School of Informatics, University of Edinburgh

Towards the

Software Systems

School of Informatics
University of Edinburgh

Synthesis of Modular

Chris Mellish

Towards Synthesis of Modular Software

Chris Mellish 1

School of Informatics, University of Edinburgh

Contents

A particular kind of space of modular software systems
e Example where this would be useful - NLG

e The RAGS project - specifying modules

The RAGS project - plugging them together

What remains to be done - the synthesis

Towards Synthesis of Modular Software

Chris Mellish 2

School of Informatics, University of Edinburgh

of modules.

Building/maintaining a space of software

e Each system using a small number from a potentially large set

e Modules varying in their functionality, programming languages
(and possibly host machine).

e Inter-module communication relatively infrequent, but
involving relatively large and complex data.

e Data communicated between modules is of interest (human
inspection, statistical modelling).

systems

Towards Synthesis of Modular Software

Chris Mellish 3

School of Informatics, University of Edinburgh

Natural Language Generation

non-linguistic information.

e Agreement in the abstract about useful NLG tasks

Need for reusable and interchangeable modules, e.g. for
evaluation/comparison

NLG involves generating natural language text to express initially

e No general agreement on the architecture of an NLG system

Many theoretical frameworks and programming paradigms

Towards Synthesis of Modular Software

Chris Mellish 4




School of Informatics, University of Edinburgh

Limitations of Current Technology
Most current inter-process communication mechanisms (e.g.
CORBA, DCOM, RMI):

e Don’t facilitate reasoning about module compatibility

e Emphasise efficient binary exchange formats that are not

inspectable

e Concentrate on modelling numerical data and ignore high-level
distinctions (e.g. sets vs sequences)

e Impose a particular programming orientation (e.g.
object-oriented)

Towards Synthesis of Modular Software Chris Mellish 5

School of Informatics, University of Edinburgh

RAGS - Specifying Modules

Module developers need to have:

e A shared specification of possible data, expressed using
abstract type definitions (essentially an upper ontology)

e A shared understanding of the set of possible information
states exchangeable between modules, i.e. a position on:
— Partiality
— Structure of complex (e.g. mixed) datasets
— Equality (reentrancy)

These are embodied in the formal definition of a “reference
implementation”, the “objects and arrows model”

Towards Synthesis of Modular Software Chris Mellish 6

School of Informatics, University of Edinburgh

Example: Hardware components

Component = Specs x SubComps
Specs = Attr — Value
SubC’omps = QCOmponent

Attr € Primitives
S

Value Primitives

Towards Synthesis of Modular Software Chris Mellish 7

School of Informatics, University of Edinburgh

Objects and Arrows Structure

(O Component

N (1—e|
2-¢
Attr: COLOUR
OAm MODEL » (O Attr: COLOUR O

Ovalue: RT43 O Value: RED Ovale: BLUE

Component
2-el
SubComps

Towards Synthesis of Modular Software Chris Mellish 8




School of Informatics, University of Edinburgh

RAGS - Plugging them Together

e Code is provided for modules in LISP, Java and Prolog to
exchange data (via sockets) in a neutral, faithful, XML format.

e Code is provided to support (i.e. produce XML input/output
to/from) various “native” formats in the programming
languages.

e A central configuration file specifies how module input and

output channels are connected.

e A running module advertises its “role” to a server and carries
out i/o through its logical channels without knowing where
they are connected to.

Towards Synthesis of Modular Software Chris Mellish 9

School of Informatics, University of Edinburgh

Prepare for/Export y

Interface Objects

Native Computation

MODULE
BOUNDARY

Objects and Arrows Model States

Towards Synthesis of Modular Software

Chris Mellish 10

School of Informatics, University of Edinburgh

PROLOG MODULE

Type Definitions

LISPMODULE

Towards Synthesis of Modular Software Chris Mellish 11

School of Informatics, University of Edinburgh

What remains - the Synthesis
e Formal definition of module inputs and outputs. Idea: Use
description logic based on the OA structure
Component M Alel.3el.A1el MODEL

—-Component U 32¢el.3el.Component

Problem: The expressions will be complex. The underlying
theory T (type definitions, OA constraints) will be bulky.

e Use this to test whether an output satisfies an input:

satis fies(0,1) = (VMM 70D M E7 1)

Towards Synthesis of Modular Software

Chris Mellish 12




School of Informatics, University of Edinburgh

What remains...

e Use this to answer:
— Could this module fit in at this point in a system?
— How could this module be adapted so that it fitted in?

e Automatically plan possible configurations of modules to
implement given objectives.

e Need to handle translation between low level parts of the
ontology (the “Primitive” types)

Towards Synthesis of Modular Software Chris Mellish 13




