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Abstract

The problem of designing a knowledge based system well relies on the
knowledge engineer’s programming skills, and on his ability to devise, re-
member, and dynamically update a design specification. This is a difficult
task for all but the smallest knowledge based systems.

These problems can be alleviated by producing representations of the
expert’s knowledge and of the design specification in the form of text or
diagrams. The best known approach for producing such documents is
the CommonKADS methodology, particularly its Expertise Model, which
models expert problem solving. However, the Expertise Model is intended
to represent knowledge at a level of abstraction which is independent of
implementation; it neither allows representation of, nor gives guidance on,
decisions about which programming techniques to use in order to represent
the acquired knowledge. The responsibility for these activities is passed
to the CommonKADS Design Model.

This paper describes the three-stage approach to KBS design recom-
mended by the Design Model (choosing an overall approach to design,
choosing ideal knowledge representation and programming techniques, and
deciding how to implement the recommended techniques in the chosen soft-
ware), as well as outlining possible sources of guidance for making good
selections of knowledge representations and inference techniques. It then
illustrates the use of the Design Model for two systems, one for machine
fault diagnosis and one for mortgage application assessment. These sys-
tems have been developed by ATAI, and CommonKADS Expertise models
for both these systems have been published in [Kingston1993].

1 Introduction

The problem of designing a knowledge based system well is one of the most
frequent problems that knowledge engineers face. When knowledge based sys-
tems are developed by rapid prototyping, good design relies on the knowledge
engineer’s programming skills, and on his ability to devise, remember, and dy-
namically update a design specification. This is a difficult task for all but the
smallest knowledge based systems, especially if the system intermixes expert
knowledge with system control operations (MYCIN did this, which was a pri-
mary reason for the failure of the GUIDON system [Heyckel1995]). It is possible
for the system to get out of control so that even its author cannot understand
why apparently small changes have large effects on the overall system.

These problems can be alleviated by producing representations of the expert’s
knowledge and of the design specification in the form of text or diagrams,
thus documenting the expert’s knowledge and the important design decisions
independently of the system. The best known approach for producing such
documents is the CommonKADS methodology [Breuker & van de Velde1994]
[Schreiber et al.1994b] [Wielingal993], which proposes several diagram-based
models which reflect knowledge from different perspectives and at different
levels of abstraction. The most widely used component of CommonKADS is
the Expertise Model, which models expert problem solving in three compo-
nents: domain (declarative) knowledge, inference (procedural) knowledge and



task (control) knowledge. It also provides a couple of libraries of generic models
to support re-use.

However, the Expertise Model is intended to represent knowledge at a level of
abstraction which is independent of implementation; it neither allows represen-
tation of, nor gives guidance on, decisions about which programming techniques
to use in order to represent the acquired knowledge. The responsibility for these
activities, which are essential for modular design and efficient implementation,
is passed to the CommonKADS Design Model. The Design Model was speci-
fied towards the end of the CommonKADS project [van de Velde & others1994];
apart from a worked example published by the project team [Schrooten1993],
little or nothing has been published describing its use in realistic applications.
The purpose of this paper is to describe the CommonKADS Design Model,
including suggestions on diagrammatic representations of the model, and on
sources of guidance for making design decisions. The paper illustrates the use
of the Design Model by reverse engineering two existing KBS systems to show
how the CommonKADS Design Model would have applied to them. The ex-
ample systems are the same ones which were described in [Kingston1993]; the
earlier paper includes expertise models of both systems.

2 The CommonKADS Design Model

The CommonKADS Design Model is intended to support knowledge engineers
in choosing knowledge representations and programming techniques in order to
produce a good design of a KBS system. It aims to do this in a way which is
both generic (i.e. platform-independent for as long as possible, thus opening up
possibilities for reusability) and economical (it encourages preservation of the
structures within the expertise model). It also makes use of the CommonKADS
Communication Model [Waern et al.1994] as a starting point for user interface
design.

The Design Model supports selection of representations and techniques by en-
couraging the designer to start with the knowledge contained in an expertise
model, and to perform a three-stage transformation process in order to produce
design recommendations. These three stages are:

e Application design: choosing an overall approach to design decomposition.

e Architectural design: choosing ideal knowledge representation and pro-
gramming techniques

o Platform design: deciding how to implement the recommended techniques
in the chosen software.

2.1 Application Design

The application design is the first of these three stages. The purpose of applica-
tion design is to decompose the knowledge into manageable “chunks”. The size



and content of each chunk depends on the approach to decomposition which is
used. Broadly speaking, three approaches to decomposition are available:

e Functional decomposition
e Object-oriented decomposition

e Al paradigms

Functional decomposition involves treating each inference step from the Ex-
pertise Model as being a “chunk” of functionality. Functional decomposition
is therefore a structure-preserving approach to design, because the form of the
inference structure is maintained in the design specification. The benefits of
this are that the KBS will replicate the expert’s problem solving process (or
whatever improved process was modelled); any inference step which is identi-
fied as a canonical inference (see [Aben1994]) will have some of its expected
functionality already defined; and perhaps most important of all, preserving
the inference structure usually preserves the task structure from the Expertise
Model as well. The task structure is very important for KBS design because it
provides a semi-formal specification of the required flow of control for knowledge
based processing, while the Design Model only provides a high-level textual de-
scription. Knowledge engineers therefore need to use both the Design Model
and the task structure as a specification for KBS implementation.

Object-oriented decomposition treats each concept from the domain model as
being a “chunk” of data - i.e. each concept is treated as an object class. Since
concepts have properties with values, and relationships with other concepts,
it’s often helpful to represent concepts as objects. Object-oriented decompo-
sition preserves the structure of the domain models in the expertise model;
indeed, CommonKADS domain modelling can be seen as a generalisation of
object oriented data modelling [Jansweijer1996]. It is also possible that some
of the inference and task structures may be retained, since the CommonKADS
inference structure is closely related to the Object Management Technique’s
Functional model, while the task model can be compared with OMT’s Dy-
namic model; however, this technique is likely to have difficulty in assigning
production rules! because they refer to more than one object, whereas produc-
tion rules can usually be assigned fairly easily to functional “chunks”.

Another option for knowledge engineer is to decide that an “Al paradigm”
— a well-known approach to Al problem solving — is appropriate. These Al
paradigms might include blackboard systems, constraint-based programming,
qualitative simulation or model-based reasoning. In this case, the “chunks” of
knowledge may be constraints, knowledge sources, or whatever is appropriate
for the chosen approach. If an Al paradigm is chosen, it may be that little of
the structure of the expertise model will be maintained; in practice, this means
that the knowledge engineer will either have identified the likelihood of an AT

!See [Schreiber et al.1994a] for a description of expressions, which is CommonKADS’ tech-
nique for representing production rules



paradigm being appropriate earlier in the development process, and will have
customised the expertise model accordingly, or Al paradigms will be considered
unfavourably because of the extra effort required to re-analyse the knowledge.
Exceptions to this rule would be the use of a blackboard architecture (where
only the task structure of the Expertise Model needs to be revised) or the use
of model-based simulation to perform diagnostic tests on a system, under the
overall control of a diagnostic inference structure.

Once decomposition has been performed, it’s necessary to characterise the con-
tents of each “chunk” in a way that specifies further design requirements. For
example, if functional decomposition has been performed, it’s helpful to des-
ignate the operation being performed by each inference step in the form of an
architectural command — a “function name” which describes the action which
the function performs. Typical operations might be subset, get-property-value,
or calculate. As mentioned above, the definitions of canonical inference steps
in the CommonKADS expertise model may be helpful in defining appropriate
architectural commands; for example, an inference step of type select-subset is
very likely to be implemented by a subset command. This process also helps
validate the Expertise Model; if the architectural command differs significantly
from the inference step definition, then a possible error in labelling or under-
standing the inference structure has been highlighted. A full set of possible
architectural commands has not been published, but a suggested BNF for these
commands is given in [Schrooten1993].

2.2 Architectural Design

The task of architectural design is to define a computational infrastructure ca-
pable of implementing all the architecture commands defined in the application
design. It is at this stage that the preferred knowledge representation and
inference techniques are selected.

Knowledge representations available to knowledge engineers typically include
objects, facts, and production rules, as well as more “conventional” represen-
tations such as tables or arrays. Many programming techniques are available
including data- and goal-driven reasoning, truth maintenance, meta-rules, and
various search strategies. The architectural commands specified during the
previous phase provide guidance to the knowledge engineer on which represen-
tations and techniques are appropriate; for example, a get-property-value oper-
ation specifies a preference for objects as a knowledge representation technique.
The emphasis in this phase is on choosing ideal techniques; the appropriateness
of these for the available software should be considered in the next phase. In
practice, most knowledge engineers know which tool they will be using when
this phase is performed, and so will not select representations or techniques
which will be impossible to implement; this phase is still useful, however, in
assessing the appropriateness of the chosen tool or the chosen AI paradigm.

It is at this stage of design that the experience of a knowledge engineer can
be brought to bear in making good design decisions. If the knowledge engineer



knows that a particular technique or representation has proved suitable (or oth-
erwise) for a similar problem in the past, then a knowledge engineer can use this
information to guide his choices. There have been some attempts to capture and
encode this knowledge for the use of less experienced knowledge engineers; it
turns out that there are a large number of features of knowledge based problems
which affect the choice of representations and techniques, so many that an en-
tire book has been filled with probing questions [Kline & Dolins1989]. Probing
questions ask if certain features are present in a knowledge-based problem, and
suggest suitable functionality based on that feature. An example of a probing
question is given below:

On average, do we know five or more new facts about a domain
object simply by being told that it is of type X7

OR

Are these new facts not known with certainty, but assumed
unless there is evidence to the contrary?

Yes — Place the object in a data structure (e.g. frames,
semantic nets or objects) whose inheritance mechanism will provide
the facts when needed, and whose default values will be assumed
unless an exception is specifically asserted.

No — Assert the new facts explicitly, which is a ‘cheap’
solution.

The book cited above contains probing questions based on successful Al systems
up to the time of publication. There is a need for further development of probing
questions to keep pace with new technologies and techniques; ATAI has done
some internal knowledge acquisition and system development in this area (see
[MacNeel992] or [Kingston1995]), but there is a strong need for further research
and development of probing questions.

2.3 Platform Design

The final phase of the CommonKADS Design Model considers how (or whether)
the ideal knowledge representations and inference techniques should be imple-
mented in the chosen software. Most modern KBS tools support both objects
and rules, so knowledge representation is rarely a problem. However, some
programming techniques can be awkward to implement; for example, imple-
menting data-driven reasoning in a tool which primarily supports backward
chaining. The restrictions of the tool may mean that a different programming
technique needs to be used.



3 Worked Example 1: IMPRESS

The use of the CommonKADS Design Model will be demonstrated with two
worked examples — IMPRESS, which diagnoses faults in plastic moulding ma-
chinery, and X-MATE, which assesses the risk of mortgage applicants failing to
make repayments. These two projects have been chosen because their expertise
models have been described in some detail in a previous paper [Kingston1993].
The design models used in these projects have been reverse engineered, to show
how the decisions which were actually taken during system design would have
been represented if a CommonKADS design model had been developed.

IMPRESS (the Injection Moulding Process Expert System) diagnoses the causes
of faults in plastic injection mouldings. Given data about the type of fault (e.g.
“black specks in the moulding”), IMPRESS considers all possible causes of the
fault, suggests tests for the system user (a technician or machine operator) to
perform on the system, and iterates through a cycle of test-discard hypotheses-
suggest tests until there is only one hypothesis left.

The inference structure for IMPRESS is shown in Figure 1.

3.1 IMPRESS: Application Design

No Al paradigms appeared to have overriding advantages for IMPRESS, so the
choice of application design became a choice between functional and object-
oriented decomposition. A few relations had been identified at the domain
level, and a detailed inference structure with a little extra procedural ordering
information had also been developed.

It was decided to break down the expertise model using functional decompo-
sition. The chosen functions are described in Table 1 It can be seen from the
architectural commands that IMPRESS requires a subset operation, where a
set (of fault states) is reduced to a smaller set which are compatible with all
observed symptoms and measurements; several get-property-value operations,
which obtain values such as the expected value of an observable if a particular
hypothesis is true; a sort of tests according to the time required to undertake
them; a transfer task which initiates processing outside of the current program;
in this case, it asks a user to perform a test (which will observe or measure
some relevant parameter of the machine), and to report the measured value to
IMPRESS; and a match-2 operation (a match between 2 values) to compare
an observed measurement against the expected value of that observable in each
fault state.
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‘ Inference step ‘ Function ‘ Arguments

decompose subset :set all-faults :set hypotheses :key symptom
. :concept hypothesis
f: t- t
Spectly gel-property :property expected-value :key observable
: h hesised-faul
select get-property concept ‘ypo't ejsmed ault
:property distinguishing-observables
:set all-tests :set discriminating-tests
subset e
:key distinguishing-observables
get-property :concept test :property time-required
sort :set discriminating-tests :key time-required
measure Transfer Task
: t hypothesised-fault
rofine get-property concept hypothesised-fau
:property expected-value :key test
match :element observed-value :element expected-value
subset N :set hypotheses .
:set remaining-hypotheses :key difference

TABLE 1: Application Design for IMPRESS

An interesting observation on this mapping is that the decompose inference step
in IMPRESS is mapped to a subset operation, whereas CommonKADS’ defini-
tions of canonical inference actions suggests that decompose requires replacing
a single concept with a set of its component concepts. The reason for this
difference is highlighted in [Breuker1997], where he points out that all tasks
may have 3 types of solution: case data (the underlying cause of the problem),
conclusion (an individual faulty item) or argumentation structures (the justi-
fication for the conclusion). The inference structure for IMPRESS was based
on the generic inference structure for tasks requiring systematic diagnosis (see
[Breuker & van de Velde1994] for the latest version of this), which presupposes
that the required solution is a conclusion (a single faulty component). However,
faults in plastic moulding machinery are rarely caused by a single faulty com-
ponent, but rather by a combination of “components” (e.g. a coin stuck in the
injection nozzle) or by inappropriate actions (e.g. running the machine at too
high a temperature); the required solution is therefore a fault state, which cor-
responds to case data in Breuker’s classification. The initial step in IMPRESS’
diagnosis is therefore determining a relevant subset of all possible fault states,
rather than identifying a set of machine components.

3.2 Architectural Design

The architectural design for IMPRESS’ domain knowledge was relatively sim-
ple; fault states, tests and other concepts were implemented using objects, and
domain relations were represented using slots. Set membership was also indi-
cated using a slot, which carried the name of the set, and possible values of Yes
and No.
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The design for the inference steps identified a preference for production rules
to carry out the match step. The other steps were identified as capable of
being implemented with simple object-based operations: the subset operation
involved changing values of the “set membership” slot from Yes to No, while
the get-property operation requires reading the value of a slot in an object.
The measurement task was considered to be a transfer task, so the only design
requirements were for the user interface to instruct the user on the task, and
obtain the result correctly; user interface design is considered elsewhere.

3.3 Platform Design

IMPRESS was implemented in KAPPA-PC on a Compaq 386. KAPPA-PC
provided good support for object representations and object accessing functions,
so the relevant architectural design recommendations were followed exactly.
However, the rule system in that version of KAPPA-PC effectively operated
as an add-on module to the rest of the system; it needed to be carefully set
up and explicitly invoked. It was decided that, since the matching algorithm
only needed to match 2 parameters (test results against faults), and there were
approximately 40 faults and 40 tests in the knowledge base, then it was feasible
to perform the matching with a doubly-iterative function, thus avoiding the
need to introduce the rule system into the program at all.

The full design model for processes can be represented in a diagram (Figure 2).



3.4 Flow of Control

Design decisions on flow of control are made on the basis of the task structure
from the Expertise Model. The knowledge representations and inference tech-
niques recommended by the Design Model must be chained together in order
to replicate the task body specified. For IMPRESS, the task body specifies a
generate-and-test approach: an initial set of candidate faults is identified, and
then the system enters a REPEAT-UNTIL loop in which tests are selected, per-
formed, and the set of possible faults is narrowed down, until the set of faults
has 1 or less members in it. This was easy to implement in KAPPA-PC.

3.5 IMPRESS: Design Modelling for Knowledge Representa-
tion and User Interfaces

The same process can be followed for making and recording decisions on knowl-
edge representation design and user interface design. The starting point (i.e.
the left-hand column of the Design Model) for knowledge representation de-
sign is the “knowledge roles” which appear in the inference structure of the
Expertise Model; the starting point for user interface design is the inter-agent
transactions which are identified as necessary in the Communication Model.
The resulting diagrams for IMPRESS are shown in Figures 3 and 4.

4 Worked Example 2: X-MATE

X-MATE (EXpert Mortgage Arrears Threat Advisor) [Kingstonl7 18 Sep 1991]
was developed for a large UK building society by Hewlett Packard’s Knowledge
Systems Centre with assistance from ATAI Its task was to assess the likelihood
of mortgage applicants meeting their loan repayments.

The building society’s problem was that the percentage of defaulters was too
high, and it was difficult to enforce quality control on acceptance of applications
because, within certain guidelines, the acceptance or rejection of applications
was almost entirely at the discretion of the local branch manager. The system
was intended to support a branch manager or branch clerk by highlighting
applications which were worthy of further investigation, and assisting the user
in performing some further checks on the application. It did this by identifying
the key features of “typical high risk customers”, determining what data on the
application form would indicate these features, and then scanning application
forms (and, if necessary, data supplied from other sources) for the presence of
these high risk indicators.

The inference structure for X-MATE is shown in Figure 5.

4.1 X-MATE: Application Design

X-MATE was also decomposed using functional decomposition. The application
design for X-MATE can be seen in Table 2.
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The most obvious factor about this design is that several inference steps are
labelled “pre-compiled”, and no architectural commands are defined for these
steps. What has happened is that several of the problem-solving steps required
to perform mortgage application assessment are considered to be have been
carried out in advance by the experts who supplied the knowledge for the sys-
tem; the system only contains their “distilled wisdom” on what to look for.
In AT terminology, the “deep knowledge” of the full problem-solving process is
replaced by “shallow knowledge” of associations between key inputs and im-
portant outputs.

The application design also contains an extra problem solving step (the selection
of a particular data source) which did not appear in the inference structure.
This extra step reflects a design decision to run the system up to four times,
using different sets of data; the reason for this was to speed up processing by
making all automatic checks first, and only proceeding to ask the user to input
data if the application is deemed to be medium or high risk. It was therefore
necessary to select the appropriate data source for each run.

The select-simple function is given a list of four data sources; its functionality is
to select the next data source from the list. match-N performs pattern match-
ing between a variable number of items, while calculate performs arithmetic
calculations.
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‘ Inference step ‘ Function ‘ Arguments

:set all-risk-indicators :set some-risk-indicators
focus subset . .
:key situation
. :set available-data-sources
select select-simple )
:key phase-of-problem-solving
specify pre-compiled
specify pre-compiled
specify pre-compiled
meastire matchoN :elements appli‘catilon—‘form—data
:elements risk-indicators
compute calculate :number risk-score :number risk-threshold

TABLE 2: Application Design for X-MATE

4.2 Architectural Design

The architectural design for X-MATE’s processes is as follows:

e Select data sources: the key to this selection is the phase of processing.
It can be implemented as a case statement i.e. “if phase 1, select source
X; if phase 2, select source Y; etc.”

e Matching should be implemented using production rules. Note that the
recommendation for production rules is much stronger than it was for
IMPRESS, because X-MATE correlates multiple factors in order to de-
termine risk, whereas IMPRESS only matched 2 types of object. The
theoretical set of possible matches is therefore much larger in X-MATE.

e Focus on a set of risk indicators: choose an appropriate rule set.

e Computation should be implemented using arithmetic functions.

The application form was represented using 2 or more objects: one object for
each applicant (instances of a Applicants class) and one to represent the “case”
(details of the property, and other non-applicant-specific information).

4.3 Platform Design

X-MATE was implemented in KAPPA-PC 1.1 on a HP Vectra 386 PC. The
platform design mirrored the architectural design; no changes were deemed
necessary.

The full design model for processes in X-MATE can be seen in Figure 6.
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4.4 Flow of Control

The flow of control specified for X-MATE is to repeat running through the
whole inference structure until the computed risk score doesn’t meet a partic-
ular threshold, or until there are no more rule sets to be processed. When an
application comes in, the first rule set is selected and is run on the objects rep-
resenting the applicants and the case. If the resulting risk score does not reach a
certain threshold, the application is deemed OKj; if it does reach the threshold,
another rule set is loaded and run on the same objects after extra attributes
have been added by an automatic request to a credit search bureau. If a second
threshold is breached, a third rule set is loaded which asks the user to draw
out (mostly) textual data from the application and accompanying references; if
another threshold is breached, then the system loads in its final ruleset, which
requires further questions to be asked of the applicants themselves.

The final accumulated risk score is then recorded and can be displayed later,
or sorted to produce a list of the riskiest applications for forwarding to Head
Office. The system has been designed not to reject any applications without
further consultation.

5 Conclusion

It can be seen that the CommonKADS Design Model is a useful way of recording
design decisions, and of viewing how one design decision flows from another;



it therefore provides useful documentation of the process of system design.
The separation of flow-of-control design from selection of representations &
techniques is a consequence of a similar separation in the Expertise Model;
this encourages greater modularity and reusability of designs. The three-stage
design process helps to validate the Expertise Model and to separate decisions
on good design techniques from decisions on what can be implemented.

Weaknesses in the Design Model include a lack of guidance on selection of
techniques; probing questions provide some remedy for this. The lack of a
defined set of architectural commands is also a weakness.

In summary, the CommonKADS Design Model is a useful aid to knowledge
engineers in representing and recording design decisions, especially if an Ex-
pertise Model and a Communication Model have been developed previously.
The usefulness of the Design Model will be improved by further recommenda-
tions on content (particularly architectural commands) and guidance on making
selections (i.e. development of further “probing questions”).
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