Bags and Viewers:
A Metaphor For Intelligent Database Access

Robert Inder ' and Jussi Stader
ATAI-TR-127

January 1994

submitted to Advanced Visual Interfaces (AVI'94), Bari, Italy

Artificial Intelligence Applications Institute (A1AT)
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
United Kingdom

(© The University of Edinburgh, 1993.

!previously at AIAI now at Human Communication Research Centre (HCRC)

The University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9L.W

Abstract

We present a way of structuring a database query system to form a bridge between
current data handling systems and the data requirements of creative work. The
interface is based around specifying the contents of “bags” of objects and inspecting
them using “viewers”, which can then be used to launch further queries.

The operation of such an interface is described and illustrated by an example
session using a prototype system. A number of features of such an interface are
presented, the metaphor is discussed and a number of areas for future work are
indicated.

Contents

1 Introduction

2 Bags and Viewers: The Metaphor
3 The Movie

4 Features of the Approach

5 Discussion

6 Further Work

7 Conclusion

11

14

16

18

1 Introduction

In many disciplines, a growing number of experts are carrying out creative work using data
held, at least in part, on computers. Accessing this data is an increasingly significant part
of their work. The data they require at any moment may depend on their interpretation of
the data they have already retrieved, making very flexible but powerful query mechanisms
essential.

Formulating queries in most database systems—e.g. using sQL—requires precise knowl-
edge of the language and of the structure of the database. However, many experts who
could benefit from using on-line data neither have, nor wish to acquire, substantial com-
puter skills. Interfaces can be built to allow data to be retrieved without knowledge of
database structures—e.g. based on “forms”—but only to the extent that the user’s data
needs can be anticipated, which restricts the user to common paths of enquiry (see Figure

1),

DBMS Interface

Forms

< // -
/ / Database

Expert

SDBA o o

[
DomainModd I

Figure 1: Experts” Routes to Access Data

Work on addressing this problem for a particular class of users—geologists working in
petroleum exploration—gave rise to a framework for structuring database access activi-
ties. This framework is both intuitive and flexible enough to support creative work with
unpredictable requirements. In the next section, we outline this framework, presenting
the “Bags and Viewers” metaphor as it appears to the user. In Section 3 we illustrate
the use of such a system using screen dumps from a prototype system that is under de-
velopment. Section 4 then presents a number of advantages of the approach, Section 5
discusses some specific points in more detail, and Section 6 identifies some areas where

further work is required.

2 Bags and Viewers: The Metaphor

Bags and Viewers describes an approach to structuring the interface to a database query
system in such a way that users can incrementally perform complex data retrieval oper-
ations without needing to know a query language or the structure of the database being
accessed.

Databases must be designed with efficiency and compatibility in mind, which means
that their structures do not usually reflect the structures of the real world, or the way
experts think about the information the databases hold. Regardless of how the data is
actually stored, it is presented to the user as structured in terms of objects with attributes,
and with relationships between them. The objects and attributes used to present the
data are specified in an explicit model of the field to which the data applies—the domain.
This domain model is derived from experts in the field, and is quite independent of any
particular database and the pragmatic pressures on its design. This idealised structure
is mapped to a particular database by means of a database model, a formal description
of the contents of the database in terms of the concepts in the domain model.

Both the domain model and the database are described using a conventional “object-
oriented” formalism supporting class hierarchies and inheritance. Graphical tools have
been developed to assist in the construction of these knowledge bases, which are used to
tailor the system’s behaviour to the class of the object or attribute involved.

An interaction with the system starts with the user selecting an object type and
specifying constraints on the values of its attributes by using constraint editors—tools
customised for handling and constraining the values of a particular attribute.

At any time the user may ask the system to either count the objects that satisfy the
currently specified set of constraints, or to “fetch” them. When the system “fetches”
objects, it will by default create a new bag to contain them, and present the user with a
“tag” for that bag. A bagis a logical container for a collection of objects that satisfy some
particular set of constraints, and its tag will indicate the type and number of objects it
contains. A tag could be an icon, or possibly an entry in a session-wide “bag” menu, or
any other reminder of its existence.

Bags are “opaque”, and it is not possible to tell much from a bag itself about its
contents—typically only the type and number of objects it contains. To see more, it
is necessary to attach one or more viewers to the bag, each of which will show some
attributes of the objects within. Whenever the system creates a bag, it will also attach a
default viewer to it, so that the user can see something of the objects the bag contains.
This viewer could display a one-line summary of each object; or, depending on the type of
object and the user’s preferences, it could be a map, a statistical plot, or any form of data
presentation that is suitable for groups of such objects. If the default viewer does not
give the required information, the user can re-configure it—for instance, by changing the
attributes that form the summary or parameterising a cross-plot in terms of attributes to
be used for axes, point shape, colour etc.—or select different or additional viewers. Thus
the user can decide, in the light of what objects have been selected, how they should be

displayed.

Whenever objects (or sets of objects) are fetched from the database, the user can
choose whether they should be placed into a new bag, or into an existing one.

Where an existing bag is used, all of the viewers that have been associated with that
bag are updated to reflect its new contents. Thus the user can build up an ideal view of a
set of objects by associating combinations of viewers with the bag, and then immediately
use that view for another set of objects by putting them into the same bag.

Whenever a new bag is used, the system keeps track of how it was created, and can
graphically present the complete set of bags created during the session in the form of a
session history which the user can review easily. As well as containing a set of objects, a
bag also retains the constraints that were used to specify that set. These can be used to
update the bag, or to re-fill it on subsequent occasions. More importantly the user can
return to the constraints at any time and either review them or use them as the basis of
another query. This makes it easy to explore alternatives from any point in the session,
or refine the query to improve the quality of the results.

Most viewers are interactive, and allow the user to select objects or sets of objects, and
thus request more information about them. For example, the one-line object summaries
will function as a menu of the entries in the bag. Each selected object is fetched and put
into a box—a bag for just a single object. Once again, a default viewer will be chosen.
This might be a “form”—i.e. a set of attribute names and their values arranged on the
screen. However, it could be any display appropriate for the type of object, either pre-
stored (such as a photograph) or generated from a collection of data which is retrieved
as required. Box viewers, like bag viewers, can be used to seek further details either
of the object in the box or of related objects. The user can specify a relationship, and
get a bag of the objects to which the one in the box is related in that way. Because
viewers are interactive, the interface is very good for generating follow-up queries, and
for unconstrained browsing through the data.

A Bags and Viewers interface not only hides the structure of the database, but also
shields the user from the need to consider the inevitable shortcomings of the data itself,
which is often incomplete, sometimes imprecise, and occasionally simply wrong. These
factors can be a substantial obstacle for unfamiliar users. However, during the process
of mapping the user’s query from the domain model to the actual database, the system
can ensure that the possibility of missing data is handled appropriately—e.g. by ensuring
that missing data cannot cause a match to be rejected. It can also make allowances for
uncertainties in the data, and indeed the user’s intentions, by allowing constraints to
be “fuzzy”—i.e. considering objects which fail to satisfy one or more of the stated con-
straints, provided that, overall, they are not “too far” away from the stated requirements.

3 The Movie

To give an indication of how the system is used we go through a simple session using a
database about geological wells.

When the system is started a top window appears on the screen. A typical session
begins with a query.

Figure 3: Menu Constraint Specification

Query Specification

As shown in Figure 2 the query menu offers the different query types for selection. We
choose which is the simplest way of querying.

We use a form that contains technical information about wells for our query. We
are interested in wells that have a result of oil or gas. This will be our first constraint.
Clicking on the button brings up a constraint editor which is tailored for dealing
with the results of wells. As Figure 3 show, it presents us with a list of possible results,
from which we select and , and then to dismiss the editor.

Our “oil or gas” constraint appears in the Result button, as shown in Figure 4, as
does another constraint, generated in a similar manner, that the Status of the wells of
interest must be “completed”. Figure 4 also shows a numeric constraint editor being used
to constrain the value of the Total Depth to a range of values between 9000 and 15000
feet. When this third constraint has been specified, and its editor dismissed, we can
collect the set of wells that satisfy them into a bag by selecting the |fetch into new bag

from the “Options” menu (Figure 5). The form used to generate the query is removed,
and replaced (Figure 6) by a viewer onto the new bag, which takes the form of a table
showing the eight wells which satisfy the three constraints. In addition, a note of the new
bag appears in a list in the query system’s top window.

Navigation and Viewing

To find out more about a well, we can select it in the bag viewer’s table and select

View in detail | from the viewer’s “View” menu. This causes the selected well to be

[®] SDBA —— Box Viewer]

Total depth Maximum:
iy — o

Constraint Types

Hirimum and_ Hasimar
((Bottom Hole Epoch: Value and Range

T) single value
((Eatton Fule Formatia

Total depth:

Status: _completed Rig

(Result: [gas, oill) (Rig Typer)

Fuzz [@) exact

units [@ feet

Figure 4: Numeric Constraint Specification

[®] AlA/ —— SDBA Tool Top winclow -

(@] SDBA —— Box Viewer B B1]

Query — Display “technical” for a ell

() fetch into existing bag

related objects

Total depth: range(8000, 15000) [feet]

(FesuTE: Tgas; o111) [GERTE)

Figure 5: Fetching the matches

8] A/ —— SDBA Tool Top window 2]

Name Number Object Class

bagl @ Wl E

[8) SDBA - Matohes i |

Type Status

Result Country

appraisal completed
exploration completed
exploration completed
appraisal completed
appraisal completed

6/48

16/49
17749
17743
17749

Figure 6: Viewing the Matches

DBA Tool Top window
.
_Name Number Object Class
= | bagt 8 Well
boxt 1 Well

~ [0 SDBA—- Matches ;e

Name Type status Result Country

43/17-5 appraisal campleted gas 17749
- appraisal competed gas 17/49
deveToprent I@ SDBA —- Box Viewer & Z6/211 b

boxz — Display “technical” for a Hell

(Mare:_211/26-7A) ((Bottom Hole Epoch: _unknown [Harlanded])
Bottom Role Formation: _unavai Table
o
(Type: _development) (Total depth: 10120 [feet])

&
G2
(Status: _completed) (Rig: STADRILL)
@
G

Result: gas (Rig Type: T)

Wame: _45/17-2

Figure 7: Details

BA Tool Top wirdow o

Name Number Object Class

| bam 8 well g
bot 1 well
[8] SDBA — Matches | 4 el

Name Type status Result Country

48/17-5 appraisal completed gas 17/49

48/17=7 __ appraisal completed gas 17/49

[211726=7A_ deveTopment [®] SDBA —— Box Viewer [2)] 26/211 | 0
30/24-28

@ S Do Viewer box2 — Display “technical” for a Well .

(Mame: 21172678)

. . ravatTsbie)
t Well’s Relationships
Type: development D

has interest Interest*

Status: _completed [sinarear]

Result: oil
E
Result: gas Rig Type: T

Figure 8: Related Objects

placed in a boz, and its details to be shown using an appropriate form viewer: Figure 7
shows the result of doing this for two wells.

From the details of a single well, we can easily get information about other objects
by selecting ‘related objects‘ from the “options” menu for the form viewer. This brings
up a menu (see IFigure 8), which shows that there are two relationships between a well
and other objects: a well has interests and a well is in one or more areas. The asterisks
indicate that both these are relationships to several other objects. We select
to find out which areas well 211/26-7A’ is in.

We are presented with a viewer (Figure 9) showing summary information for a new
bag containing nine areas, all of which are in the Northern North Sea. As before, we can
select an area to view in detail, which is duly placed in a box and a form viewer created
to display further information about it (see Figure 10).

We now have a quite a number of viewers data on our screen, and it is beginning to
look cluttered. Because each viewer is in a separate window, we can use the facilities
of our window manager to open and close, re-size and re-organise them on the screen

[®] AlA/ —— SDBA Tool Top window 2]

Name Number Object Class

bagl 8 Well
boxl Well
boxz well T

Name

Type status Result Country

49/17-5

appraisal

<omii@] SDBA - Box Viewer 2] UK 1743

box2 — Display ‘technical” for a Well

(Options v

(Name: 21172674) ((Bottom Hole Epoch: _unknown [Harland3] y
(Bt Botton Hole Formation: _unavai1able
(Tyne: _development) (Total depth: 10120 [feet])

Nanme

bes2 — 8 hress

Country Region

003/12a
210/25a
211/13a
211 /13F
211/14

Northern North Sea
Northern North Sea
Northern North sea
Northern North sea
Northern North Sea

[®] SDBA —— Matches 1

Figure 9: Related Areas

2]

Object Class

Nanme

Type Status Result

Country

49/17-5
49/17-7

appraisal [SDBA — Box Viewer 2] UK 17749

appraisal

. :

(Mame:_211728-7A) ((Bottom Hole Epoch: _unknown [Harlandss])

Bottom Aole Formation: _unavailable
5| (Timer_deveTopment) (Total depth: 10120 (feet])

003/12a
210/25a

g STAORILL
[®] SDBA -~ Box Viewer L0 l (Blg STRRILL)
boxa — Display “area deno” for & Area

Country

Wome: 2117133

s K| (e Wuber:_p2s) (Towmtry)

211/13F
211414

3
Uk

Region: Nerthern North Sea
Sze: 138 [zl

Figure 10: Related Areas

view tree
open container

Name Number
[®] SDBA —— Matches | bea
box1

s
o) @) o @& |
5
1

Close container
expose container
hide container

Bos 1 Area | Muitcontainer
e e | Prolg Country

bag?

49/17-5 appraisal 17749
49/17-7_ appraisal

[®] SDBA -~ Box Viewer 2] box2 — Display “technical” for a well

(Name: 21172674) (Bottom Hole Epoch: _unknown [Harlandd3])

| (e Bottom Hole Formation: _unavailable

(Type:_developrent) (Total depth: 10120 [feet])

- (Fie_STRORILL)
DBA — Box Viewer 8]
box3 — Display ‘area demo” for a Area

211/14 Wane: 2117132
211/14d
Nifrea Ticence umber: _Pags Country: UK

211721 Feaion: _Worthern North Sea
211/283

bt — 6 Hells

Nane TJ@ Fespond please | B]status ResuTt Country

49/17-5 appr: 17449
43/17-7 _ appr: 17443
211/26-7A _deve]l 267211
30/2428 devell E 24730
49/22-4h expl 22/49

technical
well demo

Cancel
"

bagz — 3 Areas

GG

Nanme Country Region

211714 Northern North Sea
2117144 Northern North Sea
2117162 Northern North Sea

| 211212 Northern North Sea

| 2117282 Northern North Sea

Figure 12: Changing Viewer

however we think best. In addition, we can manipulate them from the top window. By
selecting entries in the bag and box menu and then choosing the ‘close container‘ from
the Top Window’s “options” menu, we can iconify the viewers that are not immediately
relevant (see Figure 11). Other entries on the menu let perform related operations on the
viewers, such as re-opening or exposing them , or deleting them altogether.

So far, when we requested details of individual objects from a bag, the system chose
a default form viewer for us. Figure 12 shows how we can change the details viewer used
for displaying information. We use the ‘select details viewer‘ option from the “View”
menu of the bag viewer, which presents us with a list of available forms for displaying
details about wells. We choose the form. Selecting a well from the table in the
viewer will now display different details (see Figure 13). Note that this viewer has been
defined so that the form shows an attribute of some related objects—the areas that Well
‘49/17-2" is in. The names of these areas, which are the same ones we collected in a bag
in Figure 10, are mouse sensitive, and can be used to call up further information on the
areas, just as the entries in the bag did (see Figure 14).

[®] SDBA —- Matches

bagl — & Wells

Type Status Result Country

appraisal completed 17749
appraisal completed
developrent conpTeted
developrent conpTeted

49/22-44 exploration completed

(8] SDBA — Box Viewer L B
box4 — Display “relwell” for a well

Name Country
211714 Northe S

2117144 Northe] (TOTal depth: 10120 [reetl) is in Area
2117162 Northe
2117212 Northe Mtad
211/28a Nerthe Result: oil N1/16a

Status:_completed) 211/21a

2114288

211/14

Figure 13: A Well Through Another Viewer

[®] SDBA - Matches

Name Type Status Result Country

[®] SDBA -- Box Viewer 21]| completed 9as 17/43
(Wenv) (GpHans) bows — Display “area dema’ for a Area

Name: 2117133
Licence Number: _P29s Country: UK
Region: Northern North Sea

boxd — Display “relwell” for a Well

211/14 Northe .
211 714d Northey (TOTal depth: 10120 [feet]) is in Area
2117168 Narthe 003/128

217218 Northe

Doz
211/26a Northe :

(Status: _completed) 211/13F

211/14

Figure 14: A Shortcut to a Related Object

10

B

Name Number Object Class

Well
Well

box2 well
Naffe]SDBA —- Tree Editor T B o % ° Country

bok of well
bag2 of area (3)

bagl of well (8))—(box2 of well) "~(bux3 of area)

——(box5 of area)
boxd of well

Figure 15: A Session Summary

Session Summary

We have been browsing for some time now, and have many bags and many windows on
the screen which contain our (intermediate) results. It is becoming difficult to remember
what information is in which window. However, because the system has retained the
connections between the bags we have created, we can ask it, by selecting
from the “Options” menu in the Top Window, to display a diagrammatic summary of
our session so far (See Figure 15). This shows that the session started by generating a
bag of eight wells from a query specified from scratch. Viewers onto this bag have been
used to create three boxes containing individual wells. One of them was used to obtain
a bag of areas, from which we opened a box viewer on an individual area. Another was
used directly to open a box viewer on an area.

Like the container list in the top-level window, this summary tree is kept up to date
and it can be used to manipulate windows. The tree can also be used to select nodes, or
sub-trees of nodes, for the various container-oriented operations—e.g. opening, closing,
deleting etc.

Looking Ahead

Everything described so far has been implemented in a prototype system. Because of the
limited development effort available, this system has only a limited range of viewers, all
of which are text-based. However, one of the advantages of basing an interface on Bags
and Viewers is the the ease with which other kinds of data display can be incorporated. It
would be straightforward to include other kinds of displays within the overall approach,
and Figure 16 illustrates the way that, for instance, map a cross plot viewers could be
incorporated within a session.

4 Features of the Approach

The Bags and Viewers approach has a number of noteworthy features.

e Data can be accessed without knowledge of query languages or database structure.
All interaction is mediated by a domain model, which is elicited from domain ex-

11

[®] AiA/ —— SDBA Tool _Top window

Name Number Object Class

Yell .
" . [®] Respond please £l B
e (o SDEA — Box Viewer £ L]

s — orapre | Area’s Relationships
Contains well g

|
(Feafon: _Hor thernf Cance]
Size: 138 (kwh2]) Fla) SDBA - Matches [

QA

(o] SDBA —- Matches (il

Nane Type status

211/13a-62 appraisal TA unavailable
210/25a-5 appraisal plugged and abandoned o011
2114237 appraisal plugged and abandoned o011
211/14-3 appraisal suspended tight
211/14-1 sxploration TA unavailable

Figure 16: Multi-Media Viewers

perts and can completely ignore all issues of efficiency and consistency—e.g. it can
include redundancy, by representing synonyms, derived relationships etc. It is even
potentially user extensible, since new attributes can be defined in terms of others,
although tools for facilitating this have not yet been developed.

Because the database structure is hidden from the user, it is possible for multi-
ple databases, possibly with differing structures, to be smoothly integrated. This
is especially important in situations involving collaboration or merger between in-
dependent database builders or in industries where data is marketed or otherwise
distributed.

Because the domain model is object-oriented—that is, it describes the domain in
terms of objects positioned within a hierarchical classification scheme—all aspects
of the system’s behaviour can be tailored to the objects involved. For example,
the class of the objects involved in a query is used to determine the appropriate
constraint editors and viewers.

Because the domain model explicitly represents the properties and relationships of
the various classes of object that the domain involves, it can be used to help users
navigate through the database. Both the properties of a class of object and the
relationships in which it can participate can be presented to the user in the form
of menus. Because such menus allow the user to navigate through the database on
the basis of recognition, rather than recall, using them gives the system the ease of
use associated with menu-driven systems in general.

The constraint editors used in query formulation are chosen and parameterised on
the basis of the type of the attribute to be constrained and the object. Some of them
can handle very general types of attributes, such as strings, numbers or ranges, and
selections from a closed set (menu) of values. Such editors will be tailored to the

12

specific attribute being constrained by giving them information on the possible and
normal ranges of values. Other editors can employ notations and embody knowledge
specific to that particular attribute: for example, an editor for constraining the age
of a rock bed may display a geological time-chart, on which the various periods and
sub-periods are mouse sensitive.

Because the editors embody or have access to the acceptable and normal ranges of
values, they can draw the user’s attention to unlikely choices as soon as they are
made.

Viewers were originally conceived as a means of providing a single access mechanism
that would work naturally both for textual interformation and for graphics. These
could be either prepared in advance for the system (“canned”), or be generated from
retrieved data when required. However, viewers could also be created to present
video or audio information, and indeed the overall approach can seamlessly integrate
multi-media presentations.

The system makes it easy to modify both the constraints that define the contents of
a bag and the viewers which determine what aspects are presented in what manner,
and it can display the effects of these changes immediately. It thus encourages
users to build up queries incrementally, refining them in the light of the results
being obtained.

Most information displays can be naturally used to launch follow-up queries by
either directly indicating the object or set of objects of interest, or by selecting a
relationship which will identify them. These objects will then be fetched into a
bag or box as appropriate. Because any viewer is always associated with precisely
one bag, and each bag retains its own record of the constraints that determined
its contents, such follow-up queries are entirely self-contained, and the user is free
to launch them from any viewer at any time. This makes unrestricted browsing
through the database as easy as exploring a hypertext document.

The various bags that the user generates are self-contained—that is, they each retain
the set of constraints that defined the objects it contains. This makes it possible
to return to any bag at any time, either to change the constraints (and thus its
contents) or the way they are displayed, or to use it as the basis for launching
further queries. But equally, because viewers are used to request information on
other objects, bags can be inter-related. A session with the system has a “discourse
structure”, with some bags being the “children” of others that provided the context
in which they were generated. Because the user is explicitly aware of them, a
graphical presentation of the relationships between the bags generated during the
session provides a session history that effectively cues recall of their contents and
purpose.

Imprecise queries can be formulated easily using fuzzy matching, with mechanisms
which are described in Chung and Inder (1992). Any constraint that the user gener-
ates can be tagged as requiring either an “exact” match or a “fuzzy” match, which

13

can be one of three degrees of closeness. The domain model can contain definitions
of goodness of fit functions (see Chung and Inder (1992)) for each attribute, which
indicate how well a given value matches a specified target. The system provides
some “common sense” measures of similarity for numeric quantities, but the do-
main model is expected to contain domain-specific goodness of fit functions. Such
a function might indicate the (temporal or geological) closeness between, say, Late
Jurassic and Early Devonian, or whether someone asking about Rolls Royces might
be interested in Jaguars.

The underlying fuzzy matching facilities are designed to support a form of true
Query by Frample—that is, queries of the form “find others like this or these”.
Precisely what constitutes “like” in any particular situation is a matter of domain
knowledge, which will in general be applied by an “expert system” embedded in
the domain model. The current query system provides a simple mechanism for this
expert system to generate fuzzy queries, just by deciding which attributes must be
matched precisely, and which “fuzzily”.

The metaphor offers several points in the interaction where limited “intelligence”
can easily be built into the software, and thus forms an excellent basis for building
an intelligent data access assistant. In addition to the (far from trivial) features
already mentioned—hiding the database structures by mapping them onto the do-
main model, supporting fuzzy matching, flagging unusual constraints and queries,
ensuring missing data are handled correctly etc.—the system can also employ “in-
telligence” in a number of other ways. Most obviously, it can select a suitable
display for a set of objects, ideally taking account of the specific objects (both their
number and characteristics), the quality and availability of data, and the user’s ex-
pressed or inferred preferences and objectives. It can also optimise the query, both
in isolation (by generating efficient sQL) and overall, by cacheing or pre-fetching
either attributes or object keys. Similarly, the system can offer summaries and
comparisons of sets, and provide explanations of failed queries—that is, constraint
sets that result in empty bags.

5 Discussion

The semantics of the interface is based on treating a bag as a container for a (mathe-
matical) set—i.e. a collections of distinct objects. There is no sense in which the bag
contains data, and no distinction between the attributes of the object which are “in” the
bag and those which are not: which attributes of the object are visible to the user at
any time depends on the set of viewers that are associated with the bag, and of course
the data that is present in the database. In addition to the set itself, a bag holds the
set of constraints that were used to generate it—in a sense, the “intention” of the set.
This can be used to re-generate the contents of the bag, should the database or domain
model change, and to form the basis of follow-up queries. Finally, at any moment a bag
is associated with a collection of viewers, each displaying some attributes of the objects

in the bag in some way.

14

Despite the familiarity of the concepts involved in the metaphor, their combination
within a data-manipulation system in a general manner is novel. It is possible to see
other systems as embodying special cases of a Bags and Viewers approach. For example,
the Macintosh file system allows users to select either a graphical (iconic) or text-based
“viewer” to display the set of files in a directory. These can be parameterised to some
extent—e.g. by specifying the attribute to be used to determine the order in which files
should be listed. Moreover, the elements in the viewers are mouse-sensitive, and can be
used to initiate examining specific entities in detail, either by selecting a new viewer on
a sub-directory or by invoking the application associated with an ordinary file. Simi-
larly, Nowell and Hicks (1993) describes a bibliographic database retrieval system which
separates query generation from display, and although it offers only a single “viewer”,
that viewer can be parameterised to determine which attributes are displayed and how.
Finally, the way the system presents the database can be seen as having much in common
with the operation of a hypertext system, with viewers offering “pages” of information,
many of which contain links to other, related pages. On such a view, every relationship
specified in the domain model defines a potential inter-page link, and the pages themselves
are constructed, in line with the user’s preferences, when they are needed.

Since a set may contain only a single element, the interface could be cleanly specified
without making any distinction between bags and boxes. However, there are reasons for
making boxes distinct:

e There are only a few ways of presenting data which are equally applicable to both
sets and individual objects. Thus, while a map is sensible for any number of loca-
tions, a histogram for a single object is absurd, and there is no obvious way of using
a form-like display for a set of objects. This could be dealt with by filtering the
range of viewers considered by the system, or indeed offered to the user, according
to whether the bag contains more than one item. However, if the number of objects
in the bag were subsequently changed, many of the viewers associated with it would
become silly or even meaningless. This problem is avoided by using boxes, which
are known to always contain precisely one object.

o Whether a query is retrieving a set of objects or examining a specific object in more
detail is likely to be one of its most salient features. Distinguishing boxes from bags
allows this feature to be reflected in the session history, therefore improving its
ability to help the user recall the details of the session.

One of the fundamental aspects of any data or domain model is the ontology it
imposes upon the world—i.e. what types of objects are deemed to exist. For greatest
generality, everything that could possibly be regarded as an object should be. However,
this can easily mean that closely related information is distributed across a large number
of objects, which can make formulating informative queries a tedious process. Thus,
for instance, seeing which company owns a particular oil well might require fetching the
object that is linked to the well by means of an “operated by” relationship. A pragmatic
solution to this problem can be found by allowing viewers to include attributes of related
objects. This is straightforward for one-to-one relationships. It is more complex for
relationships where there may be several related objects, which are currently tackled by

15

displaying the attribute’s value as a kind of “sub-viewer”, from which the related objects
can be selected (See Figure 14).

6 Further Work

There are a number of aspects of a system based on Bags and Viewers which still need to
be thought through, and in many cases the alternatives need to be empirically evaluated.

e Many decisions about low-level details of the interface have been made the “obvious”
way, and alternatives need to be assessed. For instance, it is not clear whether a
single click on an item in a viewer should initiate the display of more details about
it, or whether it should simply select the item, with the user obliged to then initiate
the query from a separate button or pull-down menu. The answer to this question
is likely to depend on the range of operations that can be done with a selected item.
If the only option open to the user is to ask for more information, having separate
selection and query initiation actions is of dubious merit.

¢ To date, only a small number of general-purpose viewers and constraint editors have
been implemented:

— configurable forms and one-line-per-object summary displays/menu viewers,
and

— constraint editors for numbers (and ranges), strings, set of options and value
hierarchies.

This range needs to be increased by implementing viewers for, say, maps, charts
and histograms, cross-plots, photographs etc. In addition, we think that introduc-
ing summary attributes for bags, such as the maximum, minimum and average
value for an attribute, will increase the range of queries that can naturally be han-
dled. Finally, we have identified the need for a mechanism for working through a
(potentially large) set of objects, considering each in turn in some way (e.g. by
putting it into a specific box).

e Constraint editors currently work on a single attribute in isolation, without consid-
ering the constraints that have been imposed on others. This is a limitation, since
the values of different attributes interact strongly: the Gulf of Mexico ceases to be
a possible location for a well which has been constrained to be producing from the
Forties field in the North Sea, and vice versa. If constraint editors can be made
sensitive to such interactions, feedback about queries that will fail can be given to
the user much more quickly. It is also still not clear how some types of complex
constraints should be expressed and handled by the system—e.g. to find all the
installations being operated by more than two companies, or by companies of two
or more nationalities.

e The graphical presentation of the session, which shows how bags and boxes were
generated from others, offers a powerful mechanism for helping users to keep track

16

of their interaction with the system. However, we believe that there is considerable
scope for improvement by, for instance, using the shape and size of the icons in the
display to convey information about, for example, the type and number of objects
in the bag. In particular, we believe that the usefulness of the device as a trigger
for recall will be greatly improved if the user is allowed to arrange, mark and even
label the various nodes in a way that is meaningful to them.

e There are still several areas where the system’s “common sense” about data is
lacking, and where more knowledge could greatly facilitate building domain and
database models, and thus the system’s ability to present data effectively. For
example, the system has no notion of “time”, and thus cannot handle databases
that contain many values for a single-valued attribute that apply to different times.
The system can be used to access such databases, but only by distorting the domain
model. Giving it an understanding of temporal variation should both avoid this and
allow a more intelligent handling of such data, such as assuming the most recent
value is required unless another time is specified, or presenting the way a value of
interest varies over time.

¢ As the metaphor is developed, the possibility of allowing users to alter the contents
of a bag—to add or remove objects—must be given further consideration. Objects
could be added by allowing the user to merge two bags or, equivalently, to add the
result of a query to an existing bag. In this case, the bag’s contents would be de-
scribed by a disjunction of the constraint sets describing the contributing bags. But
there is also considerable appeal to allowing users to simply nominate objects to be
added to (or removed from) a bag, perhaps by some kind of “direct manipulation”—
“put this, this and this to one side for further investigation”, “ignore these two” etc.
While this may be very natural, it has the drawback that the system would have
no basis for associating a constraint set with the resulting collection of objects, and
thus it would be in some sense less than a real bag—a “baguette”. It is not clear
how baguettes can be handled, and the matter of whether the additional interface
complexity of doing so is justified by their usefulness needs to be investigated.

Finally, one of the objectives of the work that led to the formulation of the Bags
and Viewers approach was to support combining multiple sources of data. This can
be supported very naturally within the interface paradigm, since users do not explicitly
initiate queries and the underlying database structures are hidden. The encapsulation of
database-specific information within the database description makes it straightforward
to enable the system to query a new database in isolation. However, there are many
problems associated with attempting to combine information from different databases
being accessed at the same time. At its simplest, answering a query on the basis of
several databases involves querying one database to extract attributes which are missing
from another. Doing this effectively obviously depends on cross-referencing between the
databases—identifying the same object in two databases which have not been designed
or maintained to ensure agreement. However, making the situation only slightly more
general involves many more complex issues.

17

In many cases, there will be overlap between databases available to the system—
indeed, this must be the case for at least some attributes, to allow entries to be cross-
referenced. As a result there will, in general, be more than one source of any piece of
information. It is straightforward to use multiple sources of an attribute value within a
single database, and to use information about the database to indicate how to obtain the
best value. For example, a database may define a field to represent a particular attribute,
but may only actually have data present for some objects. In such situations, the system
can be given not only the details of how to locate the explicit data, but also a formula
for deriving a value from other attributes. The system can then is able to make sensible
use of both in answering a question.

Such mechanisms could probably be extended to deal with separate database systems,
with the required data being assembled from the results of multiple queries. More awk-
wardly, if the set of objects of interest may be determined by attributes drawn from multi-
ple databases, then either “join” operations must be carried out outside the databases, or
appropriate object-identifying information must be translated and transported between
them. In both cases, though, the interface must become involved with determining, rather
than just presenting, query results. This will require efficient but general-purpose means
of sifting and combining potentially large volumes of partial results to be devised. More
subtly, not all databases are created equal: the data they contain can differ not only in
range, but also in quality and completeness. Not only must these variations be taken into
account when formulating a query, they also mean that the user must be able to see, and
indeed constrain, the provenance of the information being displayed. Making this kind of
information available to users without overwhelming the data itself will be a significant
task.

7 Conclusion

Bags and Viewers provides a framework for structuring interfaces to systems which involve
accessing collections of data. Such systems should be very flexible—they are capable of
generating arbitrary queries—yet should also be very simple to use, in that they involve
only a few operations and concepts, and these are reasonably familiar. A prototype
system has been developed to illustrate these ideas, and has been ported to three different
databases in quite distinct domains. Work on the system is continuing, and we are looking
for other domains to which it can be ported and evaluated.

References

Nowell, L, and Hix, D. (1993) Visualizing Search Results: User Interface Develop-
ment for the Project Envision Database of Computer Science Literature. In Sal-
vendy, G. and Smith, M. (eds) Human-Computer Interaction: Software and Hard-
ware Interfaces, Elsevier, Amsterdam.

Chung, P. and Inder, R. (1992) Handling Uncertainty in Petroleum Exploration Data.
Revue de L’Institut Francais de Petrole, Vol 47, No. 3, May/June 1992. Also avail-

18

able as ATAI-TR-104, Al Applications Institute, University of Edinburgh.

19

