
airing No 19 Reviews & Reports

c AIAI, May 1995

Hardy: Recent Developments

Julian Smart

1 Introduction

Hardy is AIAI's diagramming and modelling
tool, which permits the creation of diagrams
in a chosen format. In software analysis and
design circles, it would be known as a meta-
CASE tool; however, Hardy contains
hypertext components which are not normally
found in such systems. It also incorporates
NASA's CLIPS expert system development
tool; Hardy/CLIPS provides all the
functionality of CLIPS, plus a suite of
functions for interfacing between CLIPS and
Hardy, thus allowing a high degree of
customisation. This article reports technical
progress on Hardy, as a prelude to a series of
articles about how Hardy has been used to
support AIAI projects.

Figure 1 shows a screen dump of a recent
release of Hardy with a variety of tools open.
These comprise the enhanced diagram type
manager, a library of symbols, the Hardy/
CLIPS development window, and a diagram.

2 The Gryphon project

Since we last described Hardy in airing, the
tool has been through a hefty remodelling
process which has resulted in many
improvements. Hitachi Europe Limited (HEL)
funded this work in a 12-month period from
1993 to 1994 on a project called ‘Gryphon’
by AIAI, and known as ‘Valise’ (lightweight
CASE) within HEL. The principal goal of
this project was to enhance Hardy to the point
that all, or nearly all, graphical object-
oriented analysis and design methods could
be supported by Hardy. We left the actual
diagram type creation and custom code to
HEL, supporting them with a proprietary

Page 12

Figure 1: Hardy 1.36 running under Windows 3.1

airing No 19Reviews & Reports

c AIAI, May 1995

• many more Hardy/CLIPS functions to
support the new features and to help
customisation.

The result of these enhancements is a system
that HEL can now use as a very flexible
CASE tool, encompassing the many kinds of
diagrams that are found in the Booch, OOSE,
Coad and Yourdon, and OMT methods. AIAI
projects have benefited too, since the
enhancements have been of a general nature.
Features such as multiway arcs and
composites are doing service in applications
which perform process modelling and critical
path analysis.

Figure 2 is an example of the kind of diagram
that Hardy now supports: this is an OMT
dynamic model, exhibiting containment, a self
link, and multiway arcs. Other articles in this
issue will provide more examples.

3 Public release

An exciting development for AIAI is Hardy’s
release for research and personal use.
Although publicity has been minimal, interest
has already been shown by researchers from
surprisingly diverse backgrounds. Proposed
applications include Petri net modelling in
France, mind maps at Sharp’s Oxford
laboratories, executive information systems in
Glasgow, knowledge modelling in Helsinki,
KADS modelling in Montreal, manufacturing
decision support in Galway, flowcharting in
Georgia (USA), data acquisition at Oxford
University, an ESPRIT project in the Aegean,
CASE tool prototyping in Sunderland, and -
my favourite - man-machine interfacing for
nuclear power stations in Mexico!

We expect to receive useful feedback and
examples from these projects. Hardy is
distributed mainly through our World Wide

translator (CLIPS to C) for delivery of the
finished application without requiring CLIPS.

These are some of the major features added to
Hardy:

• node/arc palettes for diagram cards,
providing point and click image
creation;

• addition of diagram card and main
window toolbars, allowing common
operations to be executed using point-
and-click;

• a symbol library and node/arc symbol
editors;

• editable symbol attachment points, to
specify where arcs meet nodes;

• node images and arrowheads can be
imported from metafiles;

• composite node images;

• the concept of node and arc annotations,
with specifiable drop sites;

• containment: diagram fragments may be
dropped into container node images;

• one-to-many multiway arcs, and self-
linking arcs;

• a maximum of three, moveable arc
labels on each arc;

• proper copy, cut and paste operations,
with MS Windows clipboard support;

• a more consistent interface and links to
on-line help in all dialog boxes;

• improved tree-drawing algorithm for
supporting hierarchical diagrams;

• a convenient file browser supporting
most Hardy file types;

• an alternative C++ - based
programming interface;

• migration of the UNIX version from
OpenLook to Motif;

Page 13

airing No 19 Reviews & Reports

c AIAI, May 1995

Web (WWW) pages and our file transfer
protocol (ftp) server:

WWW: http://www.aiai.ed.ac.uk/~hardy/
hardy.html

ftp: ftp.aiai.ed.ac.uk/pub/packages/
hardy/distrib

The Sun Motif and Windows versions of
Hardy are available as a limited
demonstration for general distribution, which
may be unlocked by agreeing to the terms of
the personal licence, and filling out a WWW
form. If your details are accepted, you will
immediately receive a serial number which
will unlock the demo copy.

4 Further development

As AIAI and its clients work with Hardy, we
take on board suggestions and steadily
improve the software. Much of Hardy’s

Page 14

Figure 2: OMT Dynamic Model

cross-platform strength depends upon another
AIAI product, the multiplatform C++ class
library wxWindows, which is being
developed as part of the Hardy effort. The
growing wxWindows user community
(mostly on the Internet) is developing plans
for extending the range of platforms and
functionality covered, so this will be good
news for Hardy. We can expect to see it on
platforms such as the Mac, and possibly
NeXTStep, in the medium term; and tricky
areas such as OLE-2 and database support are
being considered in a multiplatform context.

But of course, the real future of Hardy lies in
the success of its applications. We hope
Hardy will continue to enable our clients to
receive the modelling functionality they
require, at minimum risk and cost, and with
maximum flexibility.

airing No 19Reviews & Reports

c AIAI, May 1995 Page 15

TOPKAT — Supporting Knowledge
Acquisition and the CommonKADS
Methodology

John Kingston

1 Introduction

TOPKAT (The Open Practical Knowledge
Acquisition Toolkit) is a hypertext and
diagram-based toolkit which supports various
knowledge acquisition techniques, as well as
supporting much of the CommonKADS
modelling framework.

TOPKAT has been implemented using Hardy
and Hardy/CLIPS. The facility in Hardy to
define a number of different diagram types
allowed the production of modelling tools for
a wide range of graphical formalisms with
little effort; Hardy/CLIPS was then used to
automate (wholly or partially) many common
operations.

TOPKAT consists of a hierarchy of
hypercards. The card at the top of the
hierarchy (shown in the top left hand corner
of Figure 1) acts as an index for the different
facilities available. Diagrams are drawn on
newly created hypercards which are
expansions of a particular pre-defined card,
and which therefore share the same
diagramming type.

TOPKAT currently supports the following
knowledge acquisition techniques:

• transcript analysis;

• laddered grid;

• card sort;

• repertory grid.

TOPKAT also provides support for
representing the following elements of the
CommonKADS Expertise Model:

Domain Knowledge:

• Domain ontology;

• Domain models;

• Model ontology;

• Model schema.

Inference Knowledge:

• Inference structures;

• Library of inference structures.

Task Knowledge:

• Task structures.

In addition, facilities exist within TOPKAT
for representing parts of the CommonKADS
Task Model, Communication Model and
Design Model.

The transfer of knowledge between the
knowledge acquisition techniques and the
CommonKADS representations proved to be
a piece of work which was of considerable
theoretical and practical interest. The
techniques used are described in detail in
[1]; as an example, the facilities for
automated transcript analysis are outlined
here.

TOPKAT has been designed so that a file
which is displayed in a hypertext card can be
exported to a lexical tagging package, which
identifies the word class (e.g. noun, adjective,
verb) of each word. This ‘tagged’ file is then
re-imported into TOPKAT, and the tagged
file is used to make a provisional hypertext
mark-up of the file, according to word class.
Once this has been done, TOPKAT identifies
all the nouns in a transcript, lists them, and
then sorts them in inverse order of word
popularity, i.e. words which are used least
frequently in normal English are placed at the
top of the list. This is achieved by interfacing
with a dictionary package which provides
measures of word frequency. The user is then
presented with this list, and asked which of
the nouns on the list represent important

airing No 19 Reviews & Reports

c AIAI, May 1995

concepts in the domain.

Once this has been done, a simple procedure
identifies adjectives which are attached to
concepts, and asks if these represent
properties, or values of properties, of that
concept. It is hoped that future developments
in TOPKAT will include integration with a
parsing package rather than just a tagging
package, allowing fuller identification of
adjectives and also identification of verbs
which link concepts, and may therefore
represent relations.

TOPKAT is currently being re-implemented
in version 6.0 of CLIPS, which permits full
integration of object hierarchies with CLIPS’
other facilities. This feature is being used to
allow CLIPS objects to serve as a knowledge
repository, with Hardy being used as a tool
for visualising and manipulating that
knowledge; this is achieved using a small set

of event handlers (daemons) which create
Hardy nodes or arcs to represent a set of
CLIPS objects, and another set of handlers
which generate CLIPS objects whenever
nodes or arcs are created in Hardy. This
feature will allow the functions within
TOPKAT which perform verification,
analysis and automated linking to be
implemented entirely in CLIPS, thus
increasing the portability of TOPKAT.

2 References

[1] Kingston, J.K.C, 'Linking Knowledge
Acquisition with CommonKADS
Knowledge Representation',
Proceedings of BCS SGES Expert
Systems'94 conference, Cambridge,
December 1994. Also available as
AIAI-TR-156

Figure 1: Screendump showing some of TOPKAT's hypercards

Page 16

airing No 19Reviews & Reports

c AIAI, May 1995

networks are Bayesian (belief) networks,
knowledge maps, probabilistic causal
networks and qualitative probabilistic
networks. The nodes in a belief network
represent a random variable, or uncertain
quantity, that can take two or more possible
values. The arcs signify the existence of
direct influences between the linked variables,
and the strength of these influences are
quantified by forward conditional
probabilities. Belief networks are a way of
modeling knowledge about a domain that
contains uncertainty.

Within a belief network the basic computation
is to calculate the belief of each node (the
node’s conditional probability) based on the
evidence that has been observed. Various
methods have been developed for evaluating
node beliefs and for performing probabilistic
inference. The most popular methods are
those of Pearl [6] and Lauritzen and
Spiegelhalter [4]. Similar techniques have
been developed for constraint networks in the
Dempster-Shafer formalism [8]. In addition
to numerical representations of uncertainty
other work has concentrated on non-
numerical uncertainty handling, e.g. [1,2,5].
However, all these schemes are basically the
same - they provide a mechanism to
propagate uncertainty in the belief network,
and a formalism to combine evidence to
determine the belief in a node.

3 Use of belief networks in the SPIRIT
project

The SPIRIT project [3], which was funded by
the oil industry, aimed to develop a prototype
of the next generation of software for the task
of well test interpretation. The aim was to use
knowledge-based techniques to provide a
decision support capability for petroleum
engineers who have to interpret oil well
pressure test data. An important aspect of
SPIRIT was the requirement for managing

Page 17

Developing Belief Networks using
Hardy

Ian Harrison

1 Introduction

At AIAI we have used belief networks in
client projects as a method for reasoning
under uncertainty. Hardy has been used on
these projects to draw the belief network
diagrams which essentially capture a model of
expertise about a domain. In addition, a
graphical rule editor has been developed
using Hardy/CLIPS. Once a diagram has
been drawn and rules defined it is possible to
run the model (the diagram).

This paper first introduces belief networks
and then discusses their use in an industrially
funded client project called SPIRIT. After
that, it is shown how Hardy was used to
support the development of the belief
networks within the SPIRIT project, and
finally conclusions are given.

Figure 1: Example belief network

2 Belief Networks

Belief networks are basically directed acyclic
graphs (see Figure 1) and they are becoming
an increasingly popular knowledge
representation for uncertain reasoning [7].
Amongst other names given to belief

Cancer

Serum
Calcium Tumour

Coma Headaches

airing No 19 Reviews & Reports

c AIAI, May 1995

uncertainty. From speaking to petroleum
engineers it became clear that much of the
uncertainty in data was expressed in non-
numerical terms. When speaking to experts
in well test interpretation it was clear that they
used symbolic terms such as "very likely" or
"strongly supported" to describe how likely a
conclusion was based on a given set of data.

Based on this, it was decided that a belief
network approach would be suitable for the
SPIRIT project. Three types of nodes were
identified as being useful for knowledge
acquisition purposes, but all of these had the
same underlying behaviour; that is they were
nodes whose level of belief was determined
by the combining function attached to that
node. Figure 2 shows a very small part of the
belief network in SPIRIT. At the bottom are
evidence nodes (ovals) which represent the
mapping of raw data or quantitative

interpreted data into qualitative interpreted
data. Cluster nodes (rectangles) are
engineering or geologically significant
groupings of evidence. Cluster nodes can, in
turn, support or weaken model nodes
(diamonds) which represent the goal of the
belief network.

4 Using Hardy to develop belief
networks

Using Hardy it was possible to devise a
diagram type for belief networks (see Figure
2). For the SPIRIT project this enabled a
knowledge engineer to work with an expert
creating, modifying and updating diagrams
which represented a model of his expertise.

Using Hardy/CLIPS, it was possible to
develop a graphical rule editor which allows
the definition of combining rules for each

Page 18

Figure 2: Part of the belief network in SPIRIT

limited entry ibc

limited entry model

flow concentration
absent

flow concentration
present

good perforation
design

limited entry due
to poor

perforation design

blocked
perforation

present

designed partial
perforation of

formation

designed full
perforation of

formation

part of net pay
producing

whole of net pay
producing

water injection
well into oil

column

airing No 19Reviews & Reports

c AIAI, May 1995

node within the network (see Figure 3). The
combining rules determine the level of belief
in a node given the level of belief in its
connected nodes. For the SPIRIT project the
representation of uncertainty used qualitative
values instead of probabilities. In this case
belief in a proposition was expressed as one
of seven values -

confirmed, strongly supported, supported,
unknown, detracted, strongly detracted or
rejected.

With the belief network diagram drawn and
combining functions defined for the network,
it is then possible to actually run the network.
The user can set the levels of belief of root
nodes in the network and these are propagated
through the network according to the defined
combining rules.

5 Conclusions

Belief networks are an intuitive way of
representing and reasoning with uncertainty,
whether probabilistic or qualitative. On the
SPIRIT project Hardy proved to be an
excellent tool for knowledge acquisition.
Hardy enabled a model of expertise to be
captured in a graphical manner such that it
was understandable to the expert, in a way
which rules alones could not be. In addition,
be developing the graphical rule editor, the
combining rules for each node in the network
could also be captured. The network could
then be run, allowing the expert to see the
effect of the rules; errors within rules could
thus be easily detected.

Page 19

Figure 3: Graphical rule editor for a qualitative belief network

airing No 19 Reviews & Reports

c AIAI, May 1995

6 Reference

[1] Z. An, D.A. Bell, and J.G. Hughes. Res:
A relative method for evidential
reasoning. In D. Dubois et al., editor,
8th Conference on Uncertainty in
Artificial Intelligence, pages 1-8.
Morgan Kaufmann, San Mateo,
California, 1992.

[2] P.R. Cohen, D. Day, J.D. Lisio, M.
Greenberg, R. Kjeldsen, D. Suthers, and
P. Berman. Management of uncertainty
in medicine. Int. J. of Approximate
Reasoning, 1:103-116, 1987.

[3] J. Fraser, and I. Harrison. Modelling
Expertise Using Belief Networks, in
Bramer A and Macintosh A L (eds),
Research and Development of Expert
Systems X, Proceedings of Expert
Systems 93, Robinson College,
Cambridge, UK, December 1993. Also
available as AIAI-TR-134, October
1993.

[4] S.L. Lauritzen and D.J. Spiegelhalter.
Local computations with probabilities
on graphical structures and their
applications to expert systems. In G.
Shafer and J. Pearl, editors, Reading in
Uncertain Reasoning, pages 415-448.
Morgan Kaufmann, San Mateo,
California, 1990.

[5] T.Y. Leong. Representation
requirements for supporting decision
model formulation. In B.D.
D’Ambrosio et al., editor, 7th
Conference on Uncertainty in Artificial
Intelligence, pages 212-219. Morgan
Kaufmann, San Mateo, California,
1991.

Page 20

[6] J. Pearl. Fusion, propagation and
structuring in belief networks. Artificial
Intelligence, 29(3):241-288, 1986.

[7] R. D. Shachter, B. D’Ambrosio, and
B. A. Del Favero. Symbolic
probabilistic inference in belief
networks. In AAAI-90, volume 1,
pages 126-131, 1990

[8] G. Shafer. Perspectives on the theory
and practice of belief functions. Int. J.
of Approximate Reasoning, 4:323-362,
1990.

