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Abstract

The world of business and organised work is changing. This change is driven by a shift of organisational focus away

from individual fragmented tasks toward an examination of the holistic processes. New tools are being developed to

assist individuals in building, evaluating, and managing these processes. The application of these tools though must

be holistic as well. Organisational knowledge management should be structured in a way that encourages exchange

of process knowledge. In order to e�ectively share information, we believe there must be an explicit account of what

knowledge will be exchanged, a shared understanding. We approach this by providing an extensible ontology which

presents process related concepts and terminology which are common to a range of applications and industries.

Keywords: Ontology, Process design, Knowledge sharing

1 Introduction

\The key word in the de�nition of reengineering is process: a complete end-to-end set of activities that
together create value for a customer...the process-centred organisation is creating a new economy and a new
world." [15]

1.1 Process-Centred Organisations

The world of business and organised work is changing indeed. The move is away from outdated modes which were

acquired during the industrial revolution [16] and toward new models of work centred around holistic knowledge of the

organisation's value-adding processes. With this new movement comes new challenges and new issues to face [7, 9].

Process-centred individuals (e.g. process owners, process performers, process inspectors) are struggling to adjust to their

new roles and duties, cf. [15, 4]. For a process owner, this may involve familiarising themselves with concepts of process

design, re-design, abstraction, and e�ective communication of process knowledge. Process performers are expected to

understand how their activities relate to other activities which may be performed by other people, computer systems, or

themselves and how this all relates to an overall speci�cation. Both process owners and process performers must also

practice the art of donning their process inspector cap in order to evaluate whether the designed processes are working

e�ciently in the face of actual process enactment.

1.2 The Common Process Framework

In parallel with this development, a lot of work has been done in various technology �elds which may assist \process

professionals" in tackling this new process-aware world. These advancements include areas such as: process/knowledge

modelling; event simulation; arti�cial intelligence planning; requirements engineering; knowledge acquisition; and decision
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Figure 1: The Common Process Framework (CPF)

support. Unfortunately, past attempts at providing technology to support business activities have shown themselves to be

encouragers of the very atomistic behaviour that a process-centred organisation hopes to overthrow. Organisations found

themselves with various pockets of enterprise knowledge locked up in representations spread widely over a range of tasks.

What is required of business is, in fact, what is also required in the technology to support process-centred businesses. That

is, a technology-enabled process for managing organisational process knowledge should also be \a complete end-to-end

set of activities that together create value for a customer", only this time the customer is the organisation which owns

the processes.

In our work, we have sought to de�ne a Common Process Framework (CPF) which encompasses a life-cycle of activities

surrounding the management of process knowledge. Our approach is centred around knowledge-rich processes which are

based on past and present work in Arti�cial Intelligence (AI) planning and plan representations. In addition to this, we

have also gained insight through our involvement with standards work relating to the exchange of process knowledge.

1.3 Process Standards Work

We have have been involved in and worked with a number of initiatives to standardise shared languages within the general

subject area of activities and processes. These e�orts include:

� enterprise processes with the Process Interchange Format [19, 29]. The goal of the PIF Project is to develop an

interchange format to help automatically exchange process descriptions among a wide variety of business process

modelling and support systems such as 
ow charting tools, process simulation systems, and process repositories.

� work
ow processes using the International Work
ow Management Coalition's (WfMC) Work
ow Process De�ni-

tion Language (WPDL) [48, 27]. The Coalition's mission is to promote and develop the use of work
ow through the

establishment of standards for software terminology, interoperability and connectivity between work
ow products.

� AI planning-based processes in the Shared Planning and Activity Representation (SPAR) project [39]. The

Shared Planning and Activity Representation (SPAR)1 is intended to contribute to a range of purposes including

domain modelling, plan generation, plan analysis, plan case capture, plan communication, behaviour modelling, etc.

� manufacturing processes via the National Institute for Standards and Technology (NIST) Process Speci�cation

1Details on the Shared Planning and Activity Representation (SPAR) are available via the WWW at: http://www.aiai.ed.ac.uk/�arpi/spar/
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Language [32, 30]. NIST's Process Speci�cation Language (PSL) project is motivated by a need for an integrated

manufacturing environment in which process information can be shared amongst various applications.

In all of these projects or standards, we can envision a common ontology of processes which o�er core concepts and

terminology for expressing process knowledge. These de�nitions seek to disambiguate what is meant by the various terms

and how they relate. The ontology needs to be extensible in order to be stretched to �t various domains and applications.

The intent of this paper is to describe the Common Process Ontology (CPO) which is part of the CPF for managing

process knowledge.

We can visualise the role of CPO in Figure 1. On one hand, we have the organisation: the actual processes it enacts;

the activities and the agents who perform them; etc. On the other side we have a variety of process speci�cation formats

that describe these actual processes and which may link into application-speci�c environments (e.g. manufacturing

environments with PSL or IDEF3, work
ow tool-sets using WPDL, business environments which are PIF-aware, or

web-based exchanges using the Extensible Markup Language, XML).

Figure 1 illustrates that the CPO is a central component within the framework. As we will discuss below, CPO's basis

is the <i-n-ova> constraint model of activity [37, 36]. CPO's de�ned terms are used to express both domain knowledge

(Common Process Domain (CPD) �les) and knowledge of individual processes (Common Process Language (CPL) �les).

Correspondingly, the framework encompasses editors for both sources of knowledge (Common Domain Editor, CDE and

Common Process Editor, CPE). Both editors communicate with a web-based assistant (Common Process Assistant, CPA)

which currently provides feedback for users on temporal relationships between process activities. The toolset supports

both FTP and local �lesystem access to an organisation's process knowledge. The Common Process Methodology (CPM)

provides the initial starting point in which CPD knowledge is elicited and built in a structured way.

The interoperability of CPF is established via the use of translators (CPT) into and out of the core CPO terms. These

exchanges may take place both within the framework and between the framework and external tools. For example, the

translation between the CPM domain descriptions (which are largely graphical) and the CPD speci�cations (i.e. CPT:

CPM ! CPD) are internal, whereas the interoperability with the O-Plan AI planning system [6] is external. In our

work, we have used O-Plan to synthesise new processes based on translated domains which are expressed in O-Plan's

Task Formalism (TF) language [35, 40]. We have enriched the O-Plan plan output format (OPO) to include knowledge

of causal relationships, dependencies, and resource commitments which we translate into CPL.

In the following sections we provide an overview as well as a detailed examination of the ontology. Examples are

provided along with an analysis of the ontology using a range of features.

2 What is an Ontology?

The concept of \ontology" is drawn from philosophy in which it is used to indicate a systematic theory about existence.

The use of this term in computational settings (e.g. in information systems, or arti�cial intelligence applications) tends

to vary depending on particular needs and perspectives. On one extreme, people may refer to an ontology as simply a

lexicon of terms for a particular application (e.g. for an automotive domain we might have: WHEEL, BODY, ENGINE,

BRAKE, etc.) while on the other end of the spectrum they may mean a particularly rigorous set of logical axioms which

provide detailed terms and de�nitions. See [43] for an overview of this range of formality and for an introduction to this

�eld. For our purposes, we will use the following de�nition

\An ontology is a vocabulary of terms (names of relations, functions, individuals) de�ned in a form that is

3



both human and machine readable. An ontology, together with a kernel syntax and semantics, provides the

language by which knowledge-based systems can interoperate at the knowledge-level." [14]

As this de�nition implies, ontologies typically need to be referred to and inspected by people. People review parts

or all of the ontology in order to align themselves with the \shared understanding" of the set of concepts (e.g. during

translation writing, or in clarifying assumptions). Ontologies are also machine readable in order to provide automated

support for tasks such as ontological model checking, cf. [18].

Recently, it was pointed out that a detailed description of a \space of ontology applications" can be used to characterise

a particular ontology [44, 3]. This characterisation aids in, among other things, promoting cross-evaluation of ontologies

and identi�cation for reuse. After we have presented the ontology, we will characterise CPO based on the attributes

identi�ed in [42].

3 CPO: An Overview

In the ontological engineering methodology, Methontology, one of the very �rst steps prescribed is \speci�cation" [10, 13].

This step is meant to encourage ontology authors to address questions of purpose and scope straight away. Example

issues include: \why is this ontology being built?" and \who are the intended users?". We have begun to outline the

purpose and scope of CPO in the introduction, but we shall now provide a set of categories for considering these points.

As in [37], we view CPO as contributing to four main areas or categories of purpose:

� Knowledge acquisition - assisting individuals in collecting knowledge about their organisational processes.

� User communication - structuring the content of process knowledge to be shared amongst individuals.

� Formal analysis - providing de�nitions for process knowledge which may be mapped to representations for auto-

mated reasoning.

� System manipulation - underpinning a lingua franca for sharing information between various tools or systems.

Given these intended categories of purpose along with a variety of input sources, we outlined a requirements spe-

ci�cation for CPO in order to further delimit the scope [23]. These requirements were separated into representational

(i.e. what do we want to express?) and functional (i.e. what are the intended uses of the knowledge?). Within each we

provided an additional clustering of requirements around concepts (e.g. activities, agents, evaluations, etc.) or uses (e.g.

editing, execution, task assignment, etc.).

One of the sources of input for this speci�cation included the set of requirements developed for NIST's manufacturing-

based Process Speci�cation Language (PSL) [32]. These requirements were drawn from a range of process management

tools and applications. During our initial involvement with the PSL project, we provided an analysis of how well several

existing plan/process or activity-based ontologies could address these requirements [30]. Tate's <i-n-ova> constraint

model of activity [37, 36] provided the most 
exible approach as compared to the others. The <i-n-ova> model can be

seen as a specialisation of an <i-n-ca> shared model2.

2<i-n-ca> stands for Issues, Nodes, Critical and Auxiliary constraints.
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Figure 2: 3-CPO: Meta, Object, and Constraint Ontology

3.1 <i-n-ova> Constraint Model of Activity

The<i-n-ova>model (Issues, Nodes, Orderings/Variables/Auxiliary) is a means to represent and manipulate plans/processes

as a set of constraints. The node constraints in this model set the space of behaviour within which a process may be

further constrained. The issues (which could be considered to be implied, to do, or future constraints on behaviour) and

remaining constraints (OVA) restrict the processes within that space which are valid. Ordering (O) and variable (V)

constraints are distinguished from all other auxiliary (A) constraints since these act as cross-constraints, usually being

involved in describing or further restricting the others. By having a clear description of the di�erent components within

a process, the model allows for processes to be manipulated and used separately from the environment in which they are

generated. For example, we may wish to utilise an arti�cial intelligence planning system to synthesise a base process given

some particular set of objectives and then take that information to a process editor for visualisation or further editing.

3.2 Plan Ontology

[38] developed a plan ontology based on the <i-n-ova> model. Informally, this plan ontology envisions a plan as a

specialised type of design. While a design for some artifact is considered to be a set of constraints on the relationships

between the entities involved in the artifact, a plan or process further constraints these relationships to be between

agents, their purposes and their behaviour. CPO is very strongly aligned with this ontology and while the above cited

work presents the plan ontology primarily in terms of natural language and structured sentences, this paper will explore

a sorted logic in which ontologically-based processes can be expressed and will outline a speci�c set of classes/sorts,

functions, and relations3.

4 CPO: Core Concepts

The CPO can be separated into three distinct parts, 3-CPO: meta-ontology, object ontology, and the constraint ontology.

These elements are considered to be \core" or central to any process description. This \identifying core" approach can

be found in the PIF, PSL, and SPAR projects as well. Extensions to any part of 3-CPO can be made in order to

customise this set of core elements for speci�c domains, concepts or applications. These extensions may be packaged

into manageable modules to promote shared communication between groups. This is similar to the \partial shared view

mechanism (PSV)" developed in [21] which is also used in PIF. We provide examples of extensions to the core below.

3A similar approach to communicatating cconstraint information between planners and schedulers has also been investigated by David

Joslin at CIRL.
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In presenting CPO, we will describe a structured universe of discourse. We assume that this universe can be partitioned

into certain sub-universes. Particular relationships exist between pairs of these sub-universes: they may be disjoint, they

may have non-empty intersections or one may be completed contained in another. Further, we will state that certain

mappings and relations are meaningful only for certain sub-universes. These sub-universes of discourse are given names,

called sort symbols.

The set of all sort symbols is partially ordered by a sub-sort order relation, thus expressing the inclusion relationships

which hold between sub-universes under consideration. We will refer to a set of sort symbols with the sub-sort order

applied to it as a sort hierarchy. These sorts, combined with classical �rst-order logic (FOL) will give us a many-sorted,

or simply sorted FOL [8, 5, 47] for expressing process knowledge4. The implementation of this language in CPF is called

the Common Process Language (CPL). The lexicon and grammar for CPL is presented in [25] whereas the major terms

and relationships for CPL are presented here.

The following sections overview various CPO function, predicate, and variables symbols which exist within these

sub-universes. Sorts will be de�ned in scripted uppercase (e.g. P for processes), lower case letters indicate variables of

a speci�c type (e.g. p is a variable of type P) whereas uppercase letters are used for constants (e.g. P is a constant of

type P). The complete listing of sort types used in this paper can be found in the appendix. While this paper mainly

overviews aspects of CPO, the detailed presentation of the ontology is available in ontolingua [14]5.

4.1 CPO Meta-ontology

As suggested in Tate's plan ontology approach [37], the very top of the CPO sort hierarchy will be reserved for meta-

concepts which help to structure the universe of discourse. Broadly speaking, we can consider the ontology to be composed

of a set of entities, a set of data types and a set of relationships between entities. We will de�ne sorts E and S for entities

and sets along with various elemental and composite data types such as Str, Int, and Exp for strings, integers and

expressions, respectively. We will not reify the notion of relation, but we will be referring to various constraint types that

have de�ned entity-relating expressions. In de�ning various expression types, we will specialise the base expression sort,

Exp. Figure 2 depicts the relationship between the meta-ontology and the constraint and object ontologies.

4.1.1 Entities

An entity, E , provides the top-level root for much of the CPO sort hierarchy. In particular, E may be sub-classed into

the sorts C;P ;N ;Aro; T p;D for constraints, processes, nodes, activity-relatable objects, timepoints and domain levels

respectively. This is a slightly di�erent top-level than those found in the PIF, PSL, and SPAR ontologies.

Earlier, we referred to the sub-sort order relation which provides structure for the sort hierarchy. This relation can be

expressed using a simple \isa" predicate. In this paper, we will use the following notation which expresses, in this case,

that a CPO constraint is a CPO entity

C � E = isa(C; E)

4Sorted logics are very similar to typed programming languages.
5The CPO ontolingua code for the core and the extensions described in this paper is available at the CPF homepage:

http://www.dai.ed.ac.uk/students/stevep/cpf
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4.1.2 Sets

One of the basic assumptions of the underlying <i-n-ova> model is that a plan or process can be represented as a set

of constraints on behaviour. At the very least, we require a sort for sets, S, which provides some of the basic set theory

relations and functions. For convenience, we will use the following notations

; = emptyset

fCg = adjoin(C; emptyset)

fC1; C2g = adjoin(C1; adjoin(C2; emptyset))

fC1; C2jSg = adjoin(C1; adjoin(C2; S))

C 2 S = member(C; S)

S1 [ S2 = union(S1; S2)

S1 \ S2 = intersection(S1; S2)

S1 � S2 = subset(S1; S2)

4.1.3 Strings and Expressions

One of the advantages of the <i-n-ova> perspective is the identi�cation of various constraint types, i.e. specialisations

of C. Each of these constraints express various relationships between CPO objects. As in SPAR, CPO requires extensions

which provide \plug-in grammars" that structure constraint expressions. These expressions will be specialisations of the

base Exp type. We will use the following notation for strings and expressions

[] = Nil

[Str] = cons(Str;Nil)

[Str1; Str2] = cons(Str1; cons(Str2; Nil))

[Str1; Str2jExp] = cons(Str1; cons(Str2; Exp))

Expressions may be composed by concatenations of various strings. These strings may be variable, function, relation,

constant or logical symbols. This is analogous to the \PIF-SENTENCE" described in the PIF work [19]. One important

predicate that applies to Exp is a uni�cation evaluation, unifies(Exp1; Exp2), which implies that the expressions can be

made identical by appropriate substitutions for their variables [12].

4.2 CPO Object Ontology

By \object" ontology, we are mainly indicating those entities which will be involved in and referred to by various constraint

expressions which are connected to particular CPO constraint types. For example, the expression of an \ordering"

constraint may relate two objects of type T p. These constraint types are described in the constraints ontology section

which follows below.
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4.2.1 Processes

Generically speaking, a process, P , provides a speci�cation of behaviour for some time interval bounded by a pair of

begin/end timepoints. By behaviour, we mean something that one or more agents perform. The notion of speci�cation

is simply that of a set, S, of constraints, C. In the constraint ontology, we de�ne this to be an activity speci�cation,

As. We associate these via the relation activity � spec � P �As. Note that this does not commit to a single As for a

given P , although some extensions of this ontology may do so. In addition to this, we observe that it might be the case

that as = ; which is interpreted as \do anything". Clearly the opposite extreme may be to specify \do nothing". This

may also be accomplished with an activity� spec(P; as) for P which contains a not-include constraint which is discussed

below.

CPO requires certain functions to be de�ned for all objects of type P . The following two are suggested by the informal

description above:

start� timepoint : P ! T p

finish� timepoint : P ! T p

Additionally, there are functions de�ned which support expansion and decompositional relationships between processes

and process actions.

pattern : P ! Exp

expands : P ! A

The expression returned by the pattern function may be matched with the patterns of various activities and represents

its potential to act in a decomposition relationship. An actual decompositional commitment to a particular activity is

expressed using the expands predicate.

4.2.2 Plans

CPO distinguishes a plan, Pl, from a process by stating that Pl � P with the additional constraint that a Pl exists

for some speci�ed objectives. That is, a plan extends the de�nition of process to say that it: provides a speci�cation

of behaviour for some objectives over some time interval bounded by a pair of begin/end timepoints. Objectives,

Obj, and objective speci�cations, Os, are discussed in the constraint ontology section. This is related via a required

objective� spec � Pl�Os where Os 6= ;.

4.2.3 Nodes

In the overview, we referred to the fact that node constraints in the <i-n-ova> model set the space within which a

process may be further constrained. These constraints may either specify that a node is necessarily included or cannot be

included at all. The CPO node type, N , referred to is actually an abstract structuring of more specialised CPO concepts:

activity, A, or other nodes, No.

The No type is, in turn, another sub-structuring of the domain of discourse. Currently, the only subtypes for

No are the following \dummy" node types N s;Nf;N b;N e which denote the elements of interval endpoint pairings
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fStart/N s,Finish/Nfg and fBegin/N b,End/N eg. A fN s,Nfg pair is, by convention, used for indicating the entire

interval for some, possibly decomposed, process or plan whereas fN b,N eg is used to demarcate subprocess intervals. All

of these \dummy nodes" listed above represent an instantaneous point and therefore may only be related to a single

timepoint. Future extensions may include additional specialisations of No such as: or-split, or-join, and-split, and-join,

conditional, iteration, for-each, etc.

4.2.4 Activities

For the most part, nodes in a process are used to denote activity. To be more precise, we indicate that A � N where an

A is meant to represent activity. As with processes, activities have a temporal extent which is bounded by a begin and

end timepoint.

begin� timepoint : A ! T p

end� timepoint : A ! T p

Additionally, there are functions de�ned which support expansion and decompositional relationships for activity.

pattern : A ! Exp

expansion : A ! P

Notice that this provides a doubly-linked set of decompositional relationships. Given some process, P , we can directly

determine which A it expands (i.e. its abstraction) or conversely, given some activity, A, we can refer to its (possibly

null) expansion (i.e. its decomposition), P . Given this information we know

(8a)(9p):expansion(a) = p � expands(p) = a ^

unifies(pattern(p);

pattern(a))

(8p)(9a):expands(p) = a � expansion(a) = p ^

unifies(pattern(a);

pattern(p))

In accordance with Tate's plan ontology, we can further specialise A into Act � A and Evt � A. The ontological

distinction being made here is between actions, Act, which are performed by modelled agents and events, Evt, which are

performed by an unmodelled agent (this is often referred to as the \environment").

4.2.5 Timepoints

A timepoint in CPO, T p, characterises a speci�c, instantaneous point that lies along a line which is an in�nite sequence of

time points. Pairs of timepoints for nodes and processes delimit a time interval. In particular, we can use an axiomatisation

based on Hayes' catalogue of temporal theories [17] in order to map timepoints and ordering constraints into Allen's 13
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relations between intervals [1, 2]. During our application of these de�nitions, we spotted and corrected a couple of errors

in this mapping axiomatisation6.

This axiomatisation is used in the Common Process Assistant (CPA) to map the timepoints and ordering constraints

which are passed from the process and domain editing tools, upon a users request, into an interval theory for consistency

checking. Allen's table of legal relationships between intervals is then used to detect errors and to provide rationale for

why a process speci�cation is incorrect (i.e. CPA explains which legal interval relationships could exist).

In addition to the CPA analysis, the process and domain editors can automatically and e�ciently assist users by

preventing illegal or unnecessary timepoint constraints between two activities based on the knowledge provided in an

As. As we have pointed out, each A, has 2 timepoints which we will abbreviate as: T pAbegin and T pAend. There is one

relation that always exists between an activity, A1, timepoint pair: before(TpA1

begin; T p
A1

end). No other relation can be

made between these two points.

4.2.6 Analysis: Timepoints and Intervals

In our work on CPO, we explored the relationship between timepoints and time intervals in a bit more detail. In particular,

we were interested in the implications of our approach whereby temporal constraints on timepoints may be incrementally

added to a speci�cation and how that a�ects a mapping to time interval relationships.

We indicated that two di�erent activities in an As have a set of unique pairs of timepoints, which we refered to as a

T setA;A, de�ned as

TsetA1;A2 = f(tp1; tp2)jtp1 2 fTp
A1

begin; T p
A1

endg ^

tp2 2 fTp
A2

begin; T p
A2

endgg

Each pair in a T set may be related in one of two possible ways or not at all. If a relationship is assigned to a pair

then either one timepoint is temporally before the other or they are equal. This can be expressed in an in�x notation as

tp1 � tp2 � before(tp1; tp2)

tp1 = tp2 � equal(tp1; tp2)

We looked at the various combinations of constrants between all (tp1; tp2) 2 TsetA1;A2 and found that in fact, only 57

of 256 unique combinations are legal (� 22%) and only 35 of those 57 completely speci�ed an Allen interval relationship.

This analysis provided the knowledge we used to construct e�cient process editors which prevent users from specifying

illegal con�gurations between two activities. In addition to this, it is obvious that some of the con�gurations contain

super
uous constraints which can be eliminated without a�ecting their interval relationships.

4.2.7 Activity-Relatable Objects

In PIF, one of the top-level classes of entity is OBJECT. It is informally de�ned as \an entity that can be used, created,

modi�ed, or used in other relationships to an activity". An identical type is utilised in PSL. During our work on SPAR it

was decided that the term \object" was a bit too overloaded and would perhaps confuse the understanding of this class.

6The axioms are listed in the appendix and this is discussed in more detail in [26].
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The more speci�c Activity-Relatable Object (ARO) term was chosen for SPAR instead. CPO represents this in the sort,

Aro.

Some entities of type Aro are often referred to as \resources". As the PIF de�nition above suggests, these are the

things which are used (e.g. drill, hammer, etc.), modi�ed (e.g. board, metal sheet), etc. This sort also represents those

things produced, which might be labelled \products". It is important to note though that these common references or

labels tend to be role-de�ned, which we discussed in [29]. For example, an Aro for one activity, A1, may be a \product"

for A1, but it might be a \resource" for A2.

Subtypes of Aro are de�ned for domain-speci�c applications of CPO (e.g. manufacturing objects might include various

drill, saw, lathe types, etc.) As mentioned earlier, these may be packaged into PSV-like extensions to support reuse or to

encourage modularity. Domain independent extensions may also be created to provide rich structure between Aro types

(e.g. part-of, requires relations, etc.)

A special agent sub-sort of Aro has been included in CPO: Agt � Aro. An informal reference for the Agt sub-sort can

be found in the SPAR sentences [39] which refer to it as an \ACTIVITY-RELATABLE-OBJECT which can PERFORM

ACTIVITIES and/or HOLD OBJECTIVES". The inclusion of this concept in CPO points to the in
uence of work
ow

languages like the WPDL. Speci�cally, in a process speci�cation, we are interested in knowing who or what will be

performing activities and in also linking the purpose of these sets of activity with the agents who held the objectives.

As we shall see in the CPO constraint ontology, some aspects of an objective speci�cation are characterised by agent's

requirements while others can be considered to be preferences. Thus we have agent relationships such as

performs� activity : � Agt�A

performs� process : � Agt�P

has� requirement : � Agt�Os�P

has� preference : � Agt�Os�P

has� requirement : � Agt�Os

has� preference : � Agt�Os

has� capability : � Agt� Exp

Note that sets of requirements or preferences may be universal for an agent (e.g. \prefer transportation by boat for

any set of activity") or process-speci�c (e.g. \prefer transportation by airplane for process P1"). As in subtypes of Aro,

the subtypes of Agt are specialised for a domain. Domain independent extensions may also be added to provide concepts

such as organisational structure (e.g. reports-to, coaches, etc.)

4.2.8 Domain Levels

In the Common Process Methodology (CPM) [28], a level-oriented approach to domain modelling is adopted whereby

actions, events, e�ects, and resources are all separated into a series of de�ned and increasingly detailed levels, D. This

helps to avoid the commonly experienced problem of \hierarchical promiscuity" [49] or \level promiscuity" which is

characterised by the inconsistent usage of various domain elements at varying areas in the overall domain description.

This approach is taken directly from our characterisation of the TF Method [41].

Domain levels should be assigned meaningful labels which indicate their overall perspective (e.g. \house building task
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level"). These levels may be structured into a domain lattice and processes assigned to a particular domain level. The

following functions and relations partially support these requirements

label : D ! Str

number : D ! Int

contains : � D �P

4.3 CPO Constraint Ontology

In this section, we describe various categories of constraints which may be placed between CPO objects. These constraint

types are based on the <i-n-ova> model and Tate's plan ontology which were introduced above. Primarily we are

interested in two types of things: a single constraint, C, and an aggregation of constraints, or a set, S. Also, the

expression of a constraint, Exp, for each of the various types is of interest to us, but it will be de�ned using a highly


exible approach. In order to make this framework generically applicable, we envision a \plug-in" syntax for expressions

as described in the SPAR approach. We provide examples of this below.

Tate describes a constraint as \a relationship which expresses an assertion that can be evaluated with respect to a

given plan as something that may hold and can be elaborated in some language" [36]. In addition to this, it is pointed

out that there is typically a need to recognise which agent added a speci�c constraint during a design process. At a

high-level, we can relate these entities using

expression : C ! Exp

added� by : C ! Agt

The design of a process, P , has a relationship with a set of these constraints which denote the process activity. We

will refer to this set as an activity speci�cation, As � S. In addition to this, we further distinguish that a plan, Pl relates

an As to some set of objectives, Os � S. An objective, Obj � C, may be a requirement (hard constraint) or a preference

(soft constraint).

member : � C �As

member : � Obj �Os

soft� hard� info : C ! soft; hard

The expression of an objective, as with the other constraints, is de�ned by providing a structuring plug-in grammar.

This approach is partially based on the way 
exible tasks and goals are expressed in EXPECT [34, 33] and INSPECT

[46].

4.3.1 Issues

The focus on issues in <i-n-ova> is a unique approach which is linked to ideas found in work
ow perspectives and

issue-based collaborative design. Essentially an issue is, \an outstanding aim, objective, preference, task, or 
aw which

remains to be addressed by the process". Issues refer to \implied constraints" on the actual organisational processes. For
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example, an issue may refer to an abstract activity which has not been expanded yet or to some condition on an activity

which still remains to be achieved.

In CPO, an issue, Ciss � C, requires some plug-in syntax which de�nes the legal grammar for its expression, Expiss �

Exp. For example, we may specify the following structure for an issue (using BNF):

<issue-expression> ::= <rtq-sent> | <rt-sent> |

<r-sent>

<rtq-sent> ::= <issue-relconst> <term>

[<term>*] <logsent>

<rt-sent> ::= <issue-relconst> <term>

[<term>*]

<r-sent> ::= <issue-relconst>

<issue-relconst> ::= "achieve" | "expand"...

<logsent> ::= {not <sentence>} | etc.

Thus, an example of a speci�c issue constraint, Ciss1, which simply states that an activity, A1 remains to be expanded

would indicate Expiss1 � [\expand", \A1"]. This corresponds to the rt-sent de�ned in the extension.

4.3.2 Node Constraints

Node constraints are the backbone of the activity speci�cation constraint set. They provide the space of behaviour on

which many of the other constraints seek to further de�ne. Node constraints are so important that a special case has been

made for them. Their expression does not require a plug-in syntax, instead there are two built-in functions for declaring

that a particular node is either to be included or speci�cally not to be included

include� node : C ! N

not� include� node : C ! N

In fact, there are special cases of both constraints which can be used to refer to an entire class of entities or type. For

example, we may wish to specify \do nothing" or \don't do any transportation action". These two concepts use the form

not� include� node : C ! Str where Str references a type name (e.g. \cpo-action" or \transport-action").

4.3.3 Ordering Constraints

A central aspect of most process speci�cations is the subset of temporal relationships which de�ne the order in which

actions or events will occur. In CPO, this aspect involves those ordering constraints Cord � C. These temporal constraints

could be expressed directly between entities of type N which would be similar to interval relationship approaches (e.g.

after, meets, �nishes, etc.) but as we showed earlier, CPO uses a more expressive default ordering approach between

timepoints, T p. In particular, part of a default BNF for a Cord is

<ordering-expression> ::= <ordering-relconst>

( <term>, <term> )

<ordering-relconst> ::= "before_tp" | "equal_tp"

4.3.4 Variable Constraints

Co-designation and non-co-designation constraints between variables relate activity relatable objects in the domain and

are quite common in plan and process speci�cations. These variable constraints, Cvar � C, limit the range of values
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which may be assigned to particular variables in CPO expressions. For example, some activity labelled \replace drill bit"

may be de�ned with a pattern \replace-drill-bit ?old ?new". The speci�cation of this activity may include a variable

constraint, Cvar1, which has an expression, Expvar1 that speci�es that the old bit cannot be the new bit (e.g. Expvar1 �

[\not equal var",\(", \?old", \,", \?new", \)"]). Thus part of a default BNF for a Cvar may be

<variable-expression> ::= <variable-relconst>

( <indvar>, <indvar> )

<variable-relconst> ::= "equal_var" |

"not_equal_var"

4.3.5 Auxiliary Constraints

Up to this point, we can see that an activity speci�cation, As1, can be viewed as the union of a set of de�ned constraint

subsets. Speci�cally we know that

(As1 � S1 [ S2 [ S3 [ S4 [ S5),

((S1 = fciss1jciss1 2 As1g) ^

(S2 = fcinc1jcinc1 2 As1) ^

(S3 = fcord1jcord1 2 As1g) ^

(S4 = fcvar1jcvar1 2 As1g) ^

(S5 = fcaux1jcaux1 2 As1g))

The �nal set that hasn't been addressed yet are the auxiliary constraints, Caux � C, denoted by S5. This constraint

type has a de�ned sub-sort order structure which is detailed in the CPO ontolingua version. In this section, we will brie
y

consider some of the common subtypes: Cinp; Cout; Calw; Cres and Cann.

The �rst two constraint types, Cinp and Cout, relate world state expressions, Expws, to particular timepoints. This

can be used to express state-based conditions and e�ects for process activities. The partial grammar outlined below has

been used in the CPF for expressions based on the Task Formalism's approach of < pattern >=< value >.

<world-state-expression> ::= [<ws-type>] <LBRACE>

<term>* <RBRACE>

[= <term>*]

at <term>

<ws-type> ::= "supervised" |

"achieve" |

"unsupervised" |

"only_use_if" |

"only_use_for_query"

<LBRACE> ::= "{"

<RBRACE> ::= "}"

So, a particular Cinp1
which has an Expws1 � [\supervised", \f",\have ?material",\g",\at",\N12"] may depend on a

Cout1 which has an Expws2 � [\f",\have bricks",\g",\at",\N10"].

A Calw constraint di�ers from those above in that it its assertion is not tied to a particular timepoint, it is de�ned as

always holding in all states. We can modify the Expws grammar above to de�ne a new expression Expwsa in which the

\at < term >" tokens are not required.

14



Figure 3: Simple Process Example

The resource constraints, Cres, can be used to describe an activities required allocation of resource objects, produ-

cible/consumable resource e�ects, etc. While it is possible to lump resource constraints into the general notion of input and

output constraints it is bene�cial to separate them out as many tools are largely geared toward working with this know-

ledge (e.g. scheduling tools, etc.). The resource expression Expres1 � [\consumes",\f",\resource",\money",\g",\=",\50

pounds ",\at",\N10"] may be derived from a grammar which roughly corresponds to

<resource-expression> ::= <res-type> <LBRACE>

resource <term>*

<RBRACE>

[= <term>*]

at <term>

<res-type> ::= "consumes" |

"produces" etc.

<LBRACE> ::= "{"

<RBRACE> ::= "}"

Finally, the simplest of these is the annotation constraint, Cann, which can be used to attach unstructured strings to

activity speci�cations. This might be used for attaching additional notes, comments, instructions or possibly to provide

links to non-textual or external data related to the process such as CAD and multimedia �lenames, web site addresses,

or printed policy/standards document references.

5 CPO: Example and Extensions

In order to provide a detailed example of a CPL process speci�cation which utilises CPO terms and concepts, we will

restrict the content to a rather simpli�ed process. The example \Purchase Brick Process" might be part of a much larger

building domain and represents a particular transaction activity whereby money is consumed to acquire some supply of

brick building material. As we can see in Figure 3, it is bounded by a begin/end node pairing and contains only one

action, \purchase bricks". As mentioned earlier, the lexicon and grammar for CPL is described in [25]. The following

speci�cation characterises this process

%define-domain{my-building}

SORT cpo-action{A1}

SORT cpo-activity-specification{AS1}

SORT cpo-begin{B1}

SORT cpo-end{E1}

SORT cpo-include-constraint{IC1-IC3}

SORT cpo-ordering-constraint{OR1,OR2}

SORT cpo-output-constraint{OC1}
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SORT cpo-process{P1}

SORT cpo-resource-constraint{RC1}

SORT cpo-timepoint{TP1-TP4}

label(P1)="Purchase Brick Process"

start-timepoint(P1)=TP1

finish-timepoint(P1)=TP4

pattern(P1)="{purchase bricks}"

label(B1)="begin"

timepoint(B1)=TP1

include-node(IC1)=B1

member(IC1,AS1)

label(E1)="end"

timepoint(E1)=TP4

include-node(IC2)=E1

member(IC2,AS1)

label(A1)="purchase bricks"

begin-timepoint(A1)=TP2

end-timepoint(A1)=TP3

include-node(IC3)=A1

member(IC3,AS1)

expression(OR1)="before(TP1,TP2)"

member(OR1,AS1)

expression(OR2)="before(TP3,TP4)"

member(OR2,AS1)

expression(OC1)="{have bricks} at A1"

member(OC1,AS1)

expression(RC1)="consumes

{resource money} = 50 pounds at A1"

member(RC1,AS1)

5.1 Tools-Speci�c Extensions

CPO provides a core set of concepts which may be extended to capture specialised process-related knowledge. One class

of extensions can be considered to be tool-speci�c. Tool-speci�c extensions are used to express new or specialised sorts

or relations which address aspects linked to a particular tool's ontology. Two examples are provided here for extensions

related to O-Plan's TF and the process/domain editors in CPF.

O-Plan's Task Formalism language [40, 35] encompasses a copious set of terms and concepts for expressing plan/process

domain knowledge. For this particular TF extension example though, we are simply interested in providing additional

support for capturing TF resource-related information. One facet of this information is \resource units". Resource unit

statements in TF are used to de�ne unit types for resources such as person/people, gallons, kilograms, etc. These units

have their own properties in TF (e.g. type, which could have the values: count; size; weight; or set).

In the TF extension, we de�ne a new class in ontolingua, called resource unit, which will correspond to a new sort,

U � E . Two new functions are designated for U to express both its label (e.g. pounds) and its type (e.g. count).

label : U ! Str

type : U ! Exp
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The type expression above can be syntactically constrained to be [\count"]_ [\size"]_ [\weight"]_ [\set"]. In addition

to this, we need to add functions and a relation to the activity-relatable object sort, Aro. In particular, we need to be

able to express whether a Aro is going to play the role of a TF resource and if so, what its TF resource type is (i.e.

[\consumable strictly"] _ [\consumable producible by agent"] _ :::). Finally, we also need to be able to relate a Aro to

our new resource unit.

is� resource : � Aro

resource� type : Aro! Exp

unit : � Aro� U

Some tool-speci�c extensions are related to presentation information or internal state information (e.g. nodes selected,

etc.) associated with processes. In both the Common Domain Editor (CDE) and the Common Process Editor (CPE) in

CPF, process presentation information is attached to various parts of the domain speci�cation. The CPF tools extension

de�nes additional support for this such as

xpos : P ! Int

ypos : P ! Int

width : P ! Int

height : P ! Int

label : P ! Str

xpos : N ! Int

ypos : N ! Int

type : N ! Exp

status : N ! Int

label : N ! Str

xpos : Cann ! Int

ypos : Cann ! Int

top� level : � P

selected : � N

5.2 Rationale Extension

While the extensions discussed in the previous section were labelled tool-speci�c, we can also have extensions which

are tool-independent, or more appropriately, concept-speci�c. Concept-speci�c extensions provide terms and de�nitions

which are centred around a general set of closely associated entities and relations. One example of such an extension is

the rationale extension we have developed for CPO.

In our review of plan rationale [31], we explored the epistemological nature of this category of knowledge and described

it from the perspectives of dependencies, causal relationships and decisions. While there has been much work done on

both plan/process causality and dependencies, there has been correspondingly less research into plan decision rationale.
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We proposed a \design space analysis (DSA)" approach to plan decision rationale [24] which was based on research from

the design rationale (DR) �eld [22, 20]. If we envision the <i-n-ova> approach, which CPO has adopted, as describing

a \space of behaviour" we can also consider a \space of decisions" which is navigated in creating this behavioural

speci�cation. It is possible then to augment a process description with the rationale that went into designing this artifact.

Both CPE and CDE support this DSA approach (i.e. provide graphical editing of a DSA) and rely on the CPF

rationale extension to de�ne the DSA terms and concepts which are expressed in CPL. In this extension, we refer to

an entity called a decision rationale, Dr � E , which represents the overall \decision space" for a process design. In the

CPO core, an As groups the constraints which form the \space of behaviour". Analogously, a rationale speci�cation, Rs,

groups the constraints which form the \space of decisions". So, the CPF rationale extension includes

decision� rationale : P ! Dr

rationale� spec : � Dr �Rs

While a plan is described in Tate's plan ontology as \a set of constraints on the relationships between agents, their

purposes and their behaviour" a decision rationale can be viewed as \a set of constraints on the relationships between

questions (or design issues), options (or answers to these questions), and evaluative criteria. The CPF rationale extension

includes the sorts Q;Opt; Crt for questions, options and criteria respectively.

Questions pose key issues for structuring the space of alternatives (options). The role of questions is to de�ne local

contexts in a design space which help to ensure that certain options are compared with each other. Criteria represent the

desirable properties of the process and requirements that it must satisfy. They form the basis against which to evaluate

the options. These elements can be included into a Rs and interrelated via a set of de�ned constraints which represent

relationships such as

has� option : � Q�Opt

selected : � Opt

supports : � Crt�Opt

detracts : � Crt�Opt

sub� question : � Opt�Q

6 CPO Application Space Attributes

In [42], a multi-dimensional framework is proposed in order to aid cross-evaluation of ontologies and identi�cation for

reuse. The attributes of this framework form a \space of ontology applications" in which ontological authors can roughly

indicate where their ontology lies within that space. Ontology consumers can use the space to determine if there is an

overlap between their particular needs and a prospective ontology. The following listing provides CPO values for these

attributes.

Purpose:

The broad goal of the CPO is to support the management of organisational process-speci�c knowledge. The role of

the ontology is to facilitate communication amongst humans and systems involved in this process. The ontology
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provides de�nitions for the concepts and terms which are exchanged.

Representation Languages and Paradigms:

Core aspects of the ontology were based on an informal representation expressed in natural language and diagrams.

The CPO exists as a formal encoding in Ontolingua. An operational language used to exchange CPO is based on a

sorted FOL. Some parts (e.g. temporal relationships) have also been implemented in Prolog.

Meaning and Formality:

Mostly primitive terms with some axioms, semantics of terms mainly through existence of relationships between types

of entities or via connection to a more detailed foundational theory.

Foundational theories: situation calculus, extended situation calculus, complex theory of actions, parametric constraints,

KIF-meta, frame ontology.

Subject Matter:

Meta ontology: Simple high-level modelling concepts (entity, sets, strings, etc.)

Constraint ontology: General terms used to describe and model processes as sets of design constraints.

Core Ontology: General objects and concepts referred to in the constraints (e.g. processes, timepoints, activities, agents,

etc.)

Scale:

Roughly equivalent to Uschold's enterprise ontology [45, 11], O(150) de�nitions.

Development:

Research prototype.

Conceptual Architecture:

A framework (methods, tools, representation) for the management and exchange of process knowledge intended to

support a range of purposes: knowledge acquisition, user communication, formal analysis, system manipulation.

Mechanisms and Techniques:

CPO supports ontological extensions, Plug-in expressions, Translation to and from source/target languages, Pro-

cess/Domain dependencies, Methodology and toolset (for initial requirements engineering), Design rationale.

Implementation platform:

The toolset built to manipulate CPO representations was designed to be as platform independent as possible and to

support exchange of knowledge via the internet. These tools are implemented using Java, AIAI's HARDY meta-case

tool (which runs on Unix and Windows 95/NT), Clips and Prolog.
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7 Summary

In this paper, we have presented the Common Process Ontology which provides terms and concepts for expressing

process knowledge from a design constraint perspective. Specialisations of the ontology were discussed which customise

the ontology and extend it to meet particular expressive requirements. We believe this conceptualisation provides a strong

foundation which can facilitate exchange of knowledge between people and information systems involved in organisational

process management. As our research into a framework based on this ontology has shown, it is possible to envision a

framework which encompasses a life-cycle of process management activities which all translate knowledge into and out of

a shared understanding of the process-centred organisation.
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A. CPO Sort Table

The following table presents the abbreviations used in this paper for referring to various core and extended CPO sort
types.

A Activity
Aro Activity-relatable object
As Activity speci�cation
Act Action
C Constraint

Calw Always constraint
Cann Annotation constraint
Caux Auxiliary constraint
Cinc Include constraint
Cinp Input constraint
Ciss Issue constraint
Cord Ordering constraint
Cout Output constraint
Cres Resource constraint
Cvar Variable constraint

Crt Criteria
D Domain level
Dr Decision rationale
E Entity
Evt Event
Exp Expression
Int Integer
N Node

No Other node
N s Start node
Nf Finish node
N b Begin node
N e End node

Obj Objective
Opt Option
Os Objective speci�cation
Pl Plan
P Process
Q Question
Rs Rationale speci�cation
S Set
Str String
T p Timepoint

T setA;A Timepoint pair set
U Resource unit
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B. Interval De�nitions for CPA

This axiomatisation is based on Hayes' de�nitions [17] of the isomorphic relationship between data structures in a
timepoint-based theory and an interval-based theory [1, 2].

(8a):(before(begin� timepoint(a);

end� timepoint(a)))

� timeinterval(a)

(8tp1tp2):(tp1 = begin� timepoint(between(tp1; tp2)) ^

tp2 = end� timepoint(between(tp1; tp2)))

, before(tp1; tp2)

(8a1a2):(timeinterval(a1) ^ timeinterval(a2) ^

before(end� timepoint(a1); begin� timepoint(a2)))

, precedes(a1; a2)

(8a1a2):(timeinterval(a1) ^ timeinterval(a2) ^

before(begin� timepoint(a1); begin� timepoint(a2)) ^

before(begin� timepoint(a2); end� timepoint(a1)) ^

before(end� timepoint(a1); end� timepoint(aw)))

, overlaps(a1; a2)

(8a1a2):(timeinterval(a1) ^ timeinterval(a2) ^

begin� timepoint(a1) = begin� timepoint(a2) ^

before(end� timepoint(a1); end� timepoint(a2)))

, starts(a1 ; a2)

(8a1a2):(timeinterval(a1) ^ timeinterval(a2) ^

before(begin� timepoint(a2); begin� timepoint(a1)) ^

before(begin� timepoint(a1); end� timepoint(a1))) ^

before(end� timepoint(a1); end� timepoint(a2)))

, during(a1; a2)

(8a1a2):(timeinterval(a1) ^ timeinterval(a2) ^

before(begin� timepoint(a2); begin� timepoint(a1)) ^

end� timepoint(a1) = end� timepoint(a2))

, finishes(a1; a2)
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Figure 1: The Common Process Framework (CPF)
Title: A Common Process Ontology for Process-Centred Organisations

Authors: Polyak, S., & Tate, A.
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Figure 2: 3-CPO: Meta, Object, and Constraint Ontology
Title: A Common Process Ontology for Process-Centred Organisations

Authors: Polyak, S., & Tate, A.
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Figure 3: Simple Process Example
Title: A Common Process Ontology for Process-Centred Organisations

Authors: Polyak, S., & Tate, A.
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