Inferring Gene Networks from Microarray Data using a Hybrid GA

Mark Cumiskey, John Levine and Douglas Armstrong

johnl@inf.ed.ac.uk

http://www.aiai.ed.ac.uk/~johnl

Institute for Adaptive and Neural Computation and Centre for Intelligent Systems and their Applications, School of Informatics, University of Edinburgh

Many genome sequencing efforts are now complete

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks
- Applications: cancer research, drug discovery, etc.

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks
- Applications: cancer research, drug discovery, etc.
- Microrarray data: parallel snapshot of gene activity

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks
- Applications: cancer research, drug discovery, etc.
- Microrarray data: parallel snapshot of gene activity
- Multiple microarrway snapshots allow gene expression networks to be inferred

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks
- Applications: cancer research, drug discovery, etc.
- Microrarray data: parallel snapshot of gene activity
- Multiple microarrway snapshots allow gene expression networks to be inferred
- Our aim is to infer gene expression network topologies and weights using a hybrid genetic algorithm

- Many genome sequencing efforts are now complete
- Focus shifts to function of genes and their interactions
- Interactions shown as gene expression networks
- Applications: cancer research, drug discovery, etc.
- Microrarray data: parallel snapshot of gene activity
- Multiple microarrway snapshots allow gene expression networks to be inferred
- Our aim is to infer gene expression network topologies and weights using a hybrid genetic algorithm
- We combine the GA with a back-propagation local search

Microarray Data

- Goal: to decipher the connections of the genetic network
- **Pathway:** DNA \rightarrow mRNA \rightarrow protein
- Mircoarray technology provides a snapshot of mRNA levels
- mRNA levels are an indirect measurement of gene activity
- Multiple mRNA snapshots over time reveal the gene interactions
- Massive data sets: 6,000 genes for the yeast cell
- Too large to infer anything meaningful by hand

Each individual is a valid gene network

- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link

- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data

- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data
- Specialist crossover operator to combine two networks

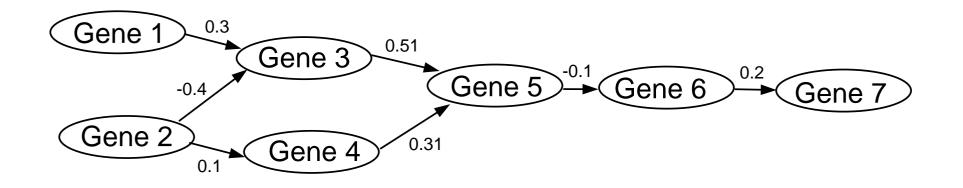
- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data
- Specialist crossover operator to combine two networks
- GA uses coarse-grained weights on the links

- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data
- Specialist crossover operator to combine two networks
- GA uses coarse-grained weights on the links
- Refine the weights after the GA is finished using a back-propagation local search algorithm

- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data
- Specialist crossover operator to combine two networks
- GA uses coarse-grained weights on the links
- Refine the weights after the GA is finished using a back-propagation local search algorithm
- Compare single population GA with an island model

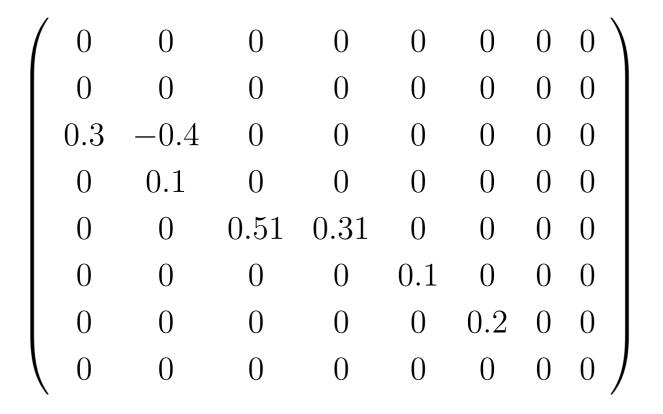
- Each individual is a valid gene network
- Network is a set of binary links between genes with weights on each link
- Fitness judged by how well network predicts the microarray data
- Specialist crossover operator to combine two networks
- GA uses coarse-grained weights on the links
- Refine the weights after the GA is finished using a back-propagation local search algorithm
- Compare single population GA with an island model
- Compare with Friedman's results on Rosetta data set

Example Gene Network



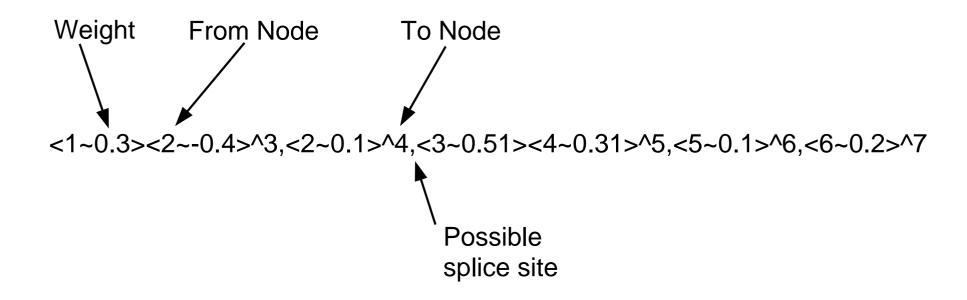
Representing Gene Networks

Matrix representation:



Representing Gene Networks

String representation:



Evaluating Network Fitness

Estimate gene expression levels at time t + 1 given levels at time t:

$$s_i(t+1) = \sum_{j=0}^n w_{ji} x_j(t)$$

Evaluating Network Fitness

Estimate gene expression levels at time t + 1 given levels at time t:

$$s_i(t+1) = \sum_{j=0}^n w_{ji} x_j(t)$$

Pass estimate through a sigmoid function for biological realism:

$$x_i(t+1) = \frac{n_j}{1 + e^{-n_j(s_i(t+1))}}$$

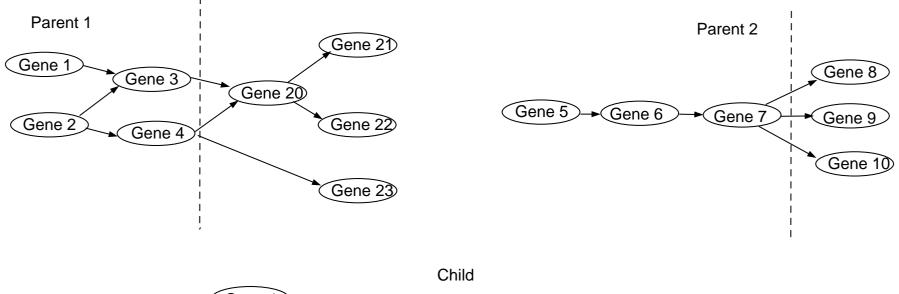
Evaluating Network Fitness

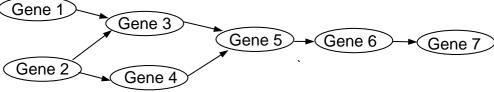
Overall network fitness:

$$fitness = \sum_{i=0}^{n} \sum_{t=0}^{T} |y_i(t) - x_i(t)| + num_nodes/b$$

Imposed bias towards smaller networks

Single Point Network Crossover





Initial Pop	Net Size	GA Fitness	BP Error	Markov matches	Time
2000	50	186.60	2.032	6	30 min
2000	20	257.16	1.200	0	2 mins
5000	50	180.43	1.200	8	35 min
5000	20	221.40	0.8323	6	5 min

Initial Pop	Net Size	GA Fitness	BP Error	Markov matches	Time
2000	50	186.60	2.032	6	30 min
2000	20	257.16	1.200	0	2 mins
5000	50	180.43	1.200	8	35 min
5000	20	221.40	0.8323	6	5 min

Best random network of initial population of 5000 with 50 nodes has a fitness of over 15000

Initial Pop	Net Size	GA Fitness	BP Error	Markov matches	Time
2000	50	186.60	2.032	6	30 min
2000	20	257.16	1.200	0	2 mins
5000	50	180.43	1.200	8	35 min
5000	20	221.40	0.8323	6	5 min

- Best random network of initial population of 5000 with 50 nodes has a fitness of over 15000
- Very good fitness networks found...

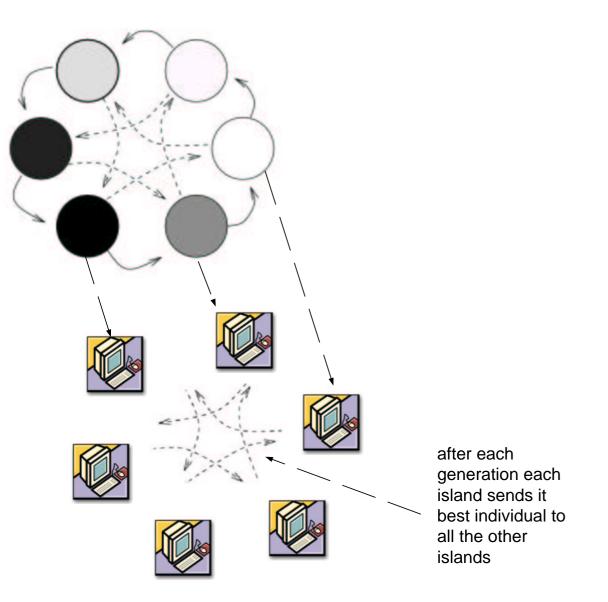
Initial Pop	Net Size	GA Fitness	BP Error	Markov matches	Time
2000	50	186.60	2.032	6	30 min
2000	20	257.16	1.200	0	2 mins
5000	50	180.43	1.200	8	35 min
5000	20	221.40	0.8323	6	5 min

- Best random network of initial population of 5000 with 50 nodes has a fitness of over 15000
- Very good fitness networks found...
- But a different (sub-)network every time

Initial Pop	Net Size	GA Fitness	BP Error	Markov matches	Time
2000	50	186.60	2.032	6	30 min
2000	20	257.16	1.200	0	2 mins
5000	50	180.43	1.200	8	35 min
5000	20	221.40	0.8323	6	5 min

- Best random network of initial population of 5000 with 50 nodes has a fitness of over 15000
- Very good fitness networks found...
- But a different (sub-)network every time
- Impossible to validate results

Island Model GA



Island Model Results

Nodes	Рор	Size	GA Fitness	BP Error	Markov matches	Time
4	2000	50	225.60	2.214	6	30 min
4	2000	20	257.16	1.334	2	7 mins
4	5000	50	223.43	2.200	4	42 min
4	5000	20	227.30	1.542	7	9 min
8	2000	50	122.60	2.635	9	30 min
8	2000	20	117.16	1.986	5	6 mins
8	5000	50	116.22	1.256	7	40 min
8	5000	20	132.30	0.623	5	11 min

Island Model Results

Nodes	Рор	Size	GA Fitness	BP Error	Markov matches	Time
4	2000	50	225.60	2.214	6	30 min
4	2000	20	257.16	1.334	2	7 mins
4	5000	50	223.43	2.200	4	42 min
4	5000	20	227.30	1.542	7	9 min
8	2000	50	122.60	2.635	9	30 min
8	2000	20	117.16	1.986	5	6 mins
8	5000	50	116.22	1.256	7	40 min
8	5000	20	132.30	0.623	5	11 min

Better fitness, but same problem as before

Island Model Results

Nodes	Рор	Size	GA Fitness	BP Error	Markov matches	Time
4	2000	50	225.60	2.214	6	30 min
4	2000	20	257.16	1.334	2	7 mins
4	5000	50	223.43	2.200	4	42 min
4	5000	20	227.30	1.542	7	9 min
8	2000	50	122.60	2.635	9	30 min
8	2000	20	117.16	1.986	5	6 mins
8	5000	50	116.22	1.256	7	40 min
8	5000	20	132.30	0.623	5	11 min

- Better fitness, but same problem as before
- Results with simulated data demonstrate validity of the technique

Techniques for reconstruction of gene networks are still in their infancy

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques
- Current techniques can produce plausible networks to pass to a biologist for verification

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques
- Current techniques can produce plausible networks to pass to a biologist for verification
- The GA can find highly fit networks that explain the test data

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques
- Current techniques can produce plausible networks to pass to a biologist for verification
- The GA can find highly fit networks that explain the test data
- Back-propagation can be used to fine tune the network weights

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques
- Current techniques can produce plausible networks to pass to a biologist for verification
- The GA can find highly fit networks that explain the test data
- Back-propagation can be used to fine tune the network weights
- The island model markedly improves the fitness level achieved

- Techniques for reconstruction of gene networks are still in their infancy
- We lack suitable benchmarks to validate techniques
- Current techniques can produce plausible networks to pass to a biologist for verification
- The GA can find highly fit networks that explain the test data
- Back-propagation can be used to fine tune the network weights
- The island model markedly improves the fitness level achieved
- Simulation may be able to provide benchmark data