
User Interfaces

for Knowledge Based System Tools

John Kingston

AIAI�TR����

March ����

This paper was published in the proceedings of the British Computer Society
workshop on �User Interfaces for Expert Systems�	 which was held on �����

March ���� at the RHS Conference Centre	 Vincent Square	 London


Arti�cial Intelligence Applications Institute
University of Edinburgh

�� South Bridge
Edinburgh EH� �HN
United Kingdom

c� The University of Edinburgh	 ����




Abstract

The development of user interfaces for the developers of knowledge based
systems �KBS� tools has mirrored the development of KBS themselves� In the
early ����s	 the state of the art software for KBS was Lisp and its debuggers�
As rapid prototyping came into vogue in the mid ����s	 so the interfaces of
KBS supported rapid learning	 development and testing of knowledge bases�
With the growth of the KBS market	 the shortage of trained knowledge en

gineers has led to a desire for tools which are simpler to use� user interfaces
have played an important part in the resulting move towards higher
level
tools� There has also been a general move towards standardisation of inter

faces	 which the user interfaces of KBS tools have followed� this has opened
up the �eld for KBS to communicate with other user interface packages�

Possible future directions	 including computer
aided knowledge engineer

ing tools and tools which automate the knowledge acquisition process	 are
also discussed�

� Introduction

Knowledge based systems KBS� �rst emerged as a viable commercial technology
in the early ����s with systems such as MYCIN	 DENDRAL and PROSPECTOR

In those early days	 the user interfaces for developing KBS were those provided
by Lisp� the state of the art software for interactive KBS programming was Lisp
and its associated debuggers
 As time has gone on	 the process of developing
KBS has changed considerably	 and the user interfaces for developers have changed
accordingly
 This paper traces those changes	 from rapid prototyping through to
higher level tools and standardisation	 and looks at the user interface facilities
provided for each approach
 It also looks at possible future directions	 and at the
user interfaces of the tools of the future


This paper is based on experience in developing KBS and evaluating KBS tools
gained at the Arti�cial Intelligence Applications Institute of the University of Ed�
inburgh AIAI�
 AIAI has designed and implemented KBS for industrial and com�
mercial clients since it was founded in ����
 During this time it has evaluated both
commercial and experimental KBS development tools


� Rapid Prototyping

One characteristic of KBS which makes them di�erent from conventional computer
systems is that the knowledge they encode is often acquired and structured during
a KBS development project	 rather than beforehand
 The e�ects of this one dif�
ference have been far�reaching
 The need to start to implement a KBS while its
knowledge was still being acquired led to an emphasis on tools which allowed the

�



knowledge base to be updated and altered easily
 When it was realised that this
initial prototype KBS could be a useful tool in knowledge acquisition	 the dea of
�rapid prototyping� as a KBS development method arose
 Rapid prototyping was
the way to develop KBS in the mid�����s


Support for rapid prototyping became a key concern in the development of many
KBS tools
 This had	 and has	 considerable implications for the user interfaces of
KBS tools
 Interfaces were designed

� to minimise the learning time for the facilities of KBS tools

� to make it possible to create rules and�or objects quickly

� to make the knowledge base readily accessible

� to make the knowledge base easy to debug

The degree of success achieved varied between di�erent tools
 The rest of this
section illustrates some of the techniques applied to each of the four areas noted
above


��� Minimising learning time for KBS tools

The ease of learning a KBS tool depends primarily on the amount of functionality
it o�ers
 Many people �nd Crystal very easy to use	 for example	 because it only
supports one type of knowledge representation backward chaining rules�	 and it
provides an interface to make it easy to write such rules
 However	 when comparing
tools of similar functionality	 there is little argument that the easiest KBS tools to
learn are the tools whose basis is in object�oriented programming as opposed to rule�
based programming
 KEE and Goldworks were the earliest tools in this category
to achieve widespread commercial use� more recent examples include KAPPA�PC
and ProKAPPA


The key to the ease of learning appears to be the consistency of the interfaces
o�ered by these tools
 In Goldworks	 for example	 almost everything the system
does is channelled through object�oriented programming
 As a result	 it is possible
to o�er the same object�like interface for almost every function of the tool
 To
take an example	 communication with an external spreadsheet �le is carried out
by creating an object to represent that spreadsheet
 This object has four slots �
start�row� start�column� end�row and end�column � which are �lled in to
indicate which portion of the spreadsheet is to be read
 The object�level interface
even extends to initiating spreadsheet access� there is a slot in the object named
go	 and when the user enters �yes in that slot	 the spreadsheet �le is accessed

The values� read and any error messages are stored by Goldworks in further slots
of the object


�



While this style of interface can be quirky at times	 it makes it fairly simple for
a KBS developer who is familiar with one part of the tool to use another part of
the tool
 Contrast this with Knowledge Craft	 which combines versions of OPS�	
Prolog and an object�based language in one system
 This requires a KBS developer
to learn three di�erent syntaxes in order to use all its features


Ease of learning also depends on how �natural� the interfaces are� that is	 whether
the user interface matches the user�s �natural idiom�
 The �natural idiom� is the
way a user thinks about the problem cf
 Stelzner and Williams �����
 Stelzner
and Williams argue that people�s �natural idiom� is frequently graphic	 and they
therefore argue for graphical speci�cation of a knowledge base
 The tool which
makes the most e�ort to provide graphical speci�cation for knowledge bases is KEE
see section �
� for more details�
 This combination of consistency and naturalness
means that the time required for developers to become familiar with all the facilities
of KEE is roughly half the time required to reach a similar stage in Knowledge Craft
�


��� Making it possible to develop rules and objects quickly

Most shells and toolkits o�er facilities to smooth the creation of rules and objects

Crystal	 for example	 o�ers a rule editor with certain macro functions	 and a dic�
tionary of variables	 available by pressing particular function keys 
 Most of the
toolkits	 such as ADS	 Nexpert Object	 KEE and KAPPA�PC provide similar ed�
itors	 or templates	 for the creation of rules and objects
 However	 once a KBS
developer is reasonably familiar with a tool	 it is often quicker to write rules and
objects using a text editor
 When this happens	 the toolkit needs to be able to
recompile individual rules and functions incrementally
 The �big three� toolkits
Inference ART	 KEE and Knowledge Craft� are all able to perform incremental
compilation from a standard text editor such as emacs or vi�	 but few other tools
can do so
 Indeed	 some tools encourage developers to save knowledge bases in
binary format	 which requires developers to use the built�in editors� this can be
irritating if a KBS developer is very familiar with a certain text editor


��� Making the knowledge base readily accessible

Most KBS tools provide an interface for browsing the contents of the knowledge
base	 usually based either on pull�down menus or function keys
 It is normal to be
able to view the rules	 facts or objects in the knowledge base either individually
or side by side
 Most tools which allow the development of hierarchies of objects
also provide a window for examining object hierarchies
 This is often a useful tool	
particularly if can be used interactively to access further information about objects


�This estimate is extrapolated from experience with a number of visitor projects at AIAI� It

should be noted that few of these visitors had attended the tool vendors� training courses�

�



The tools which really score well on ease of access to the knowledge base are the
few� tools with good cross referencing of knowledge� for example	 from browsing
an object	 a developer can browse a rule whose conclusion a�ects that object	 and
can then move to another object which is matched by the conditions of the rule

Contrast this with the situation where a developer browses a rule	 �nds which object
matches its conditions	 and must then return to the root menu and work through
several other menus in order to view that object
 ART probably o�ers the best
knowledge base cross referencing of any tool� almost all its menus and debugging
interfaces can be used to initiate further traversal of the knowledge base	 instead
of having to return to a root menu


��� Making the knowledge base easy to debug

The functionality available for debugging a knowledge base is an important fea�
ture of any KBS tool	 and user interfaces have been a key feature in this process

A number of toolkits	 such as KEE	 Knowledge Craft	 and KAPPA�PC support
graphical traces of rule �ring� many toolkits support mouse�based access to the
partial matches of a rule� and many shells and toolkits support multiple windows
in which textual information about the knowledge base can be accessed and then
compared with other parts of the knowledge base


The key factor which makes user interfaces a valuable debugging tool is pro�
viding rapid access to information	 whether it be information about the knowledge
base	 as described in the previous section	 or information about rule �rings or par�
tial matches
 As an illustration	 a project which was carried out at AIAI using
ART came across a bug in ART�s cross�referenced menu system �
 This bug forced
us to avoid using the menu system
 The result was that errors in the knowledge
base which previously took � minutes to track down and �x were taking half an
hour instead


� Higher level tools

So far	 this paper has concentrated on toolkits for building KBS
 The user interface
world also has toolkits	 for the construction of user interfaces� Suntools and Xtk are
examples
 However	 it has been found that these toolkits are too low�level for many	
and so a number of di�erent attempts have been made to produce higher level tools
such as declarative languages	 tools for specifying a user interface graphically	 and
application frameworks such as MacApp ���
 The parallel with KBS is obvious	 and
the KBS world has responded to the demand for tools which are easier to use
 This
section describe two di�erent responses


�The bug� which was in ART ���� has been �xed in later versions of ART�

�



��� Graphical speci�cation of a knowledge base

As stated previously	 KEE provides good facilities for graphical speci�cation of
knowledge bases
 The facilities provided in KEE are as follows�

� KEEPictures	 which are easy to de�ne graphics	 represented internally by an
object which is created automatically

� ActiveImages	 which are interactive KEEPictures� when a setting is changed
on a graphic using the mouse	 the underlying object is also updated	 and vice
versa


In certain circumstances	 graphical speci�cation of a knowledge base can be very
useful
 Stelzner and Williams ���� give examples of using both KEEPictures and
ActiveImages to build interfaces for KBS which model a life support system� analyse
strains of genes� model a feedwater system for a nuclear power plant� simulate a
factory �oor� and perform project management
 It is noteworthy	 however	 that
all of these examples with the possible exception of project management� require
modelling of complex real�world entities
 It is likely that graphical speci�cation of
a knowledge base is e�ective for tasks of this sort	 but less e�ective for other tasks


��� Application�speci�c tools

Application�speci�c shells tend to be built on top of existing shells or toolkits	
but provide a number of facilities speci�cally designed to support the construction
of KBS in a particular application sector
 Some early attempts to add �nancial
functions to certain shells	 such as Crystal City	 an extended version of Crystal�
were not very successful� the application�speci�c tools did not really come into their
own until their user interfaces were also customised to particular applications


One of the most popular applications for these tools has been the support of
help desk operators
 This is essentially a diagnostic task� the purpose of the KBS
is to diagnose the cause of faults to an extent where simple faults can be solved
by the help desk operator while using the KBS�	 and more complex faults can be
directed to the correct expert
 There are several help desk�speci�c KBS tools on the
market	 such as Path Builder	 Mahogany Help Desk	 The Help Desk Assistant	 and
others
 Many of these tools provide a decision tree interface for the development
of the knowledge base
 The KBS developer draws out a decision tree of faults
on the screen	 using a mouse and menu interface	 and this tree is automatically
translated into an underlying formalism which is usually backward chaining rules�

An example of such an interface is given in Figure �


�



Figure �� Examples of KEE�s ActiveImages

One major advantage of decision tree interfaces	 and other high�level interfaces
for application�speci�c tools	 is that the KBS developer could be an expert in
diagnosis	 rather than an expert in KBS
 This is possible because many experts
can understand a decision tree� it appears to be their �natural idiom� 
 However	
decision tree interfaces share some of the disadvantages which are associated with
high�level user interface toolkits ���� they limit the range of the knowledge bases
which can be created	 and they cannot support certain knowledge base functionality


Other application�speci�c shells which are on the market include a number of
shells for general diagnosis such as Testbench	 shells for real�time network monitor�
ing such as DANTES ����	 and case�based reasoning shells such as CBR Express
and IDOTS the Intelligent System for Design of Communication Systems� ���

The developer�s interface of CBR Express is interesting	 because it consists solely
of forms asking for English language descriptions of previous problem cases	 their
symptoms and their solutions
 CBR Express works by pattern matching descrip�
tions of cases against English language descriptions of faults� the results of a pattern
match are used to determine symptoms which would be worth investigating	 and
the likelihood of particular faults
 Other application�speci�c shells which are on the

�



market include a number of shells for general diagnosis such as Testbench	 shells
for real�time network monitoring such as DANTES ����	 and case�based reason�
ing shells such as CBR Express and IDOTS the Intelligent System for Design of
Communication Systems� ���
 The developer�s interface of CBR Express is interest�
ing	 because it consists solely of forms asking for English language descriptions of
previous problem cases	 their symptoms and their solutions
 CBR Express works
by pattern matching descriptions of cases against English language descriptions of
faults� the results of a pattern match are used to determine symptoms which would
be worth investigating	 and the likelihood of particular faults


Hard to

Push

Won’t pick

up

Adjustment

incorrect

Level

incorrect

Level

correct

Belt worn Belt broken

Replace 

Agitator

Brushes

Bag full Bag OK

Adjustment

Correct

Belt on

backward

Replace belt

Replace bag

Set adjustment

for carpet height

Top

Belt OK

Figure �� A decision tree for the Mahogany Help Desk	 showing how to diagnose
and �x an ine�ective vacuum cleaner from ����


�



� Standardisation

In the last few years	 there has been a move towards standards for user interfaces
by software and hardware manufacturers
 Current �standards� include Microsoft
Windows � for applications running on IBM�compatible PCs and X�Windows for
workstation users
 While these standards are de facto rather than de jure	 many
KBS tools are being ported to the �standard� environments� many PC�based tools
now run under Windows �	 while on workstations most major toolkits have been
developed or ported to run under X�Windows


The greatest bene�t of this move has been easier integration between KBS tools
and other user interface packages
 For example	 the X�MATE system ���	 which
was implemented in KAPPA�PC on a PC running Windows �	 originally used
Asymetrix� Toolbook for its dynamic form�based user interface
 This was accom�
plished using the client�server architecture provided by the Dynamic Data Exchange
facility	 which is available as part of Windows �
 A more recent innovation is the
delivery of PC�based KBS tools as a collection of dynamic link libraries DLLs�	
which allow all or part of a KBS tool to be compiled into the same executable
�le as another package
 Examples of KBS tools which are provided as DLLs are
ART�IM Windows version�	 ECLIPSE	 and KAPPA�PC version �
��
 The avail�
ability of Open Systems	 a client�server architecture for workstations which is fast
becoming a standard cf
 ����	 should see similar possibilities for integration in the
workstation world


� A Future Look

It seems reasonable to assume that	 just as user interfaces have followed and sup�
ported the development in the KBS �eld to date	 they will continue to do so in
future years
 Some future directions in knowledge engineering	 and associated tools	
are discussed below


��� Automated knowledge elicitation tools

Automated knowledge acquisition elicitation tools are designed to eliminate the
knowledge engineer from the process of KBS development	 or at least to reduce the
role he plays
 The idea is that by eliciting knowledge directly from a domain expert
and structuring the resulting knowledge automatically	 there is much less need for a
knowledge engineer� instead	 the expert becomes the primary KBS developer
 Such
tools could be classi�ed with the high�level tools described in section �
 Automated
knowledge elicitation tools are those tools which extract knowledge from a human
expert� tools which extract knowledge from a database of case histories have little
need for user interfaces	 and so are not discussed here


�



The user interfaces of automated knowledge elicitation tools ask the expert a
series of questions	 and then structure the resulting information into a classi�cation
hierarchy	 a decision tree	 or statistically�derived clusters	 depending on the tool
being used
 The resulting structured information may be shown on the screen	
as in ProtoKEW ����	 which o�ers a range of automated knowledge elicitation
tools
 Other tools	 such as Nextra an automated repertory grid tool ����� and the
KnAcq which encodes a novel approach to knowledge elicitation	 involving asking
for exceptions to some general rules�	 do not show the resulting structure via the
user interface� instead	 it is converted into rules in the syntax of a particular tool

Nextra operates as a front end to Nexpert Object	 while the KnAcq can produce
rules in the syntax of a number of di�erent tools


There are two disadvantages with automated knowledge acquisition tools
 The
�rst is that they only work really well if the problem is concerned with classi�cation
or diagnosis
 Secondly	 the rules produced may be verbose	 or hard to understand	
which is largely due to the automated knowledge acquisition methods being pri�
marily aimed at eliciting categories rather than rules
 A creditable attempt to
overcome this problem has been Mark Musen�s approach to model�based elicita�

tion ���
 Musen�s work now spans three types of tool� knowledge based systems	
such as ONCOCIN	 which is a KBS for advising on treatment of cancer patients�
automated knowledge elicitation tools	 such as OPAL	 which is designed for creat�
ing ONCOCIN�like systems� and PROTEGE	 which is tool for creating OPAL�like
systems


The key di�erence between OPAL and tools such as Nextra is that OPAL is
application�speci�c� it knows that its task is to elicit correct drug regimes	 to ask
for rules concerning medical diagnosis	 and so on
 OPAL contains some medical
information	 such as di�erent types of drugs
 Musen has paid a great deal of at�
tention to the user interface	 and the �natural idiom�	 in all his tools� the result
has been an interface based on menus and forms in PROTEGE and OPAL	 while
ONCOCIN�s primary interface resembles the traditional �owsheet which doctors
previously used for data collection
 The key di�erence between OPAL and tools
such as Nextra is that OPAL is application�speci�c� it knows that its task is to
elicit correct drug regimes	 to ask for rules concerning medical diagnosis	 and so on

OPAL contains some medical information	 such as di�erent types of drugs
 Musen
has paid a great deal of attention to the user interface	 and the �natural idiom�	 in
all his tools� the result has been an interface based on menus and forms in PRO�
TEGE and OPAL	 while ONCOCIN�s primary interface resembles the traditional
�owsheet which doctors previously used for data collection


�



Figure �� An example of the user interface of the OPAL system from ����

��� Computer�aided knowledge engineering tools

There is a strong emphasis on methodology in the KBS �eld at the moment
 Cus�
tomers want KBS to be reliable	 veri�able	 and maintainable� it is hoped that the
use of methodology will provide all these bene�ts	 as well as guiding the knowledge
engineer in the acquistion and structuring of knowledge


In the software engineering domain	 the introduction of methodology incited
the development of a number of tools	 which were intended to support the develop�
ment of software using certain methods
 These became known as computer�aided
software engineering CASE� tools
 By analogy	 it is likely that the KBS software
suppliers will soon be o�ering a number of computer�aided knowledge engineering
CAKE� tools
 A few such tools have already been developed	 such as Shelley ���	
which is a knowledge acquisition and structuring tool based on the KADS method�
ology for building KBS	 and Acquist	 which is part of KEATS ���
 A fuller list of
tools is available in ����
 Shelley	 which was originally developed by the Department
of Social Science Informatics at the University of Amsterdam	 o�ers a number of
facilities to support the use of the KADS methodology	 including

� An interactive editor for structuring fragments of interview transcripts into a
concept network

� �Data��ow� diagrams to represent the models used by the KADS methodol�
ogy

� A library of task�speci�c �interpretation models�	 which are a key feature of
the KADS methodology

��



Figure �� An example of the user interface of Shelley from ����

� Conclusion

The development of user interfaces for KBS tools has followed the development of
KBS tools themselves
 In the mid�����s	 the demands of rapid prototyping pro�
duced user interfaces for KBS tools which made the knowledge base easy to develop	
easy to access	 and easy to debug
 The ����s saw a move towards high�level KBS
development tools	 whose success was crucially dependent on their user interfaces

Another move has been towards standardisation	 with many KBS tools now run�
ning uder X�Windows on workstations or Windows � on IBM�compatible PCs� the
bene�ts for integration with other user interface packages have been noticeable

The future holds a number of possibilities� KBS may be developed using automatic
knowledge elicitation tools or computer�aided knowledge engineering tools
 The
user interfaces of these tools will depend heavily on the underlying methods


References

��� 
 USL seeks end to Unix incompatibility
 Computing	 page �	 �� February
����


��



��� A
 Anjewierden and J
 Wielemaker
 Shelley � Computer Aided Knowledge
Engineering
 In Current Trends in Knowledge Acquisition	 pages �����
 IOS
Press	 ����


��� B
A
 Myers
 State of the Art in User Interface Software Tools
 In H
R
 Hart�
son and D
 Hix	 editor	 Advances in Human�Computer Interaction	 volume �

Ablex Publishing	 ����


��� C
 Tsatsoulis
 Case�based design and learning in telecommunications
 In �nd

International Conference on Industrial � Engineering Applications of AI and

Expert Systems	 volume �	 University of Kansas	 ����


��� Emerald Intelligence
 Mahogany Help Desk demonstration disk
 Emerald
Intelligence can be contacted at �����A� Research Park Drive	 Ann Arbor	 MI
�����	 USA


��� J
 Kingston
 Knowledge Based Systems in the UK Financial Sector
 In Pro�

ceedings of �An Analysis of Expert Systems in the European Banking Indus�

try�	 Milan	 ��� March ����
 This paper describes the X�MATE development
project and knowledge base architecture
 It is also available as AIAI�TR���
from AIAI	 University of Edinburgh	 �� South Bridge	 Edinburgh EH� �HN


��� M
 Eisenstadt	 J
 Domingue	 T
 Rajan and E
 Motta
 Visual Knowledge En�
gineering
 IEEE Transactions on Software Engineering	 �����	 October ����


��� M
 Linton	 J
 Vlissides and P
 Calder
 Composing User Interfaces with Inter�
Views
 Computer	 �������	 February ����


��� M
 Musen
 Automated Generation of Model�Based Knowledge Acquisition

Tools
 Morgan Kaufmann	 ����


���� M
 Stelzner and M
 Williams
 The Evolution of Interface Requirements for
Expert Systems
 In J
A
 Hendler	 editor	 Expert Systems� The User Interface	
pages �������
 Ablex Publishing	 Norwood	 New Jersey	 ����


���� Neuron Data
 Nextra Overview
 Neuron Data Inc
	 �� S
 Molton Street	
London W�Y �BP
 ��� ��� ����


���� Han Reichgelt and Nigel Shadbolt
 ProtoKEW� A knowledge based system
for knowledge acquisition
 In D
 Sleeman and O
 Bernsen	 editors	 Recent
Advances in Cognitive Science�
 Lawrence Earlbaum Associates


���� Robert Inder and Ian Filby
 Survey of Methodologies and Supporting Tools

Technical Report AIAI�TR���	 Arti�cial Intelligence Applications Institute	
University of Edinburgh	 ����
 This paper was presented at the BCS SGES

��



workshop on KBS Methodologies	 held at the RHS Conference Centre in Lon�
don on � and � December ����


���� Van Cotthem H
	 Mathonet R
	 � Vanryckeghem L
 DANTES� An expert
system shell dedicated to real�time troubleshooting
 In D
J
 Sassa	 editor	 Pro�
ceedings of the International Communications Conference ��	

 IEEE	 June
����


��


