
The VLSI Floorplanning Assistant

John Kingston and Robert Inder

AIAI�TR����

March ����

This paper was submitted to the First International Conference on the Practical
Applications of Prolog� which was held in London in March ����	

Arti
cial Intelligence Applications Institute
University of Edinburgh

�� South Bridge
Edinburgh EH� �HN
United Kingdom

c� The University of Edinburgh� ����	



Abstract

A considerable amount of e�ort has been put into developing knowledge�
based systems to help VLSI designers� Many of the existing systems tackle
problems at the design synthesis stage� which decides which components and
connections are required to obtain the desired functionality for the chip�
However� once the components have been selected� they have to be laid out
on the chip e�ciently� European Silicon Structures �ES�	 found that their
layout software frequently required intervention from knowledgeable humans
to optimise the area taken up by the design� The Floorplanning Assistant
was therefore developed to help designers to improve a layout by altering the
size of the chip or the order in which components are laid out�

The Floorplanning Assistant was developed to help designers to improve
a layout by altering the size of the chip or the order in which components
are laid out� The Floorplanning Assistant includes an AI component� which
draws on knowledge about the reasons for gaps appearing in the layout� and
applies sensible resizing operations to close up these gaps� It is possible that
more than one resize may be required in order to achieve an overall improve�
ment
 this is achieved using a best��rst search with local optimisation�

� Introduction

This paper describes the development of the Floorplanning Assistant� which was
built by the Arti
cial Intelligence Applications Institute of the University of Ed�
inburgh for European Silicon Structures �ES�	 ES��s business is the design and
manufacture of custom silicon chips �� and this system aims to help their designers
to revise and improve their designs	

Knowledge�based systems and VLSI Design� The task of VLSI design has
prompted a considerable number of knowledge�based systems designed to tackle
various stages of the problem	 When a chip is designed� the required inputs and
outputs are speci
ed 
rst� and then synthesis is performed	 Synthesis involves
specifying how the desired outputs will be achieved from the desired inputs� initially
at a very abstract level� and then at more concrete levels� until eventually a pattern
of the required components and their connections is arrived at	 The goal of synthesis
is to produce a structure which will produce a chip which will perform rapidly and
accurately� and to minimise the cost of the chip	 It is also bene
cial if synthesis
can be performed quickly and cost�e�ectively	 To this end� several knowledge�based
systems have been developed to tackle various parts of the synthesis process� either
by producing an optimised version of a design� or by producing a design at a lower
level of abstraction	 Examples of such systems include the Logic Consultant from
Trimeter Technology Corp	 ���� or Design Synthesis and Design Advisor from NCR

�These are usually described as ASICs � Application Speci�c Integrated Circuits

�



Microelectronics ���	 Knowledge�based systems have also been applied to verifying
and validating designs� allowing designs to be input at varying levels of abstraction�
and storing and maintaining design information during the design process	

The Floorplanning Assistant� laying out the design� The Floorplanning
Assistant� however� is designed to assist with a later stage of the design process	
Once a structure for a design has been created� the components required have to be
laid out on the chip	 An ideal layout will be compact� since empty space increases
the size� and therefore the cost of the chip	 However� ES��s existing software �which
is described below does not always achieve this goal� so the designer has to step
in and force some alterations the layout	 This is an awkward task which requires
considerable knowledge of the workings of the placement software� it is also slow�
because it can only be checked by performing a full layout� which takes a couple of
hours	 To remedy these di�culties� the Floorplanning Assistant was developed to
allow designers to make changes to the physical placement of a design and see the
results displayed graphically on a screen	 It also allows designers to interrogate the
system to obtain information about the design	

Embedding AI technology� The Floorplanning Assistant also incorporates
an AI component which it uses to suggest and implement possible improvements
to the design without human intervention	 It thus integrates AI into an existing
software system by providing AI capabilities as one facility within a sizeable soft�
ware system� which in turn performs one stage among several stages in the design
process	

By supplying this AI component� the Floorplanning Assistant increases the
�power� of the current software system by a signi
cant amount	 In one of the
keynote addresses at the BCS Expert Systems ��� conference� it was suggested that
�if we had software that monitored itself� reported problems� suggested solutions
and implemented them �once they�d been OK�d by some trusted human� we�d have
a miracle on our hands� ���	 While the Floorplanning Assistant does not ful
l all
these criteria� it is a step in the right direction	

� An overview of the current system

��� ES��s existing software

ES� currently use �and sell a suite of programs for designing integrated circuits	
This suite is known as the Solo �xxx software �e	g	 Solo ���� ���	 This software
works through a number of design stages� which fall into two main categories� logical
design and physical design	

Logical Design� The designer works interactively with the computer to
specify the circuit in terms of interconnected functional units� known as cells	 The
system provides a range of cells in a library	 The designer is encouraged to structure

�



the design� which involves identifying groups of related cells and their interconnec�
tions as single units	 In de
ning such design units� it is possible to specify that they
include one or more other design units� to produce a design with a tree structure	
The result of this stage is a design speci�cation�

Having designed the circuit� the user is able to invoke a simulation of its func�
tioning� treating its components as ideal logic gates	 This allows the user to check
that the design does what is required	

Physical Design� Physical design involves two tasks� placing the design units
on the chip� and� once the actual positions for the gates are available� deciding
on the precise routing for the connections between them	 This process produces
a complete design which can be used to drive integrated circuit manufacturing
equipment without further human intervention	

Once the intended physical structure of the entire circuit is known� the user can
invoke a more detailed simulation of the design	 This tries to take account of the
physical characteristics of the devices and interconnections� and thus give a more
accurate indication of the behaviour to be expected if the circuit were built	

��� The design problem� ordering the cells

The routing of signal paths between cells can have a tremendous in�uence on the
performance and size �and thus cost of the 
nished circuit	 The process is critically
dependent on the way the cells to be inter�connected are placed on the chip	 Un�
fortunately� provably 
nding the optimum routing for a circuit is computationally
intractable� the distance between any two points on a chip depends on what other
connections are trying to 
t through the same gap�

Rather than confront the enormous computational task required for a full ��
dimensional layout� the current placement system works in a simpli
ed domain�
it initially restricts itself to laying out the cells in a single unrestricted line� and
attempts to optimise cell ordering at this level	 This single line is then laid out
sequentially on thee chip� column by column� in a zig�zag pattern	 However� even
within a single row of cells� the task of optimising the ordering between them
is computationally intractable	 Instead� the placement system makes use of the
hierarchical structure of the design	 A logical design is made up of a number of
�design units� which are actually an agglomeration of smaller design units	 The
placement systemmakes use of this by ensuring that the components at each level of
the hierarchy are ordered to minimise inter�connections at that level	 This approach
allows the placement system to produce acceptable layouts from well�structured
designs constructed from logic gates which contain less than a dozen transistors	

Fixed Blocks� Advances in VLSI technology have made it imperative that
the placement system is able to deal with design units containing very large num�
bers of cells with many and regular interconnections such as memories	 The large
number of interconnections means that the relative placement of these units can

�



greatly a�ect the di�culty and expense of routing them	 To overcome this problem�
VLSI designers often hand�craft the layout of these units	 The result is that these
units must be treated as blocks of 
xed shape and size even though they could be
functionally described in terms of smaller units	

The placement system has been modi
ed to be able to lay out these �
xed
blocks�� but the designs produced are often less than satisfactory	 Each 
xed block
is treated as a single� very large cell	 As such� it is 
tted in to the linear array just
like any other cell� and is duly placed on the chip when its turn comes	 When it is
being placed� each 
xed block is treated as requiring one entire row which happens
to be very high� occupying as much space as several �normal� rows	 If there is
insu�cient room in the existing column to accommodate it� the whole block is
placed in the next column� which can lead to large gaps in the layout	 Similarly� if
the block is narrower than the column in which it is being placed� space is wasted
at the sides	 These two e�ects can lead considerable amounts of chip space being
wasted	

The designer is o�ered some limited facilities for in�uencing the behaviour of the
system by adding instructions to the speci
cation of the design	 These can prevent
the placement system from re�ordering either particular layers or whole sections of
the design� so that they will be laid out in the order de
ned by the designer	 It is
also possible to supplement these with commands to force row or column breaks	
These facilities can be used to a�ect the positioning of 
xed blocks� but the e�ect is
only indirect� and a clear understanding of the way the placement system operates
is required to use them	

The speci
cation of the Floorplanning Assistant was that it should allow the
user to specify appropriate placements of 
xed blocks or other design units directly
�i	e	 in terms of positions of blocks� and to provide feedback on the e�ects of
the change	 It should also generate appropriate sequencing and column breaking
commands automatically	 A further factor was that ES� wanted the system to be
delivered as soon as was practicable� the system was seen as a stop�gap to plug a
weakness in the functionality of their current software	

� The Floorplanning Assistant

The Floorplanning Assistant is implemented in Edinburgh Prolog �	 The ��man
team �� developers and � technical manager spent approximately � man months
on the project	 This was the 
rst major piece of Prolog programming for both the
developers	

�Edinburgh Prolog ������	 also known as NIP� Available from the AI Applications Institute	
University of Edinburgh�

�



��� Using the Floorplanning Assistant

The user of the Floorplanning Assistant 
rst instructs the system to read in a
design speci
cation from a 
le	 The ordering of design units� and the size of chip
speci
ed by the design speci
cation are treated as the current con�guration of the
design	 If the design passes various checks which are applied� the user is o�ered a
number of commands which allow him to alter the current con
guration	 A list of
commands can be seen in the menu of commands which is shown in Figure �	 Most
of the commands fall into one of 
ve categories�

� Re�ordering and positioning the design units

� Altering the hierarchy of design units

� Resizing the chip

� Obtaining information about the chip

� Storing partially�completed con
gurations

Examples of commands include�

� Auto Enhance� Invoke the AI module �described in more detail in section
�	

� Change Column Size� Prompts for the new width and the new height of
the column� giving the old width and the old height as defaults

� Constrain Unit� A design unit is forced to be laid out at the top or bottom
of a particular column� or immediately before or after another design unit	
Various checks are made to prevent the existence of con�icting constraints	

� Describe Column� The chip is divided into a number of columns	 This
command will print out a column�s size� the units that are currently in the
column �noting the positions at which they start and end� and the start and
end points of any gaps in the column	

� Explode Internal Node� An internal node is a design unit which is com�
posed of other design units	 This command removes the top level of the design
hierarchy� so the internal node is replaced by the design units of which it is
composed� in the order in which they appear in the design speci
cation 
le	

These commands do not quite achieve the requirement that the Floorplanning
Assistant should allow the user to specify the placements of design units directly	
This is because the layout software cannot specify the physical location of design

�



units on the chip� with the exception of the top and bottom of columns	 The Floor�
planning Assistant does provide the commands �Constrain Unit� and �Move Unit��
which permit a designer to revise the ordering of units or to specify constraints to
the top or bottom of columns	 This allows designers to specify the placements of
design units without too much di�culty	 After each command� the Floorplanning
Assistant shows the new design to the user	 Because a full layout takes a long time�
the Floorplanning Assistant simulates a top�level design instead	

When the user is satis
ed with the current con
guration� the system will write
out that con
guration to a layout ordering 
le� which can be passed to the place�
ment software along with the design speci
cation 
le	 The system also writes out
log 
les� and a 
le which describes the salient characteristics of the current con
g�
uration so that the user can restore the con
guration at a later date if required	

��� User Interface

Whenever a command alters the current con
guration� the Floorplanning Assistant
�lays out� the current con
guration� and displays a diagram of the result	 Two
di�erent user interfaces were developed� one is suitable for a VDU which can only
display ASCII characters� and one is able to provide a graphical display on Suns	

VDU interface� The version of the system which runs on a VDU displays a
short alphanumeric string for each row of each column� representing the internal
name of the largest� or the most central� design unit in that row	 It also displays
the width of each column� the direction in which each column was laid out �up or
down alternately� and any design constraints �see section �	� on units	

i �� many

i �� f ��

i �� vf ��v

i �� vf ��v

i �� �f �	


i �� �f �	


i �� �f �	


i �� �f �	


i �� �f �	


� v

���� ���

� �

Figure �� An example of the VDU interface �

�The design is the same one as is shown in Figure 


�



This diagram shows a chip with two columns� which are �� and �� gates wide�
respectively	 The design units are represented as i ��� f �� and so on� the i
indicates an internal node� and the f indicates a 
xed block	 If there are several
design units in a row� and no unit occupies more than ��� of the row� the word
�many� is displayed	 The �v�s and brackets surrounding the names of units indicate
constraints on those units� the pointers at the bottom of the columns indicate
whether the columns were laid out from the top or from the bottom	

Sun interface� The version which runs on a Sun console displays a Sunview �

window	 An interface with Sunview graphics was implemented especially for this
project	 This interface allows Prolog clauses to be used to specify that lines� text�
or shaded areas should be drawn	 It is trivial to write further Prolog clauses to
make arbitrarily complicated combinations of these graphic primitives� such as a
box which consists of four lines� or a 
xed block which consists of a shaded box with
a text label	 The completed Floorplanning Assistant maintains a diagram showing
each design unit� in its current location on the chip� empty areas of the chip are
shaded	

Figure �� The Floorplanning Assistant running on a Sun console

�SunView is a trademark of Sun Microsystems Inc�	 Mountain View	 CA

�



The Sun diagram is mouse�sensitive� it also o�ers a mouse�sensitive menu of
commands �shown above� to the right of the diagram	 Mouse sensitivity is achieved
simply be noting the location of the mouse on the screen	 A �mouse line� was im�
plemented� which gave information about the current location of the mouse �see
top left hand corner of Figure �	 This feature turned out to be surprisingly e��
cient� if the mouse was moved around rapidly� the mouse line was updated almost
instantaneously	

� Development

��� Prototype� Knowledge Craft

A prototype of the system was developed 
rst� using Knowledge Craft � This was
intended as a �proof of concept� system� rather than as a fully��edged prototype	
This system made use of CRL�OPS �the OPS��like rules in Knowledge Craft and
of Knowledge Craft�s graphics component	 It took about three weeks to develop�
at the end of that time� the system had about twenty rules� and was able to alter
the size or number of columns on the chip� revise the order in which design units
were laid out� and redisplay the updated con
guration	

Figure �� The interface of the Knowledge Craft prototype

�Knowledge Craft and CRL�OPS are trademarks of Carnegie Group Inc�

�



The Knowledge Craft prototype was used to discuss the functionality of the
Floorplanning Assistant with ES�� and to agree on the intended functionality for
the 
nal system	 It thus served as a �speci
cation� for the delivered version of the
Floorplanning Assistant	

��� Delivered system� Edinburgh Prolog

Attention now turned to the Prolog system	 The 
rst two tasks undertaken were
to write the �inner loop� which simulated the layout of design units on a chip� and
was thus at the heart of the whole system� and to implement a simple command
interpreter	

The initial idea was to lay out units sequentially� but this would have been
very complicated� because the inner loop had to allow for certain design units
being constrained to be laid out at the end of particular columns� and other units
demanding to be laid out immediately before or after another unit	 It was decided
that units which were constrained to the ends of columns would be laid out 
rst	
The remaining units would be laid out sequentially� if the sequential layout should
result in one unit overlapping a constrained unit which was already laid out �which
was termed a collision� the non�constrained overlapping unit would be re�laid at
the next available space	 As for units being constrained to others� the inner loop
treated two or more units constrained to be adjacent as if they were one design
unit� if one unit was involved in a collision� the whole group would be re�laid	

The command interpreter was designed to support command completion� type
checking on arguments� and input either from keyboard or mouse	 Command com�
pletion in Prolog was achieved by representing commands as di�erence lists of
di�erence lists of words� which allowed any possible completion to be matched	
Type checking of arguments was obtained by maintaining a Prolog term for each
command which noted the required type of each argument	 This term was used to
invoke a type�checking procedure	 Input from either the keyboard or mouse was
achieved by introducing a concept of input events	 Prolog will only read input from
one stream at a time� so the command interpreter was designed to scan both the
keyboard input stream and the mouse input stream for a single input event	 A line
from the keyboard� or a click from the mouse� counted as an input event	

� Auto Enhance� a classic AI search problem

One of the commands available to the user of the Floorplanning Assistant is the
Auto Enhance command	 This command looks at information about the location
and reason for gaps on the chip �this information is recorded by the inner loop� and
tries to reduce the size of these gaps	 It does this by altering the size of columns	

The implementation of the Auto Enhance command turned out to be a classic

�



task for Arti
cial Intelligence heuristic search techniques	 There is a problem� the
chip layout contains unused space	 Applying operations such as widening a column
will probably� but not de
nitely� improve the layout� hence these operations are
heuristics	 The number of potential heuristics is in
nite �widen a column by one
stage� widen it by two stages� 				 The results of applying these heuristics are
di�cult to predict algorithmically� however� if a layout is actually performed� the
increase or decrease in the total area occupied by the layout can be used as a
simple evaluation function which provides an estimate of the usefulness of each
enhancement	 Lastly� the inner loop provides information about the reason for
each gap being present� so the system can make use of human expertise to decide
on sensible ways to close up a gap

A common AI approach to tasks requiring heuristic search is to go through the
necessary operations for performing the task with one of the heuristic enhancements
applied	 The evaluation function is then used to decide is

� The enhancement has improved a�airs su�ciently

� This enhancement should be rejected and another one investigated

� Another enhancement should be applied to the revised con
guration to see if
the 
rst enhancement� though apparently detrimental� has set up a situation
where a second enhancement can bring major improvements	 This assumes
that a multiple�level search is in operation	

If possible� the system should attempt enhancements which are likely to produce
the best results 
rst	

For the Floorplanning Assistant� this approach would mean investigating each
gap on the chip and deciding how the situation could be improved� making a list of
commands ordered by the amount of space they were expected to save� which would
alter the con
guration to achieve the desired e�ect� and applying the 
rst command
on the list to the current con
guration	 The system would then perform a layout
�without the graphic output� which would be examined to see if the amount of
space wasted had decreased� and how much it had decreased by	

The Auto Enhance command was designed to use this technique	 However�
there were some further issues to be resolved	 Should the search be depth�
rst�
breadth�
rst� or use some other technique� How many levels of search should be
used� When should the search be terminated� The story of how these issues were
resolved over various versions of the system is given below	

� Development of the Auto Enhance command

Which Commands	 The 
rst issue to be decided concerning the Auto Enhance
command was exactly what it should be allowed to do to the con
guration	 Design�

��



ers use two techniques in order to close up gaps in the layout� they either change the
order in which design units should be laid out� or they change the size of columns	
Should the Auto Enhance command be allowed that �exibility�

The problems associated with the routing of connections between design units
have been described above	 The ordering of units can have a great e�ect on the
routing� and so� since the Floorplanning Assistant has no information about routing�
it was decided that the Auto Enhance command would not be allowed to re�order
design units	 The system is therefore limited to improving the con
guration by
changing the sizes of columns	 This means that the system is truly an �assistant�
to an knowledgeable designer� since the user ought to have a fair idea of the e�ects
on routing if he chooses to revise the ordering of units	

De
ning success and failure� One other issue had to be decided before any
Auto Enhance command could be implemented� When should the searching stop�
This involved two decisions	 When should the system decide it had succeeded � i	e	
what criterion was to be used to decide that an enhancement was su�ciently good
to be accepted� And when should the system decide that it had failed� There
is always the possibility that the last enhancement has set up a situation where
a major saving could be made by performing another enhancement� just as in a
game of chess� sacri
cing a queen on one move may lead to a checkmate on the
next move	 How many successive enhancements should the system be allowed to
perform on a con
guration before giving up�

By empirical experimentation� it was found that the best results were obtained
with two or three levels of search� that is� the system should be allowed to per�
form two or three successive enhancements on a con
guration before giving up	 In
multiple�level search� the advantages of heuristic search� as opposed to exhaustive
search� come to light	 On an average layout� there are � columns� giving the system
�� possible changes that it could make �it could increase or decrease the width or
height of each column	 For a ��level search� there are ��� possible changes� and
���� possibilities for a ��level search	 Since investigating each possibility requires
the whole design to be laid out� which takes about � second � � exhaustive search
is not practicable for an interactive tool	

Breadth�
rst search� The 
rst attempt at providing an Auto Enhance com�
mand solved the problems of deciding on success and failure by prompting the user
for a desired depth of search and a success criterion	 Values suggested by the doc�
umentation for the depth of search were �� � or � levels� where a N�level search
allowed the system to apply N successive enhancements to a con
guration before
giving up	 The options for the success criterion were �large� �a twenty per cent
reduction in the space wasted by the layout� �medium� �a ten per cent reduction
in wasted space� or �small� �any reduction in wasted space	 It then attempted to

�The delivered system took about � second per layout	 plus another second to redraw the
diagram on Suns�

��



implement a breadth�
rst search to the number of levels speci
ed	
The rationale for attempting a breadth�
rst search was that it seemed best to

alter the con
guration as little as possible� so that the user could identify changes
that the system had made easily	 However� a breadth�
rst search proved impracti�
cable� because the breadth�
rst search algorithm would perform a layout and then
gather up all the information about that revised con
guration into a list� to be
passed between Prolog goals until the time came for the system to investigate the
next level of search on that con
guration	 This meant that the system quickly
found itself maintaining several lists� each of which contained hundreds of terms	

Depth�
rst search� The obvious solution was to change to depth�
rst search	
This was done� and it solved the stack over�ow problems associated with breadth�

rst search� because the information about a revised con
guration was used almost
as soon as it was created� and so it did not need to be stored and carried around	
However� using depth�
rst search made the depth of search chosen much more
salient� especially as it turned out that a ��level search on all the possible enhance�
ments suggested by heuristic search took a prohibitively long time for a system
which was supposed to be an interactive assistant	 The idea of asking the user to
choose a criterion for success� and a depth of search� was also appearing less and
less satisfactory	 Asking for a depth of search presumed that the user had some
knowledge of the innards of the system� or some AI knowledge� and there seemed
to be no empirical basis for stating that a �su�ciently good� improvement was one
which reduced the wasted area on the chip by a certain percentage	

Best�
rst search� The Auto Enhance command underwent a re�structuring at
this stage	 Instead of looking at each type of gap� and choosing suitable widening�
narrowing� heightening or lowering commands depending on the reason for the gap�
an extra stage was introduced	 The system now examined each gap and used its
expertise to decide whether the column in which the gap occurred �or sometimes
the column before it needed to be enlarged or shrunk	 These �enlarge� and �shrink�
decisions were referred to as goals 	 The dimension to be altered �height or width
was only speci
ed if absolutely necessary� Each goal was tagged with an estimated
saving� which was approximately the area of the gap which the goal was targetted
to close up	 This estimate was used to sort the goals into order of expected utility�
with the goals with the largest estimated savings being at the head of the list	 The
search thus became a �best�
rst� search	

Once the list of goals had been established� the system took the 
rst of these
goals� worked out which column resizing commands could ful
l the goals� and ap�
plied each command in turn	 The criterion for success was changed� an enhancement
was now deemed successful if it lived up to its estimated saving� since it quickly
became obvious that although estimates were often optimistic� they were never
unduly pessimistic	 If it did not� the system carried on to the next level of in�
vestigation� or next enhancement� however� the best enhancement �or combination
of enhancements so far was stored at all times� and if this ever appeared to be

��



better than any future enhancement �based on the estimated savings� the search
was halted and the best so far was declared to be a success	

The depth of search is now encoded in a 
le which can be changed by the user
of the system if so desired	 The default depth of search for the system is � levels	

Multi�level depth 
rst� pruned� The system was still very slow at per�
forming a ��level search� or even a ��level search on larger designs	 The number
of enhancements tried therefore had to be pruned further to obtain an acceptable
performance	 Two pruning techniques were used� which are described below	

The 
rst technique is to remove any enhancement whose estimated saving is too
low to produce any overall improvement	 If an enhancement has already been tried�
and has increased the amount of wasted space �as enlarging a column might do�
then there is usually little point in applying an enhancement which does not promise
at least to make up for the extra wasted space� especially since the estimates are
generally optimistic rather than pessimistic	

The second technique is based on the idea that� if a top�level enhancement a�ects
a gap near the end of the layout� the rest of the chip layout is likely to be little
changed� and thus there will be considerable duplication of potential enhancements
when the next level of search is applied to this con
guration	 The system was
therefore altered to maintain a list of enhancements at the previous level� and to
ignore any duplicates of this list at the current level	

Using these techniques� the Floorplanning Assistant can perform a ��level search
on an average�sized design ����� gates� � columns in times ranging from �� seconds
on a design with few gaps to a minute or two for designs with many gaps	 �	

� Evaluation against the original goals

Once ES� had received the application and the manuals� they translated the system
to run in Arity Prolog in order to incorporate the system with their PC�based Solo
�xxx software	 This version used the VDU interface only	 The translation simply
involved the alteration of a few predicates	 The system was distributed to ES��s
design centres� but has not been taken further for organisational reasons	

The Floorplanning Assistant makes a signi
cant contribution to ES��s Solo �xxx
design software	 It provides a signi
cant improvement in functionality over the pre�
vious system	 It achieved and exceeded its stated objectives � the VDU interface was
not part of the original speci
cation	 Although the AI component is a small part
of the overall system� it plays an important part� even though the lack of routing
information restricts the range of enhancements which can be performed automat�
ically	 It was implemented entirely in Edinburgh Prolog� and re�implemented in
Arity Prolog� both of which proved to have su�cient functionality and su�cient
speed for the task	

�Timings were taken on a Sun ��
� with �Mb of memory

��



	 Acknowledgements

The authors would like to thank John Dunn from ES� for his involvement and
suggestions� Ian Filby and Robert Rae of the A	I	 Applications Institute for their
contributions to this paper� and Leslie Kiss� formerly of the A	I	 Applications In�
stitute� for his work on developing the command interpreter	

References

��� Partridge D	 To add AI� or not to add AI� In Proceedings of Expert Systems

��� the �th Annual BCS SGES Technical conference� pages � ��� ����	

��� Reinkensmeyer E	 Designing ASICs in a Knowledge�Based Environment	 In
Design Automation Guide� pages �� ��	 NCR Microelectronics� ����	

��� ES�	 Solo ���� Reference Manual	 ES�� ����	

��� Kim J	 Arti
cial Intelligence helps cut ASIC design time	 In Electronic Design	
Trimeter Technologies Corp	� ����	

��


