
A Common Process Methodology for Engineering Process Domains

Stephen T. Polyak

Department of Arti�cial Intelligence
The University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN United Kingdom
Steve Polyak@ed.ac.uk

Abstract

Process engineering involves a search for new models
of organising work. This synthesis task can become
quite di�cult and time-consuming as the amount of
detail required and interactions between activities in-
creases. Domain independent AI planning o�ers some
promising techniques and representations to assist in
this e�ort. One of the major impediments to trans-
ferring this technology to applied, real-world settings
is the di�culty encountered in building the domain
model which is used in the automated generation of
these plans. Competence, as well as good tools, is ne-
cessary to carry out this task. A plan domain meth-
odology should be available which provides structured
organisational development activities. Users need to
know what tasks they have to perform: for each step,
information must be available about what input will
be needed, and what output will be required, what is
to be done and how it can be done well. This paper
presents the Common Process Methodology (CPM)
which aims at providing this support for engineering
process domains.

Introduction

Process engineering involves a search for new models
of organising work. This activity transcends indus-
tries. For example, manufacturing companies formu-
late steps for building a new product and suppliers
de�ne activities which are executed in the enactment of
material and product supply chains. In either case, the
amount of detail required to adequately describe these
steps or activities can be di�cult and time-consuming
to manage. Interactions between planned steps exacer-
bate this process and complicate the analysis of pro-
posed manufacturing or business plans. AI planning
representations and planning systems can o�er support
for this synthesis activity. In fact, Tate describes how
AI planning and plan representations may be used to
assist in a range of activities which include (Tate 1993)

� Reliable capture and maintenance of process know-
ledge and models

� Decision-making using knowledge based simulation
and analysis

� Synthesis of plans and schedules

� Re-engineering parts of a process or plan

� Reliably executing processes and plans

� Simulating, animating, explaining, and justifying
processes and plans

Practical planners require a \knowledge rich" do-
main model that allows them to integrate e�ciently
given the demands of the surrounding environment. In
order to transfer this research in AI planning to prac-
tical organisational process synthesis, we need to build
this domain model. Langley and Drummond state that

\For engineering development and technology
transfer purposes, tasks that include practical dif-
�culties will be more useful [than arti�cial do-
mains]." (Langley & Drummond 1990)

An example of an AI planning system which has
been designed to tackled these \practical di�culties"
is the Optimum-AIV planner (Aarup et al. 1994;
Arentoft et al. 1991). Optimum-AIV is a planning
system implemented for the European Space Agency
that is used in the assembly, integration, and veri�c-
ation (AIV) of spacecraft. This planner is accessible
to managers that require a detailed level of interac-
tion and control over plans. Optimum-AIV is based
on the open planning architecture de�ned in the O-
Plan research (Currie & Tate 1991). O-Plan planner
concepts have also been used in a number of challen-
ging environments including: back axle assembly pro-
cess planning at Jaguar Cars, software procurement
planning at Price Waterhouse, and factory production
planning and job shop scheduling at Hitachi. A num-
ber of other applied planning systems that rely on rich
domain representations could be added to this set as

well (Wilkins 1988; Fuchs et al. 1990; Drabble 1990;
Drummond & Tate 1992; Johnston & Adorf 1992).

For each of these uses, a domain was constructed
which provides information about the activities that
may be performed (at various levels of abstraction)
and the tasks which may be proposed to the plan-
ning system. Unfortunately, acquiring and maintain-
ing this domain knowledge is currently considered to
be a highly signi�cant bottleneck in utilising planning
systems (Wang 1996). In fact, the activities involved
in discovering, engineering, documenting, and main-
taining a set of domain constructs for most domain
independent AI planning-based projects can be con-
sidered ad hoc and disorganised, at best. The current
sources for advice on the process of writing AI planning
domain descriptions have been summarised as

\... it is the most neglected aspect of plan-
ning, and there is not an established software-
engineering methodology to guide this job". (Erol
1995)

The purpose of this paper is to present an approach,
the Common Process Methodology (CPM), which is
aimed at addressing this undeveloped aspect. This is
an important endeavour if we wish to encourage the
application of AI planning techniques to real world
situations. A more disciplined approach to produ-
cing domain speci�cations is required in applied set-
tings which encompasses requirements capture, ana-
lysis, and speci�cation.

The following section describes the past work which
was used as a basis for building the Common Process
Methodology. Following that, we describe how this ap-
proach �ts within an overall framework for managing
and using rich plan representations. The methodology
is then presented using a practical supply chain scen-
ario. Finally, we examine some of the related work and
discuss conclusions drawn from our experience with
this approach.

Building on Past Research

Domain capture and modelling has been an issue in
Edinburgh-based planning research as early as the
work on the Nonlin (Tate 1977) planner. The original
O-Plan overall architecture and system design, which
dates from 1983, outlined a need for a de�ned method-
ology which would guide users performing various roles
in the acquisition and analysis of domain requirements
for planning (Currie & Tate 1991). This planning life-
cycle methodology was envisioned as encompassing a
set of standardised activities and methods which had
well-de�ned design criteria, techniques, and tools. This

was proposed to assist in transforming planning do-
main development from a craft towards more of an
engineering activity.

The domain description language used by both the
Nonlin and O-Plan planners is the Task Formalism
(TF) (Tate 1977; Tate, Drabble, & Dalton 1994).
Early prototyping e�orts on a PERQ-based TF Work-
station (Tate & Currie 1984; 1985) demonstrated tool-
support for the domain modellers (an expert providing
the structure of the domain and specialists providing
the details) and planners (acting in any one of a range
of roles). This tool was designed to include an \intelli-
gent assistant" which would interact with the user via a
structured dialogue which was tied to a speci�c domain
development methodology. Research was conducted
into a requirements engineering methodology which
could be adapted for use in this way. The Controlled
Requirements Expression (CORE) (Mullery 1979; Cur-
wen 1991) was proposed for structuring these domain
management activities. Unfortunately this work had
been set aside following the initial exploration of these
ideas (Wilson 1984). Recently, we provided a review of
this past work which pointed toward the development
of a new methodology which could revitalize this area
of research (Tate, Polyak, & Jarvis 1998).

COntrolled Requirements Expression

COntrolled Requirements Expression (CORE) was a
method developed by British Aerospace (Warton) and
systems designers in the late 70's (Mullery 1979). As
was mentioned above, initial work at Edinburgh sought
to relate this method to engineering AI planning do-
mains. Over time, the method has evolved and CORE
now provides techniques for requirements capture, ana-
lysis and speci�cation (Curwen 1991). The method can
be used to partition problems into manageable modules
which can be assessed using CORE analytical tech-
niques. This helps to ensure that the requirements for a
speci�cation are complete and consistent. Some of the
strengths of this methodology include decomposability
of requirements and traceability mechanisms between
di�erent levels of requirements.

The CORE speci�cations are expressed in terms of
graphics, structured text and specialised notations.
These resultant requirements models start from op-
erational requirements which in
uence functional re-
quirements and, in turn, impact implementation re-
quirements (with non-functional requirements acting
as functional and implementation constraints). View-
points are used as logical partitionings of the system
under consideration. These are divided into bounding
viewpoints, which may be viewed from a planning
context as providers of unsupervised conditions and

de�ning viewpoints which are analogous to activit-
ies which can achieve conditions. Viewpoint decom-
positions correspond to node expansions. The CORE
notion of \scope" addresses choices between elements
which may be included in the domain, and breaks them
down into \local scopes" which designate responsibil-
ities for domain specialists.

An adaptation of the CORE methods can be used
to structure the activities of users acting in particular
roles throughout the engineering of a domain. For ex-
ample, a domain expert divides a domain into a series
of tasks to be completed by specialists. Domain spe-
cialists can list the assumptions they will be making
within their scope (e.g. for a supply chain domain these
assumptions may include: order validated, delivery no-
tice sent, etc.). Specialists can retrieve previous parts
of a domain speci�cation to modify. For each speci�c-
ation, a viewpoint decomposition process is applied to
it. This includes some model checking based on CORE
analysis techniques.

CORE provides specialised techniques for inspecting
the evolving speci�cation. One example is the \view-
point to viewpoint role-playing" technique. Using this
approach, structured documents are produced which
de�ne a particular perspective within the domain (e.g.
for a supply chain domain this may be between a re-
tailer and a distributor, or between a manufacturer
and a transportation company, etc.) Techniques such
as this one aid in combining the viewpoints by showing
where con
icting requirements are present.

TF Method

In addition to this input from CORE, we have also
drawn on initial work aimed at pulling together the
experience gained in coding speci�c domains in the
Task Formalism domain description language. This
input comes from a section on \guidelines for writing
TF" which is part of the TF manual (Tate, Drabble, &
Dalton 1994). This section provides advice on the use
of various TF forms and elements, which can be seen
as a contribution toward a methodology which would
structure the domain design activities.

This advice is rooted in a project management
perspective which describes the need for preparatory
steps and uses role identi�cation prior to engaging in
the development-oriented activities. The central con-
trolling role was identi�ed as the Domain Expert
who is in charge of managing the scope of the domain
and introducing a \top level" description (e.g. in a sup-
ply chain domain this person might be a consultant
with overall responsibilities for coordinating the busi-
ness processes). For large domain engineering e�orts,
a partitioning of the domain development responsib-

ilities was recommended. These modular sections of
the domain were viewed as \detailed" aspects of the
top level descriptions which were provided by the do-
main expert. Domain Specialists would then be as-
signed to particular domain partitions and would have
responsibility for providing speci�cations of activities,
objects (resources), events and e�ects which were rel-
evant to their particular needs. The specialists may be
subject matter experts (e.g. in a supply chain domain
this might represent a distributor, or manufacturer,
etc.). More likely, the domain expert and specialists
may be knowledge engineers who have performed the
required knowledge elicitation and acquisition activit-
ies from those with knowledge of the domain.
The guidelines also point toward necessary project

management decisions such as the choice between one
of two \main approaches" toward modelling a domain:
hierarchical action expansion or goal achievement (con-
ditions on world states). While these approaches can
be mixed in the speci�cation of the domain, experi-
ence had shown that it is useful, if not important, to
specify what the main approach will be for a particu-
lar domain development process and to treat the other
approach as secondary to it.
Another important management decision considers

the selection of a method for structuring the domain
speci�cations. A level-oriented approach to domain
modelling is proposed in this work whereby actions,
events, e�ects, and resources are all separated into
a series of de�ned and increasingly detailed levels.
This helps to avoid the commonly experienced problem
of \hierarchical promiscuity" (Wilkins 1988) or \level
promiscuity" which is characterised by the inconsistent
usage of various domain elements at varying areas in
the overall domain description.
This level-oriented approach is further detailed via

a checklist of activities which may suit either the ac-
tion expansion approach or the goal achievement ap-
proach, depending on the ordering of the de�ned activ-
ities. This checklist includes the following activities:

� Identify the main actions (and events) that will ap-
pear at the top of a task or plan.

� Develop the detailed actions (and events) for lower
action levels.

� Think about what world statements will be needed
(e�ects) at which levels.

� Consider the conditions for actions. Ensure they are
introduced at a level which is at or below the level
at which the related e�ects are introduced.

� Add type information to restrict usage of conditions.
Types are primarily used to di�erentiate what a con-

Development
Detailed Domain

Requirements
Analysis

Detailed Domain
Specification

Initial Domain
Specification

Common
Process Editor

AI
Planning System

Process
Synthesis

Mixed-Initative
Generation

Automated
Generation

Process
Management

Target
Language

Common
Domain Editor

Common
Process Methodology

PhaseTools and Methods Work Products

supports

input/output

ordering

Figure 1: CPF Phases and Tools

dition means. This will lead to di�erences in which
condition satisfaction methods apply.

� Add resources at each level.

� Consider time restrictions and related information.

This initial collection of heuristics and guidelines,
combined with the CORE methods and structure
provided the initial input toward the development of
the Common Process Methodology. We envisage this
methodology as playing a role within a de�ned frame-
work for managing and using rich plan representations.
The following section describes the function of CPM
within a general Common Process Framework.

Fitting into a Framework

The Common Process Framework (CPF) encompasses
a life-cycle of activities from the initial requirements
speci�cation of a domain model through the re�ne-
ment of that model for input in generative domain in-
dependent AI planning and �nally to the subsequent
uses of the newly synthesised processes or plans. Com-
petence, as well as good tools, is necessary to carry this
process out. A framework such as this should o�er a
method which guides the required development activ-
ities. Users need to know what tasks they have to per-
form and with whom they are to cooperate: for each
step, information must be available about what input
will be needed, and what output will be required, what
is to be done and how it can be done well.

As Figure 1 shows, the Common Process Methodo-
logy addresses the initial phase involving requirements
analysis. The activities and work products generated
in this phase are all geared toward the development
of an initial domain speci�cation. Then, within the
CPF, this speci�cation is passed along to a more de-
tailed domain development phase. At the end of the
detailed phase, the �nal domain model is translated
into an operational target language (e.g. Task Form-
alism) for input to an AI planner or for other applied
uses within process management tools, process evalu-
ation tools, etc.

Common Process Methodology

The development of the Common Process Methodo-
logy was based on a number of current assumptions
and perceived problems with utilising AI planning
technology in large organisational settings. Some of
the more important issues include

� Plan domain development projects can involve a siz-
able number of people (expert, specialists, know-
ledge engineers) who will have to cooperate in an
e�cient manner.

� Similar to a software system, a plan domain can-
not be viewed or touched and is much more abstract
than corresponding components in other types of en-
gineering (e.g. in the building industry it is usually
possible to \see" how the component parts �t to-
gether.). In building a plan domain it can be very

di�cult to understand how the di�erent parts of a
domain are structured.

� The application of AI planning is a very young
branch of industry. In order to succeed, it will be
necessary to view it as an engineering discipline with
industrial techniques.

� Plan domain development can be a very complex
task involving very many signi�cant details.

These problems and assumptions are similar to those
facing software engineers in developing software sys-
tems. This was realized at least as far back as the pre-
viously cited work on exploring the links to the CORE
methodology. The methods and techniques utilised in
providing a more disciplined approach to producing
system speci�cations appear to o�er support for do-
main development as well. This research represents a
step forward in validating this opinion and in extract-
ing these methods for use in engineering process and
plan domains.

Aim of CPM

CPM's aim is to partition the domain into manage-
able modules that can be analysed using rule-based
and human-supported interaction techniques. This is
strongly based on the way CORE partitions a soft-
ware system design. As in CORE, the intermediate
speci�cations will be expressed in terms of graphics,
structured text, and specialised notations. The fo-
cus is on decomposing requirements into further detail
and providing traceability mechanisms between di�er-
ent levels of requirements.
Some of the essential attributes of CPM require-

ments include:

Modularity The speci�cation of a domain can be-
come increasingly complex and it is important to
break it down into modules which will enable it to
be analysed. This will also assist domain special-
ists and experts in assessing the impact of various
modi�cations to the speci�cation.

Hierarchical Many AI planners support a HTN-style
(Sacerdoti 1975; Tate 1977; Erol 1995) of domain ab-
straction. This should be supported in the speci�c-
ation. Structured levels of increasing detail in the
speci�cation also make it easier to understand.

High Quality High quality is meant to indicate the
aim toward a balanced set of competing properties
which include requirements which are: unambigu-
ous; consistent; complete and visible. Visibility in
this context means easily accessible and readable for
any speci�cation user.

Viewpoint
Generation

Functional/NonFunc.
Viewpoint Partitioning

Bounding/Defining
Viewpoint Partitioning

Functional
Viewpoint Structuring

Viewpoint
Structure Diagram

Viewpoint
Bubble Diagram

Viewpoint
Decomposition

Information
Gathering

Viewpoint
Analysis

Systems
Analysis

Operational
Analysis

Constraint
Analysis

*

K
no

w
le

dg
e

A
cq

ui
si

tio
n

Isolated
Thread Diagram

Combined
Thread Diagram

Operational
Diagram

Tabular Entry
Diagram

Diagram
Data Comp.

Work ProductsActivities

ordering
input/output
modifies

Figure 2: Common Process Methodology Steps

Veri�able Requirements need to be in a form such
that they can be veri�ed for consistency and com-
pleteness.

Main Activities

CPM is composed of various structured activities
which are illustrated in Figure 2. To reiterate from
above, the goal of these activities is to elicit and parti-
tion the domain knowledge and to incrementally move
toward an initial domain speci�cation. In this section,
we review each of these steps and discuss the work
products produced at each stage.

Viewpoint Generation

The �rst step in CPM is viewpoint generation. CPM
draws on the CORE notion of viewpoints1. In the

1Research on viewpoints is ubiquitous in the require-
ments engineering �eld, cf. (Finkelstein et al. 1994;

subsequent steps, the methodology will provide guid-
ance on how to modularise a domain into a hierarchical
structure through the use of these abstract viewpoints.
Viewpoints have been de�ned in CORE as

\A viewpoint is a logical partitioning of the system
under consideration." (Curwen 1991)

Viewpoints can be used to examine the domain in
a variety of ways which enables the domain analyst
to focus and capture information relevant to a spe-
ci�c perspective. In this way, viewpoints play the role
of breaking the domain down into a number of mod-
ules. In viewpoint generation, the domain expert along
with the various specialists conduct a session in which
potential viewpoints are listed. This is similar to the
\brainstorming session" suggested in the scoping phase
of the ontology capture process described in (Uschold
& Gruninger 1996).

As suggested in Figure 2, this process is centred
around the development of a Viewpoint Bubble Dia-
gram (VBD). Each candidate viewpoint is simply
drawn as another bubble on a diagram space. This
type of initial knowledge acquisition task is typic-
ally found in most KBS-based methodologies (cf. the
data conceptualization stage in KEATS (Motta et al.
1991)). Viewpoints may be proposed and rejected as
an exploration of possible entities yields more know-
ledge about the scope of the domain. For example, the
diagram in Figure 3 is a simpli�ed version of a diagram
generated for a supply chain scenario (Polyak 1998) us-
ing the CPM toolset which is described in the section
labelled \Tool Support" on page . This scenario will be
used throughout this document to illustrate the
ow of
the CPM activities.

In addition to the input from experts and specialists,
there may also be additional sources of information for
generating domain viewpoints. The collection of this
knowledge is re
ected in Figure 2 as part of the on-
going knowledge acquisition activity which is enacted
throughout the CPM process. These sources may in-
clude

� Existing documentation about the domain (struc-
tured or unstructured).

� Existing organisational policies and procedures
which in
uence the domain.

� Documentation or knowledge of other domains
which are similar or which re
ect \best practice"
processes (cf. (Malone et al. 1993)).

Kotonya & Somerville 1996; Easterbrook & Nuseibeh 1996)

Figure 3: Initial Viewpoint Bubble Diagram produced
in Viewpoint Generation

Functional/Non-functional Viewpoint Parti-
tioning The next step in applying CPM to the engin-
eering of a process domain is to perform an initial par-
titioning of the proposed viewpoints into those which
are functional and those which are non-functional. De-
pending on the complexity of the domain and number
of viewpoints generated, this may be performed im-
mediately after the initial generation phase or over a
series of subsequent sessions. In order to determine
which type a particular viewpoint may be, the follow-
ing de�nitions have been adapted from CORE:

Functional Viewpoint A logical partitioning of the
domain under consideration into modules that are
transformers of information.

Non-Functional Viewpoint A group of require-
ments that modify or constrain the functional re-
quirements of the domain.

The \transformers of information" part of the func-
tional viewpoint de�nition is very important. Func-
tional viewpoints typically input data, transform it,
and output the results. If a viewpoint cannot be char-
acterised in this way, then it will be considered to
be a non-functional viewpoint. Non-functional view-
points constrain requirements. These constraints may
be domain-wide or may only a�ect part of the speci�c-
ation.
For example, working with the VBD in Figure 3 we

can identify two probable non-functional viewpoints:
Delivery Cost and Dock Availability. Both of these

items re
ect constraints on the possible functional as-
pects of the domain. The remaining viewpoints appear
to be functional, i.e. transformers of information in the
domain. As in CORE, CPM considers \function" to
be the driving, master set of requirements. The identi-
�ed non-functional requirements will be subsequently
expressed either in structured text or in a specialised
notation, whereas the functional requirements will play
a central role over the next steps in the development
process.

Bounding/De�ning Viewpoint Partitioning

In this phase, the functional viewpoints are examined
in more detail to derive another partitioning of this
subset of proposed domain elements. We will consider
these viewpoints to be one of two types: bounding or
de�ning. The following de�nitions can be used to de-
termine the type.

Bounding Viewpoint A bounding viewpoint is a
functional viewpoint which represents an outermost
point or bounding edge in a domain. A bound-
ing viewpoint is therefore used to generate a view
of how the domain looks from a particular, �xed
outer vantage point. Bounding viewpoints are non-
decomposable.

De�ning Viewpoint A de�ning viewpoint repres-
ents part or all of a segment of the domain being ex-
plored and is therefore used to describe how the do-
main functions internally. De�ning viewpoints may
be decomposed.

As an example, in our supply chain domain example
we can identify the following items as being \bounding
viewpoints"

� Retailer

� Customer

� Warehousing

� Documentation Dept.

� Accounting Dept.

� Distributor

� Transportation

Looking at these items, we can see that we have
omitted another important, high-level bounding view-
point which should be within the scope of this do-
main: the Manufacturer. While we may uncover
more bounding viewpoints as we continue to re�ne our
knowledge of the domain, we are interested in trying

to provide a relatively complete set of top level per-
spectives.

Turning our attention now to the de�ning view-
points, we can identify several general viewpoints
which can be used to further subgroup these ele-
ments. Sometimes these general viewpoints are already
present in the generated set. Alternatively, we may
need to add new generalisations to group related view-
points. Figure 4 shows our results from applying this
method to the functional set in Figure 3.

Figure 4: VBD After Partitioning Phases

Most of these general grouping viewpoints have been
added to provide structure and to associate related
de�ned viewpoints. Note that some of the originally
identi�ed viewpoints were appropriate in more than
one generalised viewpoint. For example, receiving or-
ders and shipping are common to di�erent supplier per-
spectives. \Replenish inventory" is an example of an
existing viewpoint which turned out to be a grouping
of other de�ned viewpoints.

Functional Viewpoint Structuring

In this stage of engineering the process domain, we
have a Viewpoint Bubble Diagram as input which was
produced and re�ned during the prior steps. The next
task is to convert this VBD into a Viewpoint Structure
Diagram (VSD). The VSD will provide the framework
to capture and analyse the detailed requirements for
the domain. This structure consists of nodes which
represent viewpoints linked in a hierarchy of detail
with increasing detail towards the bottom of the dia-
gram and decreasing detail toward the top. The top
level node created simply represents the entire scope
of the domain (e.g. \Supply Chain Domain"). Bound-
ing viewpoints are then arranged with respect to their
relevant levels alongside de�ning viewpoints. In CPM
as in CORE, a general guideline is that no more than
�ve functional viewpoints should be chosen for each
decomposition of the structure.

The converted VSD for the supply chain scenario
is shown in appendix A. The top level node, \Supply
Chain Domain" is decomposed into three main de�ned
viewpoints: replenish inventory, processing a distribu-
tion order, and processing a manufacturing order. The
domain is considered to be bounded at a top level by
a customer and an environment viewpoint. An envir-
onment viewpoint is particularly useful in relating the
domain processes to external (i.e. unmodelled) in
u-
ences. The additional grouping viewpoints identi�ed
in the VBD were considered to be logically part of
one of these top three perspectives. For example, the
warehousing and transportation aspects are in fact, a
subset of an overall manufacturing viewpoint for this
particular domain. It should be noted that there is
no single \right way" of decomposing a domain. The
important aspect is that the viewpoint structure ad-
dresses the whole of the domain and agrees with the
perspectives gained during knowledge acquisition.

In the next series of steps, CPM provides methods
for decomposing viewpoints structured in the VSD.
The aim of this phase is to incrementally build a spe-
ci�cation at each branch of each level in the hierarchy.
These speci�cations are analysed and then �nally com-
bined to produce a uniform domain speci�cation. This
process involves the creation of Tabular Entry Dia-
grams (TED) which de�ne the interfaces for the various
viewpoints. From a given TED, we will derive a series
of isolated threads of activity. These isolated threads
will then be combined to unite
ows between view-
points. An operational analysis phase will bring all of
these combined threads together to outline the overall
structure of the processes. A �nal phase will add in
the remaining constraints required for the domain.

Information Gathering

In this �rst phase of decomposing viewpoints, we will
create a Tabular Entry Diagram (TED) for each func-
tional viewpoint in our VSD. A functional viewpoint
is used as a mechanism for focusing the specialist or
expert's attention on a small area of the domain. A
newly created TED must be assigned: a unique refer-
ence, a title, a reference to its parent. Next, a series
of 5 columns are provided which can be used to record
information relevant to the viewpoint. These items are

Actions Something that transforms information.
Question to ask: What action does the viewpoint
provide?

Inputs Information about the world that is required
by an action. Question to ask: For each action, what
are it's inputs?

Outputs Information about the world which is pro-
duced by an action. Question to ask: For each ac-
tion, what are it's outputs?

Source The corresponding Tabular Entry Diagram
which provides an input. Question to ask: For each
input, do I know a speci�c source for the informa-
tion?

Destination The corresponding Tabular Entry Dia-
gram which provides an output. Question to ask:
For each output, do I know the destination of the
information?

As mentioned above, the focus of a TED is to eli-
cit the \interface activities" for a particular view-
point. These interface activities expose functional-
ity which may interoperate with other activities in
another viewpoint. A given viewpoint may o�er al-
ternative activities which can require similar inputs
or similar outputs. For example, \transport products
via truck" and \transport products via plane" both
provide the similar output of transforming the loca-
tion of the products. Node notes may be attached
to any of the above items to provide details which
help to clarify the interpretation of the item. The
numbering of these diagrams is based on the IDEF3
(Mayer et al. 1992) style of process numbering: Par-
ent.Decomposition Number.Unique ID.
It is important to note here that the source and des-

tination columns are not required. This is a major step
away from CORE and is an important observation used
in CPM. One of CORE's assertions is that the spe-
ci�cation should eventually be entirely statically con-
nected (i.e. all inputs and outputs map to a speci�c
set of sources and destinations). Lessons learned from

representations used in AI planning suggest that these
links should be \dynamic". This permits users to build
\generic" viewpoints which may be utilized in a vari-
ous parts of the speci�cation. The source and des-
tination columns can still be used to model \known"
links between speci�c viewpoints, but do not re
ect a
limiting set of such possibilities.
This particular representation enables a domain spe-

cialist, or domain expert to perform one of two pos-
sible techniques in capturing these interface activit-
ies. These techniques are characterised by role-playing.
They include

Viewpoint-to-Viewpoint Role-Playing (VVRP)
In VVRP, the analyst assumes the viewpoint of the
particular TED and then selects another viewpoint
at the same level. The analyst then considers the
possible exchanges which may take place between
the two viewpoints for the domain. For example, if
the TED is \Customer" and the target viewpoint is
the \Replenish Inventory" process which is enacted
at a retail store, the analyst may reason that the
Customer will provide an \order-goods" activity
which will output \selected-goods" that is required
for \Replenish Inventory". Likewise, the analyst
may conclude that from a customer's viewpoint, an
activity should be provided called \receive-goods"
which will take \retail-goods" as output.

Isolated Viewpoint Role-Playing (IVRP) IVRP
is similar to VVRP, but this is a less constraining
activity. Again, the analyst assumes a viewpoint
for a particular TED, but then simply hypothesises
what activities will be provided and what inputs
and outputs will be present.

Individual domain specialists may be tasked in par-
allel with developing an IVRP for their scope in the
domain. These diagrams then serve as focal points for
discussions aimed at understanding the assumptions
being made and for ameliorating the di�erences. In
practice, VVRP and IVRP can be used in combina-
tion where necessary.
Another aspect of this phase involves support for

analysing the data (i.e. inputs and outputs) which are
speci�ed in the diagrams. Separate Data Composition
Diagrams can be attached to individual data entries.
The graphical notation for this can be traced back to
(Jackson 1975). Figure 5 illustrates an example of a
simpli�ed retail sales order from the supply chain do-
main. The data item box labeled \Item List" has an
asterisk to indicate that there may be more than one
item line per order. The \Total Cost" item is further
speci�ed to either be expressed in UK pounds or US
dollars. The mutually exclusive symbol (0) is used to

Figure 5: Data Composition Diagram

indicate this situation. As an alternative to the the
graphical notation, a specialised notation (which was
originally developed in (DeMarco 1978)) may be used
to express the same relationships more compactly2:

Retail-Sales-Order =

{Order Number!+

[Total-Cost-Pounds/Total-Cost-Dollars]+

Customer-Number+ Sale-Date+ Sale-Time+

1{Quantity+ Cost-Per-Unit+

Product-Number+ Line-Item-Cost}250}

Viewpoint Analysis

The next stage in the viewpoint decomposition phase
involves viewpoint analysis. Viewpoint analysis is con-
cerned with analysing each action of each viewpoint in
isolation from one another. The main goal of this ana-
lysis is to determine: what starts a viewpoint action?
and what stops a viewpoint action?. This is done by
creating separate, isolated threads for each action and
classifying each data input as being either: event data,
control data, or data containing information. The fol-
lowing de�nitions are used to make these decisions.

Event Data When the data is generated the receiv-
ing action must occur, i.e. event data is a trigger
which starts actions. Event data has no value, the
data is either there or it is not there.

Control Data When the data generated is used to
select the operation of di�erent actions. These ac-
tions will be mutually exclusive. The selection may
be based on the state of the control data or on limits
of the value of the data.
2See Appendix C for a summary of this notation

Data Containing Information When the data gen-
erated contains information which is required to be
used by an action.

We also need to consider whether the data is crit-
ical or non-critical. Critical data is characterised by
data which once generated must eventually be used
and used only once, i.e. it is consumed when read and
is not overwritten. Non-critical data on the other hand
is volatile and can be overwritten. This gives rise to
the following possible reasons why each isolated thread
action starts:

� time (which may also involve iteration)

� event data

� critical control data

� critical data containing information

� a missing critical data input

The analysis will also determine the reason why each
isolated thread action stops

� if it is started by time then it could only occur a
speci�c number of times or over a range

� if it is started by time then it could be stopped by
non-critical control data (e.g. enable/disable)

� if it is started by time then it could be stopped after
an internal condition changes

� if it is started by critical input then it is a \one shot
action"

The result of this stage is a set of isolated threads
for each viewpoint. These threads provide a basic set
of building blocks which can be used to create \com-
bined threads". A combined thread can be thought
of as an operator (in traditional STRIPS-style plan-
ning), schema (in Task Formalism) or a plot (in SIPE-2
(Wilkins 1988; Myers & Wilkins 1997)).

Systems Analysis

The analysis completed so far has been concerned with
the modularisation of the requirements by using view-
points. For each viewpoint, actions have been analysed
in isolation from each other further modularising the
requirement. Systems analysis is the process in which
the sequence and concurrency between actions at a
given level is next determined. This requires a weaving
of separate threads developed across viewpoints into a
collection of combined thread diagrams. Each diagram
represents a composite process, built from the basic

isolated threads, which will be available for synthesing
new \models of work".

In Figure 6, we can see how a sampling of the isol-
ated threads within the customer, replenish invent-
ory, and retailer viewpoints (at the top) were com-
bined to form the combined threads (at the bottom)
which represent composite supply chain domain pro-
cesses. The dashed lines represent critical data con-
taining information (e.g. Selected-Goods) or critical
event data (e.g. Request). The solid lines represent
non-critical data containing information (e.g. Retail-
Order-Details). The means of evaluating the relation-
ships is to examine the nature (critical/non-critical)
of the data crossing viewpoint boundaries. From the
de�nition of critical data, it can be seen that an action
produces critical data which then triggers the receiving
action. This means that actions linked by critical data
must occur in a sequence as the receiving action can
only occur after the producing action.

The way non-critical data has been de�ned states
that the generating action periodically produces new
data that overwrites the previously determined value,
the receiving action using the latest value available.
In this case, the relationship between the producing
and receiving actions is a concurrent one because the
producing action does not have to occur before the
receiving action. Thus, critical and non-critical data
can be used as one means of detecting sequence and
concurrency between the isolated threads of di�erent
viewpoints.

Operational Analysis

In systems analysis we produced a number of combined
threads which show the required sequences (schemas)
in the domain. Operational analysis is concerned with
bringing all these separate combined threads together
onto one diagram { the operational diagram.

The operational diagram represents sketches of po-
tential life-cycles for high level processes. These high
level processes may be considered to be \task schemas"
in the Task Formalism. For example, in manufactur-
ing, we may have a high-level \build product GT-350"
(Polyak & Aitken 1998) or in supply chain manage-
ment we may have a \enact supply chain" process.
The life-cycle is constructed by identifying the major
events that occur within the domain for that high level
task. In the manufacturing domain example (where
the product GT-350 is a model car), this may include:
making the interior, building the drive, adding the
trim, making the engine, and a�xing the drive.

The completed operational diagram, therefore,
provides a total picture of how the domain will be lo-
gically con�gured for addressing a task. While building

Order-Goods Receive-Order

Provide-Details Gather-Order-Details

Detect-ConditionCheck-Order-Details

Retail-Order
Details

Order
Retail-Sales

Request

Request

Selected-Goods

Customer Replenish Inventory Retailer

Isolated Threads

Check-Order-Details

Detect-Condition

Order
Retail-Sales

Order-Goods

Receive-Order

Provide-Details
Retail-Order
Details

Gather-Order-
Details

Selected-Goods

Request

Combined Threads

Figure 6: Creation of Combined Threads from Isolated Threads

up this complete picture, a �nal check should be made
to ensure that no actions which are required over the
life-cycle are omitted. The resulting operational dia-
gram e�ectively provides an index to the detail of the
domain which is shown on the combined threads.

Constraints Analysis

The �nal technique in CPM takes us back to the non-
functional requirements which we elicited back in the
initial viewpoint generation phase. As mentioned pre-
viously, these non-functional requirements will intro-
duce a modifying or constraining in
uence on the func-
tional requirements developed above. They may in-
volve adding new functionality or new
ows to the com-
bined thread or operational diagrams. These may also
be expressed via detailed node notes as well.

To some degree, this sharp division between func-
tional and non-functional domain requirement consid-
erations is an idealisation. In practice, several con-
straining in
uences will have crept into the earlier ana-
lysis stages. However, this separate stage serves as a
reminder to go back and consider those unaddressed
aspects and to formally complete the work on the ini-
tial speci�cation.

Tool Support

The Common Process Methodology is supported by
the CPM toolset. The toolset is a customisation of

the HARDY3 hypertext diagramming meta-case-tool
which was developed at the Arti�cial Intelligence Ap-
plications Institute (AIAI). The toolset runs on UNIX
X Windows (Solaris 1.x or 2.x.) as well as Microsoft
Windows (3.x, 95/98, NT).
The specialised diagram types (VBD, VSD, TED,

etc.) have been encoded in HARDY in order to provide
window-speci�c pallets and presentations. The pallets
display the available diagram options (i.e. various node
and arc types) from which a user selects. Arcs are con-
strained to only allow connections between appropriate
nodes (e.g. an I-A arc on a TED can only relate inputs
and actions, etc.). The support for hypertext linking
and retrieval in the CPM toolset enables e�cient, in-
tuitive browsing between the various diagrams.
Besides the Human-Computer Interface bene�ts

provided for creating and managing the work products,
the CPM toolset also contains an embedded expert sys-
tem shell for rule-based processing and analysis of the
diagram contents. This is made possible by HARDY's
built in link to NASA's rule-based and object-oriented
language CLIPS 6.0 (Giarratano 1994). CLIPS close
link with HARDY is utilised for preformatting newly
created diagrams, analysing diagrams for completeness
and consistency and exporting the initial speci�cation
for use within the Common Process Framework4.

3See http://www.aiai.ed.ac.uk/project/ for information
on the HARDY project at AIAI.

4The mapping of the CPM speci�cation onto the Com-

Currently, the only implemented completeness and
consistency checks we have encoded in CLIPS have
to do with those described in CORE for the Tabu-
lar Entry Diagrams. These checks aid in detecting
and correcting con
icts between di�erent parts of the
domain description. In the following section, we will
present the basic language and axiomatisation which
underlies the implemented CLIPS rules and represent-
ation of the diagram constructs.

Basic Language and Axioms for Tabular
Entry Diagrams

In this section we summarise a simple axiomatisation
of the tabular entry diagrams described earlier. We
have sorts A, I, O, S, D for actions, inputs, outputs,
sources, and destinations which may be entered on a
Tabular Entry Diagram, T . Variables are denoted by
lower case letters (with or without subscripts), and
constants are denoted by upper case letters (with or
without subscripts). Unless otherwise stated, letters
a, i, o, s, d, t (A, I, O, S, D, T) and used for variables
(constants) of sorts A, I, O, S, D, T respectively.
Firstly, we have the simple association that all ob-

jects of typeA, I, O, S, D are required to be associated
with only one T. So, we will repackage these all with
appropriate 2-place predicates:

(8a)(9t):action(t; a) (1)

(8i)(9t):input(t; i) (2)

(8o)(9t):output(t; o) (3)

(8s)(9t):source(t; s) (4)

(8d)(9t):destination(t; d) (5)

Thus, a given tabular entry diagram, T, con-
tains a tuple of sets < fA0,A1,:::Ang, fI0,I1,:::Ing,
fO0,O1,:::Ong,fS0,S1,:::Sng,fD0,D1,:::Dng >. Next
we have the following relations which may be used to
associate the objects within a particular T:

(8a; t; i):has� input(t; a; i) �

action(t; a) ^ input(t; i) (6)

(8a; t; o):has� output(t; a; o) �

action(t; a) ^ output(t; o) (7)

(8i; t; s):has� source(t; i; s) �

input(t; i) ^ source(t; s) (8)

(8o; t; s):has� destination(t; o; d) �

output(t; o) ^ destination(t; d) (9)

mon Process Language (CPL) will be presented in a future
paper.

In addition, a T is required to have one and only one
parent, Tparent. This hierarchy of parents ultimately
stems from the top level node anchoring the VSD.

(8t)(9t1)):has� parent(t; t1) ^

:((9t2):has� parent(t; t2) ^ t1 6= t2) (10)

From this hierarchy of parent relations we can infer
a standard, transitive ancestor � of � T � T rela-
tion which will be used in establishing the traceability
of data interface de�nitions between modelled levels.
This is inferred by the rules:

(8t1; t2):has� parent(t1; t2) �

ancestor � of(t2; t1) (11)

(8t1; t2; t3):has� parent(t1; t2)^

has� parent(t2; t3) �

ancestor � of(t3; t1) (12)

TED Speci�cation Analysis

Given this representation, the following checks are
made for the entire set of tabular entry diagrams.
These checks can be considered to be of two types.
Those checks which involve speci�cation constructs
within a single viewpoint and those which involve con-
structs which span viewpoints.

Within viewpoints Within viewpoints, the follow-
ing checks can be made in order to determine whether
the requirements for that viewpoint diagram are con-
sistent and complete.

Rule 1 All inputs have a possible source (either stat-
ically assigned or dynamically determined)

(8t; i):input(t; i) �

((9s):has� source(t; i; s) ^ source(t; s))

_

((9t1):output(t1; o) ^ i = o) (13)

Rule 2 All outputs have a possible destination (either
statically assigned or dynamically determined)

(8t; o):output(t; o) �

((9d):has � destination(t; d; s) ^

destination(t; d))

_

((9t1):input(t1; i) ^ o = i) (14)

Rule 3 All actions have at least one input or one out-
put.

(8t; a):action(t; a) �

(((9i):has� input(t; a; i) ^ input(t; i)) _

((9o):has� output(t; a; o) ^ output(t; o))) (15)

Rule 4 All items are correctly connected by lines.

See axioms 6 through 9.

Across Viewpoints Across viewpoints, the follow-
ing checks can be made in order to determine whether
the requirements for the entire set of viewpoint dia-
grams are consistent and complete.

Rule 5 All inputs must appear as outputs on the
given sources. This source must also agree that this
data is either being passed directly to the T or to an
ancestor of the T.

(8t1; i; s):input(t1; i) ^ has� source(t1; i; s) �

(9t2; o; d):t2 = s ^ output(t2; o) ^ i = o ^

has� destination(t2; o; d) ^

((d = t1) _ (ancestor � of(d; t1))) (16)

Rule 6 All outputs must appear as inputs on the
given destinations. This destination must also agree
that this data is either being passed directly from
the T or from an ancestor of the T.

(8t1; o; d):output(t1; o) ^

has� destination(t1; o; d) �

(9t2; i; s):t2 = d ^ input(t2; i) ^ o = i ^

has� source(t2; i; s) ^

((s = t1) _ (ancestor � of(s; t1))) (17)

At any point during the viewpoint decomposition
phase, a CPM toolset user may run the consistency
checks given the representation and rules described
above. Errors in the speci�cation are presented to the
user which include the type of error and the diagram(s)
on which they occur. An example of this output is
shown in Figure 7.

Related Work5

There has been a gradual move within AI planning re-
search toward a more disciplined, rigorous approach to

5Some parts of this review were contributed by Peter
Jarvis, Arti�cial Intelligence Applications Institute (AIAI)
which appeared in a joint paper (Tate, Polyak, & Jarvis
1998).

Figure 7: CPM Toolset Reported Errors

applied knowledge engineering. Work on knowledge-
level analyses of planning systems (Valente 1995; Cot-
tam et al. 1995; Barros, Valente, & Benjamins 1996;
Kingston, Shadbolt, & Tate 1996) have provided re-
searchers with more insight into the type of know-
ledge required and manipulated by AI planners. Re-
cently, a mini-issue of the International Journal of
Human-Computer Studies presented a sampling of
these works (Benjamins & Shadbolt 1998). Continu-
ing examples of this engineering trend were presen-
ted at a workshop held at the biannual Arti�cial In-
telligence Planning Systems 1998 (AIPS '98) confer-
ence. The \Knowledge Engineering and Acquisition
for Planning: Bridging Theory and Practice" workshop
featured cross-discipline research taken from software
engineering, knowledge acquisition, design rationale,
object-oriented analysis, and machine learning com-
munities (Nunes de Barros et al. 1998).

Each of these approaches seeks to address the di�-
culties encountered in various ways. As expected there
are bene�ts and tradeo�s to be considered. For ex-
ample, in one application of machine learning (Wang
1996) the researchers take a set of example plans de-
scribed in terms of the actions in each plan and the
state of the world before and after each action. The
system then examines these examples and generates
preconditions and e�ects of operator descriptions. The
technique assumes that the user can provide example
plans described in terms of the state of the world before
and after each action. Unfortunately, it provides no as-
sistance for the construction of these example plans. In
addition, the technique is only applicable to STRIPS
style planning not HTN.

Similar to CPM, another example is aimed at provid-
ing domain analysis techniques and tools (Chien 1996).
This work describes two types of software engineering
tools for planning knowledge base development: static
KB analysis techniques to detect certain classes of syn-

tactic errors and completion analysis techniques to it-
eratively debug the planning knowledge base. The tool
set supports typical user questions when investigating
these types of error. One problem with this approach
though is that can only be e�ectively used after a signi-
�cant portion of a domain description has been elicited.
It doesn't directly address how this initial description
is to be constructed.

Other interesting possibilities are related to adapta-
tions from object-oriented analysis work. For example,
in an object-centred speci�cation approach (McClus-
key & Porteous 1997), the authors seek to provide
support for constructing planning domain descriptions
by adapting methodological steps and notations of the
object-oriented community. This approach utilises the
notion of \lifting" domain representation from the level
of the literal to the level of the object. Once a do-
main has been described in terms of a state transition
graph, the author's algorithms compile the diagram
into a STRIPS style action representation. There are
also a few issues here as well. This work assumes that
a domain can be described as a state transition graph
(STG). Current work is ongoing to extend this to in-
clude techniques which use hierarchies of STGs (Mc-
Cluskey & Kitchin 1998).

A number of other important contributions from AI
planning, Requirements and Software Engineering, and
KBS communities may o�er possibly complementary
ideas. The construction of models for a problem do-
main has been recognized by the KBS community as an
important component in the overall task of knowledge
acquisition for expert systems relative to some speci�c
problem-solving framework (Davis & Bonnell 1991).
These works include architectures, such as the EX-
PECT knowledge acquisition architecture (Swartout &
Gil 1996) which dynamically forms expectations about
the knowledge that needs to be acquired by the sys-
tem and then uses these expectations to interactively
guide the user through the knowledge acquisition pro-
cess. Earlier we also mentioned the KEATS (Motta et
al. 1991) toolset which can be seen as a precursor to
the VITAL workbench which aims to provide method-
ological and software support for developing large, em-
bedded KBS applications (Domingue, Motta, & Watt
1993).

There are are also specialised techniques, for ex-
ample: knowledge acquisition on the
y (i.e. during
planning) (desJardins 1996)6; adapting generic \design
patterns" for specialising planners (Yang, Fong, & Kim

6Both Nonlin (Tate 1977) and its predecessor, Interplan,
also allowed a user to type in missing parts of the domain
model when the planner detected that no TF schema was
present to address its current needs

1998); using object abstraction (Chang, Kannan, &
Wong 1991); various computer-supported strategies for
addressing con
icts in domain speci�cations (Easter-
brook 1991); incorporating risk management in spe-
ci�cations (Bustard, Greer, & Tate 1994); and tools
for editing operators and domain knowledge (e.g. Act
editor (Myers & Wilkins 1997), Operator editor (des-
Jardins 1996), Task Formalism Workstation (Tate &
Currie 1984; 1985), HARDY-based Task Formalism
Editor, etc.).

Conclusions

In this work, we sought to provide a more disciplined
approach to producing domain speci�cations which
would encompass requirements capture, analysis and
domain requirements engineering. The Common Pro-
cess Methodology has taken a step toward this goal. In
order to evaluate the success of this approach, we turn
to a set of compulsory guidelines which were produced
to evaluate a requirements engineering methodology
(Sommerville & Sawyer 1997). The following set of
guidelines were suggested by the authors as being ne-
cessary for any organisation engaging in requirements
engineering.

1. De�ne a standard document structure

CPM provides a standard document structure
for engineering domain speci�cations based on
the diagrams and notations derived from the
CORE methodology.

2. Make the document easy to change

The largely graphical nature of the document-
ation along with automated support from the
CPM toolset for managing and navigating the
documents make changes relatively easy to ex-
ecute.

3. Uniquely identify each requirement

Individual requirements can be traced to the
particular diagram in which some knowledge
about the domain was expressed, modi�ed or
constrained in some way. Greater tool support
should be added to provide search functional-
ity for related requirements over all the of dia-
grams. In addition, we may wish to separate
those requirements which came from experts or
specialists vs. those which were synthesized due
to other constraints.

4. De�ne policies for requirements management

CPM takes a hands-o� approach to this issue.
CPM and the corresponding toolset provide the
general methods and functionality for engineer-
ing the initial domain speci�cation, but defer
many of the policy decisions to an organisation's
particular implementation.

5. De�ne standard templates for requirements descrip-

tion

The CPM toolset provides the standard tem-
plates based on the appropriate CPM diagrams.

6. Use language simply, consistently and concisely

Again, the largely graphical nature of the doc-
umentation supports a simple and concise ex-
pression of the requirements. The toolset also
enforces a consistent expression throughout the
various phases of development.

7. Organise formal requirements inspections

CPM recommends these activities but assumes
that the structure and frequency of these de-
tailed activities are related to an individual or-
ganisation's requirements.

8. De�ne validation checklists

CPM encodes CLIPS-based expert system
checklists for validating speci�cation diagrams.

9. Use checklists for requirements analysis

The automated requirements analysis enacted
by CPM is directly based on CPM's internal
representation of the requirements and the
CLIPS-based checklists described above.

10. Plan for con
icts and con
ict resolution

Certain techniques such as VVRP and IVRP
along with the automated detection of such con-

icts provides support for focusing the discus-
sion on these issues outstanding in the domain
speci�cation.

Work will continue to explore the feasibility of this
methodology for building process domains. We hope to
o�er more automated support for the detailed aspects
of building and analysing the domain. We are encour-
aged by our initial results and we believe the bene�ts
of this approach will outweigh the overhead incurred
in creating the intermediate work products. This ap-
proach will hopefully continue in the trend toward a
more disciplined, robust transference of AI planning
to applied settings.

Acknowledgements

The author is sponsored by the Air Force O�ce of Sci-
enti�c Research, Air Force Materiel Command, USAF,
under grant number f49620-96-1-0348 { an AASERT
award monitored by Dr. Abe Waksman and associated
with the O-Plan project f30602-97-1-0022. The u.s.
Government is authorised to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright notation hereon. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing
o�cial policies or endorsements, either express or im-
plied, of darpa,afosr or the u.s. Government.
Thanks to Austin Tate and Peter Jarvis for review-

ing the paper and for their helpful comments and sug-
gestions.

References

Aarup, M.; Arentoft, M.; Parrod, Y.; Stader, J.;
Stokes, I.; and Vadon, H. 1994. OPTIMUM-AIV: A
knowledge based planning and scheduling system for
spacecraft AIV. In Fox, M., and Zweben, M., eds.,
Knowledge Based Scheduling. Morgan Kaufman.

Arentoft, M.; Parrod, Y.; Stader, J.; Stokes, I.; and
Vadon, H. 1991. OPTIMUM-AIV: A planning and
scheduling system for spacecraft AIV. Telematics and
Informatics 8(4):239{252.

Barros, L.; Valente, A.; and Benjamins, R. 1996.
Modeling planning tasks. In Proceedings of the
Third International Conference on Arti�cial Intelli-
gence Planning Systems (AIPS-96), 11{18. Edin-
burgh, Scotland: Morgan Kaufmann.

Benjamins, V., and Shadbolt, N. 1998. Preface:
Knowledge acquisition for planning. International
Journal of Human-Computer Studies 48(4):409{416.

Bustard, D.; Greer, D.; and Tate, G. 1994. Enhancing
the soft systems methodology with risk management
techniques. In Proceedings of the 2nd International
Conference on Software Quality Management, 145{
157.

Chang, A.; Kannan, P.; and Wong, B. 1991. Design
of an object-oriented system for manufacturing plan-
ning and control. In Proceedings of the Rensselar's
2nd International Conference on Computer Integrated
Manufacturing.

Chien, S. 1996. Static and completion analysis for
planning knowledge base development and veri�ca-
tion. In Drabble (1996), 53{61.

Cottam, H.; Shadbolt, N.; Kingston, J.; Beck, H.;
and Tate, A. 1995. Knowledge level planning in the

search and rescue domain. In Research and Devel-
opment in Expert Systems XII, proceedings of BCS
Expert Systems'95.

Currie, K., and Tate, A. 1991. O-Plan: The open
planning architecture. Arti�cial Intelligence 52:49{
86.

Curwen, P. 1991. System development us-
ing the CORE method. Military Aircraft Ltd.
BAe/WIT/ML/GEN/SWE/1227, British Aerospace,
PLC, Warton Aerodrome, Preston, UK.

Davis, J., and Bonnell, R. 1991. A framework for con-
structing visual knowledge speci�cations in acquir-
ing organizational knowledge. Knowledge Acquisition
3(1):79{115.

DeMarco, T. 1978. Structured Analysis and System
Speci�cation. New York: Yourdon Press.

desJardins, M. 1996. Knowledge acquisition tools for
planning systems. In Tate (1996), 53{61.

Domingue, J.; Motta, E.; and Watt, S. 1993. The
emerging VITAL workbench. In Proceedings of the
7th European Knowledge Acquisition for Knowledge-
Based Systems Workshop (EKAW'93).

Drabble, B. 1990. Mission scheduling for spacecraft:
Diaries of T-Sched. In Expert Planning Systems, 76{
81. Institute of Electrical Engineers.

Drabble, B., ed. 1996. Proceedings of the Third Inter-
national Conference on Arti�cial Intelligence Plan-
ning Systems (AIPS-96). Edinburgh, Scotland: Mor-
gan Kaufmann.

Drummond, M., and Tate, A. 1992. PLANIT inter-
active planner's assistant { rationale and future direc-
tions. AIAI AIAI-TR-108, University of Edinburgh.

Easterbrook, S., and Nuseibeh, B. 1996. Using view-
points for inconsistency management. Soft. Engin.
Journ. January.

Easterbrook, S. 1991. Handling con
ict between do-
main descriptions with computer-supported negota-
tion. Knowledge Acquisition 3(3):255{289.

Erol, K. 1995. Hierarchical Task Network Planning:
Formalisation, Analysis, and Implementation. De-
partment of Computer Science, University of Mary-
land, College Park, USA.

Finkelstein, A.; Gabbay, D.; Hunter, A.; Kramer, J.;
and Nuseibeh, B. 1994. Inconsistency handling in
multi-perspective speci�cations. Trans Software Eng
20(8):569{578.

Fuchs, J.; Gasquet, A.; Olalainty, B.; and Currie,
K. 1990. PlanERS-1: An expert planning system

for generating spacecraft mission plans. In First In-
ternational Conference on Expert Planning Systems,
70{75. Brighton, United Kingdom: Institute of Elec-
trical Engineers.

Giarratano, J. 1994. CLIPS 6.0 user's guide. Software
Technology Branch JSC-25013, Lyndon B. Johnson
Space Center, Information Systems Directorate.

Jackson, M. 1975. Principles of Program Design. New
York, USA: Academic Press.

Johnston, A., and Adorf, A. 1992. Scheduling with
neural networks: The case of the hubble space tele-
scope. Computers and Operations Research 19(3{
4):209{240.

Kingston, J.; Shadbolt, N.; and Tate, A. 1996. Com-
monKADS models for knowledge based planning. Ar-
ti�cial Intelligence Application Institute AIAI-TR-
199, University of Edinburgh, Edinburgh, Scotland.

Kotonya, G., and Somerville, I. 1996. Requirements
engineering with viewpoints. Soft. Engin. Journ.
11(1).

Langley, P., and Drummond, M. 1990. Toward
an experimental science of planning. In Sycara, K.,
ed., Proceedings workshop on innovative approaches
to planning and scheduling approaches, 109{114. San
Diego, CA: Morgan Kaufmann Publishers, ISBN 1-
55860-164-3.

Malone, T.; Crowston, K.; Lee, J.; and Pentland, B.
1993. Tools for inventing organizations: Towards a
handbook of organizational processes. In Proceedings
of the 2nd IEEE Workshop on Enabling Technologies
Infrastructure for Collaborative Enterprises.

Mayer, R.; Cullinane, T.; deWitte, P.; Knappen-
berger, W.; Perakath, B.; and Wells, M. 1992.
Information integration for concurrent engineering
(IICE) IDEF3 process description capture method re-
port. Technical Report AL-TR-1992-0057, Armstrong
Laboratory, Logistics Research Division, Wright-
Patterson AFB, OH 45433 USA.

McCluskey, T., and Kitchin, D. 1998. OCLh: An
object-centred language for HTN planning. School of
computing and mathematics, University of Hudder-
s�eld, Hudders�eld, UK, Submitted to ICTAI '98.

McCluskey, T., and Porteous, J. 1997. Engineering
and compiling planning domain models to promote
validity and e�ciency. Arti�cial Intelligence 95(1):1{
65.

Motta, E.; Rajan, T.; Domingue, J.; and Eisenstadt,
M. 1991. Methodological foundations of KEATS, the
knowledge engineer's assistant. Knowledge Acquisi-
tion 3(1):21{47.

Mullery, G. 1979. CORE: A method for controlled
requirements speci�cation. In Proceedings of the 4th
International Conference on Software Engineering.

Myers, K., and Wilkins, D. 1997. The Act-Editor
user's guide: A manual for version 2.2. SRI Interna-
tional Arti�cial Intelligence Center, Stanford Univer-
sity, Menlo Park, CA.

Nunes de Barros, L.; Benjamins, R.; Shahar, Y.; Tate,
A.; and Valente, A. 1998. Workshop on knowledge en-
gineering and acquisition for planning: Bridging the-
ory and practice. AIPS '98 AAAI Technical Report
WS-98-03, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

Polyak, S., and Aitken, S. 1998. Manufacturing pro-
cess interoperability scenario. Arti�cial Intelligence
Applications Institute AIAI-PR-68, University of Ed-
inburgh, Edinburgh, Scotland.

Polyak, S. T. 1998. A supply chain process interoper-
ability demonstration using the process interchange
format (PIF). Department of Arti�cial Intelligence
Report Number 889, University of Edinburgh, Edin-
burgh, Scotland.

Sacerdoti, E. 1975. The nonlinear nature of plans. In
Proceedings of the International Joint Conference on
Arti�cial Intelligence (IJCAI-75), 206{214.

Sommerville, I., and Sawyer, P. 1997. Requirements
Engineering: A Good Practice Guide. JohnWiley and
Sons.

Swartout, W., and Gil, Y. 1996. EXPECT: A user-
centered environment for the development and ad-
aptation of knowledge-based planning aids. In Tate
(1996), 250{258.

Tate, A., and Currie, K. 1984. The O-Plan Task
Formalism Workstation. Arti�cial Intelligence Ap-
plications Institute (AIAI) AIAI-TR-7, University of
Edinburgh.

Tate, A., and Currie, K. 1985. The O-Plan task form-
alism workstation. In Proceedings of the Third Work-
shop of the UK Alvey Programme's Planning Special
Interest Group. London, UK: Institute of Electrical
Engineers.

Tate, A.; Drabble, B.; and Dalton, J. 1994.
The Task Formalism Manual. Arti�cial In-
telligence Applications Institute AIAI-TF-
Manual, University of Edinburgh, Edinburgh, UK
ftp://ftp.aiai.ed.ac.uk/pub/documents/ANY/oplan-
tf-manual.ps.gz.

Tate, A.; Polyak, S.; and Jarvis, P. 1998. TF
Method: An initial framework for modelling and ana-
lysing planning domains,. AIPS '98 Workshop on

Knowledge Engineering and Acquisition for Planning:
Bridging Theory and Practice AAAI Technical Re-
port WS-98-03, Carnegie Mellon University, Pitts-
burgh, Pennsylvania.

Tate, A. 1977. Generating project networks. In Pro-
ceedings of the International Joint Conference on Ar-
ti�cial Intelligence (IJCAI-77), 888{893.

Tate, A. 1993. Putting knowledge-rich plan repres-
entations to use. In Papers of the 14th Machine In-
telligence Workshop.

Tate, A., ed. 1996. Advanced Planning Technology:
Technological Advancements of the ARPA/Rome
Laboratory Planning Initiative. Menlo Park, CA:
AAAI Press.

Uschold, M., and Gruninger, M. 1996. Ontologies:
Principles, methods and applications. Knowledge En-
gineering Review 11(2).

Valente, A. 1995. Knowledge-level analysis of plan-
ning systems. SIGART Bulletin 6(1).

Wang, X. 1996. Planning while learning operators.
In Drabble (1996), 229{236.

Wilkins, D. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. Morgan Kaufmann.

Wilson, A. 1984. Information for Planning. M.Sc.
Thesis, Department of Arti�cial Intelligence, Univer-
sity of Edinburgh, UK.

Yang, Q.; Fong, P.; and Kim, E. 1998. Design
patterns for planning systems. AIPS '98 Workshop
on Knowledge Engineering and Acquisition for Plan-
ning: Bridging Theory and Practice AAAI Technical
Report WS-98-03, Carnegie Mellon University, Pitts-
burgh, Pennsylvania.

A. Viewpoint Structure Diagram

This is a screen shot taken from the CPM toolset of an initial Viewpoint Structure Diagram (VSD) which provides
the framework for eliciting and analysing the detailed domain requirements. The three highlighted viewpoints are
utilised in the examples found in this paper.

B. Tabular Entry Diagram

This is a screen shot taken from the CPM toolset of a Tabular Entry Diagram (TED) for a customer viewpoint
which provides interface activities associated with this bounding functional viewpoint.

C. Data Composition Notation

This notation was originally developed in (DeMarco 1978). Within CPM, it provides a way for analysts to describe
the composition of data elements which are manipulated by the domain processes. A summary of the symbols used
and an example are shown below.

Notation Table
Symbol Meaning

= is equivalent to
+ and
/ separates alternatives
[] encloses alternatives
f g encloses repeating elements or structures or both
mf speci�es the minimum number of repeating elements, structures or both
gn speci�es the maximum number of repeating elements, structures or both
! key component identi�er

Example from the Supply Chain Domain

Retail-Sales-Order =

{Order Number!+

[Total-Cost-Pounds/Total-Cost-Dollars]+

Customer-Number+ Sale-Date+ Sale-Time+

1{Quantity+ Cost-Per-Unit+

Product-Number+ Line-Item-Cost}250}

