
Learning Action Strategies for Planning Domains
using Genetic Programming

John Levine and David Humphreys

Centre for Intelligent Systems and their Applications,
School of Informatics, University of Edinburgh,

80 South Bridge, Edinburgh, EH1 1HN
johnl@inf.ed.ac.uk

Abstract. There are many different approaches to solving planning problems,
one of which is the use of domain specific control knowledge to help guide a
domain independent search algorithm. This paper presents L2Plan which repre-
sents this control knowledge as an ordered set of control rules, called a policy,
and learns using genetic programming. The genetic program’s crossover and mu-
tation operators are augmented by a simple local search. L2Plan was tested on
both the blocks world and briefcase domains. In both domains, L2Plan was able
to produce policies that solved all the test problems and which outperformed the
hand-coded policies written by the authors.

1 Introduction

This paper presents L2Plan (learn to plan) as a genetic programming based method for
acquiring control knowledge. L2Plan produces strategies similar to those produced by
[7, 11] using a GP similar to that used by [1]. L2Plan is a complete system that generates
its own training examples, testing problems and contains its own simple planner. L2Plan
uses a mutation-based local search to augment the genetic program’s crossover and
mutation operators.

L2Plan was tested on two domains, the blocks world domain and the briefcase do-
main. In both domains, L2Plan was able to produce control knowledge that allowed the
planner to find solutions to all of the test problems.

2 Previous Work

There have been many methods [1, 4, 5, 10] used for learning control knowledge. The
two most relevant works are Khardon’s L2Act system [6, 7], and Aler et al’s EvoCK
system [1, 2].

Khardon’s system, L2Act [6, 7], represented the control knowledge as “an ordered
list of existentially quantified rules” [7], known as a Production Rule System (PRS).
The learning algorithm used was a variation of Rivest’s [13] learning algorithm.

The PRS strategies produced by L2Act were able to demonstrate some ability to
generalize as they could solve some problems of greater complexity than the examples
used to generated them. L2Act was able to solve:



“roughly 80 percent of the problems of the same size [as the training examples]
(8 blocks), and 60 percent of the larger problems (with 20 blocks).” [6]

Since the PRS-based planner used always adopted the first action suggested, the
solutions were found very efficiently. The strategies, however, failed to find solutions to
some problems and the solutions that were found were often sub-optimal.

L2Act uses the simplest planning algorithm possible: given a set of production rules,
apply first rule that fires to the current state and continue until the goal is reached or no
further progress is possible. In contrast, Aler et al’s EvoCK [1, 2] uses genetic program-
ming (GP) [8] to evolve the heuristics of the Prodigy4.0 [15] planner. Prodigy4.0 is a
sophisticated domain independent search-based planner. One of its features is that it
allows the user to supply domain specific control knowledge to be used to guide its
decision making process. It is this control knowledge that EvoCK generates.

EvoCK uses heuristics generated by HAMLET [4] for Prodigy4.0 and evolves them
to produce better heuristics. These heuristics are converted by EvoCK into control rules
which are then used to generate the initial population for EvoCK’s GP. The candi-
dates are sets of different control rules. The EvoCK GP then uses various mutation
and crossover operators to evolve the candidates. The candidates are evaluated using
Prodigy4.0 to solve example problems. The fitness function takes into account how
much improvement they achieve over Prodigy4.0 with no control knowledge, how many
problems they solve and the lengths of the plans.

EvoCK was tested on two domains, the blocks world domain and the logistics do-
main. For both domains populations of 2 and 300 candidates were used and the best
results are shown in Table 1. These results refer to the number of test problems solved,
rather than the number of problems solved optimally. Overall, EvoCK outperformed
both Prodigy4.0 on its own, and HAMLET.

Problems Solved
10 blocks, 5 goals 20 blocks, 10 goals 20 blocks, 20 goals 50 blocks, 50 goals

95% 85% 73% 38%

Table 1. HAMLET-EvoCK Results in the Blocks World Domain

L2Plan evolves a domain specific planner similar to [8, 14], but does so by evolving
the domain specific control knowledge (hereafter called a policy) rather than the planner
itself. The policy is represented similarly to Khardon [6, 7] while the learning algorithm
is a GP similar to that used by EvoCK [1, 2]. The policy can either be interpreted as a set
of production rules, as in L2Act, or as a set control rules to guide a breadth-first search
algorithm. L2Plan can take advantage of background theory, or support predicates, if
this is available.

3 Policy Restricted Planning

Planning can be viewed as a tree search, where the tree’s nodes are states and the
branches connecting them are actions with specific bindings, as shown in Figure 1.



Fig. 1. Planning as a Tree Search

Planning in this manner involves searching the tree for a state that achieves the
desired goals and the path of actions from the initial state to that state is the plan.
Finding optimal plans is more complicated, as all paths must be searched to ensure that
no shorter paths lead to a state that achieves the desired goals. The simplest way to
perform optimal searching is to breadth-first search of all states, as shown by the state
number in Figure 1. This method of searching, however, requires the planner to look at
many, many states. The number of states increases exponentially with the complexity
of the problems, which makes this search method infeasible for large problems.

Policy restricted planning involves using a policy to limit the search by restricting
which branches are searched. The light grey area in Figure 2 shows an example of this
restriction. With policy restriction the number of states to be examined using breadth-
first searching can be reduced significantly. In the ideal case, this should be done without
affecting the planner’s ability to find an optimal plan.

Fig. 2. Policy Restricted Planning

The extreme case of policy restricted planning is where the policy is trusted to gen-
erate a good action at its first attempt, and no backtracking is performed. This is the
same as treating the policy as a set of production rules, as in L2Act, and is shown in
dark grey in Figure 2. We use the term first-action planning to refer to this. Because



finding optimal plans is NP-hard, optimality is not guaranteed; a good policy for first-
action planning should solve all problems and keep the length of the plans as near to
the optimum as possible.

4 L2Plan

L2Plan is a system that takes a domain as an input and generates control knowledge, in
the form of a policy, specific for that domain as an output. The domains are specified
in the untyped STRIPS version of the Planning Domain Description Language (PDDL)
and consist of the base predicates and planning operators. An example domain is shown
in Figure 3.

(define (domain blocksworld)
(:predicates (clear ?x)

(on-table ?x)
(on ?x ?y))

(:action move-block-to-block
:parameters (?bm ?bf ?bt)
:precondition (and (clear ?bm) (clear ?bt) (on ?bm ?bf))
:effect (and (not (clear ?bt)) (not (on ?bm ?bf))

(on ?bm ?bt) (clear ?bf)))
(:action move-block-to-table

:parameters (?bm ?bf)
:precondition (and (clear ?bm) (on ?bm ?bf))
:effect (and (not (on ?bm ?bf))

(on-table ?bm) (clear ?bf)))
(:action move-table-to-block

:parameters (?bm ?bt)
:precondition (and (clear ?bm) (clear ?bt) (on-table ?bm))
:effect (and (not (clear ?bt)) (not (on-table ?bm))

(on ?bm ?bt))))

Fig. 3. PDDL Definition of the Blocks World Domain

The policies generated by L2Plan are then used by L2Plan’s two policy restricted
planners to solve planning problems. The policies are specified as ordered sets of control
rules, similar to the PRS used by Khardon. A control rule consists of a condition, a goal
condition and an action in the form:

if condition and goal condition then perform action

A policy is used to determine which action to perform in a given situation. For a
given situation, the first rule in the list that can be used is used. In order to use a rule,
both its condition, and its action’s precondition, must be valid in the current state and its
goal condition valid in the goal. The condition and goal condition are allowed to refer to
all the variables present in the action, together with up to n non-action variables, where
n is set as one of the parameters of the GP.



An example hand-coded policy for the blocks world is shown in Figure 4. As well as
the base predicates provided by the PDDL domain definition, the support predicate wp
is used to denote well-placed blocks: a block is well-placed if it is on the table in both the
current state and the goal state, or if it is on the correct block and all blocks below it are
also well-placed. In the policy, the first three rules add well-placed blocks and the final
rule places any non-well-placed block onto the table. Under policy restricted breadth-
first planning, this policy solves all problems optimally, with the search increasing in
size with the size of the problem. Under policy restricted first-action planning, it solves
all problems, with the number of non-optimal solutions generated increasing with the
size of the problem.

(define (policy blocks1)
(:rule make_well_placed_block_1

:condition (and (on ?bm ?bf) (wp ?bt))
:goalCondition (and (on ?bm ?bt))
:action move-block-to-block ?bm ?bf ?bt)

(:rule make_well_placed_block_2
:condition (and (wp ?bt))
:goalCondition (and (on ?bm ?bt))
:action move-table-to-block ?bm ?bt)

(:rule make_well_placed_block_3
:condition (and (on ?bm ?bf))
:goalCondition (and (on-table ?bm))
:action move-block-to-table ?bm ?bf)

(:rule move_non_wp_block_to_table
:condition (and (on ?bm ?bf) (not (wp ?bm)))
:goalCondition (and )
:action move-block-to-table ?bm ?bf))

Fig. 4. Example Hand-Coded Policy for the Blocks World

In order to generate a policy for a domain, L2Plan performs three major functions:
the generation of problems and examples, the evolution of the policy and the evaluation
of that policy.

4.1 Generation of Problems and Examples

Problems are generated using domain specific problem generators, one for the blocks
world domain, and another for the briefcase domain. The problems consist of an initial
state, a set of goals and the optimal plan length to solve the problem. The initial state is
a list of facts describing the state completely and the goal is a conjunction of facts that
describes the goal. An example problem for the briefcase domain is shown in Figure 5.

Examples are extensions of problems, with the addition of a list of all of the possible
actions that are valid from the initial state and a corresponding cost for taking those ac-
tions. They represent single action decisions. For a given situation an example consists
of a state, a goal state and a list of possible actions with associated costs. For each ac-
tion, the shortest plan starting with that action is found. The action (or actions) with the
shortest path is obviously the optimal action (or actions) to take. All other actions are



(define (problem bc_12)
(:domain briefcase)
(:length 7)
(:objects bc_1 obj_1 obj_2 loc_1 loc_2 loc_3 loc_4 loc_5)
(:init

(at bc_1 loc_2) (at obj_1 loc_3) (at obj_2 loc_5)
(briefcase bc_1) (object obj_1) (object obj_2)
(location loc_1) (location loc_2) (location loc_3)
(location loc_4) (location loc_5))

(:goal (and (at obj_2 loc_3) (at obj_1 loc_5))))

Fig. 5. Example Problem from the Briefcase Domain

given a cost indicating how many steps more their paths have in them than the optimal
path. These actions fall into three categories:

Optimal Actions: There will always be at least one optimal action, but more than one
may exist. These actions are given a cost of 0.

Neutral Actions: These actions have plans that are only 1 step longer than the optimal
plan. They have a cost of 1 since they result in the plan being one step longer, but
these actions don’t need to be “undone” to reach the solution.

Negative Actions: These actions have plans that are more than 1 step longer than the
optimal plan. They have a cost of 2 or more. In the blocks world and briefcase
domains all actions are reversible so negative actions will always have a cost of
exactly 2, but in some domains where actions are not reversible (e.g. driving and
running out of fuel or shooting a missile) this cost may be higher.

Examples are generated from problems, with each problem providing an example
for each step along its optimal path. As shown in Figure 6, this was done by starting
with the initial state and determining all of the possible actions that could be taken, as
determined by the preconditions of the actions in the domain, not by any particular pol-
icy. Each action was taken and the cost to solve each resulting situation was determined.
The optimal action was taken, and the process was repeated until the goal was reached.
In the cases where there were more than one optimal actions in a situation, the first one
found was used.

4.2 Evolution of Policies

The evolution of the policies is performed using genetic programming (GP). An initial
population of policies is generated randomly. Each policy generated contains a random
number of independently generated rules. That is, there is no effort made to ensure each
policy fits a predetermined pattern (e.g. having a rule using each action in the domain).
Also, there are no guarantees on the sanity of the generated rules (i.e. that they aren’t
self-contradictory). The GP then uses these policies to evolve a policy with a fitness of
1.0, training against a set of generated examples.

The fitness of a policy is determined by evaluating the policy against the set of train-
ing examples. The policy is evaluated against each of the examples in turn and averaged
to give an overall evaluation. An evaluation involves using the policy to determine what



Fig. 6. Generation of Examples from Problems

action should be taken in the situation of the example. The cost of that action is then
retrieved from the example. In the case where a policy is non-deterministic (i.e. it rec-
ommends more than one action for a given example) the policy evaluator selects the
first action in the list of actions, and uses its action’s cost. The lists of actions are sorted
to ensure consistency.

Once the action’s cost has been determined for each of the examples in the training
set, the fitness of the policy is calculated as:

F (pi) =
1

1 +
(

∑n

j=1
C(pi, ej)

)

/n

where F (pi) is the fitness of policy pi, C(pi, ej) is the cost of the action returned by
applying policy pi to example ej and n is the number of examples in the training set.

L2Plan’s GP uses three crossover and four mutation operators to perform the evo-
lution. Selection was performed using tournament selection with a size of 2. The result
of the crossover or mutation was always a single policy: the fittest of all of the newly
created policies and ones selected for crossover or mutation.

Single Point Rule Level Crossover: a single crossover point is selected in each of the
two selected policies’ rule sets. Possible crossover points are before of any of the
rules, thus resulting in the same number of possible crossover points in each policy
as there are rules. This also prevents a crossover in which one of the policies ended
up with no rules. Single point crossover is then performed in the usual manner [8].

Single Rule Swap Crossover: a rule is selected from each policy and swapped. The
replacing rule is placed in the same location as the one begin removed.

Similar Action Rule Crossover: single rules with the same action are selected from
each policy. From these two rules, two more are created by using the condition
from one and the goal condition from the other. These original rules in each policy
are then replaced by both of the new rules, resulting in four new policies.



Rule Addition Mutation: a new rule is generated and inserted at a random position in
the policy.

Rule Deletion Mutation: a rule is selected at random and removed from the policy. If
the policy contains only one rule, this mutation is not performed.

Rule Swap Mutation: two rules are selected at random and their locations in the rule
set are swapped. If the policy has only one rule, this mutation is not performed.

Rule Condition Mutation: a rule is selected at random and its condition and/or goal
condition are mutated. Each of the conditions is subjected, with equal probability,
to one of four different mutations:

– Add a predicate to the conditional conjunction
– Remove a predicate from the conditional conjunction
– Replace the condition with a new, randomly generated one
– Do nothing

L2Plan also uses a local search to augment the GP. It is run on each policy prior
to it being added to the population. L2Plan performs local search by using random
mutations, using the Rule Condition Mutation, to look “around” the candidate in the
search space. Since it is infeasible to look at all possible permutations due to the number
of these permutations, a few are selected randomly.

The amount of searching performed is determined by a branching factor and a max-
imum depth, as shown in Figure 7. In this example, the initial candidate is mutated 4
times to produce mutations 1a, 1b, 1c and 1d. Each of these mutation is evaluated and
since 1d is the fittest, this replaces the original candidate. The search continues until no
improvement is found or the maximum depth limit is reached.

Fig. 7. Mutation-Based Local Search



As soon as a policy is found that selects the optimal action for each of the examples,
thus giving the policy a fitness of 1.0, evolution stops.

4.3 Evaluation of Control Knowledge

The optimal policy found during evolution is tested against problems generated by
L2Plan. The policy is tested on each problem using two forms of policy restricted plan-
ning: breadth-first and first-action. Breadth-first planning examines all of the possible
plans allowed by the policy at each length until a solution is found. First-action planning
only explores the first possible action at each state, as shown in Figure 2.

Testing can produce one of three results: failure, solved or optimal. A problem is
considered solved by a policy if the planner produces a plan that achieves the goal. To
be considered optimal, the plan must be the same length as the optimal plan. Failures
occur when the policy recommends no action for a given state/goal combination, or
when the action recommended results in a state which has already been visited, thus
resulting in a non-terminating loop.

There are three metrics tracked by the policy tester. First is the number of problems
that are either solved or optimal. The second is the average number of extra steps taken
by all solved and optimal solutions. This second metric provides a measure of the qual-
ity of solutions. The third metric tracked was the number of states examined during the
planning. This is used as a measure of the cost of finding the solutions.

5 Experiments and Results

Experiments were performed on the blocks world and the briefcase domain. The GP
was configured consistently for these experiments: a population size of 100 was used;
the initial randomly generated policies contained between 1 and 4 rules; the best 5% of
the population was copied unchanged into the next generation; the crossover rate was
0.9; the mutation rate was 0.01, except for rule condition mutation, for which 0.03 was
used; the local search branching factor was 10; and the local search maximum depth
was 10.

5.1 Blocks World Domain

The training configuration for the blocks world domain was 30 5-block training prob-
lems, giving 135 examples in the training set. No non-action variables were allowed
in the rules. Domain theory for well-placed blocks (using the predicate name wp) was
used, as it was in L2Act [6, 7]. The test problems were sets of 100, using 5, 10, 15 and
20 blocks.

This configuration produced the policy shown in Figure 7. The first three rules add
well-placed blocks. The final three rules specify what to do if a well-placed block cannot
be gained in a single move: the first puts a block on the table if it not well-placed and
on top of a block that is well-placed, the second puts a block on the table it is not
well-placed and the block beneath it is not on the table, and the final rule places any
non-well-placed block onto the table.



(define (policy Policy_19683)
(:rule GenRule_8949

:condition (and (on ?bm ?bf))
:goalCondition (and (on-table ?bm))
:action move-block-to-table ?bm ?bf)

(:rule GenRule_7388
:condition (and (wp ?bt) (not (wp ?bm)))
:goalCondition (and (on ?bm ?bt))
:action move-table-to-block ?bm ?bt)

(:rule GenRule_12975
:condition (and (wp ?bt))
:goalCondition (and (on ?bm ?bt))
:action move-block-to-block ?bm ?bf ?bt)

(:rule GenRule_17355
:condition (and (wp ?bf) (not (wp ?bm)))
:goalCondition (and )
:action move-block-to-table ?bm ?bf)

(:rule GenRule_8980
:condition (and (not (on-table ?bf)) (not (wp ?bm)))
:goalCondition (and )
:action move-block-to-table ?bm ?bf)

(:rule GenRule_15502
:condition (and (clear ?bm) (not (wp ?bm)))
:goalCondition (and )
:action move-block-to-table ?bm ?bf))

Fig. 8. L2Plan Policy for the Blocks World

This policy was evaluated using the 400 test problems using both first-action and
breadth-first planning, as shown in Table 2. In this table, “Solved” refers to the number
of test problems solved, “Optimal” is the number solved using the fewest actions possi-
ble, “Extra” is the average number of extra steps in the plan and “Nodes” is the average
number of nodes visited in the search tree.

first-action planning breadth-first planning
Solved Optimal Extra Nodes Solved Optimal Extra Nodes

5 blocks 100 100 0.00 5.76 100 100 0.00 7.14
10 blocks 100 86 0.15 12.51 100 94 0.07 17.60
15 blocks 100 65 0.57 21.02 100 88 0.15 41.12
20 blocks 100 46 0.91 29.63 100 84 0.21 99.02

hand-coded 100 34 1.26 29.98 100 100 0.00 197.42

Table 2. Blocks World Test Problem Results

For comparison, results are given for the 20-block test problems using the hand-
coded policy shown in Figure 4. The policy found by L2Plan outperforms this policy
under first-action planning. Under breadth-first planning, the hand-coded policy is su-
perior in terms of the number of optimal solutions generated, but the learnt policy is
near-optimal and manages to halve the amount of search used.



A configuration with one non-action variable was also tried: this produced very sim-
ilar results, except that the policy produced was slightly less readable, due to presence
of the non-action variables.

5.2 Briefcase Domain

In the briefcase domain, the training configuration was 30 2-object, 5-city training prob-
lems, giving 167 examples in the training set. One non-action variable was allowed in
the rules. No domain theory was used. The test problems were sets of 100, with 2 or 4
objects and 5 or 10 cities.

This configuration produced the policy shown in Figure 8. The first rule takes an
object out of the briefcase if it has reached it goal location. It should be noted that the
preconditions of the action also have to be true for the rule to fire, which means that
in order for the first rule to fire, the object has to be in the briefcase. The second rule
puts an object in the briefcase if it is not at its goal location. The fourth rule takes the
briefcase to an object that needs to be moved and the final rule moves the briefcase to
an object’s goal location. The third rule is a refinement of the fourth rule: it takes the
briefcase to an object that needs to be moved if the place the briefcase is coming from is
not the object’s goal location. Our hand-coded policy for this domain omitted the third
rule, but was otherwise identical to the policy found by L2Plan.

(define (policy Policy_62474)
(:rule GenRule_7074

:condition (and (not (at ?obj ?loc)))
:goalCondition (and (at ?obj ?loc))
:action takeout ?obj ?bc ?loc)

(:rule GenRule_33919
:condition (and (at ?bc ?loc))
:goalCondition (and (not (at ?obj ?loc)))
:action putin ?obj ?bc ?loc)

(:rule GenRule_26811
:condition (and (object ?x) (at ?x ?to))
:goalCondition (and (not (at ?x ?to)) (not (at ?x ?from)))
:action movebriefcase ?bc ?from ?to)

(:rule GenRule_44204
:condition (and (object ?x) (at ?x ?to))
:goalCondition (and (not (at ?x ?to)))
:action movebriefcase ?bc ?from ?to)

(:rule GenRule_52350
:condition (and (object ?x) (in-briefcase ?x ?bc))
:goalCondition (and (at ?x ?to))
:action movebriefcase ?bc ?from ?to))

Fig. 9. L2Plan Policy for the Briefcase Domain

This policy was evaluated using the 400 test problems using both first-action and
breadth-first planning, as shown in Table 3.



first-action planning breadth-first planning
Solved Optimal Extra Nodes Solved Optimal Extra Nodes

2 objects, 5 cities 100 95 0.05 6.05 100 100 0.00 9.37
2 objects, 10 cities 100 96 0.04 6.87 100 100 0.00 11.97
4 objects, 5 cities 100 80 0.20 10.38 100 100 0.00 27.98

4 objects, 10 cities 100 76 0.25 12.91 100 100 0.00 62.04
hand-coded 100 74 0.28 12.94 100 100 0.00 68.76

Table 3. Briefcase Domain Test Problem Results

For comparison, results are given for the test problems with 4 objects and 10 cities
using the hand-coded policy referred to above. The extra rule in the policy found by
L2Plan enables it to outperform the hand-coded policy under both first-action and
breadth-first planning.

6 Conclusions and Future Work

L2Plan has successfully shown that polices, of the nature shown in this paper, can
be learned using genetic programming. The results indicate that policies can be learnt
which not only solve all test problems, but which can also outperform policies coded by
hand. The results generated here are comparable with systems which use hand-coded
control knowledge such as TLPLan [3], TALPlanner [9] and SHOP [12].

We are now working to apply L2Plan to more planning domains and to refine the
learning method used. In doing the former, we will modify the system to support PDDL
with typing: this will restrict the space of possible rules and should make the learning
task easier.

We will also be investigating the use of description logic in encoding our rules,
since Martin and Geffner [11] have shown that this can enable the system to learn
concepts like “a well-placed block” by constructing them from the base predicates and
the connectives provided by the description logic.

References

1. Aler, R., Borrajo, D. and Isasi, P. (1998). Genetic programming of control knowledge for
planning. In Proceedings of AIPS-98, Pittsburgh, PA.

2. Aler, R., Borrajo, D. and Isasi, P. (2001). Learning to Solve Problems Efficiently by Means
of Genetic Programming. Evolutionary Computation 9(4), 387–420.

3. Bacchus, F. and Kabanza, F. (1996). Using temporal logic to control search in a forward
chaining planner. In M. Ghallab and A. Milani, editors, New directions in AI planning, 141–
153. ISO Press.

4. Borrajo, D., and Veloso, M. (1997) Lazy incremental learning of control knowledge for effi-
ciently obtaining quality plans. AI Review 11(1-5), 371–405.

5. Katukam, S. and Kambhampati, S. (1994). Learning explanation-based search control rules
for partial order planning. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, 582–587, Seattle, WA. AAAI Press.

6. Khardon, R. (1996). Learning to take actions. In Proc. National Conference on Artificial
Intelligence (AAAI-96), 787–792. AAAI Press.



7. Khardon, R. (1999). Learning action strategies for planning domains. Artificial Intelligence
113(1-2), 125–148.

8. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press.

9. Kvarnstrom, J. and Doherty, P. (2000). TALplanner: A temporal logic based forward chaining
planner. Annals of Mathematics and Artificial Intelligence 30(1), 119–169.

10. Leckie, C. and Zukerman, I. (1991). Learning search control rules for planning: An inductive
approach. In Proceedings of Machine Learning Workshop, 422–426.

11. Martin, M. and Geffner, H. (2000). Learning generalized policies in planning using concept
languages. In Proc. 7th Int. Conf. on Knowledge Representation and Reasoning (KR 2000,
Colorado, 4/2000). Morgan Kaufmann.

12. Nau, D., Cao, Y., Lotem, A., and Munoz-Avila, H. (1999). SHOP: Simple Hierarchical Or-
dered Planner. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), 968–973.

13. Rivest, R. L. (1987). Learning decision lists. Machine Learning 2(3), 229–246.
14. Spector, L. (1994). Genetic programming and AI planning systems. In Proceedings of

Twelfth National Conference on Artificial Intelligence, Seattle, Washington, USA, 1994.
AAAI Press/MIT Press.

15. Veloso, M., Carbonell, J., Perez, M., Borrajo, D., Fink, E., and Blythe, J. (1995). Integrating
planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical
Artificial Intelligence 7, 81–120.


