
Designing Knowledge Based Systems�
The CommonKADS Design Model

John K�C� Kingston

AIAI�TR����

Also appears in Research and Development in Expert Systems XIV�
Proceedings of Expert Systems ��	� the annual conference of the British

Computer Society�s Specialist Group on Expert Systems� Churchill College�
Cambridge� �
��	 December ���	�

Arti�cial Intelligence Applications Institute�
University of Edinburgh�

� South Bridge�
Edinburgh� EH� �HN
United Kingdom

c�University of Edinburgh� ���	



Abstract

The problem of designing a knowledge based system well relies on the
knowledge engineer�s programming skills� and on his ability to devise� re�
member� and dynamically update a design speci�cation� This is a di�cult
task for all but the smallest knowledge based systems�

These problems can be alleviated by producing representations of the
expert�s knowledge and of the design speci�cation in the form of text or
diagrams� The best known approach for producing such documents is
the CommonKADS methodology� particularly its Expertise Model� which
models expert problem solving� However� the Expertise Model is intended
to represent knowledge at a level of abstraction which is independent of
implementation� it neither allows representation of� nor gives guidance on�
decisions about which programming techniques to use in order to represent
the acquired knowledge� The responsibility for these activities is passed
to the CommonKADS Design Model�

This paper describes the three�stage approach to KBS design recom�
mended by the Design Model 	choosing an overall approach to design�
choosing ideal knowledge representation and programming techniques� and
deciding how to implement the recommended techniques in the chosen soft�
ware
� as well as outlining possible sources of guidance for making good
selections of knowledge representations and inference techniques� It then
illustrates the use of the Design Model for two systems� one for machine
fault diagnosis and one for mortgage application assessment� These sys�
tems have been developed by AIAI� and CommonKADS Expertise models
for both these systems have been published in �Kingston����

� Introduction

The problem of designing a knowledge based system well is one of the most
frequent problems that knowledge engineers face� When knowledge based sys�
tems are developed by rapid prototyping� good design relies on the knowledge
engineer�s programming skills� and on his ability to devise� remember� and dy�
namically update a design speci�cation� This is a di�cult task for all but the
smallest knowledge based systems� especially if the system intermixes expert
knowledge with system control operations �MYCIN did this� which was a pri�
mary reason for the failure of the GUIDON system �Heycke���
��� It is possible
for the system to get out of control so that even its author cannot understand
why apparently small changes have large e�ects on the overall system�

These problems can be alleviated by producing representations of the expert�s
knowledge and of the design speci�cation in the form of text or diagrams�
thus documenting the expert�s knowledge and the important design decisions
independently of the system� The best known approach for producing such
documents is the CommonKADS methodology �Breuker � van de Velde�����
�Schreiber et al�����b� �Wielinga������ which proposes several diagram�based
models which re�ect knowledge from di�erent perspectives and at di�erent
levels of abstraction� The most widely used component of CommonKADS is
the Expertise Model� which models expert problem solving in three compo�
nents� domain �declarative� knowledge� inference �procedural� knowledge and



task �control� knowledge� It also provides a couple of libraries of generic models
to support re�use�

However� the Expertise Model is intended to represent knowledge at a level of
abstraction which is independent of implementation� it neither allows represen�
tation of� nor gives guidance on� decisions about which programming techniques
to use in order to represent the acquired knowledge� The responsibility for these
activities� which are essential for modular design and e�cient implementation�
is passed to the CommonKADS Design Model� The Design Model was speci�
�ed towards the end of the CommonKADS project �van de Velde � others������
apart from a worked example published by the project team �Schrooten������
little or nothing has been published describing its use in realistic applications�
The purpose of this paper is to describe the CommonKADS Design Model�
including suggestions on diagrammatic representations of the model� and on
sources of guidance for making design decisions� The paper illustrates the use
of the Design Model by reverse engineering two existing KBS systems to show
how the CommonKADS Design Model would have applied to them� The ex�
ample systems are the same ones which were described in �Kingston������ the
earlier paper includes expertise models of both systems�

� The CommonKADS Design Model

The CommonKADS Design Model is intended to support knowledge engineers
in choosing knowledge representations and programming techniques in order to
produce a good design of a KBS system� It aims to do this in a way which is
both generic �i�e� platform�independent for as long as possible� thus opening up
possibilities for reusability� and economical �it encourages preservation of the
structures within the expertise model�� It also makes use of the CommonKADS
Communication Model �Waern et al������ as a starting point for user interface
design�

The Design Model supports selection of representations and techniques by en�
couraging the designer to start with the knowledge contained in an expertise
model� and to perform a three�stage transformation process in order to produce
design recommendations� These three stages are�

� Application design� choosing an overall approach to design decomposition�

� Architectural design� choosing ideal knowledge representation and pro�
gramming techniques

� Platform design� deciding how to implement the recommended techniques
in the chosen software�

��� Application Design

The application design is the �rst of these three stages� The purpose of applica�
tion design is to decompose the knowledge into manageable �chunks�� The size



and content of each chunk depends on the approach to decomposition which is
used� Broadly speaking� three approaches to decomposition are available�

� Functional decomposition

� Object�oriented decomposition

� AI paradigms

Functional decomposition involves treating each inference step from the Ex�
pertise Model as being a �chunk� of functionality� Functional decomposition
is therefore a structure�preserving approach to design� because the form of the
inference structure is maintained in the design speci�cation� The bene�ts of
this are that the KBS will replicate the expert�s problem solving process �or
whatever improved process was modelled�� any inference step which is identi�
�ed as a canonical inference �see �Aben������ will have some of its expected
functionality already de�ned� and perhaps most important of all� preserving
the inference structure usually preserves the task structure from the Expertise
Model as well� The task structure is very important for KBS design because it
provides a semi�formal speci�cation of the required �ow of control for knowledge
based processing� while the Design Model only provides a high�level textual de�
scription� Knowledge engineers therefore need to use both the Design Model
and the task structure as a speci�cation for KBS implementation�

Object�oriented decomposition treats each concept from the domain model as
being a �chunk� of data � i�e� each concept is treated as an object class� Since
concepts have properties with values� and relationships with other concepts�
it�s often helpful to represent concepts as objects� Object�oriented decompo�
sition preserves the structure of the domain models in the expertise model�
indeed� CommonKADS domain modelling can be seen as a generalisation of
object oriented data modelling �Jansweijer������ It is also possible that some
of the inference and task structures may be retained� since the CommonKADS
inference structure is closely related to the Object Management Technique�s
Functional model� while the task model can be compared with OMT�s Dy�
namic model� however� this technique is likely to have di�culty in assigning
production rules� because they refer to more than one object� whereas produc�
tion rules can usually be assigned fairly easily to functional �chunks��

Another option for knowledge engineer is to decide that an �AI paradigm�
� a well�known approach to AI problem solving � is appropriate� These AI
paradigms might include blackboard systems� constraint�based programming�
qualitative simulation or model�based reasoning� In this case� the �chunks� of
knowledge may be constraints� knowledge sources� or whatever is appropriate
for the chosen approach� If an AI paradigm is chosen� it may be that little of
the structure of the expertise model will be maintained� in practice� this means
that the knowledge engineer will either have identi�ed the likelihood of an AI

�See �Schreiber et al�����a� for a description of expressions� which is CommonKADS� tech	
nique for representing production rules



paradigm being appropriate earlier in the development process� and will have
customised the expertise model accordingly� or AI paradigms will be considered
unfavourably because of the extra e�ort required to re�analyse the knowledge�
Exceptions to this rule would be the use of a blackboard architecture �where
only the task structure of the Expertise Model needs to be revised� or the use
of model�based simulation to perform diagnostic tests on a system� under the
overall control of a diagnostic inference structure�

Once decomposition has been performed� it�s necessary to characterise the con�
tents of each �chunk� in a way that speci�es further design requirements� For
example� if functional decomposition has been performed� it�s helpful to des�
ignate the operation being performed by each inference step in the form of an
architectural command � a �function name� which describes the action which
the function performs� Typical operations might be subset� get�property�value�
or calculate� As mentioned above� the de�nitions of canonical inference steps
in the CommonKADS expertise model may be helpful in de�ning appropriate
architectural commands� for example� an inference step of type select�subset is
very likely to be implemented by a subset command� This process also helps
validate the Expertise Model� if the architectural command di�ers signi�cantly
from the inference step de�nition� then a possible error in labelling or under�
standing the inference structure has been highlighted� A full set of possible
architectural commands has not been published� but a suggested BNF for these
commands is given in �Schrooten������

��� Architectural Design

The task of architectural design is to de�ne a computational infrastructure ca�
pable of implementing all the architecture commands de�ned in the application
design� It is at this stage that the preferred knowledge representation and
inference techniques are selected�

Knowledge representations available to knowledge engineers typically include
objects� facts� and production rules� as well as more �conventional� represen�
tations such as tables or arrays� Many programming techniques are available
including data� and goal�driven reasoning� truth maintenance� meta�rules� and
various search strategies� The architectural commands speci�ed during the
previous phase provide guidance to the knowledge engineer on which represen�
tations and techniques are appropriate� for example� a get�property�value oper�
ation speci�es a preference for objects as a knowledge representation technique�
The emphasis in this phase is on choosing ideal techniques� the appropriateness
of these for the available software should be considered in the next phase� In
practice� most knowledge engineers know which tool they will be using when
this phase is performed� and so will not select representations or techniques
which will be impossible to implement� this phase is still useful� however� in
assessing the appropriateness of the chosen tool or the chosen AI paradigm�

It is at this stage of design that the experience of a knowledge engineer can
be brought to bear in making good design decisions� If the knowledge engineer



knows that a particular technique or representation has proved suitable �or oth�
erwise� for a similar problem in the past� then a knowledge engineer can use this
information to guide his choices� There have been some attempts to capture and
encode this knowledge for the use of less experienced knowledge engineers� it
turns out that there are a large number of features of knowledge based problems
which a�ect the choice of representations and techniques� so many that an en�
tire book has been �lled with probing questions �Kline � Dolins������ Probing
questions ask if certain features are present in a knowledge�based problem� and
suggest suitable functionality based on that feature� An example of a probing
question is given below�

On average� do we know five or more new facts about a domain

object simply by being told that it is of type X�

OR

Are these new facts not known with certainty� but assumed

unless there is evidence to the contrary�

Yes � Place the object in a data structure �e�g� frames�

semantic nets or objects� whose inheritance mechanism will provide

the facts when needed� and whose default values will be assumed

unless an exception is specifically asserted�

No � Assert the new facts explicitly� which is a �cheap�

solution�

The book cited above contains probing questions based on successful AI systems
up to the time of publication� There is a need for further development of probing
questions to keep pace with new technologies and techniques� AIAI has done
some internal knowledge acquisition and system development in this area �see
�MacNee����� or �Kingston���
��� but there is a strong need for further research
and development of probing questions�

��� Platform Design

The �nal phase of the CommonKADS Design Model considers how �or whether�
the ideal knowledge representations and inference techniques should be imple�
mented in the chosen software� Most modern KBS tools support both objects
and rules� so knowledge representation is rarely a problem� However� some
programming techniques can be awkward to implement� for example� imple�
menting data�driven reasoning in a tool which primarily supports backward
chaining� The restrictions of the tool may mean that a di�erent programming
technique needs to be used�



� Worked Example �� IMPRESS

The use of the CommonKADS Design Model will be demonstrated with two
worked examples � IMPRESS� which diagnoses faults in plastic moulding ma�
chinery� and X�MATE� which assesses the risk of mortgage applicants failing to
make repayments� These two projects have been chosen because their expertise
models have been described in some detail in a previous paper �Kingston������
The design models used in these projects have been reverse engineered� to show
how the decisions which were actually taken during system design would have
been represented if a CommonKADS design model had been developed�

IMPRESS �the Injection Moulding Process Expert System� diagnoses the causes
of faults in plastic injection mouldings� Given data about the type of fault �e�g�
�black specks in the moulding��� IMPRESS considers all possible causes of the
fault� suggests tests for the system user �a technician or machine operator� to
perform on the system� and iterates through a cycle of test�discard hypotheses�
suggest tests until there is only one hypothesis left�

The inference structure for IMPRESS is shown in Figure ��

��� IMPRESS� Application Design

No AI paradigms appeared to have overriding advantages for IMPRESS� so the
choice of application design became a choice between functional and object�
oriented decomposition� A few relations had been identi�ed at the domain
level� and a detailed inference structure with a little extra procedural ordering
information had also been developed�

It was decided to break down the expertise model using functional decompo�
sition� The chosen functions are described in Table � It can be seen from the
architectural commands that IMPRESS requires a subset operation� where a
set �of fault states� is reduced to a smaller set which are compatible with all
observed symptoms and measurements� several get�property�value operations�
which obtain values such as the expected value of an observable if a particular
hypothesis is true� a sort of tests according to the time required to undertake
them� a transfer task which initiates processing outside of the current program�
in this case� it asks a user to perform a test �which will observe or measure
some relevant parameter of the machine�� and to report the measured value to
IMPRESS� and a match�� operation �a match between � values� to compare
an observed measurement against the expected value of that observable in each
fault state�



decompose

select

refine

set of
hypotheses

test

observable

complaint

state of
machine

possible faults

set of tests

Expected value
of observable
for all hyps

specify

measure

Figure �� Inference structure for IMPRESS



Inference step Function Arguments

decompose subset �set all�faults �set hypotheses �key symptom

specify get�property
�concept hypothesis

�property expected�value �key observable

select get�property
�concept hypothesised�fault

�property distinguishing�observables

subset
�set all�tests �set discriminating�tests

�key distinguishing�observables
get�property �concept test �property time�required

sort �set discriminating�tests �key time�required

measure Transfer Task

re�ne get�property
�concept hypothesised�fault

�property expected�value �key test
match �element observed�value �element expected�value

subset
�set hypotheses

�set remaining�hypotheses �key di�erence

table �� Application Design for IMPRESS

An interesting observation on this mapping is that the decompose inference step
in IMPRESS is mapped to a subset operation� whereas CommonKADS� de�ni�
tions of canonical inference actions suggests that decompose requires replacing
a single concept with a set of its component concepts� The reason for this
di�erence is highlighted in �Breuker���	�� where he points out that all tasks
may have � types of solution� case data �the underlying cause of the problem��
conclusion �an individual faulty item� or argumentation structures �the justi�
�cation for the conclusion�� The inference structure for IMPRESS was based
on the generic inference structure for tasks requiring systematic diagnosis �see
�Breuker � van de Velde����� for the latest version of this�� which presupposes
that the required solution is a conclusion �a single faulty component�� However�
faults in plastic moulding machinery are rarely caused by a single faulty com�
ponent� but rather by a combination of �components� �e�g� a coin stuck in the
injection nozzle� or by inappropriate actions �e�g� running the machine at too
high a temperature�� the required solution is therefore a fault state� which cor�
responds to case data in Breuker�s classi�cation� The initial step in IMPRESS�
diagnosis is therefore determining a relevant subset of all possible fault states�
rather than identifying a set of machine components�

��� Architectural Design

The architectural design for IMPRESS� domain knowledge was relatively sim�
ple� fault states� tests and other concepts were implemented using objects� and
domain relations were represented using slots� Set membership was also indi�
cated using a slot� which carried the name of the set� and possible values of Yes
and No�



Figure �� IMPRESS Design Model� Processes

The design for the inference steps identi�ed a preference for production rules
to carry out the match step� The other steps were identi�ed as capable of
being implemented with simple object�based operations� the subset operation
involved changing values of the �set membership� slot from Yes to No� while
the get�property operation requires reading the value of a slot in an object�
The measurement task was considered to be a transfer task� so the only design
requirements were for the user interface to instruct the user on the task� and
obtain the result correctly� user interface design is considered elsewhere�

��� Platform Design

IMPRESS was implemented in KAPPA�PC on a Compaq ���� KAPPA�PC
provided good support for object representations and object accessing functions�
so the relevant architectural design recommendations were followed exactly�
However� the rule system in that version of KAPPA�PC e�ectively operated
as an add�on module to the rest of the system� it needed to be carefully set
up and explicitly invoked� It was decided that� since the matching algorithm
only needed to match � parameters �test results against faults�� and there were
approximately � faults and � tests in the knowledge base� then it was feasible
to perform the matching with a doubly�iterative function� thus avoiding the
need to introduce the rule system into the program at all�

The full design model for processes can be represented in a diagram �Figure ���



��� Flow of Control

Design decisions on �ow of control are made on the basis of the task structure
from the Expertise Model� The knowledge representations and inference tech�
niques recommended by the Design Model must be chained together in order
to replicate the task body speci�ed� For IMPRESS� the task body speci�es a
generate�and�test approach� an initial set of candidate faults is identi�ed� and
then the system enters a REPEAT�UNTIL loop in which tests are selected� per�
formed� and the set of possible faults is narrowed down� until the set of faults
has � or less members in it� This was easy to implement in KAPPA�PC�

��� IMPRESS� Design Modelling for Knowledge Representa	

tion and User Interfaces

The same process can be followed for making and recording decisions on knowl�
edge representation design and user interface design� The starting point �i�e�
the left�hand column of the Design Model� for knowledge representation de�
sign is the �knowledge roles� which appear in the inference structure of the
Expertise Model� the starting point for user interface design is the inter�agent
transactions which are identi�ed as necessary in the Communication Model�
The resulting diagrams for IMPRESS are shown in Figures � and ��

� Worked Example �� X�MATE

X�MATE �EXpert Mortgage Arrears Threat Advisor� �Kingston�	 �� Sep �����
was developed for a large UK building society by Hewlett Packard�s Knowledge
Systems Centre with assistance from AIAI� Its task was to assess the likelihood
of mortgage applicants meeting their loan repayments�

The building society�s problem was that the percentage of defaulters was too
high� and it was di�cult to enforce quality control on acceptance of applications
because� within certain guidelines� the acceptance or rejection of applications
was almost entirely at the discretion of the local branch manager� The system
was intended to support a branch manager or branch clerk by highlighting
applications which were worthy of further investigation� and assisting the user
in performing some further checks on the application� It did this by identifying
the key features of �typical high risk customers�� determining what data on the
application form would indicate these features� and then scanning application
forms �and� if necessary� data supplied from other sources� for the presence of
these high risk indicators�

The inference structure for X�MATE is shown in Figure 
�

��� X	MATE� Application Design

X�MATE was also decomposed using functional decomposition� The application
design for X�MATE can be seen in Table ��



Figure �� IMPRESS Design Model� Domain Knowledge



Figure �� IMPRESS Design Model� User Interfaces

The most obvious factor about this design is that several inference steps are
labelled �pre�compiled�� and no architectural commands are de�ned for these
steps� What has happened is that several of the problem�solving steps required
to perform mortgage application assessment are considered to be have been
carried out in advance by the experts who supplied the knowledge for the sys�
tem� the system only contains their �distilled wisdom� on what to look for�
In AI terminology� the �deep knowledge� of the full problem�solving process is
replaced by �shallow knowledge� of associations between key inputs and im�
portant outputs�

The application design also contains an extra problem solving step �the selection
of a particular data source� which did not appear in the inference structure�
This extra step re�ects a design decision to run the system up to four times�
using di�erent sets of data� the reason for this was to speed up processing by
making all automatic checks �rst� and only proceeding to ask the user to input
data if the application is deemed to be medium or high risk� It was therefore
necessary to select the appropriate data source for each run�

The select�simple function is given a list of four data sources� its functionality is
to select the next data source from the list� match�N performs pattern match�
ing between a variable number of items� while calculate performs arithmetic
calculations�



measure

compute

focus

specify

specify

a typical ‘high
risk’ situation

specify

factors
indicating risk

individual risk
indicators

risk score acceptable
level of risk

above/below
acceptable
threshold

various data
sources e.g.

application form

typical ‘high
risk’ situations

Figure 
� Inference structure for X�MATE



Inference step Function Arguments

focus subset
�set all�risk�indicators �set some�risk�indicators

�key situation

select select�simple
�set available�data�sources

�key phase�of�problem�solving

specify pre�compiled

specify pre�compiled

specify pre�compiled

measure match�N
�elements application�form�data

�elements risk�indicators

compute calculate �number risk�score �number risk�threshold

table �� Application Design for X�MATE

��� Architectural Design

The architectural design for X�MATE�s processes is as follows�

� Select data sources� the key to this selection is the phase of processing�
It can be implemented as a case statement i�e� �if phase �� select source
X� if phase �� select source Y� etc��

� Matching should be implemented using production rules� Note that the
recommendation for production rules is much stronger than it was for
IMPRESS� because X�MATE correlates multiple factors in order to de�
termine risk� whereas IMPRESS only matched � types of object� The
theoretical set of possible matches is therefore much larger in X�MATE�

� Focus on a set of risk indicators� choose an appropriate rule set�

� Computation should be implemented using arithmetic functions�

The application form was represented using � or more objects� one object for
each applicant �instances of a Applicants class� and one to represent the �case�
�details of the property� and other non�applicant�speci�c information��

��� Platform Design

X�MATE was implemented in KAPPA�PC ��� on a HP Vectra ��� PC� The
platform design mirrored the architectural design� no changes were deemed
necessary�

The full design model for processes in X�MATE can be seen in Figure ��



Figure �� X�MATE Design Model� Processes

��� Flow of Control

The �ow of control speci�ed for X�MATE is to repeat running through the
whole inference structure until the computed risk score doesn�t meet a partic�
ular threshold� or until there are no more rule sets to be processed� When an
application comes in� the �rst rule set is selected and is run on the objects rep�
resenting the applicants and the case� If the resulting risk score does not reach a
certain threshold� the application is deemed OK� if it does reach the threshold�
another rule set is loaded and run on the same objects after extra attributes
have been added by an automatic request to a credit search bureau� If a second
threshold is breached� a third rule set is loaded which asks the user to draw
out �mostly� textual data from the application and accompanying references� if
another threshold is breached� then the system loads in its �nal ruleset� which
requires further questions to be asked of the applicants themselves�

The �nal accumulated risk score is then recorded and can be displayed later�
or sorted to produce a list of the riskiest applications for forwarding to Head
O�ce� The system has been designed not to reject any applications without
further consultation�

� Conclusion

It can be seen that the CommonKADS Design Model is a useful way of recording
design decisions� and of viewing how one design decision �ows from another�



it therefore provides useful documentation of the process of system design�
The separation of �ow�of�control design from selection of representations �
techniques is a consequence of a similar separation in the Expertise Model�
this encourages greater modularity and reusability of designs� The three�stage
design process helps to validate the Expertise Model and to separate decisions
on good design techniques from decisions on what can be implemented�

Weaknesses in the Design Model include a lack of guidance on selection of
techniques� probing questions provide some remedy for this� The lack of a
de�ned set of architectural commands is also a weakness�

In summary� the CommonKADS Design Model is a useful aid to knowledge
engineers in representing and recording design decisions� especially if an Ex�
pertise Model and a Communication Model have been developed previously�
The usefulness of the Design Model will be improved by further recommenda�
tions on content �particularly architectural commands� and guidance on making
selections �i�e� development of further �probing questions���

References

�Aben����� Aben� M� ����� Formal methods in Knowledge Engineering� Ph�D�
Dissertation� SWI� University of Amsterdam� The relevant chapter is also
available as CommonKADS report KADS�II�T����WP�UvA������

�Breuker � van de Velde����� Breuker� J�� and van de Velde� W� ����� The

CommonKADS Library� reusable components for arti�cial problem solving�
Amsterdam� Tokyo� IOS Press�

�Breuker���	� Breuker� J� ���	� Problems in indexing problem�solving meth�
ods� In Benjamins� R�� ed�� Proceedings of the Workshop on Problem Solving

Methods� Nagoya� Japan� IJCAI��	�

�Heycke���
� Heycke� T� ���
� Historical projects� HTML document
http���www�camis�stanford�edu�research�history�html� Center for Advanced
Medical Informatics at Stanford�

�Jansweijer����� Jansweijer� W� ����� Recommendations to EuroKnowledge�
KACTUS Deliverable KACTUS�DO�f���UvA�V��� University of Amster�
dam�

�Kingston�	 �� Sep ����� Kingston� J� �	��� Sep ����� X�MATE� Creating an
interpretation model for credit risk assessment� In Expert Systems �	� British
Computer Society� Also available from AIAI as AIAI�TR����

�Kingston����� Kingston� J� ����� Re�engineering IMPRESS and X�MATE
using CommonKADS� In Research

and Development in Expert Systems X� �	���� Cambridge University Press�
http���www�aiai�ed�ac�uk� jkk�publications�html�



�Kingston���
� Kingston� J� K� C� ���
� Applying KADS to KADS� knowledge
based guidance for knowledge engineering� Expert Systems ������

�Kline � Dolins����� Kline� P� J�� and Dolins� S� B� ����� Designing expert

systems � a guide to selecting implementation techniques� Wiley�

�MacNee����� MacNee� C� ����� PDQ� A knowledge�based system to help
knowledge�based system designers to select knowledge representation and in�
ference techniques� Master�s thesis� Dept of Arti�cial Intelligence� University
of Edinburgh�

�Schreiber et al�����a� Schreiber� G�� Wielinga� B�� Akkermans� H�� and
de Velde� W� V� ����a� CML� The CommonKADS Conceptual Modelling
Language� KADS�II project deliverable� University of Amsterdam and oth�
ers�

�Schreiber et al�����b� Schreiber� G�� Wielinga� B�� de Hoog� R�� Akkermans�
H�� and van de Velde� W� ����b� CommonKADS� A Comprehensive Method�
ology for KBS Development� IEEE Expert ����	�

�Schrooten����� Schrooten� R� ����� Sabena �ight schedule case� an ex�
ample of a design model� CommonKADS Deliverable D�M�	 KADS�
II�M	�VUB�RR�������� Vrije Universiteit Brussel� This report has been
included in the CommonKADS �Design Model and Process� report� the num�
ber of which is given below�

�van de Velde � others����� van de Velde� W�� et al� ����� Design model and
process� KADS�II�M	�VUB�RR�������� Vrije Universiteit Brussel�

�Waern et al������ Waern� A�� H�o�ok� K�� Gustavsson� R�� and Holm� P� �����
The Common KADS Communication Model� ESPRIT Project P
��� KADS�
II KADS�II�M��TR�SICS� Swedish Institute of Computer Science�

�Wielinga����� Wielinga� B� ����� Expertise Model� Model De�nition Doc�
ument� CommonKADS Project Report� University of Amsterdam� KADS�
II�M��UvA�������


