O-Plan2: Modularity and Interfaces

Austin Tate
Artificial Intelligence Applications Institute
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
United Kingdom

Abstract

O-Plan2 is a command, planning and control architecture being developed at the Artificial
Intelligence Applications Institute of the University of Edinburgh. It has an open modular
structure intended to allow experimentation on or replacement of various components without
the need to change the majority of the overall system.

This paper describes the modular structure of the system along with the internal and exter-
nal interface languages which are being developed on the O-Plan2 project. In a number of
cases, only very simple versions of the interfaces are supported in the current O-Plan2 system.
However, even the early versions of such interfaces are proving useful to isolate functionality
that may be generally required in a number of applications and across a number of different
planning, scheduling and control systems.

1 Introduction

The O-Plan2 Project at the Artificial Intelligence Applications Institute of the University of
Edinburgh is exploring a practical computer based environment to provide for specification,
generation, interaction with, and execution of activity plans. O-Plan2 is intended to be a
domain-independent general planning and control framework with the ability to embed detailed
knowledge of the domain. See [1] for background reading and [3] for details of O-Planl. The
O-Plan2 system combines a number of techniques:

A hierarchical planning system which can produce plans as partial orders on actions.

An agenda-based control architecture in which each control cycle can post pending tasks
during plan generation. These pending tasks are then picked up from the agenda and
processed by appropriate handlers (Knowledge Sources).

The notion of a “plan state” which is the data structure containing the emerging plan,
the “flaws” remaining in it, and the information used in building the plan.

Constraint posting and least commitment on object variables.

Temporal and resource constraint handling using incremental algorithms which are sen-
sitively applied only when constraints can alter.

O-Plan2 is derived from the earlier Nonlin planner [4] from which it takes and extends
the ideas of Goal Structure, Question Answering (Modal Truth Criterion) and typed
conditions.

We have extended Nonlin’s style of task description language Task Formalism (TF).

O-Plan2 is aimed to be relevant to the following types of problems:

project management for product introduction, systems engineering, construction, process
flow for assembly, integration and verification, etc.

planning and control of supply and distribution logistics.

mission sequencing and control of space probes and satellites such as VOYAGER, ERS-1
etc.

2 The Scenario

e A user specifies a task that is to be performed through some suitable interface. We call
this process job assignment.

e A planner plans and (if requested) arranges to execute the plan to perform the task
specified.

e The execution system seeks to carry out the detailed tasks specified by the planner while
working with a more detailed model of the execution environment.

Task Assign| Domain Planner Domain Exec System Domain
Capability Model Capability Model Capability Model
Requirements Requirements Output
User Task Assign Planner Exec System Real
-~ e —— '« World
Reporting Reporting b Input
Plan State Plan State Plan State

Figure 1: Communication between Central Planner and Ex. Agent

We have deliberately simplified our consideration to three agents with these different roles and
with possible differences of requirements for user availability, processing capacity and real-time
reaction to clarify the research objectives in our work. However, we believe that the ideas
are relevant to the more general case of a cooperative, hierarchical and distributed command,
planning and control environment.

A common representation is sought to include knowledge about the capabilities of the job
assigner, the planner and the execution agent, and the information used to represent the re-
quirements of the plan and the plan itself either with or without flaws (see Figure 1).

The current O-Plan2 system is able to operate both as a planner and a simple execution
agent. The job assignment function is provided by a separate process which has a simple menu
interface.

The planner components described in outline form in Figure 2 can be mapped to the system
and process architecture detailed in Figure 3. Communication between the various processes
and support modules in the system is shown in the latter figure.

PLAN
STATE

f,3o

PLAN NETWORK

e EFFECTS

e CONDITIONS
RESOURCE
e USAGE

TIME
e WINDOWS

AGENDAS (Issues)

CONTROLLER

BIND A VARIABLE

‘ ADD A LINK

‘ SATISFY A CONDITION

EXPAND AN ACTIVITY

DOMAIN
INFORMATION

KNOWLEDGE
SOURCES

INPUT
EVENTS

SUPPORT TOOLS

¢ CONDITION/EFFECT MANAGER
e QUESTION ANSWERING

e TIME POINT NETWORK MANAGER

ACTION
e SCHEMAS

PROCESS
e SCHEMAS

RESOURCE
¢ DEFINITION

TASK
¢ DEFINITION

e CONSTRAINTS

(STATIC)

ouUTPUT

e PLAN STATE VARIABLES MANAGER ———

¢ RESOURCE MANAGER

o INSTRUMENTATION TOOLS

¢ EVENT HANDLER

Figure 2: O-Plan2 Architecture

EVENTS

Planner User/Developer

LEFTIN IGHTOUT
Guard Interface Manager RIGHTOU
LEFTOUT | Diag. Monitors | | [nstrumentation | Guard RIGHTIN
T DIARYIN
Diary
AGENDAIN

Controller (AM)
KPREADY Knowledge Source
Altern. | | Agenda Platform(s) (KP)
Handler | [Manager
TRIGGERSIN DBIN

Database Manager

| Trigger Detector |

Plan State

ADS

Plan Network

Agenda TOME/GOST Domain
Table Information
(AT)
TPN
LL
O-Base
Context Layering

Figure 3: Internal Structure of the Current O-Plan2 Planner

3 Developer Interface

O-Plan2 is implemented in Common Lisp on Unix Workstations with an X-Windows interface.
It is designed to be able to exploit multi-processors in future and thus has a clear separation
of the various components (as shown in Figure 2). Each of these may be run on a separate
processor and multiple platforms may be provided to allow for parallelism in knowledge source
processing. A sample screen image as seen by the O-Plan2 developer or an interested technical
user is shown in Figure 4.

Diagnostic Level

Fatal Errors Single Step

milumping {iinit fok

i

Fatal Errors DH Developers Hem
Status: plan option 1 - planner initialised Fatal Errors KP Developers Hem
Tomain: none
Task: none KP-1 Fatal Errors
futhority: planfall=inf}, execute(all=no) T QT
o [oo]

1) Initialise Planner
* 23 Input TF

3) Set Task

4) Plan View

53 World Wiew

B} Replan

7} Execute Flan
0) Quit
Please choose a rumber:- []
#[%] O-Plan2 Running Processes Agenda Manager (AM)

Al

Database Manager {DM)

Figure 4: Example Developer Interface for the O-Plan2 Planning Agent

4 User Interface

AT planning systems are now being used in realistic applications by users who need to have
a high level of graphical support to the planning operations they are being aided with. An
interface to AutoCAD [2] has been built to show the type of User Interface we envisage (see
Figure 5). The lower window shows a Plan View (such as showing the plan as a graph), and
the upper right window shows a World View for simulations of the state of the world at points
in the plan. The particular plan viewer and world viewer provided are declared to the system
and the interfaces between these and the planner uses a defined interface to which various
implementations can conform.

— AuloCAD Graphics Window -

|
12.2-test pace—platform -1

o-Plan2 World v) world Input v) world output v) Animation r) contral r)

WLayer O shap =0,00, 50,00 DL: Clear
Redraw

8085
i
| 0-FlanZ Task Assi [-14]
Status: plan option 1 - plarner finished
Domaing space-platform

Task: large_space_platform
Authority: plan{all=inf}, executelall=no}

1} Initialise Planner
* 20 Input TF

3r Set Task
® 43 Plan Wiew
53 lorld View
% £} Replan
* 7
* 3

¥ Execute Plan

_{Please choose a nunber:- []

|
)
= 0-Plan2 Running Processes |«] 1H

T —— | YT Y T T Ty

o-Flanz Flan ¥)

Flan Input r) Plan output r)

Start Recording

ontrel)

WLapger 0 5nap 2120, 00,1875, 00 oL 1

Add a sTlide
view Last Slide
End Recording

Run Recopding

Run slide script

To point:
To point:
ammand;

"0-FlanZ CF [0-Plan? IH F 0-FlanZ @M | 0-Flan? DN i 0-Plan2 KP=1f%_Planiorld

Figure 5: Example Output of the AutoCAD-based User Interface

5 Modularity, Interfaces and Protocols

5.1 O-Plan2 Components

The O-Plan2 project has sought to identify modular components within an AI command, plan-
ning and control system and to provide clearly defined interfaces to these components and
modules.

The main components are:

1. Domain Information - the information which describes an application domain and a tasks
in that domain to the planner.

2. Plan State - the emerging plan to carry out identified tasks.

3. Knowledge Sources - the processing capabilities of the planner (plan modification opera-
tors).

4. Support Modules - functions which support the processing capabilities of the planner and
its components.

5. Controller - the decision maker on the order in which processing is done.

5.2 Support Modules

Support modules are intended to to provide efficient support to a higher level where decisions are
taken. They should not take any decision themselves. They are intended to provide complete
information about the questions asked of them to the decision making level itself. The support
modules normally act to manage information and constraints in the plan state. Examples of
Support Modules in O-Plan2 include:

e Effect/Condition (TOME/GOST) Manager and Question Answering (QA) [7]
e Resource Utilisation Manager

e Time Point Network Manager [5]

Object Instantiation (Plan State Variables) Manager

Alternatives Manager

Interface and Event Manager

Instrumentation

e Monitors for output messages, etc.

A guideline for the provision of a good support module in O-Plan2 is the ability to specify the
calling requirements for the module in a precise way (i.e. the sensitivity rules under which the
support module should be called by a knowledge source or from a component of the architec-
ture).

5.3 Protocols

In addition, a number of external interface specification and protocols for inter-module use have
been established. Only first versions of these interfaces have been established at present, but
we believe that further development and enhancement of the planner can take place through
concentrating effort on the specification of these interfaces. This should greatly assist the
process of integrating new work elsewhere into the planning framework too.

The protocols for regulating the processing conducted by a component of O-Plan2 are:

1. Knowledge Source Protocol for the ways in which a Knowledge Source is called by the
Controller, can run and can return its results to the Controller and for the ways in which
a Knowledge Source can access the current plan state via the Data Base Manager.

2. KS_USER Protocol for the ways in which the user (in the role of Planner User) can assist
the planning system via a specially provided knowledge source.

3. Inter-agent Communications Protocol controls the way in which the Knowledge Sources
operate and may use the Interface Manager’s support routines which control the agent’s
input and output event channels.

5.4 Internal Support Facilities

The internal support provided within the planner to assist a System Developer and Knowledde
Source writer includes:

1. Knowledge Source Framework (KSF) is a concept for the means by which information
about a Knowledge Source can be provided to an agent. This will ensure that a suitable
Knowledge Source Platform is chosen when a Knowledge Source is run inside an agent.
It will also allow a model of the capabilities of other agents to be maintained. The KSF
will also allow for triggers to be set up for releasing the Knowledge Source for (further)
processing. It will allow a description of the parts of a plan state which can be read
or altered by each stage within the knowledge source (to allow for effective planning of
concurrent computation and data base locking in future).

2. Agenda Trigger Language gives a Knowledge Source writer the means by which a compu-
tation can be suspended and made to await some condition. The conditions could relate
to information within the plan, for external events or for internally triggered Diary events.
O-Plan currently provides a limited number of monitorable triggers of this kind, but we
anticipate this being expanded significantly in future.

3. Controller Priority Language currently, the O-Plan2 Controller selects agenda entries
based on a numerical priority which is simply a statically computed measure of the priority
of outstanding agenda entries in a plan state. Our aim for the future is to provide a rule
based controller which can make use of priority information provided in the form of rules in
an O-Plan2 Controller Priority Language. This concept will allow us to clarify our ideas on

what informatio should govern controller ordering decisions. Domain information linking
to generic Controller Language statements which can affect the controller decisions is
likely to be considered as part of a link between Task Formalism (TF) and the operation
of the Controller.

5.5 External Interfaces

The external interfaces provided by the planner are:

1. Task Formalism (TF) as the language in which an application domain and the tasks in it
can be expressed to the planner.

2. Plan Viewer User Interface which allows for domain specific plan drawing and interaction
to be provided.

3. World Viewer User Interface which allows for domain specific world state input and
simulation facilities to be provided.

4. External System Interface provided by TF compute conditions [6] for ways in which
external data bases, modelling systems, CAD packages, look-up tables, etc can be used
and for ways in which these external systems can access plan information and provide
qualifications on the continued validity of their results if appropriate.

6 Summary

This paper has presented an overview of the O-Plan2 system under development at the Artifi-
cial Intelligence Applications Institute of the University of Edinburgh. Aspects of the system
concerned with separation of functionality within the system, internal and external interfaces
have been addressed. The O-Plan2 system is starting to address the issue of what support
is required to build an evolving and flexible architecture to support command, planning and
control tasks.

Acknowledgements

The O-Plan2 project has been supported by the Us Air Force Rome Laboratory through the Air
Force Office of Scientific Research (AFOSR) and their European Office of Aerospace Research
and Development by contract number F49620-89-C0081 (EOARD/88-0044) monitored by Dr
Nort Fowler at the USAF Rome Laboratory. Additional resources for the O-Plan and O-Plan2
projects have been provided by the Artificial Intelligence Applications Institute through the
EUROPA (Edinburgh University Research on Planning Architectures) Institute development
project. Thanks are due to my colleagues on the O-Plan2 project - Dr Brian Drabble and
Richard Kirby.

10

References

Allen, J., Hendler, J. & Tate, A. Readings in Planning. Morgan-Kaufmann 1990.
AutoDesk AutoCAD Reference Manual, 1989.

Currie, K.W. & Tate, A. O-Plan: the Open Planning Architecture, Artificial Intelligence
Vol 51, No. 1, Autumn 1991, North-Holland.

Tate, A. Generating project networks. In procs. 1ICAI-T7, 1977.

Drabble, B. & Kirby, R. Associating AI Planner Entities with an Underlying Time Point
Network, Proceedings of the First European Workshop on Planning, St. Augustin, Ger-
many, March 1991.

Tate, A. (1984) Planning and Condition Monitoring in a FMS, Proceedings of the Inter-
national Conference on Flexible Automation Systems, Institute of Electrical Engineers,
London, UK.

Tate, A. (1986) Goal Structure, Holding Periods and “Clouds”, Proceedings of the Reason-
ing about Actions and Plans Workshop, Timberline Lodge, Oregon, USA. Eds, Georgeft,
M.P. and Lansky, A. Published by Morgan Kaufmann.

11

