ Agenda Trigger Language

An agenda entry can be set to await a trigger
 This trigger can relate to information in the
plan state� to external events� etc
 The facility can be used by a Knowledge Source writer to
allow Knowledge Source processing to be suspended at a stage boundary and made to await
the trigger condition before resumption
 The responsibility for reactivating the computation is
taken by the O�Plan system using facilities within the Database Manager

The trigger can be composed from the O�Plan Trigger Language � which itself will evolve over
time
 Triggers will be composed to form a boolean function

Example triggers available within the O�Plan planner are�

� �always triggered�

� dependencies on the plan state to be selected including�

wait for a suitable e�ect matching some speci�cation

wait for a fully instantiated binding for a Plan State Variable

� links to events triggers at a speci�c time via the O�Plan Diary

� empty agent agenda

Modularity� Interfaces and Protocols 	�

������ Controller Priority Language

Currently� the O�Plan Controller selects agenda entries based on a numerical priority which is
simply a statically computed measure of the priority of outstanding agenda entries in a plan
state
 Our aim for the future is to provide a rule based controller which can make use of priority
information provided in the form of rules in an O�Plan Controller Priority Language
 This
concept will allow us to clarify our ideas on what information should govern controller ordering
decisions
 Domain information linking to generic Controller Priority Language statements which
can a�ect the controller decisions is likely to be considered as part of a link between Task
Formalism �tf� and the operation of the Controller

���� External Interfaces

The external interfaces provided by the planner are�

�
 Task Formalism �tf� as the language in which an application domain and the tasks in it
can be expressed to the planner

�
 Plan View User Interface which allows for domain speci�c plan drawing and interaction
to be provided

�
 World View User Interface which allows for domain speci�c world state simulation facil�
ities and interaction to be provided

�
 External System Interface provided by tf compute conditions for ways in which exter�
nal data bases� modelling systems� simulations� CAD packages� geographical information
systems� route �nders� look�up tables� etc
� can be used and for ways in which these ex�
ternal systems can access plan information and provide quali�cations on the continued
validity of their results where appropriate

		

�� Related Projects

O�Plan is one of a set of projects at Edinburgh grouped under the title of europa �Edin�
burgh University Research into Open Planning Architectures�
 The combined research of these
projects cover issues in Knowledge Based Planning and Scheduling and are anchored around
the two main� long term research projects of O�Plan and tosca �The Open SCheduling Archi�
tecture�
 tosca is a variant of the same ideas applied to the area of operations management
in the factory �job shop� environment �
�
 tosca employs appropriate knowledge sources for
its domain of application �e�g� resource assignment� bottleneck analysis� which operate on an
emerging schedule state� similar to the notion of the plan state mentioned above

Another project is investigating temporal representations for Planning and Scheduling to pro�
vides a more �exible representation of plans and schedules based on temporal logics
 Planning
and Scheduling are often considered to be similar activities� though the reality is that they are
quite di�erent
 However there is undoubtably a great deal of overlap� particularly with respect
to resource handling
 Our aim is to develop designs and architectures suited to both types of
problem and to develop as much common ground as is possible
 O�Plan plays a key role in this
plan

Work has been undertaken with the uk�s Defence Research Agency into the problem of support�
ing sta� in Scotland�s main Search and Rescue Coordination Centre
 The problem they face is
coordinating a number of rescue assets �helicopters� search teams� lifeboats� etc� and monitor�
ing the plans developed as the rescue progresses
 The work has centred on the development of
a generic approach �with appropriate tools� to assist in reliable capture of knowledge related
to planning� scheduling and resource allocation
 This approach will be validated through the
production of a demonstration system for the the Search and Rescue Centre

A student research project ���� investigated the requirements for a reactive execution agent and
exploring the O�Plan architecture to meet the requirements

	

�� Future Plans for O	Plan

The O�Plan project is continuing actively to develop in a number of ways

The current O�Plan prototype now gives us a basis for a complete system for command spec�
i�cation� planning and execution control
 A number of parts of the system are provided in
a very simplistic way at present
 It is intended that e�ort will be devoted to replacement of
components in the current system with improved versions
 Some components in the �rst ver�
sion of O�Plan� for example �such as the �Clouds� data structures for helping with tome and
gost management ������ have yet to be re�implemented in the current prototype
 Experiments
with the integration of constraint managers or support modules provided by others for time
point network management and for world modelling will be conducted
 The extremely simple
controller strategies used in the current implementation will be improved upon

Further e�ort is required to clarify and further develop the O�Plan component and support
module de�nitions� the protocols �such as the Knowledge Source protocol and the KS USER
protocol�� external interfaces �such as tf and the external systems interface� and internal
support facilities �such as the ksf and the agenda triggering language�
 Involvement with
other projects and research groups will be sought to broaden our perspective during this further
development

A language krsl is now being developed on the us arpa�Rome Laboratory Knowledge�based
Planning and Scheduling Initiative to act as a domain description language for command� plan�
ning� scheduling and control applications
 It is envisaged that a pre�processor to take descrip�
tions of application domains in krsl and to create O�Plan tf from them will be investigated

In future� we anticipate employing qualitative world modelling within the O�Plan planning
agent as demonstrated by Drabble ���� in his Excalibur system �based on Nonlin�
 This will
be used to model processes not under the control of the planner and to predict the impact of
plans on the execution environment

It is intended that communication between the three agents in the O�Plan system �task as�
signer� planner and execution system� will be brought fully into line with our philosophy on
communication via plan patches and via the KS EXTRACT LEFT� KS EXTRACT RIGHT
and KS PATCH knowledge sources which are the only ones which should make use of the event
channels directly

In the near future a great deal of work will be carried out on the task assignment agent
 We have
a desire to improve the quality of the User Interface and the support available for the e�ective
writing of domain information about an application �in tf�� the speci�cation and alteration of
tasks set for the planner and execution system� and the maintenance of a user view of the state
of planning� execution and the external world model
 This will involve research related to clear
authority modelling in the O�Plan architecture

	�

�� Bibliography

References

��� Allen� J
� Hendler� J
 Tate� A
 Readings in Planning
 Morgan�Kaufmann ����

��� Alvey Directorate ������ Alvey Grand Meeting of Community Clubs
 Available through
IEE� Savoy Place� London

��� Arentoft� M
M
� Parrod� Y
� Stader� J
� Stokes� I
 Vadon� H
 OPTIMUM�AIV	 A Plan�

ning and Scheduling System for Spacecraft AIV Telematics and Informatics Vol
 �� No
 ��
pp
 �����	�� Pergamon Press

��� AutoDesk AutoCAD Reference Manual� ����

�	� AutoDesk AutoLISP Reference Manual� ����

�
� Beck� H
A
 Constraint Monitoring in TOSCA� in �Working Notes from the ����
AAAI Spring Symposium on Practical Approaches to Scheduling and Planning�� �eds

M
E
Drummond� M
Fox� A
Tate and M
Zweben�� NASA Ames Research Center� AI Re�
search Branch Technical Report FIA������

��� Bell� C
E
 and Tate� A
 Using Temporal Constraints to Restrict Search in a Planner

Presented at the Third Workshop of the Alvey IKBS Programme�s Special Interest Group
on Planning� Sunningdale� Hants� January ���	
 Also available as AIAI�TR�	

��� Chapman� D
 Planning for conjunctive goals
 Arti�cial Intelligence Vol�
�� pp�

�
���
�
��

��� Currie� K
W
 and Tate� A
 ����	�O�Plan	 Control in the Open Planning Architecture� Pro�
ceedings of the BCS Expert Systems �	 Conference� Warwick� UK� Cambridge University
Press

���� Currie� K
W
 Tate� A
 O�Plan� the Open Planning Architecture� Arti�cial Intelligence
Vol 	�� No
 �� Autumn ����� North�Holland

���� Daniel� L
 ������ Planning and Operations Research in Arti�cial Intelligence� Tools� Tech�
niques and Applications �eds
 O�Shea and Eisenstadt�� Harper and Row� New York

���� Drabble� B
 Planning and reasoning with processes
 Procs� of the �th Workshop of the
Alvey Planning SIG� The Institute of Electrical Engineers� November� �
��� Full paper to
appear in Arti�cial Intelligence Journal� ����

���� Drabble� B
 and Tate� A
� Using a CAD system as an interface to an AI Planner� European
Space Agency Conference of Space Telerobotics� European Space Agency� ����� Noordwijk�
Holland

Bibliography 	�

���� Drummond� M
 Currie� K
 Exploiting temporal coherence in nonlinear plan construction

Procs� of IJCAI��
� Detroit�

��	� Drummond� M
E
� Currie� K
W
 and Tate� A
 ������ O�Plan meets T�SAT	 First results

from the application of an AI Planner to spacecraft mission sequencing� AIAI�PR���� AIAI�
University of Edinburgh

��
� Drummond� M
E
� Tate� A
 ������ PLANIT Interactive Planners� Assistant � Rationale

and Future Directions� AIAI�TR����� AIAI� University of Edinburgh

���� Fikes� R
E
� Hart� P
E
 and Nilsson� N
J
 ������ Learning and Executing Generalized Robot
Plans� Arti�cial Intelligence Vol
 �

���� George�� M
 P
 and A
 L
 Lansky ����
� Procedural Knowledge� in Proceedings of the
IEEE� Special Issue on Knowledge Representation� Vol
 ��� pp ���������

���� Hayes� P
J
 ����	� A representation for robot plans� IJCAI��	� Proceedings of the Interna�
tional Joint Conference on Arti�cial Intelligence� Tbilisi� USSR

���� Hayes�Roth� B
 Hayes�Roth� F
 A cognitive model of planning
 Cognitive Science� pp

��� to
��� �
�
�

���� Lesser� V
 Erman� L
 A retrospective view of the Hearsay�II architecture
 In procs� of

IJCAI���� pp� ���
�� �
��

���� Liu� B
� Ph
D Thesis� Knowledge Based Scheduling� Edinburgh University� ����

���� Malcolm� C
 and Smithers� T
 ������ Programming Assembly Robots in terms of Task
Achieving Behavioural Modules	 First Experimental Results� in Proceedings of the Second
Workshop on Manipulators� Sensors and Steps towardsMobility as part of the International
Advanced Robotics Programme� Salford� UK

���� McDermott� D
V
 A Temporal Logic for Reasoning about Processes and Plans In Cognitive
Science� �� pp �������� �
��

��	� Nii� P
 The blackboard model of problem solving
 In AI Magazine Vol�� No� � �
� �
��

��
� Nilsson� N
J
 ������ Action Networks� Proceedings of the Rochester Planning Workshop�
October ����

���� Reece� G
A
 ������Reactive Execution in a Command� Planning and Control Environment�
Ph
D Dissertation Proposal� Department of AI Discussion Document� The University of
Edinburgh

���� Rosenschein� S
J
� and Kaelbling� L
P
 ������ The Synthesis of Digital Machines with Prov�
able Epistemic Properties� SRI AI Center Technical Note ���

���� Sacerdoti� E
 A structure for plans and behaviours
 Arti�cial Intelligence series� publisher�
North Holland� �
��

Bibliography 	�

���� Sadeh� N
 and Fox� M
S
� Preference Propagation in Temporal�Capacity Constraint Graphs�
Computer Science Dept� Carnegie�Mellon University� ����� Technical Report CMU�CS����
���

���� Smith� S
 Fox� M
 and Ow� P
S
� Constructing and maintaining detailed production plans	
Investigations into the development of knowledge based factory scheduling systems� A
I

Magazine� ���
� Vol �� No
�

���� Smith� J
 and Gesner� R
 ������ Inside AutoCAD� New Riders Publishing Cp
� Thousand
Oaks� Ca

���� Smith� J
 and Gesner� R
 ������ Inside AutoLISP� New Riders Publishing Cp
� Thousand
Oaks� Ca

���� Sridharan� N
 Practical Planning Systems� Rochester Planning Workshop� Rochester Uni�

versity� �
��

��	� Tate� A
 Generating project networks
 In procs� IJCAI���� �
��

��
� Tate� A
 ������ Planning and Condition Monitoring in a FMS� Proceedings of the Inter�
national Conference on Flexible Automation Systems� Institute of Electrical Engineers�
London� UK

���� Tate� A
 ����
� Goal Structure� Holding Periods and �Clouds�� Proceedings of the Reason�
ing about Actions and Plans Workshop� Timberline Lodge� Oregon� USA
 �eds� George��
M
P
 and Lansky� A
�� published by Morgan Kaufmann

���� Tate� A
 Drabble� B
 O�Plan�� Choice Ordering Mechanisms in an AI Planning Architec�
ture in Proceedings of the ���� DARPA Workshop on Innovative Approaches to Planning�
Scheduling and Control� San Diego� California� USA on 	�� November ����� published
by Morgan�Kaufmann
 Also updated with B
Drabble as AIAI�TR��
� AIAI� University of
Edinburgh

���� Tate� A
� Drabble� B
 and Kirby� R
� O�Plan�� an Open Architecture for Command� Plan�
ning and Control� in Intelligent Scheduling� �eds� M
Zweben and M
S
Fox�� Morgan Kauf�
mann Publishers� Palo Alto� CA
� USA� ����

���� Tecknowledge� S
� Product Description� Tecknowledge Inc
� 	�	 University Avenue� Palo
Alto� CA �����
 ����

���� Ste�k� M
 Planning with constraints
 In Arti�cial Intelligence� Vol� ��� pp� �������� �
��

���� Vere� S
 Planning in time� windows and durations for activities and goals
 IEEE Transac�

tions on Pattern Analysis and Machine Intelligence Vol� �� �
��

���� Wilkins� D
E
 ����	�Recovering from execution errors in SIPE� Computational Intelligence
Vol
 � pp ����	

���� Wilkins� D
 Practical Planning
 Morgan Kaufman� �
��

�

�� Abbreviations

ads Associated Data Structure � the level of data structure in O�Plan at which a plan is
represented
 This is �associated� with an underlying Time Point Network �tpn�

am O�Plan Agenda Manager � one of the main processes of the O�Plan system and the main
part of the �Controller� which decides on what can be processed next in an O�Plan agent

at Agenda Table � used to represent outstanding activities for an O�Plan agent

dm O�Plan Database Manager � one of the main processes of the O�Plan system which manages
the plan state and gives access to it on behalf of other modules

gop Graph Operations Processor � a set of support routines in O�Plan used to process networks
or graphs �especially the Time Point Network � tpn�

gost Goal Structure Table � used to hold conditions associated with a plan and their method
of satisfaction

im O�Plan Interface Manager � one of the main processes of the O�Plan system which manages
inter�module� inter�agent and user communications

kp O�Plan Knowledge Source Platform � one of the main processes of the O�Plan system on
which Knowledge Sources can be run

ks Knowledge Source � a computational capability in O�Plan

ksf Knowledge Source Framework � a proposed language for describing an agent�s capabilities
�its Knowledge Sources�

mtc Modal Truth Criterion � another name adopted by other researchers for a process similar
to Question Answering �qa�

psv Plan State Variable � an object in a plan which is not fully de�ned

psvb Plan State Variable Body � the body associated with a Plan State Variable used in a plan
and containing its constraints

psvm Plan State Variables Manager � the Constraint Manager in O�Plan which builds and
looks after psvs

psvn Plan State Variable Name � the name associated with a Plan State Variable used in a
plan
 Several psv names can be associated with a single psv body

qa Question Answering � the O�Plan support routine which �nds the ways in which a plan
condition can be satis�ed

tc Temporal Coherence � a search ordering heuristic

Abbreviations
�

td Trigger Detector � used to recognise when an O�Plan agent�s outstanding agenda entries
can be passed to the Agenda Manager �am� for processing

tf Task Formalism � the domain description language for the O�Plan planner

tgm tome�gost Manager � the Constraint Manager in O�Plan used to look after e�ects and
conditions

tome Table Of Multiple E�ects � used to hold e�ects associated with the actions of a plan

tpn Time Point Network � used to hold time points associated with a plan and constraints
between these time points

tpnm Time Point Network Manager � the Constraint Manager in O�Plan which builds and
looks after the tpn

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

