Combining and Adapting Process Patternsfor Flexible Wor kflow

Jonathan Moore
Computer Science Department
Loughborough University, UK

J.P.Moore@Ilboro.ac.uk

Ann Macintosh
International Teledemocracy Centre
Napier University, Edinburgh, UK
A.Macintosh@napier.ac.uk

Abstract
To provide intelligent process management support in
complex engineering domains, considerable advances in
the flexibility of current workflow systems are necessary.
We describe an approach to developing such flexibility
based on the capture of process patterns within a
particular domain, and the dynamic composition of such
patterns to determine the structure of an overall process.
The role of a formal ontology of the domain in
maintaining internal consistency of processes being
managed in this way is emphasized.

1. Introduction.

The highly flexible process structure of engineering
projects presents a major challenge to current workflow
management technology. Workflow systems have been
highly successful in providing effective, streamlined
management of certain classes of process, described by
Alonso et a. [1] as "administrative" processes, and
characterized by their well-defined structure and constant,
predictable form. However, the inflexibility of currently
available systems means that their application islimited in
more dynamic and uncertain working environments, such
as characterize most engineering endeavours.

At the same time, many engineering projects would
greatly benefit from computerized process management
support—not, as in many workflow applications, smply
for efficiency's sake, but to help manage the complexity
typical of such processes, and ensure that everything
necessary is done, and done correctly. Research suggests,
for example, that poor management of the product
innovation process—such as alack of communication and

Robert Inder
Al Applications Institute
University of Edinburgh, UK
R.Inder @ed.ac.uk

Paul Chung
Computer Science Department
Loughborough University, UK
P.W.H.Chung@lboro.ac.uk

Jussi Stader
Al Applications Institute
University of Edinburgh, UK
Juss @aiai.ed.ac.uk

the inappropriate cutting of corners—contributes to many
failures of new products[2].

For these reasons, there has been interest in recent
yearsin the development of "adaptive" workflow systems,
able to cope with the more flexible process structures, and
to operatein more dynamic contexts. The work described
in this paper forms part of the Task-Based Process
Management (TBPM) project, currently ongoing as a
collaboration between Loughborough University
Computer Science Department and the University of
Edinburgh's Artificial Intelligence Applications Institute.

Fundamental to the project’s approach to the problem
is the observation that, while much domain knowledge
and process management expertise goes into the initial
setting up of a workflow system, the same knowledge and
expertise is not available to the system during its
operation. It is exactly this knowledge that it is essential
be used if the system is to adapt to changes in its context
and environment.

We are attempting to address this deficiency of
workflow systems by endowing them with knowledge
about processesin general, and about the domain in which
they are deployed in particular. This knowledge is then
used to help to adapt the structure of a process to the
circumstances within which any particular task is being
carried out.

As a test-case for the approach adopted, we are
addressing the scale-up process—a combination of
experimentation and design by which potentially
promising new products are brought from the laboratory
to full-scale production in the chemical processindustries.

2. Process Patterns.

As indicated above, it is the flexible, dynamic nature
of most engineering projects which presents the process
management challenge. Even within a fairly tightly
specified domain, there is no single process model which
can be applied to al projects. Many factors conspire to
make the process followed unique to each project: the
nature of the product, the customer, the higory and
structure of the business, the availability of people and
resources, etc. Even for a single project, the nature of the
process followed cannot be known a priori: it emerges
over time, being affected by events and discoveries which
occur during the projects lifetime.

On the other hand, many recognizable similarities do
exist between different projects. The broad sructure of
most product innovation processes in any one business
may be essentialy the same (Cooper [3] suggests an
outline process intended to be broadly applicable); very
many engineering design projects contain an identifiable
progression from requirements, through specification, to
design (again, canonical forms for such processes exist in
the literature); many engineers, when presented with
similar tasks, will conduct them in essentially the same
way.

The nature and use of this type of structural similarity
correspond well with the concept of design patterns in
software engineering (see Gamma et a [1] for the seminal
work). They represent widely applicable solutions to
classes of problem commonly encountered in a range of
different contexts. These solutions are outlines only,
requiring specialization for the context in question.

The availability and applicability of such process
patterns is one of the key aspects of domain knowledge
which must be available to an adaptive workflow system
if it is to offer effective process management support.
When confronted with a task, a user must be able to
identify suitable canonical processes for achieving it,
select the one most appropriate to the current situation,
and, if necessary, customizeit for that situation.

21. ThePlanLibrary.

A key component of the TBPM system is therefore a
plan library, which maintains a database of process
structures, relating each structure to the types of tasks for
which it is a suitable method. Each plan specifies a set of
tasks, together with the ordering constraints and object
flows between them. Thus, a plan represents one possible
way of achieving agiven type of task by breaking it down
into a particular structure of sub-tasks.

Each plan specifies only a single level of structural
decomposition. However, the decomposition is into a
further set of tasks, for each of which further plans may
exist inthelibrary. These plans may in turn be selected to

specialize the sub-tasks, and so a multi-level hierarchical
process structure may be generated by composition of
many plans.

For any given task, there may be multiple possible
plans, expressing different ways of breaking the task
down which may be suitable for different situations.
Figure 1 shows a simple plan for the task of acquiring
some artifact. The plan has two sub-tasks: “specify” the
artifact required, then “obtain” it. Two additiona plans
are shown, each a possible method for achieving the
“obtain” task: one by designing and constructing the
artifact in question, the other by purchasing it.

Plan: standard acquire

Achieves: acquire
requirement specification

——>| specify I——>| obtain |———>

Plan: design & build
Achieves: obtain

Plan: purchase
Achieves; obtain

[specificati on

[contract

[artifact

Figure 1. Examples of plans from the plan
library. (Tasks are shown as squared boxes,
object flow by rounded boxes.) Two possible
alternative plans are shown for achieving the
“obtain” task.

A manager of a process can put together such plans
dynamically, deciding based on the current Stuation
which of the alternative breakdowns is more appropriate.
A similar process of specialization may then be applied to
structure each of the sub-tasks within the chosen
breakdown. For example, the "agree purchase" sub-task
may have several different available plans; one might
cover putting large orders out to tender, another simply
ordering a part from amanufacturer’s catal ogue.

2.2. Development of Process Patterns.

The example described above is taken from the scale-
up scenario developed as a test case for TBPM. The
development process consisted of knowledge acquisition
sessions involving members of the project team and
domain experts who are routinely involved in the scale-up
process. Normative descriptions of the common
processes involved in scale-up were developed using an
abbreviated form of the IDEF process capture method,
and expressed in IDEF 3 notation. Subsequent work by
the project team concentrated on refining the models
obtained, identifying smilarities between processes and
attempting to further structure and generalize the models.

2.3. Process Adaptation.

The ability to construct process models on the fly by
combining process plans as described above introduces a
high level of flexibility to the process management
system. However, it was recognized early in the project
that even more flexibility would be necessary.

Any library of plans embodies a particular corpus of
experience within the domain. Such a body of experience
will amost inevitably be incomplete, may get out of date,
or may simply not be appropriate to a novel situation. |f
the existing plans are the only options available, then
there is likely to be a significant proportion of processes
for which the system is not a suitable management tool .

To obviate this difficulty, it was decided to integrate
the process-modelling tool used to generate the process
plans with the run-time process enactment system, the
task manager. Integration of the process editor with the
task manager allows plans retrieved from the plan library
to be edited both before and during their enactment. This
enables a user to select the most appropriate of the plans
available for agiven task, and then specialize them for the
current dituation, by adding and removing tasks,
congtraints, and object flows to the process structure. To
deal with novel situations may therefore require more
work than standard cases, but it is at least possible. For
further discussion of the interaction between the process
modeller and the task manager, see [5].

3. Ontologies.

3.1. Representing the Process Context.

One problem introduced by the flexible modelling
approach described above is of maintaining consistency
within and between the plans making up the overall
process model. How, for example, to prevent a user from
putting together a process where the output of a “specify”
task—a “ specification”—is used as input to a “construct”

task, which requires a “design”? While “specification”
and “design” are certainly related, they are by no means
interchangeable—a specification for an artifact will not
normally contain the detailed instructions necessary to
construct the artifact, information which is given by the
design.

Any process management system would be expected to
manage and co-ordinate the inputs and outputs of the
different tasks involved. But in order to maintain the
internal coherence and consistency of the process as a
whole, in the sort of dynamic process structure envisaged
herein, the system needs also to have some representation
of the different natures of the various inputs and outputs.

We may go further: there must be some structure to
such a representation, since different plans are expressed
at different levels of abstraction, and so aso, therefore,
will be the nature of their inputs and outputs. A plan
describing a generic design process, for example, may
have inputs and outputs expressed in terms of an
“artifact”, which at a lower level of abstraction turns out
to be a pump. The system should recognize “pump” as a
valid example of “artifact”.

Another problem introduced by the added flexibility
described above is again caused by the potential
genericity of the plans developed. Both the design of an
experiment and the design of an item of chemical plant
equipment may be carried out using the same high-level
“design” plan. However, the appropriate set of more
detailed plans will be different in each case: it would be
desirable not to present the scientist planning an
experiment with a list of methods suitable for designing
pumps, or the engineering designer with alist of possible
experimental procedures.

In order to support process-planning decisions
effectively, we therefore need to be able to parameterize
the basic “design” plan with some elements of the present
context, to be used as constraints when selecting the set of
possibly appropriate lower-level plans to offer. As with
the representation of inputs and outputs, it is necessary to
capture some of the structure of the domain—to know, for
example, that the task “design apump” isavalid example
of the more abstract task “design an item of chemical
plant equipment”.

The approach taken in TBPM has been to develop
ontologies of the domain in order to capture, structure,
and reason with knowledge about the process context.
(Although there is conceptually a single “domain
ontology”, there were severa distinct areas of knowledge
identified as being necessary to capture, and these were
developed separately as a related set of ontologies.
Moore et a [6] gives further details.)

3.2. Informal Ontology Development.

Following the outline ontology devel opment method
described by Uschold & Gruninger [8], the ontologies
were developed at first in an informal form. Using the
results of the plan library development as a starting point,
and again in collaboration with domain experts, a core set
of important terms and concepts from the scale-up domain
was identified. For each term or concept, a concise
definition in natural language was agreed, bringing out
the relationships and digtinctions between the ontology
terms.

3.3. Formal Ontology Development.

An informal ontology is a useful tool in itsalf, and may
be used to harmonize understanding and permit
unambiguous communication between participants in a
multidisciplinary domain. However, in order to allow the
level of automated reasoning required for process
management, it is necessary to encode the ontologies
knowledge in amore formal way.

Selecting a formalism to use to encode the ontology
required a trade-off between expressive power and
simplicity. Languages such as KIF and Ontolingua
provide much expressive power, but it was recognized
that users of the TBPM system would be directly exposed
to, and expected to work with, the ontology formalism. A
simpler, if less powerful, formalism was therefore sought,
in order to make the system more accessible to its
potential users.

The major uses of the ontologies in support of process
management were all recognized to involve providing
answers to questions of the form “I1s X an example of Y7’
(as in the “design a pump” example given above). The
formalism adopted therefore centres on the arrangement
of terms in a generdization hierarchy, such that any term
is a specialization of any of its parents. In addition, each
term may be defined to possess a number of named
parameters, whose values can be constrained to be terms
drawn from a particular sub-tree of the ontology. A
particular term’'s parameters, and their associated
congtraints, are inherited by all that term’s children, which
may add further specialization to the constraint (in object
orientated programming terms, varying in a covariant
manner).

Recursively testing the base terms and all parameter
values against the generdization hierarchy allows
unambiguous determination of whether one ontological
expression “subsumes’ another.

To continue the example above, given an ontology
hierarchy of terms and associated parameters such as that
illugrated in Figure 2, it is possible to determine that

specification (
system: pump (

type: centrifugal))
is both an example of

specification (
system: chemical-plant-equipment)

and an example of:

design-information (
system: pump)

entity
7T
< !
//// 'I \\\\
//// ! \\\\

- II \.\
design-information ! artifact
system: artifact) A

|
,1‘\ II FARN
FARN h 7 : \,
2N | |
Lo ; !
ecification ! chemical-plant-equipment
!
)
A
I' AN
! AN
1 7 : \,
pump-type '
AN pump
[} .
TN type: pump-type
el ! AN
e / \
reciprocating centrifugal

Figure 2. Some terms from a formal ontology
for the domain of the scale-up process. All
types of design information are parameterized
by the class of system to which they relate,
while all pumps are parameterized by their
type, which must be a valid “pump-type”.

4. Discussion.

The challenge for adaptive workflow is to provide a
good leve of intelligent support for process management
decisions, and to automate as far as possible the
performance of common tasks using standard methods,
while retaining sufficient flexibility to avoid users ending
up fighting the system in an attempt to get not-so-standard
tasks done.

The plan library provides good support for carrying out
common tasks in any one of a number of standard ways.
Collaboration in process management is enhanced by the
provision of plans at different levels of abstraction, so that
each user can work with plans expressed at the necessary
level, without having to commit unnecessarily to
particular lower-level details. A project manager can
outline the structure of the overall project, leaving the

details of the experimentation and engineering involved to
be fleshed out by the relevant scientists and engineers.

There was a notable tendency during devel opment of
the plan library for plans to become smpler, but more
numerous, as sSimilarities between processes were
recognized, and the differences relegated to choices to be
made at a lower level of abstraction. This is remarkably
similar to the theme of many software design patterns of
“encapsulating the concept that varies’ [1]. In object
oriented programming, such encapsulation s
accomplished by deriving a common interface shared by
al implementations of the varying concept. In the
exampleillustrated in Figure 1, it is notable that, as far as
the higher-level plan is concerned, both plans for the
“obtain” task present the same interface, requiring a
specification as input, and resulting in an artifact as
output.

Such encapsulation tends to break down, however, as
additional process management considerations are taken
into account. In particular, planning the provision of
resources—including human resources—for tasks
depends crucialy on the lower-level plans adopted: will
we need an engineering designer, or a purchasing
executive? (Moore et al. [7] outlines the approach being
adopted to providing support for this class of decision.)

Additiona, necessary flexibility is provided by the
ability to edit plans both before and during their execution
by the process enactment system. This enables the system
to be used to manage processes for which no combination
of the available standard plansis suitable. In a dynamic
environment, it seems likely that the mismatch between
the available set of plans and the tasks encountered will
increase over time, as business conditions, lega context,
technology, and other factors change and recognized best
practices in the domain move on and improve. Any plan
library will, in practice, have to be kept under continual
review, and possibly considerable pains taken to keep the
plans up-to-date. Whether there are some plans which
will prove “timeless’ is, for now, a moot question.

5. Conclusion.

Experience on the TBPM project suggests that process
patterns can be identified within complex engineering
domains, at varying levels of abstraction. Such patterns
represent widely applicable outline solutions to ubiquitous
classes of tasks.

To recognize such patterns, capture them, and use
them in varying contexts and dynamic environments
presents a challenge to the state-of-the art in workflow
technology. In particular, it is vital that users be able to
adapt any patterns so used; to customize them for a
particular set of circumstances.

Ontologies play a crucial role in structuring knowledge
of the domain, to enable intelligent process management

systems to retain the internal coherence and consistency
of processes, while promoting the level of flexibility
needed to manage processes within complex, dynamic
environments, such as most engineering organi zations.

6. Acknowledgements.

The TBPM project is a joint project between the
Computer Science Department at Loughborough
University, and the Artificial Intelligence
Applications Ingtitute a The University of
Edinburgh. The project is funded under the EPSRC
Systems Engineering for Business Process Change
programme, and has ICI and Unilever as industria
partners.

7. References.

[1] Alonso G, Agrawal D, El Abbadi A, and Mohan C,
“Functionality and Limitations of Current Workflow
Management Systems”, | EEE Expert, 12(5), 1997.

[2] Cooper R G, Winning at New Products: Accelerating the
Process from Idea to Launch (2" Ed), Addison-Wesley,
Reading MA, 1996.

[3] Cooper R G, “A Process Model for Industrial New Product
Development”, |EEE Transactions on Engineering
Management, 30(1), 1983.

[4] Gamma E, Helm R, Johnson R, and Vlissdes J, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading MA, 1995.

[5] Jarvis P, Moore J, Stader J, Macintosh A, Casson-du Mont
A, and Chung P, "Exploiting Al Technologies to Redlise
Adaptive Workflow Systems’, Proceedings of the
Workshop on Agent Based Systems in the Business Context
(held during AAAI-99), 1999.

[6] Moore J, Stader J, Chung P, Jarvis P, and Macintosh A,
“Ontologies to Support the Management of New Product
Development in the Chemical Process Industries’, In:
Lindeman U, Birkhofer H, Meerkamm H, and Vana S
(eds), Proceedings of the International Conference on
Engineering Design, ICED 99. Munich, August 24-26,
1999, pp. 159-164.

[71 Moore J, Inder R, Chung P, Macintosh A, and Stader J,
“Who Does What? Matching Agents to Tasks in Adaptive
Workflow”, submitted to: International Conference on
Enterprise Information Systems, Stafford, UK, July 2000.

[8] Uschold M, and Gruninger M, “Ontologies: Principles,
Methods and Applications’, The Knowliedge Engineering
Review, 11(2), 1996, pp. 93-136.

