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of modules.

Building/maintaining a space of software

e Each system using a small number from a potentially large set

e Modules varying in their functionality, programming languages
(and possibly host machine).

e Inter-module communication relatively infrequent, but
involving relatively large and complex data.

e Data communicated between modules is of interest (human
inspection, statistical modelling).

systems
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Natural Language Generation

non-linguistic information.

e Agreement in the abstract about useful NLG tasks

Need for reusable and interchangeable modules, e.g. for
evaluation/comparison

NLG involves generating natural language text to express initially

e No general agreement on the architecture of an NLG system

Many theoretical frameworks and programming paradigms
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Limitations of Current Technology
Most current inter-process communication mechanisms (e.g.
CORBA, DCOM, RMI):

e Don’t facilitate reasoning about module compatibility

e Emphasise efficient binary exchange formats that are not

inspectable

e Concentrate on modelling numerical data and ignore high-level
distinctions (e.g. sets vs sequences)

e Impose a particular programming orientation (e.g.
object-oriented)
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RAGS - Specifying Modules

Module developers need to have:

e A shared specification of possible data, expressed using
abstract type definitions (essentially an upper ontology)

e A shared understanding of the set of possible information
states exchangeable between modules, i.e. a position on:
— Partiality
— Structure of complex (e.g. mixed) datasets
— Equality (reentrancy)

These are embodied in the formal definition of a “reference
implementation”, the “objects and arrows model”
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Example: Hardware components

Component = Specs x SubComps
Specs = Attr — Value
SubC’omps = QCOmponent

Attr € Primitives
S

Value Primitives
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Objects and Arrows Structure

(O Component
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2-¢
Attr: COLOUR
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Ovalue: RT43 O Value: RED Ovale: BLUE

Component
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RAGS - Plugging them Together

e Code is provided for modules in LISP, Java and Prolog to
exchange data (via sockets) in a neutral, faithful, XML format.

e Code is provided to support (i.e. produce XML input/output
to/from) various “native” formats in the programming
languages.

e A central configuration file specifies how module input and

output channels are connected.

e A running module advertises its “role” to a server and carries
out i/o through its logical channels without knowing where
they are connected to.
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Prepare for/Export y

Interface Objects

Native Computation

MODULE
BOUNDARY

Objects and Arrows Model States
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PROLOG MODULE

Type Definitions

LISPMODULE
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What remains - the Synthesis
e Formal definition of module inputs and outputs. Idea: Use
description logic based on the OA structure
Component M Alel.3el.A1el MODEL

—-Component U 32¢el.3el.Component

Problem: The expressions will be complex. The underlying
theory T (type definitions, OA constraints) will be bulky.

e Use this to test whether an output satisfies an input:

satis fies(0,1) = (VMM 70D M E7 1)
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What remains...

e Use this to answer:
— Could this module fit in at this point in a system?
— How could this module be adapted so that it fitted in?

e Automatically plan possible configurations of modules to
implement given objectives.

e Need to handle translation between low level parts of the
ontology (the “Primitive” types)
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