
Ant Colony Optimization

and Aggressive Local Search

applied to Bin Packing

and Cutting Stock Problems

John Levine and Frederick Ducatelle

Division of Informatics

University of Edinburgh

Informatics Jamboree

23rd May 2002

Outline of the Talk

• Introducing ant colony optimization (ACO)

• Introducing bin packing and cutting stock

problems

• Applying ACO to bin packing and cutting

stock problems

• Comparing to other approaches

• Adding a local search procedure

• Memoryless experiments

• System demonstration

• Conclusions and current directions

Ant Colony Optimization

Biological inspiration: ants find the shortest

path between their nest and a food source us-

ing pheromone trails.

Nest Food

Ant Colony Optimization is a population-based

search technique for the solution of combina-

torial optimization problems which is inspired

by this behaviour.

Ant System for the TSP

• Each ant builds a tour from a starting city

• The next city j after city i is chosen

stochastically:

p(i, j) =
[τ(i, j)].[η(i, j)]β

∑

g∈J(i)

[τ(i, g)].[η(i, g)]β

• The pheromone trail τ(i, j) indicates the

favorability of city j following city i

• η(i, j) is a simple heuristic guiding the

construction: η(i, j) = 1/d(i, j)

• The pheromone trail evaporates a little

after every iteration, and is reinforced by

good solutions.

Ant System for the TSP:
An Example

C

D

E

A B

75

100

50

100
125

125

50

100

125

75

Ant Colony Optimization:
Further Developments

• Improvements to the original algorithm:

ACS, MMAS, ASrank, Ant-Q, ANTS, ...

• Combining ACO with local search

techniques gives very good results

• Other applications: quadratic assignment,

flow shop and job shop scheduling, graph

coloring, network routing, ...

• References:

1. Swarm Intelligence: from natural to artificial

intelligence by E. Bonabeau, M. Dorigo and

G. Theraulaz

2. New Ideas in Optimization by D. Corne,

M. Dorigo and F. Glover (eds.)

3. Ant Colony Optimization by M. Dorigo and

T. Stützle, MIT Press, 2003.

Bin Packing and Cutting Stock
Problems

• Packing a number of items in bins of a

fixed capacity or cutting items from

stocks of a fixed length

8

2 3

7

4

5 5

3

• The difference lies in the assortment of

small items

• Variations: multiple stock lengths,

contiguity, multiple dimensions, ...

Applying ACO to Bin Packing
and Cutting Stock Problems

1. How can good packings be reinforced via

a pheromone matrix?

2. How can the solutions be constructed

stochastically, with influence from the

pheromone matrix and a simple heuristic?

3. How should the pheromone matrix be

updated after each iteration?

4. What fitness function should be used to

recognise good solutions?

AntBin 1: Pheromone Matrix

• BPP and CSP as ordering problems:

many permutations are possible

| 8 2 | 7 3 | 5 4 | 5 3 |

= | 5 3 | 7 3 | 8 2 | 5 4 |

= | 3 5 | 7 3 | 2 8 | 5 4 |

• BPP and CSP as grouping problems:

τ(i, j) expresses the favorability of having

items of size i and j in the same bin/stock

• Pheromone matrix works on item sizes,

not items themselves

AntBin 2: Building Solutions

• Every ant starts with an empty bin

• New items are added stochastically:

p(s, b, j) =
[τb(j)].[η(j)]

β

∑

g∈J(s,b)

[τb(g)].[η(g)]
β

• η(j) is the item size j

• τb(j) is the sum of pheromone between

item size j and the item sizes already

present in bin b

• β has to be defined empirically

AntBin 3: Pheromone Updating

τ(i, j) = ρ.τ(i, j) + m.f(sbest)

• The pheromone evaporates after every

iteration

• There is an update for every time item

sizes i and j are combined in a bin/stock

of the best solution

• Only the iteration best ant increases the

pheromone trail

• Occasionally update with the global best

ant instead

AntBin 4: Fitness Function

• Total number of bins in solution:

extremely unfriendly fitness landscape –

no guidance from N + 1 bins to N bins

• Need large reward for full or nearly full

bins

f(si) =

∑N
b=1(Fb/C)2

N

where N is the number of bins in si

Fb is the sum of items in bin b

and C is the bin capacity

• Promotes full bins with the spare capacity

in one “big lump”

Pure ACO Results 1:
Cutting Stock Problems

Comparing pure ACO to Liang et Al.’s EP

solution for the CSP

10 problems, size up to 600 items, 50 runs

Prob EP ACO

avg best time avg best time

6a 80.8 80 347 79.0 79 166
7a 69.0 68 351 69.0 68 351
8a 148.1 147 713 146.0 145 714
9a 152.4 152 1679 151.0 151 1652

10a 220.3 219 4921 218.9 218 4925

Parameters:

nants = nitems

β = {2,5,10}

nsols = set to match time for EP

Pure ACO Results 2:
Bin Packing Problems

Comparing pure ACO to Martello and Toth’s

Reduction Algorithm and Falkenauer’s HGGA

Uniform problems: bin capacity is 150, items

are randomly chosen in the range [20,100]

Four sizes: 120, 250, 500 and 1000 items,

20 random instances in each size, 1 run

Prob HGGA MTP ACO

bins time bins time bins time

u120 +2 381 +2 370 +2 376
u250 +3 1337 +12 1516 +12 1414
u500 0 1015 +44 1535 +42 1487

u1000 0 7059 +78 9393 +70 9272

Parameters:

nants = nitems
β = 2 (u120), 10 (u250, u500, u1000)

nsols = set to match time for HGGA/MTP

ACO Algorithms plus Local
Search

• HGGA is a hybrid genetic algorithm,

consisting of a GA plus a local search

technique

• Current wisdom suggests that ACO plus

local search is also a good hybrid coupling

• Each ant’s solution is improved by a local

search procedure before the best solutions

are reinforced

• ACO algorithm alleviates the initialization

problem of local search

Local Search Procedure for the
BPP and CSP

• In every ant’s solution, the n least full

bins are opened and their contents are

made free

• Items in the remaining bins are replaced

by larger free items

• This gives fuller bins with larger items

and smaller free items to reinsert

• The free items are reinserted via FFD

• The procedure is repeated until no further

improvement is possible

• Only the global best ant increases the

pheromone trail

Local Search: An Example

The solution before local search (the bin capacity is 10):
The bins: | 3 3 3 | 6 2 1 | 5 2 | 4 3 | 7 2 | 5 4 |

Open the two smallest bins:
Remaining: | 3 3 3 | 6 2 1 | 7 2 | 5 4 |
Free items: 5,4,3,2

Try to replace 2 current items by 2 free items, 2 current
by 1 free or 1 current by 1 free:

First bin: 3 3 3 → 3 5 2 new free: 4,3,3,3
Second bin: 6 2 1 → 6 4 new free: 3,3,3,2,1
Third bin: 7 2 → 7 3 new free: 3,3,2,2,1
Fourth bin: 5 4 stays the same

Reinsert the free items using FFD:
Fourth bin: 5 4 → 5 4 1
Make new bin: 3 3 2 2
Final solution: | 3 5 2 | 6 4 | 7 3 | 5 4 1 | 3 3 2 2 |

Repeat the procedure: no further improvement possible

Hybrid ACO Results 1:
Cutting Stock Problems

Comparing hybrid ACO to Liang et Al.’s EP

solution for the CSP

Prob EP HACO

avg best time avg best time

6a 80.8 80 347 79.0 79 1
7a 69.0 68 351 68.0 68 1
8a 148.1 147 713 143.0 143 5
9a 152.4 152 1679 149.0 149 10

10a 220.3 219 4921 215.0 215 249

All 5 problems reliably solved to the theoretical

lower bound

Parameters:

nants = 10

β = 2

nbins = 4

nsols = 20000

Hybrid ACO Results 2:
Bin Packing Problems

Comparing hybrid ACO to Martello and Toth’s

Reduction Algorithm and Falkenauer’s HGGA

Prob HGGA MTP HACO

bins time bins time bins time

u120 +2 381 +2 370 0 1
u250 +3 1337 +12 1516 +2 52
u500 0 1015 +44 1535 0 50

u1000 0 7059 +78 9393 0 147

u2000 – – – – 0 531
u4000 – – – – 0 7190

Parameters:

nants = 10

β = 2 (u120-u1000), 1 (u2000, u4000)

nbins = 4

nsols = 20000

Memoryless Experiments

• Is hybrid ACO really just doing random

restart hill-climbing?

• Example: Costa and Hertz graph coloring

application

• Method: run AntBin again on both sets

of problems, but with the pheromone

update “switched off” – gives memoryless

random restart hill-climbing

trail.decay();

trail.increase(globalBest);

• Use exactly the same parameters as

previous runs

Memoryless Results 1:
Cutting Stock Problems

Comparing hybrid ACO with random restart

hill-climbing for the cutting stock problems:

Prob HACO No memory

avg best time avg best time

6a 79.0 79 1 79.0 79 24
7a 68.0 68 1 68.0 68 1
8a 143.0 143 5 144.0 144 1064
9a 149.0 149 10 150.0 150 997

10a 215.0 215 249 216.8 216 1707

Memoryless Results 2:
Bin Packing Problems

Comparing hybrid ACO with random restart

hill-climbing for the bin packing problems:

Prob HACO No memory

bins time bins time

u120 0 1 0 1
u250 +2 52 +6 166
u500 0 50 +5 432

u1000 0 147 +10 1850

u2000 0 531 +43 19286
u4000 0 7190 +118 131137

Demonstration

snake[antbin] java AntBin problem10a.txt 2 10 4

FFD solution:

Fitness: 0.9476300904977368 Bins: 221 Waste: 730
Iteration 0: 0.93279210264075 +++ 223 --> 0.97405198776758 +++ 218

Iteration 1: 0.92470982142857 +++ 224 --> 0.98336277521761 +++ 217

Iteration 2: 0.93142688091679 +++ 223 --> 0.99018004115226 +++ 216

Iteration 3: 0.93912537537537 +++ 222 --> 0.99053690843621 +++ 216

Iteration 4: 0.93947384884884 +++ 222 --> 0.99057227366255 +++ 216

Iteration 5: 0.93910097597597 +++ 222 --> 0.99112654320987 +++ 216
Iteration 9: 0.93973473473473 +++ 222 --> 0.99113297325102 +++ 216

Iteration 12: 0.9391072322322 +++ 222 --> 0.99193158436214 +++ 216

Iteration 13: 0.9330026158445 +++ 223 --> 0.99200745884773 +++ 216

Iteration 17: 0.9401076076076 +++ 222 --> 0.99202096193415 +++ 216

Iteration 29: 0.9478381096028 +++ 221 --> 0.99205439814814 +++ 216

Iteration 30: 0.9476150075414 +++ 221 --> 0.99309092078189 +++ 216
Iteration 36: 0.9558345959595 +++ 220 --> 0.99313400205761 +++ 216

Iteration 37: 0.9398354604604 +++ 222 --> 0.99315393518518 +++ 216

Iteration 43: 0.9479901960784 +++ 221 --> 0.99317001028806 +++ 216

Iteration 72: 0.9491855203619 +++ 221 --> 0.99318029835391 +++ 216

Iteration 75: 0.9478425087983 +++ 221 --> 0.99318544238683 +++ 216

Iteration 76: 0.9405311561561 +++ 222 --> 0.99319958847736 +++ 216
Iteration 111: 0.949826546003 +++ 221 --> 0.99324074074074 +++ 216

Iteration 125: 0.933454783258 +++ 223 --> 0.99922803617571 +++ 215

Fitness: 0.9992280361757102 Bins: 215 Waste: 10 Iteration: 125

| 64:56 | 58:62 | 67:23:30 | 30:44:46 | 64:56 | 22:33:65 | 64:35:

21 | 30:23:67 | 54:66 | 56:64 | 27:66:27 | 41:36:43 | ...

Current Directions

• Try on a wider variety of problems

• Other local search methods

• Open random bins in the local search,

with bias towards the least full bins

• Adaptive ants for parameter setting:

– Each ant has a different value of β

– Make more of the good ants and kill

off the bad ones (GA style)

