Ant Colony Optimization and Aggressive Local Search applied to Bin Packing and Cutting Stock Problems

John Levine and Frederick Ducatelle Division of Informatics University of Edinburgh

> Informatics Jamboree 23rd May 2002

Outline of the Talk

- Introducing ant colony optimization (ACO)
- Introducing bin packing and cutting stock problems
- Applying ACO to bin packing and cutting stock problems
- Comparing to other approaches
- Adding a local search procedure
- Memoryless experiments
- System demonstration
- Conclusions and current directions

Ant Colony Optimization

Biological inspiration: ants find the shortest path between their nest and a food source using *pheromone trails*.

Ant Colony Optimization is a population-based search technique for the solution of combinatorial optimization problems which is inspired by this behaviour.

Ant System for the TSP

- Each ant builds a tour from a starting city
- The next city *j* after city *i* is chosen stochastically:

$$p(i,j) = \frac{[\tau(i,j)].[\eta(i,j)]^{\beta}}{\sum_{g \in J(i)} [\tau(i,g)].[\eta(i,g)]^{\beta}}$$

- The pheromone trail $\tau(i, j)$ indicates the favorability of city j following city i
- $\eta(i, j)$ is a simple heuristic guiding the construction: $\eta(i, j) = 1/d(i, j)$
- The pheromone trail evaporates a little after every iteration, and is reinforced by good solutions.

Ant System for the TSP: An Example

Ant Colony Optimization: Further Developments

- Improvements to the original algorithm: ACS, MMAS, ASrank, Ant-Q, ANTS, ...
- Combining ACO with local search techniques gives very good results
- Other applications: quadratic assignment, flow shop and job shop scheduling, graph coloring, network routing, ...
- References:
 - 1. Swarm Intelligence: from natural to artificial intelligence by E. Bonabeau, M. Dorigo and
 - G. Theraulaz
 - 2. New Ideas in Optimization by D. Corne,
 - M. Dorigo and F. Glover (eds.)
 - 3. Ant Colony Optimization by M. Dorigo and
 - T. Stützle, MIT Press, 2003.

Bin Packing and Cutting Stock Problems

 Packing a number of items in bins of a fixed capacity or cutting items from stocks of a fixed length

- The difference lies in the assortment of small items
- Variations: multiple stock lengths, contiguity, multiple dimensions, ...

Applying ACO to Bin Packing and Cutting Stock Problems

- 1. How can good packings be reinforced via a pheromone matrix?
- 2. How can the solutions be constructed stochastically, with influence from the pheromone matrix and a simple heuristic?
- 3. How should the pheromone matrix be updated after each iteration?
- 4. What fitness function should be used to recognise good solutions?

AntBin 1: Pheromone Matrix

• BPP and CSP as ordering problems: many permutations are possible

> | 8 2 | 7 3 | 5 4 | 5 3 | = | 5 3 | 7 3 | 8 2 | 5 4 | = | 3 5 | 7 3 | 2 8 | 5 4 |

- BPP and CSP as grouping problems:
 τ(i, j) expresses the favorability of having items of size i and j in the same bin/stock
- Pheromone matrix works on item sizes, not items themselves

AntBin 2: Building Solutions

- Every ant starts with an empty bin
- New items are added stochastically:

$$p(s,b,j) = \frac{[\tau_b(j)].[\eta(j)]^\beta}{\sum_{g \in J(s,b)} [\tau_b(g)].[\eta(g)]^\beta}$$

- $\eta(j)$ is the item size j
- τ_b(j) is the sum of pheromone between item size j and the item sizes already present in bin b
- β has to be defined empirically

AntBin 3: Pheromone Updating

$\tau(i,j) = \rho.\tau(i,j) + m.f(s_{best})$

- The pheromone evaporates after every iteration
- There is an update for every time item sizes i and j are combined in a bin/stock of the best solution
- Only the iteration best ant increases the pheromone trail
- Occasionally update with the global best ant instead

AntBin 4: Fitness Function

- Total number of bins in solution: extremely unfriendly fitness landscape – no guidance from N + 1 bins to N bins
- Need large reward for full or nearly full bins

$$f(s_i) = \frac{\sum_{b=1}^{N} (F_b/C)^2}{N}$$

where N is the number of bins in s_i F_b is the sum of items in bin b and C is the bin capacity

• Promotes full bins with the spare capacity in one "big lump"

Pure ACO Results 1: Cutting Stock Problems

Comparing pure ACO to Liang et Al.'s EP solution for the CSP

10 problems, size up to 600 items, 50 runs

Prob		EP		ACO					
	avg	best	time	avg	best	time			
6a	80.8	80	347	79.0	79	166			
7 a	69.0	68	351	69.0	68	351			
8a	148.1	147	713	146.0	145	714			
9a	152.4	152	1679	151.0	151	1652			
10a	220.3	219	4921	218.9	218	4925			

Parameters:

 $n_{ants} = n_{items}$ $\beta = \{2, 5, 10\}$ $n_{sols} =$ set to match time for EP

Pure ACO Results 2: Bin Packing Problems

Comparing pure ACO to Martello and Toth's Reduction Algorithm and Falkenauer's HGGA

Uniform problems: bin capacity is 150, items are randomly chosen in the range [20,100]

Four sizes: 120, 250, 500 and 1000 items, 20 random instances in each size, 1 run

Prob	HO	GA	M	ТΡ	ACO			
	bins	time	bins	time	bins	time		
u120	+2	381	+2	370	+2	376		
u250	+3 1337		+12 1516		+12	1414		
u500	0	1015	+44	1535	+42	1487		
u1000	0	7059	+78	9393	+70	9272		

Parameters:

 $n_{ants} = n_{items}$ $\beta = 2$ (u120), 10 (u250, u500, u1000) $n_{sols} =$ set to match time for HGGA/MTP

ACO Algorithms plus Local Search

- HGGA is a *hybrid* genetic algorithm, consisting of a GA *plus* a local search technique
- Current wisdom suggests that ACO plus local search is also a good hybrid coupling
- Each ant's solution is improved by a local search procedure before the best solutions are reinforced
- ACO algorithm alleviates the initialization problem of local search

Local Search Procedure for the BPP and CSP

- In every ant's solution, the *n* least full bins are opened and their contents are made free
- Items in the remaining bins are replaced by larger free items
- This gives fuller bins with larger items and smaller free items to reinsert
- The free items are reinserted via FFD
- The procedure is repeated until no further improvement is possible
- Only the global best ant increases the pheromone trail

Local Search: An Example

The solution before local search (the bin capacity is 10): The bins: |333|621|52|43|72|54|Open the two smallest bins: Remaining: |333|621|72|54|Free items: 5,4,3,2Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free: First bin: $333 \rightarrow 352$ new free: 4,3,3,3Second bin: $621 \rightarrow 64$ new free: 3,3,3,2,1Third bin: $72 \rightarrow 73$ new free: 3,3,2,2,1Fourth bin: 54 stays the same Reinsert the free items using FFD: Fourth bin: $54 \rightarrow 541$ Make new bin: 3322Final solution: |352|64|73|541|3322|

Repeat the procedure: no further improvement possible

Hybrid ACO Results 1: Cutting Stock Problems

Comparing hybrid ACO to Liang et Al.'s EP solution for the CSP

Prob		ΕP		HACO					
	avg	best	time	avg	best	time			
6a	80.8	80	347	79.0	79	1			
7 a	69.0	68	351	68.0	68	1			
8a	148.1	147	713	143.0	143	5			
9a	152.4	152	1679	149.0	149	10			
10a	220.3	219	4921	215.0	215	249			

All 5 problems reliably solved to the theoretical lower bound

Parameters:

```
n_{ants} = 10

\beta = 2

n_{bins} = 4

n_{sols} = 20000
```

Hybrid ACO Results 2: Bin Packing Problems

Comparing hybrid ACO to Martello and Toth's Reduction Algorithm and Falkenauer's HGGA

Prob	HO	GGA	M	ТΡ	HACO			
	bins time		bins	bins time		time		
u120	+2	381	+2	370	0	1		
u250	+3 1337		+12 1516		+2	52		
u500	0 1015		+44 1535		0	50		
u1000	0 7059		+78	9393	0	147		
u2000	_	_	_	_	0	531		
u4000				—	0	7190		

Parameters:

$$n_{ants} = 10$$

 $\beta = 2$ (u120-u1000), 1 (u2000, u4000)
 $n_{bins} = 4$
 $n_{sols} = 20000$

Memoryless Experiments

- Is hybrid ACO really just doing random restart hill-climbing?
- Example: Costa and Hertz graph coloring application
- Method: run AntBin again on both sets of problems, but with the pheromone update "switched off" – gives memoryless random restart hill-climbing

```
trail.decay();
trail.increase(globalBest);
```

• Use exactly the same parameters as previous runs

Memoryless Results 1: Cutting Stock Problems

Comparing hybrid ACO with random restart hill-climbing for the cutting stock problems:

Prob	ŀ	IACO		No memory					
	avg	avg best time a				time			
6a	79.0	79	1	79.0	79	24			
7a	68.0	68	1	68.0	68	1			
8a	143.0	143	5	144.0	144	1064			
9a	149.0	149	10	150.0	150	997			
10a	215.0	215	249	216.8	216	1707			

Memoryless Results 2: Bin Packing Problems

Comparing hybrid ACO with random restart hill-climbing for the bin packing problems:

Prob	HA	VCO	No memory				
	bins	time	bins	time			
u120	0	1	0	1			
u250	+2	52	+6	166			
u500	0	50	+5	432			
u1000	0	147	+10	1850			
u2000	0	531	+43	19286			
u4000	0	7190	+118	131137			

Demonstration

snake[antbin] java AntBin problem10a.txt 2 10 4
FFD solution:

Fitness:	: 0.	947	<i>'</i> 630	090	497	7368	Bir	ns:	221	Wa	ste	::	730)			
Iteration	0:	0.9	327	921	026	4075	+++	223	>	0.	974	105	198	377	6758	+++	218
Iteration	1:	0.9)247	098	214	2857	+++	224	>	0.	983	336	277	752	1761	+++	217
Iteration	2:	0.9	314	268	809	1679	+++	223	>	0.	990)18	004	11	5226	+++	216
Iteration	3:	0.9	391	253	753	7537	+++	222	>	0.	990)53	690)84	3621	+++	216
Iteration	4:	0.9	394	738	488	4884	+++	222	>	0.	990)57	227	736	6255	+++	216
Iteration	5:	0.9	391	.009	759	7597	+++	222	>	0.	991	12	654	132	0987	+++	216
Iteration	9:	0.9	397	347	347	3473	+++	222	>	0.	991	13	297	732	5102	+++	216
Iteration	12:	0.	939	107	232	2322	+++	222	>	0.	991	.93	158	343	6214	+++	216
Iteration	13:	0.	933	8002	615	8445	+++	223	>	0.	992	200	745	5884	4773	+++	216
Iteration	17:	0.	940	107	607	6076	+++	222	>	0.	992	202	096	519	3415	+++	216
Iteration	29:	0.	947	838	109	6028	+++	221	>	0.	992	205	439	9814	4814	+++	216
Iteration	30:	0.	947	615	007	5414	+++	221	>	0.	993	309	092	2078	8189	+++	216
Iteration	36:	0.	955	834	595	9595	+++	220	>	0.	993	313	400)20	5761	+++	216
Iteration	37:	0.	939	835	460	4604	+++	222	>	0.	993	315	393	351	8518	+++	216
Iteration	43:	0.	947	990	196	0784	+++	221	>	0.	993	317	001	102	8806	+++	216
Iteration	72:	0.	949	185	520	3619	+++	221	>	0.	993	818	029	983	5391	+++	216
Iteration	75:	0.	947	842	508	7983	+++	221	>	0.	993	318	544	123	8683	+++	216
Iteration	76:	0.	940	531	156	1561	+++	222	>	0.	993	319	958	384'	7736	+++	216
Iteration	111	.: C).94	982	654	6003	+++	221	>	0.	993	324	074	1074	4074	+++	216
Iteration	125	5: C).93	345	478	3258	+++	223	>	0.	999	922	803	361	7571	+++	215
Fitness: C).99	922	2803	8617	571	02 B	ins:	215	Was	te:	10) I	ter	at	ion:	125	
64:56	58	3:62	2	67:	23:	30	30:4	14:4	6	64:	56	Ι	22:	: 33	:65	64	:35:
21 30:23	3:67	′	54:	66	5	6:64	27	7:66	:27	4	1:3	36:	43	Ι	• • •		

Current Directions

- Try on a wider variety of problems
- Other local search methods
- Open random bins in the local search, with bias towards the least full bins
- Adaptive ants for parameter setting:
 - Each ant has a different value of β
 - Make more of the good ants and kill off the bad ones (GA style)